THE UNIVERSITYW

David Griffin, lain Bate, Robert Davis

J@RTS/M

Generating Utilization Vectors for the Systematic
Evaluation of Schedulability Tests

Real-Time Systems Research Group, University of York, UK

1 Standard Slmylu
z=07 Y125
5

RTSS 2020

THE UNIVERSITYW @RTS/
3

Introducing the DRS Algorithm

= Dirichlet-Rescale (DRS) algorithm

u = DRS(T? U—: ulnax? lll]]lﬂ)

= Returns:
A vector of n components (utilization values) u = (U, Us, ..., U,)
such that
>im Ui=U
W2 erj.r:rm:r. > Ui > erj.rnin > 0
= Inputs:

n — size of the vector required
U — total utilization required
umax — ((T_.f mar {." mar ;rma:{'

1 R) vector of maximum constraints
umin = (men e E;Tm) vector of minimum constraints

THE UNIVERSITYW

Motivation

Systematic evaluation of the effectiveness of schedulability tests

Supported by

Generation of synthetic task sets with a variety of different parameters

Supported by

Generation of unbiased utilization vectors compliant with constraints

Foundational layer is the
focus of this work

THE UNIVERSITYW RTS/
3

Key criteria for utilization vector
generation

= Uniformity
= The vectors of utilization values generated must be unbiased i.e. the vectors
must be uniformly distributed within the valid region

= Bias in the sets of vectors generated can undermine the conclusions drawn from
studies into schedulability test effectiveness (Bini and Buttazzo, 2005 [6])

= Efficiency

= Necessary to generate millions of task sets to achieve statistically significant
sample sizes in wide-ranging systematic evaluations

= Typically 1000 task sets per data point for high quality results (Davis, 2016 [11])
= Flexibility
= Capable of handling constraints on individual task utilization values

= So the utilization vectors can be tailored to the specific requirements of the
problem at hand (examples later), while still producing a uniform distribution of
vectors within the valid region given by the constraints

THE UNIVERSITYW RTS/
3

Mathematical background

= Vectors and Simplices

= n-dimensional vectors with components SN
that sum to U ey

= Each vector represents a point in
n-dimensional space _ e e)
(n=3 for visualization) " o L

= Canonical form x+y+z=1 0.6< Y TO e i =0

v, 2. g
/= . \Standard Simplex
LN Y 2=

withx>0,y>0,2>0 2 . e ‘;, SRR AR
= Equation x+y+z=1 defines a hyperplane Y AP S A e R
(plane in 3-D space) T INRTI I S o

= Combined with inequalities defines a) fool i lrle e e T A\
standard n-1 dimensional simplex SRR S P L SO S E N s
embedded in n dimensional space
(triangle in 3-D space)

= Vectors required are points uniformly Y 1 z
distributed within this simplex

THE UNIVERSITYW

Mathematical background

= Adding constraints

Maximum constraints form a constraints
simplex on the same hyperplane as the
standard simplex

(x+y+z=1and x <0.5, y <0.45, 2 <0.7)

Vectors required are points uniformly
distributed within the valid region i.e.
within the intersection of the constraints
simplex and the standard simplex

Duality between the two simplices — we
could generate points in either simplex
and use the other as the constraints

Minimum constraints can be handled by
transforming the problem into a canonical
form where all minimum constraints are
zero (see the paper)

0.6 <

0.4 =

0.2 <

RTS /s«

=

>
Standard Simplex
X+y+Z=

Ter T
R 2
o -

F VR

L
5 -
u n

o
s

iy = 0.45

| - .
Constraints Simp\ex

THE UNIVERSITYW

Related work

= UUnifast algorithm

= First work on this topic published in the
Real Time Systems literature
= Bini and Buttazzo, 2005 [6]

= Solves the problem with no maximum or
minimum constraints

= Useful for single processor systems

s Flat Dirichlet distribution

= In the Maths literature, Olkin and Rubin,
1964 [24] published work on the
Dirichlet distribution

= Can also be used to solve the problem
with no constraints for single processor
systems

RTS /s«

>

>

>
/= . \Standard Simplex
CLTTNX Ytz =

THE UNIVERSITYW

Related work

= UUnifast-Discard algorithm

Davis and Burns (2010) [14]

Developed for multiprocessor systems,
where U > 1, but U; > 1 is invalid

Addresses the problem of maximum
(and minimum) constraints

Very simple (naive) approach — uses
UUnifast then discards any points that
do not comply with the constraints

Suffers from the curse of
dimensionality: If the constraints on
each component halve the volume of the
valid region then the proportion of
useful points is 1/2"

(fine when n=3, not so good when
n=50)

