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Abstract 
This paper focuses on priority assignment for real-

time systems using fixed priority scheduling. It 
introduces and defines the concept of a “robust” 
priority ordering: the most appropriate priority 
ordering to use in a system subject to variable amounts 
of additional interference from sources such as 
interrupts, operating system overheads, exception 
handling, cycle stealing, and task execution time 
overruns. The paper describes a Robust Priority 
Assignment algorithm that can find the robust priority 
ordering for a wide range of fixed priority system 
models and additional interference functions. Proofs 
are given for a number of interesting theorems about 
robust priority assignment, and the circumstances 
under which a “Deadline minus Jitter” monotonic 
partial ordering forms part of the robust ordering. The 
paper shows that “Deadline minus Jitter” monotonic 
priority ordering is the robust priority ordering for a 
specific class of system, and that this property holds 
essentially independent of the additional interference 
function. 

1. Introduction 
1.1. Background and motivation 

Fixed priority scheduling is used in a wide range of 
embedded real-time applications, from systems on 
spacecraft, to engine controllers and communications 
networks in automobiles, from industrial process 
control to digital set-top boxes, from medical systems 
to mobile phones, the list of applications using fixed 
priority scheduling is extensive and growing each year. 

One of the most common problems faced by 
engineers involved in the development of fixed priority 
real-time systems is, how best to assign priorities so 
that the system will meet its time constraints. 

Previous research into priority assignment has 
succeeded in providing answers to this question for a 
number of well defined, if somewhat restrictive, 

system models. Unfortunately, commercial real-time 
systems are seldom if ever fully compliant with the 
system models used in research. For example, tasks in 
real systems may be subject to additional interference 
of various types, for example: 
 Effects of interrupts; interrupts occurring in bursts 

/ at ill-defined rates, using more execution time 
than expected. 

 Ill-defined Real-Time Operating System (RTOS) 
overheads. 

 Tasks exceeding their expected execution times. 
 Processor cycle stealing by peripheral control units 

such as Direct Memory Access (DMA) devices. 
 Ill-defined critical sections where interrupts and 

hence task switches are disabled, possibly due to 
the behaviour of the RTOS. 

 Errors occurring at an unpredictable rate, causing 
check-pointing mechanisms to re-run part or all of 
a task. 

This paper considers systems subject to variable 
amounts of additional interference and seeks to find the 
most robust priority ordering to use. 

1.2. Related work 
Research into priority assignment policies for fixed 

priority scheduling on single-processor systems has 
mainly focussed on finding the optimal priority 
assignment policy or algorithm for restricted system 
models. 

For a given system model, a priority assignment 
policy or algorithm is referred to as optimal if it 
provides a feasible priority ordering (resulting in a 
schedulable system) whenever such an ordering exists. 

Work on priority assignment for fixed priority pre-
emptive systems effectively began in 1967, when 
Fineberg and Serlin [1] considered priority assignment 
for two tasks. They noted that if the task with the 
shorter period is assigned the higher priority, then the 
least upper bound on the schedulable utilisation is 

)12(2 −  or 82.8%. This result was generalised by 
both Serlin [2] in 1972 and Liu and Layland [3] in 



1973, both of whom showed that for synchronous tasks 
(that share a common release time), that comply with a 
restrictive system model, and that have deadlines equal 
to their periods )( ii TD = , Rate Monotonic1 priority 
ordering (RMPO) is optimal. 

In 1982, Leung and Whitehead [4] showed that for 
synchronous tasks with deadlines less than or equal to 
their periods )( ii TD ≤ , but otherwise compliant with 
Liu and Layland’s system model, Deadline Monotonic2 
priority ordering (DMPO) is optimal. They noted that 
for asynchronous tasks (that do not share a common 
release time), DMPO is not optimal. 

More recently, Zuhily [9] confirmed that “Deadline 
minus Jitter” monotonic priority ordering (D-JMPO) is 
optimal for synchronous task sets with ii TD ≤  and 
non-zero release jitter. We note that both DMPO and 
RMPO are special cases of D-JMPO. 

In 1990, Lehoczky [5] showed that DMPO is not 
optimal for synchronous tasks with so called arbitrary 
deadlines, which may be greater than their periods 

)( ii TD > . 
In 1991, Audsley [6] solved the problem of priority 

assignment for asynchronous task sets. Audsley’s 
priority assignment algorithm is optimal in the sense 
that it finds a schedulable priority ordering if one 
exists. This algorithm is also applicable to systems 
where tasks have arbitrary deadlines. 

In 1995, Davis and Burns [15] addressed the 
problem of assigning priorities to aperiodic tasks with 
firm deadlines. They provided an optimal priority 
assignment rule for inserting aperiodic tasks into the 
Deadline Monotonic priority ordering used for periodic 
tasks. 

In 1996, George et al. [7] provided schedulability 
analysis for non-pre-emptive fixed priority scheduling. 
They showed that in the non-pre-emptive case, DMPO 
is no longer optimal for synchronous tasks with 
deadlines less than or equal to their periods )( ii TD ≤ . 
George et al. [7] showed that Audsley’s optimal 
priority assignment algorithm is however applicable in 
this case. 

In 2001, Audsley [8] showed how his original 
priority assignment algorithm could be adapted to also 
minimise the number of priority levels required. 

In 2006, Bletsas and Audsley [10] showed that both 
Audsley’s algorithm and DMPO remain optimal in the 
presence of blocking when resources are accessed 
according to the Stack Resource Policy (SRP) [12] 
developed by Baker from the Priority Ceiling Protocol 
(PCP) of Sha et al. [13]. 

                                                
1 RMPO assigns priorities in order of task periods, such that the task 
with shortest period is given the highest priority. 
2 DMPO assigns priorities in order of task deadlines, such that the 
task with the shortest deadline is given the highest priority. 

