
Robust Priority Assignment for Fixed Priority Real-Time Systems

R.I.Davis and A.Burns
Real-Time Systems Research Group, Department of Computer Science,

University of York, YO10 5DD, York (UK)
rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper focuses on priority assignment for real-

time systems using fixed priority scheduling. It
introduces and defines the concept of a “robust”
priority ordering: the most appropriate priority
ordering to use in a system subject to variable amounts
of additional interference from sources such as
interrupts, operating system overheads, exception
handling, cycle stealing, and task execution time
overruns. The paper describes a Robust Priority
Assignment algorithm that can find the robust priority
ordering for a wide range of fixed priority system
models and additional interference functions. Proofs
are given for a number of interesting theorems about
robust priority assignment, and the circumstances
under which a “Deadline minus Jitter” monotonic
partial ordering forms part of the robust ordering. The
paper shows that “Deadline minus Jitter” monotonic
priority ordering is the robust priority ordering for a
specific class of system, and that this property holds
essentially independent of the additional interference
function.

1. Introduction
1.1. Background and motivation

Fixed priority scheduling is used in a wide range of
embedded real-time applications, from systems on
spacecraft, to engine controllers and communications
networks in automobiles, from industrial process
control to digital set-top boxes, from medical systems
to mobile phones, the list of applications using fixed
priority scheduling is extensive and growing each year.

One of the most common problems faced by
engineers involved in the development of fixed priority
real-time systems is, how best to assign priorities so
that the system will meet its time constraints.

Previous research into priority assignment has
succeeded in providing answers to this question for a
number of well defined, if somewhat restrictive,

system models. Unfortunately, commercial real-time
systems are seldom if ever fully compliant with the
system models used in research. For example, tasks in
real systems may be subject to additional interference
of various types, for example:
 Effects of interrupts; interrupts occurring in bursts

/ at ill-defined rates, using more execution time
than expected.

 Ill-defined Real-Time Operating System (RTOS)
overheads.

 Tasks exceeding their expected execution times.
 Processor cycle stealing by peripheral control units

such as Direct Memory Access (DMA) devices.
 Ill-defined critical sections where interrupts and

hence task switches are disabled, possibly due to
the behaviour of the RTOS.

 Errors occurring at an unpredictable rate, causing
check-pointing mechanisms to re-run part or all of
a task.

This paper considers systems subject to variable
amounts of additional interference and seeks to find the
most robust priority ordering to use.

1.2. Related work
Research into priority assignment policies for fixed

priority scheduling on single-processor systems has
mainly focussed on finding the optimal priority
assignment policy or algorithm for restricted system
models.

For a given system model, a priority assignment
policy or algorithm is referred to as optimal if it
provides a feasible priority ordering (resulting in a
schedulable system) whenever such an ordering exists.

Work on priority assignment for fixed priority pre-
emptive systems effectively began in 1967, when
Fineberg and Serlin [1] considered priority assignment
for two tasks. They noted that if the task with the
shorter period is assigned the higher priority, then the
least upper bound on the schedulable utilisation is

)12(2 − or 82.8%. This result was generalised by
both Serlin [2] in 1972 and Liu and Layland [3] in

1973, both of whom showed that for synchronous tasks
(that share a common release time), that comply with a
restrictive system model, and that have deadlines equal
to their periods)(ii TD = , Rate Monotonic1 priority
ordering (RMPO) is optimal.

In 1982, Leung and Whitehead [4] showed that for
synchronous tasks with deadlines less than or equal to
their periods)(ii TD ≤ , but otherwise compliant with
Liu and Layland’s system model, Deadline Monotonic2
priority ordering (DMPO) is optimal. They noted that
for asynchronous tasks (that do not share a common
release time), DMPO is not optimal.

More recently, Zuhily [9] confirmed that “Deadline
minus Jitter” monotonic priority ordering (D-JMPO) is
optimal for synchronous task sets with ii TD ≤ and
non-zero release jitter. We note that both DMPO and
RMPO are special cases of D-JMPO.

In 1990, Lehoczky [5] showed that DMPO is not
optimal for synchronous tasks with so called arbitrary
deadlines, which may be greater than their periods

)(ii TD > .
In 1991, Audsley [6] solved the problem of priority

assignment for asynchronous task sets. Audsley’s
priority assignment algorithm is optimal in the sense
that it finds a schedulable priority ordering if one
exists. This algorithm is also applicable to systems
where tasks have arbitrary deadlines.

In 1995, Davis and Burns [15] addressed the
problem of assigning priorities to aperiodic tasks with
firm deadlines. They provided an optimal priority
assignment rule for inserting aperiodic tasks into the
Deadline Monotonic priority ordering used for periodic
tasks.

In 1996, George et al. [7] provided schedulability
analysis for non-pre-emptive fixed priority scheduling.
They showed that in the non-pre-emptive case, DMPO
is no longer optimal for synchronous tasks with
deadlines less than or equal to their periods)(ii TD ≤ .
George et al. [7] showed that Audsley’s optimal
priority assignment algorithm is however applicable in
this case.

In 2001, Audsley [8] showed how his original
priority assignment algorithm could be adapted to also
minimise the number of priority levels required.