RTS /s«

THE UNIVERSITYW

Related work

s RandFixedSum

Invented by Stafford, 2006 [28] and
adapted for task set generation by
Emberson et al., 2010 [17]

Efficiently addresses the problem of
symmetric maximum and minimum
constraints (i.e. the same constraints for
all tasks)

De facto standard approach for
modelling multiprocessor systems

Does not cater for asymmetric
constraints and cannot be adapted to do
so because of its reliance on symmetry
for its efficiency

THE UNIVERSITYW

@RTS/M

Dirichlet-Rescale (DRS) algorithm

= DRS algorithm

Addresses the intractability drawbacks:

of UUnifast-Discard (discarding
points) and of RandFixedSum (would
need to generate points in very many
different simplices to deal with a valid
region that is an irregular shape)

Basic concept is to generate a point in
the standard simplex then if it is not in
the valid region, make a series of
transformations shifting the co-
ordinates of the point until it is within
the valid region

Crucially these transformations must
preserve the uniform distribution of
points

) . Sin _!p‘lc_\' S 0

T 04 0.4
0.6 <)/{]‘6

y 0.8 708 .

10

THE UNIVERSITYW

RTS /s«

How DRS works

= DRS Algorithm outline operation

1.

Transform the problem into a canonical form
by removing minimum constraints

Exploits duality to switch the standard and P
constraints simplices for efficiency z=0.7

Generate a point P on the standard simplex 0.8 -
using the Dirichlet distribution

X+Y+zZ=

>
Standard Sii‘nglgm

If P satisfies the constraints then return P 0.6 <
(reversing the initial transformation) g
Otherwise, defines based on the 0.4x
broken constraints (S contains P) 09
Map onto the standard simplex

via a matrix transformation

This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

Goto step 4.

11

THE UNIVERSITYW

How DRS works

DRS Algorithm outline operation

1. Transform the problem into a canonical form
by removing minimum constraints

2. Exploits duality to switch the standard and
constraints simplices for efficiency

3. Generate a point P on the standard simplex .8 -
using the Dirichlet distribution

4. If P satisfies the constraints then return P 0.6 <
(reversing the initial transformation) 2

5. Otherwise, defines Simplex S based on the
broken constraints (S contains P)

6. Map Simplex S onto the standard simplex
via a matrix transformation 0

7. This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

8. Goto step 4.

0.4 <

0.2 <

12

THE UNIVERSITYW

RTS /s«

How DRS works

= DRS Algorithm outline operation

1.

Transform the problem into a canonical form
by removing minimum constraints

Exploits duality to switch the standard and P
constraints simplices for efficiency z=0.7

Generate a point P on the standard simplex 0.8 -
using the Dirichlet distribution

X+Y+zZ=

>
Standard Sii‘nglgm

If P satisfies the constraints then return P 0.6 <
(reversing the initial transformation) g
Otherwise, defines based on the 0.4x
broken constraints (S contains P) 09
Map onto the standard simplex

via a matrix transformation

This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

Goto step 4.

13

THE UNIVERSITYW

How DRS works

DRS Algorithm outline operation

1.

Transform the problem into a canonical form
by removing minimum constraints

Exploits duality to switch the standard and |)
constraints simplices for efficiency z=0.7

Generate a point P on the standard simplex 0.8 -
using the Dirichlet distribution

>
Standard Sii‘nglgm
X+yV+zZ=

If P satisfies the constraints then return P 0.6 <
(reversing the initial transformation) g
Otherwise, defines based on the 0.4x
broken constraints (S contains P) 09
Map onto the standard simplex

via a matrix transformation

This scale and translate transformation alters
the coordinates of P making it more likely
that the point will now be in the valid region

Goto step 4.

14

RTS /s«

THE UNIVERSITYW

How DRS works

= Ensuring Uniformity

Distribution of initial points generated
over the standard simplex is uniform

Hence the distribution of points is also
uniform over Simplex S

The matrix transformation that maps
Simplex S onto the standard simplex is
an Affine transformation (i.e. a scale
and translate transformation).

Therefore the points that are uniformly
distributed over Simplex S become
uniformly distributed over the standard
simplex and hence uniformly distributed
over the valid region

THE UNIVERSITYW @RTS/
3

How DRS works (convergence)

= Convergence
volume(valid region)

= Letp= volume(standard simplex)

20

= After g iterations, the minimum
converged volume ¢ > 1 — (1 — p)?