The Pseudo code for Audsley’s algorithm is given 
below. For n tasks, the algorithm performs at most 
n(n+1)/2 schedulability tests and is guaranteed to find a 
schedulable priority assignment if one exists. This is a 
significant improvement compared to inspecting all n! 
possible orderings. However, Audsley’s algorithm does 
not specify the order in which tasks should be tried at 
each priority level. This order heavily influences the 
priority assignment chosen, if there is more than one 
ordering that is schedulable. Thus a poor choice of 
initial ordering can result in a priority assignment that 
leaves the system only just schedulable. 
Optimal Priority Assignment Algorithm 
 
for each priority level i, lowest first 
{ 

for each unassigned task τ 
{ 
  if τ is schedulable at priority i 
  { 
   assign τ to priority i 
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable 

Related research by Lehoczky et al. [24], Katcher et 
al. [25], Punnekkat et al. [26], and Regehr [27] used 
the critical scaling factor3 as a metric for examining 
schedulability. In [27], Regehr explored the idea of a 
robust-optimal class of scheduling algorithms that 
maximise the critical scaling factor. Regehr showed 
that for tasksets where DMPO is optimal, it is also 
robust-optimal with respect to the critical scaling 
factor. 

The research described in the rest of this paper was 
inspired by the need to provide appropriate advice on 
priority assignment to engineers developing complex 
commercial real-time systems for use in automotive 
systems and consumer electronics. 

This paper builds upon previous research into 
priority assignment; it defines and explores a new 
concept of robust priority ordering; the most 
appropriate priority ordering to use in complex real-
time systems which have a basic analysable system 
model, but are subject to all manner of additional 
interference which may impinge upon system 
schedulability. 

1.3. Organisation 
Section 2 describes the terminology, notation and 

system models used in the rest of the paper. Section 3 
defines the concept of robust priority ordering. Section 
                                                
3 The critical scaling factor is the largest factor by which the 
execution time of every task can be increased and the system remain 
schedulable. 



4 derives an algorithm which finds the most robust 
priority ordering. Section 5 illustrates the operation of 
the robust priority assignment (RPA) algorithm via 
examples of pre-emptive and non-pre-emptive task 
scheduling. In Sections 6 and 7 we consider “Deadline 
minus Jitter” monotonic priority ordering and examine 
the conditions under which it is the most robust partial 
or complete priority ordering. Finally, Section 8 
summarises the key contributions of the paper and 
suggests directions for future research. 

2. System model, terminology and notation 
We are interested in the problem of priority 

assignment and scheduling for a real-time application 
executing on a single processor. The application is 
assumed to comprise a static set of n tasks, each 
assigned a unique priority i, from 1 to n (where n is the 
lowest priority), according to some priority assignment 
policy or algorithm. 

We consider various fixed priority scheduling 
schemes. Scheduling may be pre-emptive, non-pre-
emptive or co-operative. With pre-emptive scheduling, 
at any given time the ready task with the highest 
priority is executed. Thus the release of a high priority 
task may cause a low priority task to be pre-empted at 
any point during its execution. With non-pre-emptive 
scheduling, once a task has started executing, it 
continues to execute until completion4. At completion 
of a task, the highest priority ready task is allocated the 
processor. With co-operative scheduling, there is a 
limited form of pre-emption, with tasks offering pre-
emption points within their execution via some form of 
reschedule call. At these reschedule points a switch 
may occur to a higher priority task. 

Application tasks may arrive either periodically at 
fixed intervals of time, or sporadically after some 
minimum inter-arrival time has elapsed. Each task iτ , 
is characterised by: its relative deadline Di, worst-case 
execution time Ci, minimum inter-arrival time or 
period Ti, and release jitter Ji, defined as the maximum 
time between the task arriving and it being released 
(ready to execute). It is assumed that once a task starts 
to execute it will never voluntarily suspend itself. 

Tasks may make mutually exclusive access to 
shared resources according to the Stack Resource 
Policy (SRP) [12]. A task at priority i may be blocked 
by a lower priority task, as a result of the operation of 
the SRP, for at most Bi, referred to as the blocking 
time. 

A task’s worst-case response time Ri, is the longest 
time from the task arriving to it completing execution. 

                                                
4 Although tasks executing non-pre-emptively may not be pre-
empted by higher priority tasks, typically, their execution may be 
interrupted and hence delayed by the execution of interrupt handlers. 

A task is referred to as schedulable if its worst-case 
response time is less than or equal to its deadline. A 
system is referred to as schedulable if all its tasks are 
schedulable. A priority assignment is said to be 
feasible if it leads to a schedulable system. 

We consider various constraints on task deadlines: 
ii TD = , ii TD ≤ , and so called arbitrary deadlines 

where some tasks may have ii TD > . We also consider 
systems where task deadlines may be at some 
intermediate point during task execution, so called 
deadlines prior to completion [16]. 

A set of tasks is referred to as synchronous if the 
arrival times of the tasks are assumed to be 
independent and thus the tasks may share a common 
release time. A set of tasks is referred to as 
asynchronous if the arrival times of some of the tasks 
are related to each other via non-zero offsets and 
therefore the tasks may or may not share a common 
release time. 

The term transaction [21] is used to describe a 
group of tasks with arrival times that are related by 
fixed offsets Oi. The start of a transaction is defined by 
the arrival time of the first task in the transaction. Thus 
the offset of the first task in a transaction is by 
definition zero, whilst the offsets of other tasks in the 
transaction are measured relative to the arrival of this 
task. 

In this paper, we discuss a number of different 
system models. A system model is a combination of 
scheduling policies (for example fixed priority pre-
emptive scheduling using the Stack Resource Policy 
for resource access) and a tasking model, describing 
the constraints on task attributes (for example ii TD ≤ , 

0=iJ , no transactions / offset release times). For ease 
of reference, we will refer to the system model for 
which “Deadline minus Jitter” monotonic priority 
assignment is known to be optimal [9] as the D-JM 
system model. 

3. Robust priority ordering 
In this section, we define the concepts of additional 

interference and robust priority ordering. We first 
formalise the idea of additional interference before 
using it in the definition of robust priority ordering. 

3.1. Additional interference 
Our aim is to model additional interference in as 

general a way as possible, ensuring that our analysis is 
applicable to a wide range of sources of such 
interference, whilst also being able to derive interesting 
and useful results about systems that are subject to this 
interference. With that aim in mind, we assume that 
additional interference takes the form of a function 

),,( iwE α , where α  is a scaling factor, used to model 
variability in the amount of interference, w is the 



length of the time interval over which the interference 
occurs and i is a priority level affected by the 
interference. 