In 2006, Bletsas and Audsley [10] showed that both
Audsley’s algorithm and DMPO remain optimal in the
presence of blocking when resources are accessed
according to the Stack Resource Policy (SRP) [12]
developed by Baker from the Priority Ceiling Protocol
(PCP) of Sha et al. [13].

1 RMPO assigns priorities in order of task periods, such that the task
with shortest period is given the highest priority.
2 DMPO assigns priorities in order of task deadlines, such that the
task with the shortest deadline is given the highest priority.

The Pseudo code for Audsley’s algorithm is given
below. For n tasks, the algorithm performs at most
n(n+1)/2 schedulability tests and is guaranteed to find a
schedulable priority assignment if one exists. This is a
significant improvement compared to inspecting all n!
possible orderings. However, Audsley’s algorithm does
not specify the order in which tasks should be tried at
each priority level. This order heavily influences the
priority assignment chosen, if there is more than one
ordering that is schedulable. Thus a poor choice of
initial ordering can result in a priority assignment that
leaves the system only just schedulable.
Optimal Priority Assignment Algorithm

for each priority level i, lowest first
{

for each unassigned task τ
{
 if τ is schedulable at priority i
 {
 assign τ to priority i
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

Related research by Lehoczky et al. [24], Katcher et
al. [25], Punnekkat et al. [26], and Regehr [27] used
the critical scaling factor3 as a metric for examining
schedulability. In [27], Regehr explored the idea of a
robust-optimal class of scheduling algorithms that
maximise the critical scaling factor. Regehr showed
that for tasksets where DMPO is optimal, it is also
robust-optimal with respect to the critical scaling
factor.

The research described in the rest of this paper was
inspired by the need to provide appropriate advice on
priority assignment to engineers developing complex
commercial real-time systems for use in automotive
systems and consumer electronics.

This paper builds upon previous research into
priority assignment; it defines and explores a new
concept of robust priority ordering; the most
appropriate priority ordering to use in complex real-
time systems which have a basic analysable system
model, but are subject to all manner of additional
interference which may impinge upon system
schedulability.

1.3. Organisation
Section 2 describes the terminology, notation and

system models used in the rest of the paper. Section 3
defines the concept of robust priority ordering. Section

3 The critical scaling factor is the largest factor by which the
execution time of every task can be increased and the system remain
schedulable.

4 derives an algorithm which finds the most robust
priority ordering. Section 5 illustrates the operation of
the robust priority assignment (RPA) algorithm via
examples of pre-emptive and non-pre-emptive task
scheduling. In Sections 6 and 7 we consider “Deadline
minus Jitter” monotonic priority ordering and examine
the conditions under which it is the most robust partial
or complete priority ordering. Finally, Section 8
summarises the key contributions of the paper and
suggests directions for future research.

2. System model, terminology and notation
We are interested in the problem of priority

assignment and scheduling for a real-time application
executing on a single processor. The application is
assumed to comprise a static set of n tasks, each
assigned a unique priority i, from 1 to n (where n is the
lowest priority), according to some priority assignment
policy or algorithm.

We consider various fixed priority scheduling
schemes. Scheduling may be pre-emptive, non-pre-
emptive or co-operative. With pre-emptive scheduling,
at any given time the ready task with the highest
priority is executed. Thus the release of a high priority
task may cause a low priority task to be pre-empted at
any point during its execution. With non-pre-emptive
scheduling, once a task has started executing, it
continues to execute until completion4. At completion
of a task, the highest priority ready task is allocated the
processor. With co-operative scheduling, there is a
limited form of pre-emption, with tasks offering pre-
emption points within their execution via some form of
reschedule call. At these reschedule points a switch
may occur to a higher priority task.

Application tasks may arrive either periodically at
fixed intervals of time, or sporadically after some
minimum inter-arrival time has elapsed. Each task iτ ,
is characterised by: its relative deadline Di, worst-case
execution time Ci, minimum inter-arrival time or
period Ti, and release jitter Ji, defined as the maximum
time between the task arriving and it being released
(ready to execute). It is assumed that once a task starts
to execute it will never voluntarily suspend itself.

Tasks may make mutually exclusive access to
shared resources according to the Stack Resource
Policy (SRP) [12]. A task at priority i may be blocked
by a lower priority task, as a result of the operation of
the SRP, for at most Bi, referred to as the blocking
time.

A task’s worst-case response time Ri, is the longest
time from the task arriving to it completing execution.

4 Although tasks executing non-pre-emptively may not be pre-
empted by higher priority tasks, typically, their execution may be
interrupted and hence delayed by the execution of interrupt handlers.

A task is referred to as schedulable if its worst-case
response time is less than or equal to its deadline. A
system is referred to as schedulable if all its tasks are
schedulable. A priority assignment is said to be
feasible if it leads to a schedulable system.

We consider various constraints on task deadlines:
ii TD = , ii TD ≤ , and so called arbitrary deadlines

where some tasks may have ii TD > . We also consider
systems where task deadlines may be at some
intermediate point during task execution, so called
deadlines prior to completion [16].

A set of tasks is referred to as synchronous if the
arrival times of the tasks are assumed to be
independent and thus the tasks may share a common
release time. A set of tasks is referred to as
asynchronous if the arrival times of some of the tasks
are related to each other via non-zero offsets and
therefore the tasks may or may not share a common
release time.

