
Generating Utilization Vectors for the Systematic

Evaluation of Schedulability Tests

David Griffin, Iain Bate, Robert Davis

Real-Time Systems Research Group, University of York, UK

RTSS 2020

◼ Dirichlet-Rescale (DRS) algorithm

◼ Returns:

A vector of n components (utilization values)

such that

◼ Inputs:

n – size of the vector required

U – total utilization required

vector of maximum constraints

vector of minimum constraints

2

Introducing the DRS Algorithm

3

Motivation

Systematic evaluation of the effectiveness of schedulability tests

Generation of synthetic task sets with a variety of different parameters

Supported by

Supported by

Generation of unbiased utilization vectors compliant with constraints

Foundational layer is the

focus of this work

◼ Uniformity

◼ The vectors of utilization values generated must be unbiased i.e. the vectors

must be uniformly distributed within the valid region

◼ Bias in the sets of vectors generated can undermine the conclusions drawn from

studies into schedulability test effectiveness (Bini and Buttazzo, 2005 [6])

◼ Efficiency

◼ Necessary to generate millions of task sets to achieve statistically significant

sample sizes in wide-ranging systematic evaluations

◼ Typically 1000 task sets per data point for high quality results (Davis, 2016 [11])

◼ Flexibility

◼ Capable of handling constraints on individual task utilization values

◼ So the utilization vectors can be tailored to the specific requirements of the

problem at hand (examples later), while still producing a uniform distribution of

vectors within the valid region given by the constraints

4

Key criteria for utilization vector

generation

◼ Vectors and Simplices
◼ n-dimensional vectors with components

that sum to U

◼ Each vector represents a point in

n-dimensional space

(n=3 for visualization)

◼ Canonical form x+y+z=1

with x ≥ 0, y ≥ 0, z ≥ 0

◼ Equation x+y+z=1 defines a hyperplane

(plane in 3-D space)

◼ Combined with inequalities defines a

standard n-1 dimensional simplex

embedded in n dimensional space

(triangle in 3-D space)

◼ Vectors required are points uniformly

distributed within this simplex

5

Mathematical background

◼ Adding constraints

◼ Maximum constraints form a constraints

simplex on the same hyperplane as the

standard simplex

(x+y+z=1 and x ≤ 0.5, y ≤ 0.45, z ≤ 0.7)

◼ Vectors required are points uniformly

distributed within the valid region i.e.

within the intersection of the constraints

simplex and the standard simplex

◼ Duality between the two simplices – we

could generate points in either simplex

and use the other as the constraints

◼ Minimum constraints can be handled by

transforming the problem into a canonical

form where all minimum constraints are

zero (see the paper)

6

Mathematical background

◼ UUnifast algorithm

◼ First work on this topic published in the

Real Time Systems literature

◼ Bini and Buttazzo, 2005 [6]

◼ Solves the problem with no maximum or

minimum constraints

◼ Useful for single processor systems

◼ Flat Dirichlet distribution

◼ In the Maths literature, Olkin and Rubin,

1964 [24] published work on the

Dirichlet distribution

◼ Can also be used to solve the problem

with no constraints for single processor

systems

7

Related work

◼ UUnifast-Discard algorithm

◼ Davis and Burns (2010) [14]

◼ Developed for multiprocessor systems,

where U > 1, but Ui > 1 is invalid

◼ Addresses the problem of maximum

(and minimum) constraints

◼ Very simple (naïve) approach – uses

UUnifast then discards any points that

do not comply with the constraints

◼ Suffers from the curse of

dimensionality: If the constraints on

each component halve the volume of the

valid region then the proportion of

useful points is 1/2n

(fine when n=3, not so good when

n=50)

8

Related work

◼ RandFixedSum

◼ Invented by Stafford, 2006 [28] and

adapted for task set generation by

Emberson et al., 2010 [17]

◼ Efficiently addresses the problem of

symmetric maximum and minimum

constraints (i.e. the same constraints for

all tasks)

◼ De facto standard approach for

modelling multiprocessor systems

◼ Does not cater for asymmetric

constraints and cannot be adapted to do

so because of its reliance on symmetry

for its efficiency

9

Related work

10

Dirichlet-Rescale (DRS) algorithm

P

◼ DRS algorithm

◼ Addresses the intractability drawbacks:

of UUnifast-Discard (discarding

points) and of RandFixedSum (would

need to generate points in very many

different simplices to deal with a valid

region that is an irregular shape)