We are interested in systems whose schedulability 
is sustainable [19] with respect to the additional 
interference function. In other words, if the system is 
schedulable for a value of 'αα = , it should also be 
schedulable for a value of ''' ααα ≤= . We require 
that ),,( iwE α  is a monotonic non-decreasing function 
of its parameters. Hence for any fixed values of α  and 
w, ),,(),,( kwEjwE αα ≥  if and only if priority level j 
has a higher numeric value (i.e. a lower priority) than 
k. Similarly, if time interval ''' ww > , then 

),'',(),',( iwEiwE αα ≥  for any fixed values of α  and 
i and finally, if the scaling factor ''' αα > , then 

),,''(),,'( iwEiwE αα ≥  for any fixed values of w and 
i. 

We note that these monotonicity requirements on 
),,( iwE α  represent little if any restriction in practice: 

α  is a scaling factor and so by definition, ),,( iwE α  
can be formulated to be monotonically non-decreasing 
in α . Interference from just about any conceivable 
source is never less in a longer time interval than it is 
in a shorter one, and finally, interference affecting a 
high priority level typically also affects lower priority 
levels and so additional interference ),,( iwE α  is 
naturally monotonically non-decreasing with respect to 
priority level. 

As an example, consider a system subject to 
additional interference (i) from an interrupt handler of 
indeterminate duration that is activated at most every 
100µS, and (ii) from an error recovery block that 
executes at priority j for a maximum duration of 

REC
jC , at most every 10,000 µS. The additional 

interference function is as follows: 












≥

+



=

0
10000

)(
100

),,(
else

CwjiifwiwE
REC
jαα  

Provided that they meet the monotonicity criteria, then 
significantly more complex additional interference 
functions can be accommodated by the analysis given 
in subsequent sections. 

3.2. Optimal and robust priority assignment 
Following the definitions given in the literature, an 

optimal priority assignment policy may be defined as 
follows: 

Definition 1: optimal priority assignment policy: For a 
given system model, a priority assignment policy P is 
referred to as optimal if there are no systems, 
compliant with the system model, that are schedulable 
using another priority assignment policy that are not 
also schedulable using policy P. 

Similarly, given an additional interference function 
),,( iwE α , we can define a robust priority assignment 

policy as follows: 

Definition 2: robust priority assignment policy: For a 
given system model and additional interference 
function, a priority assignment policy P is referred to 
as robust if there are no systems, compliant with the 
system model, that are both schedulable and can 
tolerate additional interference characterized by a 
scaling factor α  using another priority assignment 
policy Q that are not also both schedulable and can 
tolerate additional interference characterized by the 
same or larger scaling factor using priority assignment 
policy P. 

Stated otherwise, using the robust priority ordering, a 
system can tolerate additional interference that is at 
least as great as the additional interference tolerated by 
the system when any other priority ordering is used. 

4. Robust priority assignment algorithm 
In this section, our focus is on fixed priority real-

time systems that can be described by a system model 
that is analysable5, but are subject to additional 
interference. 

Examples of analysable systems include those 
using pre-emptive, non-pre-emptive or co-operative 
scheduling of a static set of tasks with bounded 
execution times. The tasks may be periodic, arriving at 
a well-defined rate, or sporadic with a defined 
minimum inter-arrival time. Tasks may make mutually 
exclusive access to shared resources according to the 
Stack Resource Policy; they may be grouped together 
into transactions, with non-zero offsets, they may have 
non-zero release jitter, arbitrary deadlines and 
deadlines prior to completion. Examples of additional 
interference were given in Section 1.1. 

We now derive an algorithm that provides a robust 
priority assignment whenever such an ordering exists. 
This algorithm is based on Audsley’s optimal priority 
assignment algorithm [6,8] and is applicable to any 
analysable fixed priority system model where the 
following holds: 

Condition 1: The worst-case response time of a task is 
dependent on the set of higher priority tasks, but not on 
the relative priority ordering of those tasks. 

Condition 2: The worst-case response time of a task 
may be dependent on the set of lower priority tasks, but 
not on the relative priority ordering of those tasks.  

                                                
5 By analysable, we mean that the worst-case response times of tasks 
can be computed either by response time analysis or by some other 
method such as construction of a schedule. 



Condition 3: When the priorities of any two tasks are 
swapped, the worst-case response time of the task 
being assigned a higher priority cannot increase with 
respect to its previous value. 

Condition 4: When the priorities of any two tasks are 
swapped, the worst-case response time of the task 
being assigned a lower priority cannot decrease with 
respect to its previous value. 

We observe that as the additional interference function 
),,( iwE α  is monotonically non-decreasing in both 

priority i and time interval w, then for any system 
model where the four conditions stated above hold, 
then they also hold when the worst-case response times 
are increased due to additional interference (assuming 
a fixed value of α ). 

The Robust Priority Assignment algorithm 
determines a schedulable priority ordering P, for any 
system where such an ordering exists. Further, the 
algorithm computes the maximum additional 
interference represented by P

iα  that can be tolerated 
by each task under priority ordering P. The maximum 
additional interference that can be tolerated by the 
system as a whole is given by: 

)(min P
ii

P αα
∀

=       (1) 

The algorithm performs n(n+1)/2 binary searches 
to determine this priority ordering. The starting values 
for the binary search can be set as follows: lower limit: 
zero, upper limit: some reasonable value based on 
inspection of the interference function. This upper limit 
is then doubled on each iteration of the binary search, 
if found to be schedulable. 
Robust Priority Assignment Algorithm 
 
for each priority level i, lowest first 
{ 

for each unassigned task τ 
{ 
  binary search for the largest value 

  of α for which task τ is schedulable 
  at priority i 

} 
if no tasks are schedulable at priority i 
  return unschedulable 
else 
  assign the schedulable task that  

  tolerates the max α at priority i to 
  priority i 
} 
return schedulable 

We note that an alternative structuring of the 
Robust Priority Assignment algorithm is possible with 
a binary search at the outermost level, effectively 
enclosing Audsley’s algorithm. This alternative 
structure could be used to derive the maximum 
additional interference that can be tolerated by the 
system as a whole, however; it would not provide 

information on the amount of additional interference 
tolerated at each priority level. For that reason, we 
prefer the formulation presented above. 