The term transaction [21] is used to describe a
group of tasks with arrival times that are related by
fixed offsets Oi. The start of a transaction is defined by
the arrival time of the first task in the transaction. Thus
the offset of the first task in a transaction is by
definition zero, whilst the offsets of other tasks in the
transaction are measured relative to the arrival of this
task.

In this paper, we discuss a number of different
system models. A system model is a combination of
scheduling policies (for example fixed priority pre-
emptive scheduling using the Stack Resource Policy
for resource access) and a tasking model, describing
the constraints on task attributes (for example ii TD ≤ ,

0=iJ , no transactions / offset release times). For ease
of reference, we will refer to the system model for
which “Deadline minus Jitter” monotonic priority
assignment is known to be optimal [9] as the D-JM
system model.

3. Robust priority ordering
In this section, we define the concepts of additional

interference and robust priority ordering. We first
formalise the idea of additional interference before
using it in the definition of robust priority ordering.

3.1. Additional interference
Our aim is to model additional interference in as

general a way as possible, ensuring that our analysis is
applicable to a wide range of sources of such
interference, whilst also being able to derive interesting
and useful results about systems that are subject to this
interference. With that aim in mind, we assume that
additional interference takes the form of a function

),,(iwE α , where α is a scaling factor, used to model
variability in the amount of interference, w is the

length of the time interval over which the interference
occurs and i is a priority level affected by the
interference.

We are interested in systems whose schedulability
is sustainable [19] with respect to the additional
interference function. In other words, if the system is
schedulable for a value of 'αα = , it should also be
schedulable for a value of ''' ααα ≤= . We require
that),,(iwE α is a monotonic non-decreasing function
of its parameters. Hence for any fixed values of α and
w,),,(),,(kwEjwE αα ≥ if and only if priority level j
has a higher numeric value (i.e. a lower priority) than
k. Similarly, if time interval ''' ww > , then

),'',(),',(iwEiwE αα ≥ for any fixed values of α and
i and finally, if the scaling factor ''' αα > , then

),,''(),,'(iwEiwE αα ≥ for any fixed values of w and
i.

We note that these monotonicity requirements on
),,(iwE α represent little if any restriction in practice:

α is a scaling factor and so by definition,),,(iwE α
can be formulated to be monotonically non-decreasing
in α . Interference from just about any conceivable
source is never less in a longer time interval than it is
in a shorter one, and finally, interference affecting a
high priority level typically also affects lower priority
levels and so additional interference),,(iwE α is
naturally monotonically non-decreasing with respect to
priority level.

As an example, consider a system subject to
additional interference (i) from an interrupt handler of
indeterminate duration that is activated at most every
100µS, and (ii) from an error recovery block that
executes at priority j for a maximum duration of

REC
jC , at most every 10,000 µS. The additional

interference function is as follows:

≥

+

=

0
10000

)(
100

),,(
else

CwjiifwiwE
REC
jαα

Provided that they meet the monotonicity criteria, then
significantly more complex additional interference
functions can be accommodated by the analysis given
in subsequent sections.

3.2. Optimal and robust priority assignment
Following the definitions given in the literature, an

optimal priority assignment policy may be defined as
follows:

Definition 1: optimal priority assignment policy: For a
given system model, a priority assignment policy P is
referred to as optimal if there are no systems,
compliant with the system model, that are schedulable
using another priority assignment policy that are not
also schedulable using policy P.

Similarly, given an additional interference function
),,(iwE α , we can define a robust priority assignment

policy as follows:

Definition 2: robust priority assignment policy: For a
given system model and additional interference
function, a priority assignment policy P is referred to
as robust if there are no systems, compliant with the
system model, that are both schedulable and can
tolerate additional interference characterized by a
scaling factor α using another priority assignment
policy Q that are not also both schedulable and can
tolerate additional interference characterized by the
same or larger scaling factor using priority assignment
policy P.

Stated otherwise, using the robust priority ordering, a
system can tolerate additional interference that is at
least as great as the additional interference tolerated by
the system when any other priority ordering is used.

4. Robust priority assignment algorithm
In this section, our focus is on fixed priority real-

time systems that can be described by a system model
that is analysable5, but are subject to additional
interference.

Examples of analysable systems include those
using pre-emptive, non-pre-emptive or co-operative
scheduling of a static set of tasks with bounded
execution times. The tasks may be periodic, arriving at
a well-defined rate, or sporadic with a defined
minimum inter-arrival time. Tasks may make mutually
exclusive access to shared resources according to the
Stack Resource Policy; they may be grouped together
into transactions, with non-zero offsets, they may have
non-zero release jitter, arbitrary deadlines and
deadlines prior to completion. Examples of additional
interference were given in Section 1.1.

We now derive an algorithm that provides a robust
priority assignment whenever such an ordering exists.
This algorithm is based on Audsley’s optimal priority
assignment algorithm [6,8] and is applicable to any
analysable fixed priority system model where the
following holds:

Condition 1: The worst-case response time of a task is
dependent on the set of higher priority tasks, but not on
the relative priority ordering of those tasks.

Condition 2: The worst-case response time of a task
may be dependent on the set of lower priority tasks, but
not on the relative priority ordering of those tasks.

5 By analysable, we mean that the worst-case response times of tasks
can be computed either by response time analysis or by some other
method such as construction of a schedule.