◼ Basic concept is to generate a point in

the standard simplex then if it is not in

the valid region, make a series of

transformations shifting the co-

ordinates of the point until it is within

the valid region

◼ Crucially these transformations must

preserve the uniform distribution of

points

◼ DRS Algorithm outline operation
1. Transform the problem into a canonical form

by removing minimum constraints

2. Exploits duality to switch the standard and
constraints simplices for efficiency

3. Generate a point P on the standard simplex
using the Dirichlet distribution

4. If P satisfies the constraints then return P
(reversing the initial transformation)

5. Otherwise, defines Simplex S based on the
broken constraints (S contains P)

6. Map Simplex S onto the standard simplex
via a matrix transformation

7. This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

8. Goto step 4.

11

How DRS works

P

◼ DRS Algorithm outline operation
1. Transform the problem into a canonical form

by removing minimum constraints

2. Exploits duality to switch the standard and
constraints simplices for efficiency

3. Generate a point P on the standard simplex
using the Dirichlet distribution

4. If P satisfies the constraints then return P
(reversing the initial transformation)

5. Otherwise, defines Simplex S based on the
broken constraints (S contains P)

6. Map Simplex S onto the standard simplex
via a matrix transformation

7. This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

8. Goto step 4.

12

How DRS works

P

◼ DRS Algorithm outline operation
1. Transform the problem into a canonical form

by removing minimum constraints

2. Exploits duality to switch the standard and
constraints simplices for efficiency

3. Generate a point P on the standard simplex
using the Dirichlet distribution

4. If P satisfies the constraints then return P
(reversing the initial transformation)

5. Otherwise, defines Simplex S based on the
broken constraints (S contains P)

6. Map Simplex S onto the standard simplex
via a matrix transformation

7. This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

8. Goto step 4.

13

How DRS works

P

◼ DRS Algorithm outline operation
1. Transform the problem into a canonical form

by removing minimum constraints

2. Exploits duality to switch the standard and
constraints simplices for efficiency

3. Generate a point P on the standard simplex
using the Dirichlet distribution

4. If P satisfies the constraints then return P
(reversing the initial transformation)

5. Otherwise, defines Simplex S based on the
broken constraints (S contains P)

6. Map Simplex S onto the standard simplex
via a matrix transformation

7. This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

8. Goto step 4.

14

How DRS works

P

◼ Ensuring Uniformity
◼ Distribution of initial points generated

over the standard simplex is uniform

◼ Hence the distribution of points is also
uniform over Simplex S

◼ The matrix transformation that maps
Simplex S onto the standard simplex is
an Affine transformation (i.e. a scale
and translate transformation).

◼ Therefore the points that are uniformly
distributed over Simplex S become
uniformly distributed over the standard
simplex and hence uniformly distributed
over the valid region

15

How DRS works

P

◼ Convergence

◼ Let

◼ After q iterations, the minimum
converged volume

◼ As and so the algorithm
converges

◼ Illustration of convergence
◼ Heat map color codes the number of

rescales needed to converge:

◼ Here p = 0.25 and all 1000 initial points
converged within 24 rescales

[Note this was done for illustration purposes with
the duality optimization disabled, otherwise no
rescaling would be necessary since every point
generated would be within the smaller constraints
simplex (blue)]

16

How DRS works (convergence)

◼ Experiment A

◼ n = 50 and 10,000 runs for each U in [0.05, 0.95] in steps of 0.05

◼ For each run: with constraints

◼ Number of Rescales (Box plot)
◼ Worst-case occurs for U = 0.5

when constraints and standard
simplex are the same size

◼ Max rescales < 200 (upper circle)
Min rescales (lower circle)
Mean (middle line of box)
Percentiles (5%, 25%, 75%, 95%)

17

DRS Performance

◼ Experiment B

◼ Similar to Expt. A, but U fixed at 0.5 and n varied from 5 to 100 in steps of 5

◼ For each run: with constraints

◼ Number of Rescales (Box plot)
◼ Number of rescales gradually

increases with increasing size
of the vectors (number of tasks)

◼ Max rescales < 200 (upper circle)
Min rescales (lower circle)
Mean (middle line of box)
Percentiles (5%, 25%, 75%, 95%)

18

DRS Performance

◼ Experiment B (continued)

◼ Number of Retries
◼ Rescale operations can lead to the

accumulation of Floating Point error

◼ A retry is done by generating another
point if the total error (sum of component
values minus required utilization)
exceeds 0.01%

◼ Number of retries increases with
increasing size of the vectors,
but remains low for n ≤ 100

19

DRS Performance

◼ Experiment C

◼ Runtime to generate all the vectors needed for a standard “benchmark” schedulability
analysis experiment (1000 vectors for each of 18 utilization levels from U = 0.05 to
0.95 in steps of 0.05, 18,000 vectors in all)

◼ Runtimes:
◼ Used a Pi 4 to obtain reliable timings

◼ Runtimes well approximated by a
polynomial of order 3 (cubic function)
R2 = 0.999

◼ Typical use would be on a laptop
or desktop PC (e.g. Dell XPS 13
with Intel™ i7-1065G7 at 3.5GHz