Theorem 1: The Robust Priority Assignment (RPA) 
algorithm is an optimal priority assignment policy (see 
Definition 1). 

Proof: Follows directly from equivalence with 
Audsley’s algorithm. (Equivalence with the RPA 
algorithm can be seen by noting that Audsley’s 
algorithm is an optimal priority assignment policy, 
irrespective of the initial ordering of the tasks and 
therefore irrespective of which unassigned but 
schedulable task is assigned to each priority level) □ 

Theorem 2: The Robust Priority Assignment (RPA) 
algorithm is a robust priority assignment policy (see 
Definition 2). 

Proof: We assume (for contradiction) that there is an 
alternative priority ordering Q, which tolerates greater 
additional interference than the priority ordering P 
found by the RPA algorithm; so PQ αα > . For the 
purposes of the proof, we will refer to this alternative 
priority ordering as nQ . We will iteratively transform 

nQ  into 1−nQ .. 1Q , where 1Q  is the same ordering as 
P. The transformation will be such that kk QQ αα ≥−1 , 
thus proving the theorem via the contradiction: 

QP αα ≥ . 
 We use k as an iteration count and also the priority 
level that we will transform. Thus k counts down from 
an initial value of n to 1. We note that as a result of the 
transformations, the tasks at priority levels lower than k 
become the same in both kQ  and P, hence 1Q  and P 
represent the same priority ordering. 
 On iteration k, we transform priority ordering kQ  
as follows: First we find the priority level i in kQ  of 
the task assigned to priority level k in P. We refer to 
this task as kτ , as we intend to assign it to priority 
level k. Note that as the tasks of lower priority than k 
are the same in both kQ  and P, priority level i must be 
either higher than or equal to k. 

 
Figure 1: Transformation of priority order 



There are two cases to consider: 
1. Task kτ  is at priority k in both P and kQ , in 

which case no transformation is required on this 
iteration, and so 1−kQ  is identical to kQ . 

2. Task kτ  is at a higher priority i in kQ . In this 
case, we form priority ordering 1−kQ  by 
modifying kQ  as follows: Task kτ  is moved 
down in priority from priority level i to priority 
level k, and the tasks at priority levels i+1 to k are 
all moved up one priority level (see Figure 1). 

We now introduce a concise notation to aid in the 
discussion of groups of tasks within a priority ordering: 

hep(k,P) is the set of tasks with priority higher 
than or equal to k in priority ordering P. 
hp(k,P) is the set of tasks with priority strictly 
higher than k in priority ordering P. 
lp(k,P) is the set of tasks with priority strictly 
lower than k in priority ordering P. 

Comparing the tasks in priority order 1−kQ  with their 
counterparts in kQ . There are effectively four groups 
of tasks to consider: 
1. ),( 1−kQihp : These tasks are assigned the same 

priorities in both kQ  and 1−kQ  and so can tolerate 
the same additional interference. 

2. ),(),( 11 −− ∩ kk QilepQkhp : These tasks retain the 
same partial order but are shifted up one priority 
level in 1−kQ  and so can tolerate at least as much 
additional interference as they can in kQ . 

3. Task kτ , which is at priority level i in kQ  and at 
the lower priority level k in 1−kQ : We know, from 
the RPA algorithm, that kτ  can tolerate at least as 
much additional interference when at priority k as 
any of the tasks in ),( Pkhep , when they are 
assigned priority k. Now ),(),( PklpQklp k =  
implies that ),(),( PkhepQkhep k = , and so kτ  
can tolerate at least as much additional 
interference at priority k as the task at priority k in 

kQ . 
4. ),( 1−kQklp : These tasks are assigned the same 

priorities in both kQ  and 1−kQ , and as 
),(),( 1 kk QkhepQkhep =− , they are subject to 

interference from the same set of higher priority 
tasks, and so can tolerate the same additional 
interference in each case. 

For every task in 1−kQ , the above analysis identifies a 
task in kQ  which does not have a greater tolerance to 
additional interference. Thus 1−kQ  can tolerate at least 
as much additional interference as kQ  and so 

kk QQ αα ≥−1 . 
A total of n iterations of the above procedure (for 

values of k from n down to 1) are sufficient to 
transform any arbitrary priority ordering Q into the 
priority ordering P, generated by the RPA algorithm. 
Further, this transformation is achieved without any 
reduction in the maximum amount of additional 

interference that the system can tolerate □ 

5. Examples of robust priority ordering 
In this section, we provide examples of robust priority 
assignment in the presence of additional interference. 
Our first example considers tasks that are scheduled 
non-pre-emptively, whilst the second example, 
considers tasks with arbitrary deadlines, scheduled pre-
emptively. In each case, the systems are subject to 
additional interference due to an interrupt handler 
executing for an indeterminate duration. 

5.1. Example 1: Non-pre-emptive tasks 
This example considers robust priority assignment 

for tasks scheduled non-pre-emptively according to 
fixed priorities. The response times of non-pre-emptive 
tasks can be found via response time analysis; 
potentially this requires examining multiple 
invocations of the tasks within the worst-case busy 
period [7, 23]. 

Table 1: Task parameters 

Task C T D 
Aτ  125 450 450 
Bτ  125 550 550 
Cτ  65 600 600 
Dτ  125 1000 1000 
Eτ  125 2000 2000 

The example system comprises 5 tasks, the 
parameters of which are given in Table 1. Note here we 
use A, B, C etc. to distinguish the tasks irrespective of 
the priority levels to which they are assigned. The tasks 
are arranged in the table in DMPO, and are schedulable 
in this priority order with response times of 250, 375, 
440, 565, and 565 respectively, assuming no additional 
interference. We note however, that as illustrated in 
[7], DMPO is not optimal for fixed priority non-pre-
emptive scheduling. 