Condition 3: When the priorities of any two tasks are
swapped, the worst-case response time of the task
being assigned a higher priority cannot increase with
respect to its previous value.

Condition 4: When the priorities of any two tasks are
swapped, the worst-case response time of the task
being assigned a lower priority cannot decrease with
respect to its previous value.

We observe that as the additional interference function
),,(iwE α is monotonically non-decreasing in both

priority i and time interval w, then for any system
model where the four conditions stated above hold,
then they also hold when the worst-case response times
are increased due to additional interference (assuming
a fixed value of α).

The Robust Priority Assignment algorithm
determines a schedulable priority ordering P, for any
system where such an ordering exists. Further, the
algorithm computes the maximum additional
interference represented by P

iα that can be tolerated
by each task under priority ordering P. The maximum
additional interference that can be tolerated by the
system as a whole is given by:

)(min P
ii

P αα
∀

= (1)

The algorithm performs n(n+1)/2 binary searches
to determine this priority ordering. The starting values
for the binary search can be set as follows: lower limit:
zero, upper limit: some reasonable value based on
inspection of the interference function. This upper limit
is then doubled on each iteration of the binary search,
if found to be schedulable.
Robust Priority Assignment Algorithm

for each priority level i, lowest first
{

for each unassigned task τ
{
 binary search for the largest value

 of α for which task τ is schedulable
 at priority i

}
if no tasks are schedulable at priority i
 return unschedulable
else
 assign the schedulable task that

 tolerates the max α at priority i to
 priority i
}
return schedulable

We note that an alternative structuring of the
Robust Priority Assignment algorithm is possible with
a binary search at the outermost level, effectively
enclosing Audsley’s algorithm. This alternative
structure could be used to derive the maximum
additional interference that can be tolerated by the
system as a whole, however; it would not provide

information on the amount of additional interference
tolerated at each priority level. For that reason, we
prefer the formulation presented above.

Theorem 1: The Robust Priority Assignment (RPA)
algorithm is an optimal priority assignment policy (see
Definition 1).

Proof: Follows directly from equivalence with
Audsley’s algorithm. (Equivalence with the RPA
algorithm can be seen by noting that Audsley’s
algorithm is an optimal priority assignment policy,
irrespective of the initial ordering of the tasks and
therefore irrespective of which unassigned but
schedulable task is assigned to each priority level) □

Theorem 2: The Robust Priority Assignment (RPA)
algorithm is a robust priority assignment policy (see
Definition 2).

Proof: We assume (for contradiction) that there is an
alternative priority ordering Q, which tolerates greater
additional interference than the priority ordering P
found by the RPA algorithm; so PQ αα > . For the
purposes of the proof, we will refer to this alternative
priority ordering as nQ . We will iteratively transform

nQ into 1−nQ .. 1Q , where 1Q is the same ordering as
P. The transformation will be such that kk QQ αα ≥−1 ,
thus proving the theorem via the contradiction:

QP αα ≥ .
 We use k as an iteration count and also the priority
level that we will transform. Thus k counts down from
an initial value of n to 1. We note that as a result of the
transformations, the tasks at priority levels lower than k
become the same in both kQ and P, hence 1Q and P
represent the same priority ordering.
 On iteration k, we transform priority ordering kQ
as follows: First we find the priority level i in kQ of
the task assigned to priority level k in P. We refer to
this task as kτ , as we intend to assign it to priority
level k. Note that as the tasks of lower priority than k
are the same in both kQ and P, priority level i must be
either higher than or equal to k.

Figure 1: Transformation of priority order

There are two cases to consider:
1. Task kτ is at priority k in both P and kQ , in

which case no transformation is required on this
iteration, and so 1−kQ is identical to kQ .

2. Task kτ is at a higher priority i in kQ . In this
case, we form priority ordering 1−kQ by
modifying kQ as follows: Task kτ is moved
down in priority from priority level i to priority
level k, and the tasks at priority levels i+1 to k are
all moved up one priority level (see Figure 1).

We now introduce a concise notation to aid in the
discussion of groups of tasks within a priority ordering:

hep(k,P) is the set of tasks with priority higher
than or equal to k in priority ordering P.
hp(k,P) is the set of tasks with priority strictly
higher than k in priority ordering P.
lp(k,P) is the set of tasks with priority strictly
lower than k in priority ordering P.

Comparing the tasks in priority order 1−kQ with their
counterparts in kQ . There are effectively four groups
of tasks to consider:
1.),(1−kQihp : These tasks are assigned the same

priorities in both kQ and 1−kQ and so can tolerate
the same additional interference.

2.),(),(11 −− ∩ kk QilepQkhp : These tasks retain the
same partial order but are shifted up one priority
level in 1−kQ and so can tolerate at least as much
additional interference as they can in kQ .

3. Task kτ , which is at priority level i in kQ and at
the lower priority level k in 1−kQ : We know, from
the RPA algorithm, that kτ can tolerate at least as
much additional interference when at priority k as
any of the tasks in),(Pkhep , when they are
assigned priority k. Now),(),(PklpQklp k =
implies that),(),(PkhepQkhep k = , and so kτ
can tolerate at least as much additional
interference at priority k as the task at priority k in

kQ .
4.),(1−kQklp : These tasks are assigned the same

priorities in both kQ and 1−kQ , and as
),(),(1 kk QkhepQkhep =− , they are subject to

interference from the same set of higher priority
tasks, and so can tolerate the same additional
interference in each case.