= As g — oo, c — 1 and so the algorithm
converges

= lllustration of convergence

= Heat map color codes the number of
rescales needed to converge:

= Here p=0.25 and all 1000 initial points
converged within 24 rescales

[Note this was done for illustration purposes with

the duality optimization disabled, otherwise no

rescaling would be necessary since every point
generated would be within the smaller constraints

simplex (blue)]

15

10

(W |

16

THE UNIVERSITYW RTS/
3

DRS Performance

= EXxperiment A

= n=50and 10,000 runs for each U in [0.05, 0.95] in steps of 0.05
= For each run: DRS(n, U, u™#*) with constraints u™** = UUnifast(n, 1)

= Number of Rescales (Box plot) i oo

= Worst-case occurs for U =0.5
when constraints and standard
simplex are the same size

= Max rescales < 200 (upper circle)
Min rescales (lower circle)
Mean (middle line of box)
Percentiles (5%, 25%, 75%, 95%)

[
[an}
=}
|
|

Number of rescales
T

0_% F
| |

| =
0 0.2 0.4 0.6 0.8 1
Utilization

THE UNIVERSITYW

DRS Performance

= EXxperiment B

= Similar to Expt. A, but U fixed at 0.5 and n varied from 5 to 100 in steps of 5
= For each run: DRS(n, U, u™#*) with constraints u™** = UUnifast(n, 1)

150
= Number of Rescales (Box plot)
= Number of rescales gradually

Increases with increasing size
of the vectors (number of tasks)

= Max rescales < 200 (upper circle)
Min rescales (lower circle)
Mean (middle line of box)
Percentiles (5%, 25%, 75%, 95%)

100

Number of rescales

RTS /s«

b

o o

o © o o

0

20

40 60
Number of tasks

80

100

18

THE UNIVERSITYW

RTS /s«

= EXxperiment B (continued)
u Number Of Retries 3 |j| L A |.\ 1T T] T T 1T T [T 1T 1T T 7 1T T T T] .
= Rescale operations can lead to the JF Retries per vector f
accumulation of Floating Point error -]
= A retry is done by generating another L E
point if the total error (sum of component b E
values minus required utilization) ['} — '2'0‘ — '4'0' — '6'0' — '8'0' — '150 -

exceeds 0.01%

= Number of retries increases with
Increasing size of the vectors,
but remains low for n < 100

Number of tasks

19

THE UNIVERSITYW RTS/
3

DRS Performance

= Experiment C

= Runtime to generate all the vectors needed for a standard “benchmark” schedulability
analysis experiment (1000 vectors for each of 18 utilization levels from U = 0.05 to
0.95 in steps of 0.05, 18,000 vectors in all)

= Runtimes:
= Used a Pi 4 to obtain reliable timings 10000

= Runtimes well approximated by a
polynomial of order 3 (cubic function)
R2=0.999

= Typical use would be on a laptop
or desktop PC (e.g. Dell XPS 13
with Inte]™ 17-1065G7 at 3.5GHz

= ~6 seconds for 10 tasks 100
= ~60 seconds for 50 tasks
= ~6 minutes for 100 tasks
(approx. 6 times faster than a Pi 4) 10

—— Runtime to generate the set of vectors

1000

Seconds

0 20 40 60 80 W00
Number of tasks 20

THE UNIVERSITYW

DRS Performance

= EXxperimentD
Verified the uniformity of the distribution of vectors produced by DRS via comparison

with UUnifast-Discard

m Statistical test:;

Examined the density of points produced
in 1000 small reference simplices (within
the valid region) via the DRS algorithm
and UUnifast-Discard

Compared the Empirical Cumulative
Distribution Functions (ECDF) using a
statistical test: Kolmogorov-Smirnov
(KS) test

KS-statistic = 0.04, p-value = 1.0

No evidence that the vectors produced
come from different distributions

Cannot reject the null hypothesis that the
distributions are the same

ECDF

0.8

0.6

0.4 f

0.2

0.0

RTS /s«

= Dirichlet-Rescale
—— UUnifast-Discard

==

(=)
o

10 20 30 40 50
Density in R0 (x10'8)

21

THE UNIVERSITYW RTS/
3

Use of the DRS algorithm

= Main use is in the systematic evaluation of schedulability tests
= Used to underpin the generation of synthetic task sets with execution times
derived from the utilization values
= Asymmetric constraints:

= Occur when execution times have multiple values or are composed from
multiple parts:
= Mixed Criticality Systems (e.g. C(LO), C(HI))
= Multi-core systems (e.g. processor demand, bus demand, memory demand, etc.),
= Typical and worst-case execution times
= Self-suspensions and resource locking

= No constraints or symmetric constraints:

= DRS can be used to replace UUnifast for single processor systems, and
RandFixedSum and UUnifast-Discard for multiprocessor systems