In this example, we assume that the system is 
subject to additional interference from an interrupt that 
occurs infrequently (at most once during any task busy 
period), causing an interrupt handler to execute for an 
indeterminate amount of time. The additional 
interference function is therefore simply: 

αα =),,( iwE  
where α  represents the time for which the 

interrupt handler executes. 
We now use the RPA algorithm to find a robust 

priority ordering for the tasks in Table 1. Recall that 
for each priority level, lowest first, the RPA algorithm 
selects the unassigned task that tolerates the most 
additional interference at that priority level. For each 



priority level, the values of α  computed6 by the RPA 
algorithm are given in Table 2. The maximum value of 
α  at each priority is highlighted in bold, indicating 
that the task is subsequently assigned to that priority 
level. Entries in the table marked as ‘NS’ mean that the 
task was not schedulable at that priority even with no 
additional interference. Entries in the table marked ‘-’ 
indicate that no value was computed by the algorithm, 
as the task had already been assigned a lower priority. 

Table 2: Computed values of α 

 Task 
Priority Aτ  Bτ  Cτ  Dτ  Eτ  

5 NS NS NS 120 354 
4 NS NS NS 120 - 
3 10 110 74 - - 
2 135 - 199 - - 
1 200 - - - - 

The robust priority ordering for this example is 
( Aτ , Cτ , Bτ , Dτ , Eτ ). With this priority ordering, the 
system can tolerate infrequent interrupts that delay task 
execution by at most 110 time units. By comparison, 
DMPO ( Aτ , Bτ , Cτ , Dτ , Eτ ) yields values of α  of 
(200, 175, 74, 120, 354) respectively; hence using 
DMPO, the system can tolerate infrequent interrupts 
that delay task execution by at most 74 time units. 

This example shows how the RPA algorithm 
determines a robust priority ordering for tasks 
scheduled non-pre-emptively according to fixed 
priorities. Further it illustrates that DMPO is not 
necessarily the most robust priority ordering to use for 
non-pre-emptive tasks. 

5.2. Example 2: Pre-emptive tasks 
Our second example considers pre-emptive tasks with 
arbitrary deadlines. The response times of arbitrary 
deadline tasks can be found via response time analysis 
[5, 18], again potentially examining multiple 
invocations of a task within the worst-case busy period. 

The example system comprises two tasks, Aτ  and 
Bτ , with the parameters7 given in Table 3.  

Table 3: Task parameters (D>T) 

Task C D T 
Aτ  42 118 100 
Bτ  52 154 140 

We note that with no additional interference, the 
system is schedulable with either Aτ  or Bτ  at the 
higher priority. 

Case 1: Additional interference of the form: 

                                                
6 Using a granularity of 1 time unit. 
7 These parameters were chosen based on the example in [5]. 





=
100

),,( wiwE αα  

For example, from a interrupt handler of indeterminate 
duration, executing every 100 time units. 

With task Aτ  at the higher priority, and Bτ  at the 
lower priority, Aτ  and Bτ  can tolerate maximum 
additional interference given by 58=α  and 9=α  
respectively. Alternatively, with Bτ  at the higher 
priority, and Aτ  at the lower priority, Bτ  and Aτ  can 
tolerate maximum additional interference given by 

51=α  and 10=α  respectively. Hence ( Bτ , Aτ ) is the 
robust priority ordering in this case, tolerating 
additional interference characterised by 10=α . 

Case 2: Additional interference of the form: 





=

200
),,( wiwE αα  

For example, from a interrupt handler of indeterminate 
duration, executing every 200 time units. 

With task Aτ  at the higher priority, and Bτ  at the 
lower priority, Aτ  and Bτ  can tolerate maximum 
additional interference given by 76=α  and 18=α  
respectively. Alternatively, with Bτ  at the higher 
priority, and Aτ  at the lower priority, Bτ  and Aτ  can 
tolerate maximum additional interference given by 

96=α  and 15=α  respectively. Hence ( Aτ , Bτ ) is 
the robust priority ordering in this case, tolerating 
additional interference characterised by 18=α . 

Case 3: Additional interference of the form: 
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


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






+



= LwKwiwE

200100
),,( αα  

Here the additional interference is from two sources, 
both of which cause interference of indeterminate 
duration. We use the (unknown) values K and L to 
describe the relative duration of the interference from 
these two sources. In this case, the form of the 
additional interference function is not well defined and 
it is in fact impossible to determine the robust priority 
ordering without further information about the values 
of K and L. If K = 1 and L = 0, then this is equivalent to 
case 1 and the robust priority ordering is ( Bτ , Aτ ), 
however, if K = 0 and L = 1, then this is equivalent to 
case 2 and so the robust priority ordering is ( Aτ , Bτ ). 

Case 3 shows that the robust priority ordering is in 
general dependent on the form of the additional 
interference function. This is a significant but 
somewhat unfortunate result. It means that for general 
system models (such as the arbitrary deadline case 
examined here), it is only possible to determine the 
robust priority ordering if the form of the additional 
interference function is well defined, in other words, 
there are no unknowns save for the maximum value of 
α  that the system can tolerate. We return to this point 



in Section 7. 

6. “D-J” monotonic partial ordering 
In this section, we consider fixed priority systems 

where the tasks can be classified into two subsets: 
1. Tasks that comply with the conditions under 

which “Deadline minus Jitter” monotonic priority 
ordering (D-JMPO) is known to be optimal, i.e. 
they are scheduled pre-emptively, have deadlines 
less than or equal to their periods, no offsets with 
respect to each other, and so on. We refer to these 
tasks as D-JM system model tasks.  

2. Tasks that do not comply with the D-JM system 
model. These tasks may execute non-pre-
emptively; they may be part of a transaction and 
thus have offset arrival times with respect to other 
tasks in the same transaction; they may have 
deadlines greater than their periods, deadlines 
prior to completion and so on. We refer to such 
tasks as non D-JM system model tasks. 

We require that the maximum interference, on lower 
priority D-JM system model tasks, caused by the 
execution of the non D-JM system model tasks is 
monotonic in both time interval and priority. Thus non 
D-JM system model tasks are permitted to have offset 
arrival times with respect to each other, but these 
arrival times must be independent of the arrival times 
of the D-JM system model tasks. 