For every task in 1−kQ , the above analysis identifies a
task in kQ which does not have a greater tolerance to
additional interference. Thus 1−kQ can tolerate at least
as much additional interference as kQ and so

kk QQ αα ≥−1 .
A total of n iterations of the above procedure (for

values of k from n down to 1) are sufficient to
transform any arbitrary priority ordering Q into the
priority ordering P, generated by the RPA algorithm.
Further, this transformation is achieved without any
reduction in the maximum amount of additional

interference that the system can tolerate □

5. Examples of robust priority ordering
In this section, we provide examples of robust priority
assignment in the presence of additional interference.
Our first example considers tasks that are scheduled
non-pre-emptively, whilst the second example,
considers tasks with arbitrary deadlines, scheduled pre-
emptively. In each case, the systems are subject to
additional interference due to an interrupt handler
executing for an indeterminate duration.

5.1. Example 1: Non-pre-emptive tasks
This example considers robust priority assignment

for tasks scheduled non-pre-emptively according to
fixed priorities. The response times of non-pre-emptive
tasks can be found via response time analysis;
potentially this requires examining multiple
invocations of the tasks within the worst-case busy
period [7, 23].

Table 1: Task parameters

Task C T D
Aτ 125 450 450
Bτ 125 550 550
Cτ 65 600 600
Dτ 125 1000 1000
Eτ 125 2000 2000

The example system comprises 5 tasks, the
parameters of which are given in Table 1. Note here we
use A, B, C etc. to distinguish the tasks irrespective of
the priority levels to which they are assigned. The tasks
are arranged in the table in DMPO, and are schedulable
in this priority order with response times of 250, 375,
440, 565, and 565 respectively, assuming no additional
interference. We note however, that as illustrated in
[7], DMPO is not optimal for fixed priority non-pre-
emptive scheduling.

In this example, we assume that the system is
subject to additional interference from an interrupt that
occurs infrequently (at most once during any task busy
period), causing an interrupt handler to execute for an
indeterminate amount of time. The additional
interference function is therefore simply:

αα =),,(iwE
where α represents the time for which the

interrupt handler executes.
We now use the RPA algorithm to find a robust

priority ordering for the tasks in Table 1. Recall that
for each priority level, lowest first, the RPA algorithm
selects the unassigned task that tolerates the most
additional interference at that priority level. For each

priority level, the values of α computed6 by the RPA
algorithm are given in Table 2. The maximum value of
α at each priority is highlighted in bold, indicating
that the task is subsequently assigned to that priority
level. Entries in the table marked as ‘NS’ mean that the
task was not schedulable at that priority even with no
additional interference. Entries in the table marked ‘-’
indicate that no value was computed by the algorithm,
as the task had already been assigned a lower priority.

Table 2: Computed values of α

 Task
Priority Aτ Bτ Cτ Dτ Eτ

5 NS NS NS 120 354
4 NS NS NS 120 -
3 10 110 74 - -
2 135 - 199 - -
1 200 - - - -

The robust priority ordering for this example is
(Aτ , Cτ , Bτ , Dτ , Eτ). With this priority ordering, the
system can tolerate infrequent interrupts that delay task
execution by at most 110 time units. By comparison,
DMPO (Aτ , Bτ , Cτ , Dτ , Eτ) yields values of α of
(200, 175, 74, 120, 354) respectively; hence using
DMPO, the system can tolerate infrequent interrupts
that delay task execution by at most 74 time units.

This example shows how the RPA algorithm
determines a robust priority ordering for tasks
scheduled non-pre-emptively according to fixed
priorities. Further it illustrates that DMPO is not
necessarily the most robust priority ordering to use for
non-pre-emptive tasks.

5.2. Example 2: Pre-emptive tasks
Our second example considers pre-emptive tasks with
arbitrary deadlines. The response times of arbitrary
deadline tasks can be found via response time analysis
[5, 18], again potentially examining multiple
invocations of a task within the worst-case busy period.

The example system comprises two tasks, Aτ and
Bτ , with the parameters7 given in Table 3.

Table 3: Task parameters (D>T)

Task C D T
Aτ 42 118 100
Bτ 52 154 140

We note that with no additional interference, the
system is schedulable with either Aτ or Bτ at the
higher priority.

Case 1: Additional interference of the form:

6 Using a granularity of 1 time unit.
7 These parameters were chosen based on the example in [5].

=
100

),,(wiwE αα

For example, from a interrupt handler of indeterminate
duration, executing every 100 time units.

With task Aτ at the higher priority, and Bτ at the
lower priority, Aτ and Bτ can tolerate maximum
additional interference given by 58=α and 9=α
respectively. Alternatively, with Bτ at the higher
priority, and Aτ at the lower priority, Bτ and Aτ can
tolerate maximum additional interference given by

51=α and 10=α respectively. Hence (Bτ , Aτ) is the
robust priority ordering in this case, tolerating
additional interference characterised by 10=α .

Case 2: Additional interference of the form:

=

200
),,(wiwE αα

For example, from a interrupt handler of indeterminate
duration, executing every 200 time units.