22

THE UNIVERSITYW RTS/
3

Mixed Criticality Systems Example

= Schedulability Analysis Experiment

= Reproduced from the Adaptive Mixed Criticality (AMC) scheduling paper
(Baruah et al., 2011 [4])

= Using DRS:
= Independent control of total U(LO) and U(HI)
= Independent selection of U;(LO) < U,;(HI) and hence C,(LO) < C;(HI)
= Eliminates generation of invalid (infeasible) task sets
= U;(H1) generated by calling prg(,, #1711

= Maximum constraints set to 1 tfor LO- crltlcallty tasks and to U;(HI) for HI-
criticality tasks

= U;(LO) generated by calling DRS(n, ULO ymax)

23

THE UNIVERSITYW

Proportion of task sets schedulable

Mixed Criticality Systems Example

0.8

0.6

0.4

0.2

0
0.

Schedulability Analysis Experiment

Reproduced from AMC paper [4]

DRS highlights sharper transition of AMC and larger improvement over SMC
More nuanced and realistic results — could affect decisions on which methods to use

DRS used in task set generation

Baruah et al.

Valid
- -=- UB-H&L
—l— AMC-max
—he— AMC-rth
—8— SMC

5

0.6

0.7 0.8

Utilization

0.9

[

Proportion of task sets schedulable

—
oy

0.8

0.6

0.4

@RTS/M

—_— Valid
--- UB-H&L
—— AMC-max
—b— AMC-rth
—a— SMC

o

0.6

0.7 0.8

Utilization

0.9

Lt

f—

THE UNIVERSITYW RTS/
3

Why use an unbiased dlstrlbutlon of
utilization vectors?

= What is meant by an unbiased?

= Vectors generated are uniformly distributed
across the valid region

= Does not mean the component values themselves are
uniformly distributed (common misconception)

= Why use a unbiased distribution?

= For generic schedulability analysis experiments, using a uniform distribution of
utilization vectors means that each possible vector that complies with the constraints
has the same chance of being selected

= The distribution is thus unbiased, provides full and fair coverage of all valid
possibilities, and is therefore arguably the appropriate one to use

= Not using a uniform distribution of vectors risks biasing the results of schedulability
analysis experiments

25

THE UNIVERSITYW

Easy ways of introducing bias...

1. Confound variables (n and U)

= Select U; from a uniform distribution
[0,1] and keep adding tasks until the
required total utilization is reached

= Confounds nand U, so we cannot
distinguish the effects of higher task set
cardinality from those of higher task set
utilization

2. Simple scaling (UScale)

= Select n values for U; from a uniform
distribution [0,1] and then scale them to
achieve the required total utilization U

3. Addition of components (UAdd)

= Use UUnifast for each of multiple parts
of U; and then add these values together

= T
vl

UScale /7

1<

0.8 <

0.6 <

THE UNIVERSITYW RTS/
3

Conclusion:
Why use the DRS algorithm?

= Flexible - general purpose algorithm
= Supports asymmetric constraints on maximum and minimum utilization for each task

= Used to obtain unbiased distributions when execution times have multiple values or are
composed from multiple parts

= Useful for tailoring task sets to specific problem requirements, limitations, or domain specific
constraints

= Can also be used to replace UUnifast, UUnifast-Discard, and RandFixedSum

= High performance
= Supports efficient generation of task sets with cardinality up to n = 100 with individual
constraints

= Additional experiments show that DRS supports generation of task sets with cardinality
up to n = 200 with a commensurate slowdown in performance

= Python source code is publicly available
= Permanently archived at https://doi.org/10.5281/zenodo.4118059
= Canbeinstalled via: pip install drs (https://pypi.org/project/drs/)

= Also provide a C library enabling the DRS algorithm in Python to be called directly from
C/C++ code

27

https://doi.org/10.5281/zenodo.4118059
https://pypi.org/project/drs/

THE UNIVERSITYW

Questions?

‘ S 20
15" Standard Simple;

X 1
z=0.7 X+y+z=
0.8 -
15
0.6 -
= : 0.4 - 10
0.2
5
0
0
T T T T 7 T T T T [T T T T [T T T T [T T T T [N S S Y R
10000 3 1oL B
E Runtime to generate the set of vectors 3 ~ L i
i 8 0.8 - -
1000 |- = B]
o - = [-1-1 [-
E L] o 06 —— Dirichlet-Rescale |
3 | b @ M —— UUnifast-Discard |
3| 1= :
100 = . 0.4] .
i] 0.2 | -
10 I I R B N B B I A B N | B 0.0 Lo b b b b o
0 20 40 60 80 100 0 10 20 30 40 50 60 |

Number of tasks Density in R (x10'¥) 28