We refer to systems containing the two classes of 
task as mixed systems. In general, a mixed system 
contains n tasks in total, m of which comply with the 
D-JM system model and n-m tasks which do not. 

We assume that all of the tasks may make 
mutually exclusive access to shared resources 
according to the Stack Resource Policy. We note that 
blocking caused by non-pre-emptive execution may be 
viewed as a special case of the Stack Resource Policy 
where the ceiling priority is set to the highest priority 
in the system and the resource is effectively locked for 
the entire duration of the non-pre-emptive task. The 
blocking caused by tasks that are scheduled co-
operatively, offering pre-emption points via some form 
of reschedule call may be similarly viewed as a special 
case of the Stack Resource Policy. 

Recall that for each priority level, lowest first, the 
RPA algorithm selects the unassigned task that 
tolerates the most additional interference at that 
priority level. Intuitively, of all the unassigned D-JM 
system model tasks, the one with the largest value of 
“Deadline minus Jitter” is the one that can tolerate the 
most additional interference. Thus, we expect the 
priority ordering generated by the RPA algorithm to 
assign the D-JM system model tasks in “Deadline 
minus Jitter” partial order, interleaved in some way 
with the non D-JM system model tasks. We now prove 

this to be the case. 

Theorem 3: Given a mixed system, and two D-JM 
system model tasks, Aτ  and Bτ 8, where Aτ  has a 
larger value of deadline minus jitter than Bτ , 
( BBAA JDJD −≥− ) then the additional interference 
characterised by A

iα , tolerated by Aτ  at an arbitrary 
priority i with Bτ  at a higher priority, is at least as 
great as the additional interference B

iα , tolerated by 
Bτ  at priority i with Aτ  at a higher priority. 

Proof: As Aτ  and Bτ  are pre-emptable and have 
deadlines less than or equal to their periods, then the 
worst-case response time for Aτ  assigned to priority 
level i, with Bτ  at a higher priority, is given by 

Bii JWR += , where iW  is the smallest solution to the 
equality given in equation (2): 
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Where the function ),,( BAwI ii  represents the 
maximum time for which the other tasks, with the 
exception of Aτ  and Bτ , prevent a ready task at 
priority i from executing, during an interval of length 
w. Note that the function ),,( BAwI ii  includes both 
interference from tasks of higher priority than i (with 
the exception of Aτ  and Bτ ) and also blocking effects 
due to tasks of lower priority than i. We return to this 
point about blocking later. 

Similarly, the worst-case response time for Bτ  
assigned to priority level i, with Aτ  at a higher priority, 
is given by Aii JWR += , where iW  is the smallest 
solution to the equality given in equation (3): 
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Now let B
iW  be the length of the busy period for task 

Bτ  when it is at priority level i and is subject to the 
maximum amount of additional interference B

iα , that 
it can tolerate at that priority level. The response time 

B
iR , of Bτ  is given by B

B
i

B
i JWR += . As 

AABB
B

i JDJDW −≤−≤ , and AA TD ≤ , it follows 
that AA

B
i TJW ≤+ , hence substituting B

iW  and B
iα  

into equation (2) results in an identical equality to that 
obtained by substituting the same values into equation 
(3): 

),,(),,( iWEBiWICCBW B
i

B
i

B
iABi

B
i α++++=  (4) 

Thus B
i

A
i WW =  and B

i
A
i αα =  is also a solution to 

equation (2). As AABBB
B
i JDJDJR −≤−≤− , this 

solution gives a schedulable response time of 
                                                
8 Note again we use A and B to distinguish the tasks irrespective of 
the priority levels to which they are assigned. 



AB
B
i

A
i JJRR +−=  for Aτ . Further, as 

BBAA JDJD −≥− , there may be solutions to 
equation (3) for larger amounts of additional 
interference hence B

i
A
i αα ≥  □ 

We now consider the effects of blocking. Recall 
that as far as blocking is concerned, co-operative and 
non-pre-emptive scheduling can be considered as 
special cases of the Stack Resource Policy. We 
therefore simply assume that tasks may share resources 
according to the Stack Resource Policy. 

With the Stack Resource Policy, a task at priority i 
may be blocked for at most the duration of a single 
critical section executed by a task of lower priority 
than i, where that critical section involves access to a 
resource shared with a task of priority i or higher. As 
the task sets lp(i) and hep(i) remain the same 
irrespective of whether Aτ  is at priority i and Bτ  is at 
a higher priority or vice-versa, the set of critical 
sections that could cause blocking at priority i remains 
the same in both cases. This means that any blocking 
component of ),,( BAwI ii , as well as any interference 
components from tasks of higher priority than i, (not 
including Aτ  and Bτ ) are the same irrespective of 
whether Aτ  is at priority i and Bτ  is at a higher 
priority or vice-versa. Note that this remains the case 
when some of the non D-JM system model tasks form 
transactions with offset arrival times and thus the 
calculation of the exact worst-case blocking and 
interference effects becomes computational intractable. 

Taking a sustainable approach9 and computing 
blocking and interference independently, ),,( BAwI ii  
comprises two components: 
1. higher priority interference due to tasks in the set 

hp(i) with the exception of tasks Aτ  and Bτ , and 
2. a blocking factor iB , representing the maximum 

time for which a task of lower priority than i can 
lock a resource shared with a task of priority i or 
higher. 

As the task sets lp(i) and hep(i) remain the same 
independent of whether Aτ  or Bτ  is at priority i. Both 
of these factors are unchanged on interchanging the 
priorities of Aτ  and Bτ . 

Theorem 4: For a mixed system, where a schedulable 
priority ordering exists, there exists a robust priority 
ordering P with the D-JM system model tasks in 
“Deadline minus Jitter” monotonic partial order. 