With task Aτ at the higher priority, and Bτ at the
lower priority, Aτ and Bτ can tolerate maximum
additional interference given by 76=α and 18=α
respectively. Alternatively, with Bτ at the higher
priority, and Aτ at the lower priority, Bτ and Aτ can
tolerate maximum additional interference given by

96=α and 15=α respectively. Hence (Aτ , Bτ) is
the robust priority ordering in this case, tolerating
additional interference characterised by 18=α .

Case 3: Additional interference of the form:

+

= LwKwiwE

200100
),,(αα

Here the additional interference is from two sources,
both of which cause interference of indeterminate
duration. We use the (unknown) values K and L to
describe the relative duration of the interference from
these two sources. In this case, the form of the
additional interference function is not well defined and
it is in fact impossible to determine the robust priority
ordering without further information about the values
of K and L. If K = 1 and L = 0, then this is equivalent to
case 1 and the robust priority ordering is (Bτ , Aτ),
however, if K = 0 and L = 1, then this is equivalent to
case 2 and so the robust priority ordering is (Aτ , Bτ).

Case 3 shows that the robust priority ordering is in
general dependent on the form of the additional
interference function. This is a significant but
somewhat unfortunate result. It means that for general
system models (such as the arbitrary deadline case
examined here), it is only possible to determine the
robust priority ordering if the form of the additional
interference function is well defined, in other words,
there are no unknowns save for the maximum value of
α that the system can tolerate. We return to this point

in Section 7.

6. “D-J” monotonic partial ordering
In this section, we consider fixed priority systems

where the tasks can be classified into two subsets:
1. Tasks that comply with the conditions under

which “Deadline minus Jitter” monotonic priority
ordering (D-JMPO) is known to be optimal, i.e.
they are scheduled pre-emptively, have deadlines
less than or equal to their periods, no offsets with
respect to each other, and so on. We refer to these
tasks as D-JM system model tasks.

2. Tasks that do not comply with the D-JM system
model. These tasks may execute non-pre-
emptively; they may be part of a transaction and
thus have offset arrival times with respect to other
tasks in the same transaction; they may have
deadlines greater than their periods, deadlines
prior to completion and so on. We refer to such
tasks as non D-JM system model tasks.

We require that the maximum interference, on lower
priority D-JM system model tasks, caused by the
execution of the non D-JM system model tasks is
monotonic in both time interval and priority. Thus non
D-JM system model tasks are permitted to have offset
arrival times with respect to each other, but these
arrival times must be independent of the arrival times
of the D-JM system model tasks.

We refer to systems containing the two classes of
task as mixed systems. In general, a mixed system
contains n tasks in total, m of which comply with the
D-JM system model and n-m tasks which do not.

We assume that all of the tasks may make
mutually exclusive access to shared resources
according to the Stack Resource Policy. We note that
blocking caused by non-pre-emptive execution may be
viewed as a special case of the Stack Resource Policy
where the ceiling priority is set to the highest priority
in the system and the resource is effectively locked for
the entire duration of the non-pre-emptive task. The
blocking caused by tasks that are scheduled co-
operatively, offering pre-emption points via some form
of reschedule call may be similarly viewed as a special
case of the Stack Resource Policy.

Recall that for each priority level, lowest first, the
RPA algorithm selects the unassigned task that
tolerates the most additional interference at that
priority level. Intuitively, of all the unassigned D-JM
system model tasks, the one with the largest value of
“Deadline minus Jitter” is the one that can tolerate the
most additional interference. Thus, we expect the
priority ordering generated by the RPA algorithm to
assign the D-JM system model tasks in “Deadline
minus Jitter” partial order, interleaved in some way
with the non D-JM system model tasks. We now prove

this to be the case.

Theorem 3: Given a mixed system, and two D-JM
system model tasks, Aτ and Bτ 8, where Aτ has a
larger value of deadline minus jitter than Bτ ,
(BBAA JDJD −≥−) then the additional interference
characterised by A

iα , tolerated by Aτ at an arbitrary
priority i with Bτ at a higher priority, is at least as
great as the additional interference B

iα , tolerated by
Bτ at priority i with Aτ at a higher priority.

Proof: As Aτ and Bτ are pre-emptable and have
deadlines less than or equal to their periods, then the
worst-case response time for Aτ assigned to priority
level i, with Bτ at a higher priority, is given by

Bii JWR += , where iW is the smallest solution to the
equality given in equation (2):

),,(),,(iwEBAwIC
T

Jw
Cw n

iiiB
B

Bi
Ai α++

 +
+= (2)

Where the function),,(BAwI ii represents the
maximum time for which the other tasks, with the
exception of Aτ and Bτ , prevent a ready task at
priority i from executing, during an interval of length
w. Note that the function),,(BAwI ii includes both
interference from tasks of higher priority than i (with
the exception of Aτ and Bτ) and also blocking effects
due to tasks of lower priority than i. We return to this
point about blocking later.