◼ ~6 seconds for 10 tasks

◼ ~60 seconds for 50 tasks

◼ ~6 minutes for 100 tasks

(approx. 6 times faster than a Pi 4)

20

DRS Performance

◼ Experiment D
◼ Verified the uniformity of the distribution of vectors produced by DRS via comparison

with UUnifast-Discard

◼ Statistical test:
◼ Examined the density of points produced

in 1000 small reference simplices (within
the valid region) via the DRS algorithm
and UUnifast-Discard

◼ Compared the Empirical Cumulative
Distribution Functions (ECDF) using a
statistical test: Kolmogorov-Smirnov
(KS) test

◼ KS-statistic = 0.04, p-value = 1.0

◼ No evidence that the vectors produced
come from different distributions

◼ Cannot reject the null hypothesis that the
distributions are the same

21

DRS Performance

◼ Main use is in the systematic evaluation of schedulability tests

◼ Used to underpin the generation of synthetic task sets with execution times

derived from the utilization values

◼ Asymmetric constraints:

◼ Occur when execution times have multiple values or are composed from

multiple parts:

◼ Mixed Criticality Systems (e.g. C(LO), C(HI))

◼ Multi-core systems (e.g. processor demand, bus demand, memory demand, etc.),

◼ Typical and worst-case execution times

◼ Self-suspensions and resource locking

◼ No constraints or symmetric constraints:

◼ DRS can be used to replace UUnifast for single processor systems, and

RandFixedSum and UUnifast-Discard for multiprocessor systems

22

Use of the DRS algorithm

◼ Schedulability Analysis Experiment

◼ Reproduced from the Adaptive Mixed Criticality (AMC) scheduling paper
(Baruah et al., 2011 [4])

◼ Using DRS:

◼ Independent control of total U(LO) and U(HI)

◼ Independent selection of Ui(LO) ≤ Ui(HI) and hence Ci(LO) ≤ Ci(HI)

◼ Eliminates generation of invalid (infeasible) task sets

◼ Ui(HI) generated by calling

◼ Maximum constraints set to 1 for LO-criticality tasks and to Ui(HI) for HI-
criticality tasks

◼ Ui(LO) generated by calling

23

Mixed Criticality Systems Example

◼ Schedulability Analysis Experiment
◼ Reproduced from AMC paper [4]

◼ DRS highlights sharper transition of AMC and larger improvement over SMC

◼ More nuanced and realistic results – could affect decisions on which methods to use

Baruah et al. DRS used in task set generation

24

Mixed Criticality Systems Example

◼ What is meant by an unbiased?
◼ Vectors generated are uniformly distributed

across the valid region

◼ Does not mean the component values themselves are
uniformly distributed (common misconception)

◼ Why use a unbiased distribution?

◼ For generic schedulability analysis experiments, using a uniform distribution of

utilization vectors means that each possible vector that complies with the constraints

has the same chance of being selected

◼ The distribution is thus unbiased, provides full and fair coverage of all valid

possibilities, and is therefore arguably the appropriate one to use

◼ Not using a uniform distribution of vectors risks biasing the results of schedulability

analysis experiments

25

Why use an unbiased distribution of

utilization vectors?

1. Confound variables (n and U)
◼ Select Ui from a uniform distribution

[0,1] and keep adding tasks until the
required total utilization is reached

◼ Confounds n and U, so we cannot
distinguish the effects of higher task set
cardinality from those of higher task set
utilization

2. Simple scaling (UScale)
◼ Select n values for Ui from a uniform

distribution [0,1] and then scale them to
achieve the required total utilization U

3. Addition of components (UAdd)
◼ Use UUnifast for each of multiple parts

of Ui and then add these values together

26

Easy ways of introducing bias…
UScale

UAdd

◼ Flexible - general purpose algorithm
◼ Supports asymmetric constraints on maximum and minimum utilization for each task

◼ Used to obtain unbiased distributions when execution times have multiple values or are
composed from multiple parts

◼ Useful for tailoring task sets to specific problem requirements, limitations, or domain specific
constraints

◼ Can also be used to replace UUnifast, UUnifast-Discard, and RandFixedSum

◼ High performance
◼ Supports efficient generation of task sets with cardinality up to n = 100 with individual

constraints

◼ Additional experiments show that DRS supports generation of task sets with cardinality
up to n = 200 with a commensurate slowdown in performance

◼ Python source code is publicly available
◼ Permanently archived at https://doi.org/10.5281/zenodo.4118059

◼ Can be installed via: pip install drs (https://pypi.org/project/drs/)

◼ Also provide a C library enabling the DRS algorithm in Python to be called directly from
C/C++ code

27

Conclusion:

Why use the DRS algorithm?

https://doi.org/10.5281/zenodo.4118059
https://pypi.org/project/drs/

28

Questions?