Proof: We assume (for contradiction) that there is an 
alternative priority ordering Q, which tolerates greater 
additional interference than priority ordering P, so 

PQ αα > . For the purposes of the proof, we will refer 

                                                
9 Treating blocking and interference independently results in 
analysis which is sufficient but not necessary in the case of tasks 
with offset arrival times. 

to this alternative priority ordering as mQ . 
 We will iterative transform mQ  into 1−mQ .. 1Q , 
where 1Q  is a priority ordering with the D-JM system 
model tasks in “Deadline minus Jitter” monotonic 
partial order. Thus 1Q  is the equivalent of P. The 
transformation will be such that kk QQ αα ≥−1 , thus 
proving the theorem via the contradiction: QP αα ≥ . 

 
Figure 2: Transformation of priority order 

We use k as an iteration count, where k counts 
down from m (the number of D-JM system model 
tasks) to 1. On iteration k, we select the D-JM system 
model task Aτ , with the kth largest value of deadline 
minus jitter. Thus on the first iteration (k=m), Aτ  is the 
D-JM system model task with the smallest value of 
deadline minus jitter. Let j be the priority level of task 

Aτ  in priority order kQ . Next we identify the lowest 
priority level i in kQ  that is occupied by a D-JM 
system model task Bτ  with a smaller value of deadline 
minus jitter than Aτ . 
o If there is no such task Bτ  or if i is a higher 

priority level than j, then no transformation is 
required on this iteration and so kk QQ =−1 . 

o If i is a lower priority level than j, then we 
transform kQ  into 1−kQ  by moving Aτ  from 
priority j in kQ  to priority i in 1−kQ  and shifting 
the tasks at priorities j+1 to i up one priority level 
(see Figure 2 above). 

Comparing the tasks in priority order 1−kQ  with their 
counterparts in kQ . There are effectively four groups 
of tasks to consider: 
1. ),( 1−kQihp : These tasks are assigned the same 

priorities in both kQ  and 1−kQ  and so can tolerate 
the same additional interference. 

2. ),(),( 11 −− ∩ kk QjlepQihp : These tasks retain the 
same partial order but are shifted up one priority 
level in 1−kQ  and so can tolerate at least as much 
additional interference as they can in kQ . 

3. Task Aτ , which is at priority level j in kQ  and at 
the lower priority level i in 1−kQ : Theorem 3, tells 
us that Aτ  can tolerate at least as much additional 
interference when it is at priority level i as task Bτ  
can tolerate when it is at that same priority level in 
priority ordering kQ . 



4. ),( 1−kQilp : These tasks are assigned the same 
priorities in both kQ  and 1−kQ , and as 

),(),( 1 kk QihepQihep =− , they are subject to 
interference from the same set of higher priority 
tasks and so can tolerate the same additional 
interference in each case. 

For every task in 1−kQ , the above analysis identifies a 
task in kQ  which does not have a greater tolerance to 
additional interference. Thus 1−kQ  can tolerate at least 
as much additional interference as kQ  and so 

kk QQ αα ≥−1 . 
A total of m iterations of the above procedure (for 

values of k from m down to 1) are sufficient to 
transform priority ordering Q into a priority ordering P, 
with the D-JM system model tasks in “Deadline minus 
Jitter” monotonic partial order. Further, this 
transformation is achieved without any reduction in the 
maximum amount of additional interference that the 
system can tolerate □ 

Theorem 5: For a mixed system, if a feasible priority 
ordering exists, then the RPA algorithm always 
generates a robust priority ordering with the D-JM 
system model tasks in “Deadline minus Jitter” 
monotonic partial order, irrespective of the task 
execution times, and irrespective of the form of the 
additional interference function ),,( iwE α , provided 
that ),,( iwE α  meets the monotonicity criteria stated in 
Section 3.1 

Proof: Follows directly from the proof of Theorems 3 
and 4, which are independent of both task execution 
times and the form of the function ),,( iwE α , requiring 
only that ),,( iwE α  meets the monotonicity criteria. 

We now use this result to improve the efficiency of 
both the RPA algorithm, and Audsley’s optimal 
priority assignment algorithm. 

6.1. Priority assignment algorithm efficiency 
 The proof of Theorem 3 shows that at each priority 
level, the unassigned D-JM system model task with the 
largest value of deadline minus jitter can tolerate at 
least as much additional interference at that priority 
level as any other unassigned D-JM system model task. 
Thus at each priority level, the RPA algorithm need 
only calculate the value of α  for at most a single 
unassigned D-JM system model task (the one with the 
largest value of ii JD − ). In the worst-case, the non D-
JM system model tasks are assigned last and so the 
total number of computations of α  required is given 
by: 

2/)1)(()1( +−−++− mnmnmnm     
which simplifies to: 

2/))1()1(( −−+ mmnn    (6) 
If m = 0, then equation (6) reduces to the familiar 

2/)1( +nn  computations. If m=n, then only m 

computations are required. Note, an additional 
O(mlogm) operations are required to determine the 
“Deadline minus Jitter” monotonic partial ordering. 

Theorem 3 also implies that the unassigned D-JM 
system model task with the largest value of deadline 
minus jitter is guaranteed to be schedulable at a 
particular priority level if any of the other unassigned 
D-JM system model tasks are schedulable at that 
priority. Thus at each priority level, Audsley’s optimal 
priority assignment algorithm need only check the 
schedulability of at most one D-JM system model task 
(the one with the largest value of ii JD − ). 

Often in real-world systems, the overwhelming 
majority of tasks comply with the D-JM system model, 
with just a few tasks having arbitrary deadlines, 
deadlines prior to completion, non-pre-emptive 
execution, or forming transactions with offset arrival 
times. In this case, the efficiency improvement in the 
priority assignment algorithms is significant. For a 
system of 50 tasks, a number of which do not comply 
with the D-JM system model, Table 4 shows the 
number of computations required, and the factor by 
which the efficiency of the priority assignment 
algorithms is improved compared with the previous 
worst-case bound of n(n+1)/2 = 1275. 

As an example, suppose that a system has four 
(non D-JM system model) tasks, which form a 
transaction with a period of 100ms and offsets of 0ms, 
25ms, 50ms and 75ms respectively. Also part of the 
system are a further 46 D-JM system model tasks that 
are unrelated to the offset of this transaction. For this 
system, utilising the improvements described above, 
the optimal priority ordering can be found with a factor 
of 5.3 times less computation than before. 