Similarly, the worst-case response time for Bτ
assigned to priority level i, with Aτ at a higher priority,
is given by Aii JWR += , where iW is the smallest
solution to the equality given in equation (3):

),,(),,(iwEBAwIC
T

Jw
Cw n

iiiA
A

Ai
Bi α++

 +
+= (3)

Now let B
iW be the length of the busy period for task

Bτ when it is at priority level i and is subject to the
maximum amount of additional interference B

iα , that
it can tolerate at that priority level. The response time

B
iR , of Bτ is given by B

B
i

B
i JWR += . As

AABB
B

i JDJDW −≤−≤ , and AA TD ≤ , it follows
that AA

B
i TJW ≤+ , hence substituting B

iW and B
iα

into equation (2) results in an identical equality to that
obtained by substituting the same values into equation
(3):

),,(),,(iWEBiWICCBW B
i

B
i

B
iABi

B
i α++++= (4)

Thus B
i

A
i WW = and B

i
A
i αα = is also a solution to

equation (2). As AABBB
B
i JDJDJR −≤−≤− , this

solution gives a schedulable response time of

8 Note again we use A and B to distinguish the tasks irrespective of
the priority levels to which they are assigned.

AB
B
i

A
i JJRR +−= for Aτ . Further, as

BBAA JDJD −≥− , there may be solutions to
equation (3) for larger amounts of additional
interference hence B

i
A
i αα ≥ □

We now consider the effects of blocking. Recall
that as far as blocking is concerned, co-operative and
non-pre-emptive scheduling can be considered as
special cases of the Stack Resource Policy. We
therefore simply assume that tasks may share resources
according to the Stack Resource Policy.

With the Stack Resource Policy, a task at priority i
may be blocked for at most the duration of a single
critical section executed by a task of lower priority
than i, where that critical section involves access to a
resource shared with a task of priority i or higher. As
the task sets lp(i) and hep(i) remain the same
irrespective of whether Aτ is at priority i and Bτ is at
a higher priority or vice-versa, the set of critical
sections that could cause blocking at priority i remains
the same in both cases. This means that any blocking
component of),,(BAwI ii , as well as any interference
components from tasks of higher priority than i, (not
including Aτ and Bτ) are the same irrespective of
whether Aτ is at priority i and Bτ is at a higher
priority or vice-versa. Note that this remains the case
when some of the non D-JM system model tasks form
transactions with offset arrival times and thus the
calculation of the exact worst-case blocking and
interference effects becomes computational intractable.

Taking a sustainable approach9 and computing
blocking and interference independently,),,(BAwI ii
comprises two components:
1. higher priority interference due to tasks in the set

hp(i) with the exception of tasks Aτ and Bτ , and
2. a blocking factor iB , representing the maximum

time for which a task of lower priority than i can
lock a resource shared with a task of priority i or
higher.

As the task sets lp(i) and hep(i) remain the same
independent of whether Aτ or Bτ is at priority i. Both
of these factors are unchanged on interchanging the
priorities of Aτ and Bτ .

Theorem 4: For a mixed system, where a schedulable
priority ordering exists, there exists a robust priority
ordering P with the D-JM system model tasks in
“Deadline minus Jitter” monotonic partial order.

Proof: We assume (for contradiction) that there is an
alternative priority ordering Q, which tolerates greater
additional interference than priority ordering P, so

PQ αα > . For the purposes of the proof, we will refer

9 Treating blocking and interference independently results in
analysis which is sufficient but not necessary in the case of tasks
with offset arrival times.

to this alternative priority ordering as mQ .
 We will iterative transform mQ into 1−mQ .. 1Q ,
where 1Q is a priority ordering with the D-JM system
model tasks in “Deadline minus Jitter” monotonic
partial order. Thus 1Q is the equivalent of P. The
transformation will be such that kk QQ αα ≥−1 , thus
proving the theorem via the contradiction: QP αα ≥ .

Figure 2: Transformation of priority order

We use k as an iteration count, where k counts
down from m (the number of D-JM system model
tasks) to 1. On iteration k, we select the D-JM system
model task Aτ , with the kth largest value of deadline
minus jitter. Thus on the first iteration (k=m), Aτ is the
D-JM system model task with the smallest value of
deadline minus jitter. Let j be the priority level of task

Aτ in priority order kQ . Next we identify the lowest
priority level i in kQ that is occupied by a D-JM
system model task Bτ with a smaller value of deadline
minus jitter than Aτ .
o If there is no such task Bτ or if i is a higher

priority level than j, then no transformation is
required on this iteration and so kk QQ =−1 .

o If i is a lower priority level than j, then we
transform kQ into 1−kQ by moving Aτ from
priority j in kQ to priority i in 1−kQ and shifting
the tasks at priorities j+1 to i up one priority level
(see Figure 2 above).

Comparing the tasks in priority order 1−kQ with their
counterparts in kQ . There are effectively four groups
of tasks to consider:
1.),(1−kQihp : These tasks are assigned the same

priorities in both kQ and 1−kQ and so can tolerate
the same additional interference.

2.),(),(11 −− ∩ kk QjlepQihp : These tasks retain the
same partial order but are shifted up one priority
level in 1−kQ and so can tolerate at least as much
additional interference as they can in kQ .

3. Task Aτ , which is at priority level j in kQ and at
the lower priority level i in 1−kQ : Theorem 3, tells
us that Aτ can tolerate at least as much additional
interference when it is at priority level i as task Bτ
can tolerate when it is at that same priority level in
priority ordering kQ .

4.),(1−kQilp : These tasks are assigned the same
priorities in both kQ and 1−kQ , and as

),(),(1 kk QihepQihep =− , they are subject to
interference from the same set of higher priority
tasks and so can tolerate the same additional
interference in each case.