Table 4: Priority assignment algorithm 
efficiency improvement 

Number of non 
D-JM system 
model tasks 

Number of 
computations 

Improvement 
factor 

1 99 12.9 
2 147 8.7 
3 194 6.6 
4 240 5.3 
5 285 4.5 

10 495 2.6 
25 975 1.3 

We note that Theorem 5 proves a conjecture made 
by Bernat in [22]. Bernat studied mixed systems 
comprising two types of tasks; those with “weakly 
hard” timing constraints, specifying the pattern of 
deadlines that must be met / may be missed, and those 
with “strongly hard” time constraints, where all 
deadlines must be met. Bernat showed that DMPO is 



not optimal for weakly hard tasks and conjectured that 
the optimal priority assignment for a system containing 
both types of task would have the strongly hard tasks 
in deadline monotonic partial order. Bernat used this 
conjecture to improve the efficiency of Audsley’s 
algorithm in a similar manner to that described above. 
In our terminology, weakly hard tasks are non-D-JM 
system model tasks, whilst strongly hard tasks are D-
JM system model tasks. 

7. “D-J” monotonic priority ordering 
In this section, we consider fixed priority systems 

where all of the tasks comply with the D-JM system 
model, i.e. they are scheduled pre-emptively, have 
deadlines less than or equal to their periods, no offsets 
with respect to each other, and so on. 

Theorem 6: “Deadline minus Jitter” monotonic 
priority assignment is the robust priority assignment 
policy (see Definition 2) for systems where all tasks 
comply with the D-JM system model, irrespective of 
the task execution times, and irrespective of the form 
of the additional interference function ),,( iwE α , 
provided that ),,( iwE α  meets the monotonicity 
criteria stated in Section 3.1. 

Proof: Follows directly from Theorem 5. 

Theorem 6 is a highly significant result. It tells us that 
for real-world systems, which have a scheduling policy 
and tasking model that comply with the D-JM system 
model, but are subject to ill-defined or unknown 
additional interference in the form of interrupts, 
operating system overheads, DMA cycle stealing, 
budget overruns and so on, then “Deadline minus 
Jitter” monotonic priority ordering is always the most 
robust priority ordering to use. Theorem 6 shows that 
this is the case even if the exact form of the additional 
interference function is unknown, that is, if we have 
little or no information about the type of additional 
interference, its extent or its exact timing behaviour. It 
is also the case if we have only rough estimates or 
indeed no information at all, about task worst-case 
execution times. 

Theorem 6 has important implications when 
upgrading a real-time system which has a scheduling 
policy and tasking model that comply with the D-JM 
system model. Using a different microprocessor and 
operating system affects interrupt latencies, execution 
times, OS overheads and other forms of additional 
interference as well as task execution times. However, 
assuming only that the additional interference meets 
the broad monotonicity criteria, “Deadline minus 
Jitter” monotonic priority ordering remains the most 
robust priority ordering to use. 

We note that Theorem 6 subsumes the result of 

Regehr [27], which showed that DMPO maximises the 
critical scaling factor for task execution times. 

8. Summary and conclusions 
In this paper we introduced the concept of robust 

priority ordering and provided an algorithm that can 
determine the robust priority ordering for a wide range 
of real-time systems scheduled using fixed priorities. 

8.1. Applicability 
The motivation for finding a robust priority 

ordering is that it is the optimal fixed priority ordering 
to use in single-processor, real-time systems which are 
subject to additional interference from sources such as 
interrupts, RTOS overheads, DMA cycle stealing, 
execution of checkpoints and error recovery blocks or 
indeed any other additional interference that can be 
characterised by a monotonically non-decreasing 
function of time interval and priority level. 
 As well as processor scheduling, the Robust 
Priority Assignment algorithm is also applicable to 
communications networks scheduled according to 
fixed priorities. For example, the RPA algorithm could 
be used to obtain a robust priority ordering for 
messages on Controller Area Network (CAN) [20] in 
the presence of additional interference due to errors on 
the bus. 
 The results described in Section 6 are also relevant 
to hierarchical systems where a mix of Deferrable, 
Sporadic and Periodic servers are used to schedule 
applications in the same system [14]. Both Periodic 
and Sporadic servers comply with the D-JM system 
model, whereas Deferrable servers do not10. For such 
systems, Theorem 5 shows that the robust priority 
ordering always has the Periodic and Sporadic servers 
in “Deadline minus Jitter” monotonic partial order. 
This implies that the more efficient form of Audsley’s 
optimal priority assignment algorithm can be used to 
assign server priorities. This is particularly useful when 
a new application is added to the system and revised 
server priorities need to be determined at run-time. 

8.2. Contribution 
The major contributions of this work are: 
• The introduction of the concept of robust priority 

ordering. 
• The definition of an algorithm that determines the 

most robust priority ordering if any feasible 
ordering exists. This algorithm is applicable to a 
wide range of system models; provided that they 
meet simple rules in terms of how worst-case 
response times depend upon priority. 

                                                
10 In [13], the authors show that rate/deadline monotonic priority 
assignment is not optimal for Deferrable servers. 



• Showing that in general, the most robust priority 
ordering depends upon the exact form of the 
additional interference function. 

• Proving that for systems where “Deadline minus 
Jitter” monotonic priority ordering is optimal, it is 
also the most robust priority ordering effectively 
independent of the form of the additional 
interference function. 

• Proving that for mixed systems, where some tasks 
comply with the simple D-JM system model, but 
other tasks do not (because they have offsets, 
arbitrary deadlines, co-operative / non-pre-emptive 
execution etc.), then if a feasible priority ordering 
exists, then a robust priority ordering also exists 
that has the D-JM system model tasks in 
“Deadline minus Jitter” monotonic partial order. 

• Using the above result to improve the efficiency of 
both the Robust Priority Assignment algorithm 
and Audsley’s optimal priority assignment 
algorithm.  

These contributions make significant improvements to 
the set of known priority assignment techniques that 
are appropriate for use in the design of complex real-
world, real-time systems. 
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