For every task in 1−kQ , the above analysis identifies a
task in kQ which does not have a greater tolerance to
additional interference. Thus 1−kQ can tolerate at least
as much additional interference as kQ and so

kk QQ αα ≥−1 .
A total of m iterations of the above procedure (for

values of k from m down to 1) are sufficient to
transform priority ordering Q into a priority ordering P,
with the D-JM system model tasks in “Deadline minus
Jitter” monotonic partial order. Further, this
transformation is achieved without any reduction in the
maximum amount of additional interference that the
system can tolerate □

Theorem 5: For a mixed system, if a feasible priority
ordering exists, then the RPA algorithm always
generates a robust priority ordering with the D-JM
system model tasks in “Deadline minus Jitter”
monotonic partial order, irrespective of the task
execution times, and irrespective of the form of the
additional interference function),,(iwE α , provided
that),,(iwE α meets the monotonicity criteria stated in
Section 3.1

Proof: Follows directly from the proof of Theorems 3
and 4, which are independent of both task execution
times and the form of the function),,(iwE α , requiring
only that),,(iwE α meets the monotonicity criteria.

We now use this result to improve the efficiency of
both the RPA algorithm, and Audsley’s optimal
priority assignment algorithm.

6.1. Priority assignment algorithm efficiency
 The proof of Theorem 3 shows that at each priority
level, the unassigned D-JM system model task with the
largest value of deadline minus jitter can tolerate at
least as much additional interference at that priority
level as any other unassigned D-JM system model task.
Thus at each priority level, the RPA algorithm need
only calculate the value of α for at most a single
unassigned D-JM system model task (the one with the
largest value of ii JD −). In the worst-case, the non D-
JM system model tasks are assigned last and so the
total number of computations of α required is given
by:

2/)1)(()1(+−−++− mnmnmnm
which simplifies to:

2/))1()1((−−+ mmnn (6)
If m = 0, then equation (6) reduces to the familiar

2/)1(+nn computations. If m=n, then only m

computations are required. Note, an additional
O(mlogm) operations are required to determine the
“Deadline minus Jitter” monotonic partial ordering.

Theorem 3 also implies that the unassigned D-JM
system model task with the largest value of deadline
minus jitter is guaranteed to be schedulable at a
particular priority level if any of the other unassigned
D-JM system model tasks are schedulable at that
priority. Thus at each priority level, Audsley’s optimal
priority assignment algorithm need only check the
schedulability of at most one D-JM system model task
(the one with the largest value of ii JD −).

Often in real-world systems, the overwhelming
majority of tasks comply with the D-JM system model,
with just a few tasks having arbitrary deadlines,
deadlines prior to completion, non-pre-emptive
execution, or forming transactions with offset arrival
times. In this case, the efficiency improvement in the
priority assignment algorithms is significant. For a
system of 50 tasks, a number of which do not comply
with the D-JM system model, Table 4 shows the
number of computations required, and the factor by
which the efficiency of the priority assignment
algorithms is improved compared with the previous
worst-case bound of n(n+1)/2 = 1275.

As an example, suppose that a system has four
(non D-JM system model) tasks, which form a
transaction with a period of 100ms and offsets of 0ms,
25ms, 50ms and 75ms respectively. Also part of the
system are a further 46 D-JM system model tasks that
are unrelated to the offset of this transaction. For this
system, utilising the improvements described above,
the optimal priority ordering can be found with a factor
of 5.3 times less computation than before.

Table 4: Priority assignment algorithm
efficiency improvement

Number of non
D-JM system
model tasks

Number of
computations

Improvement
factor

1 99 12.9
2 147 8.7
3 194 6.6
4 240 5.3
5 285 4.5

10 495 2.6
25 975 1.3

We note that Theorem 5 proves a conjecture made
by Bernat in [22]. Bernat studied mixed systems
comprising two types of tasks; those with “weakly
hard” timing constraints, specifying the pattern of
deadlines that must be met / may be missed, and those
with “strongly hard” time constraints, where all
deadlines must be met. Bernat showed that DMPO is

not optimal for weakly hard tasks and conjectured that
the optimal priority assignment for a system containing
both types of task would have the strongly hard tasks
in deadline monotonic partial order. Bernat used this
conjecture to improve the efficiency of Audsley’s
algorithm in a similar manner to that described above.
In our terminology, weakly hard tasks are non-D-JM
system model tasks, whilst strongly hard tasks are D-
JM system model tasks.

7. “D-J” monotonic priority ordering
In this section, we consider fixed priority systems

where all of the tasks comply with the D-JM system
model, i.e. they are scheduled pre-emptively, have
deadlines less than or equal to their periods, no offsets
with respect to each other, and so on.

Theorem 6: “Deadline minus Jitter” monotonic
priority assignment is the robust priority assignment
policy (see Definition 2) for systems where all tasks
comply with the D-JM system model, irrespective of
the task execution times, and irrespective of the form
of the additional interference function),,(iwE α ,
provided that),,(iwE α meets the monotonicity
criteria stated in Section 3.1.

Proof: Follows directly from Theorem 5.

Theorem 6 is a highly significant result. It tells us that
for real-world systems, which have a scheduling policy
and tasking model that comply with the D-JM system
model, but are subject to ill-defined or unknown
additional interference in the form of interrupts,
operating system overheads, DMA cycle stealing,
budget overruns and so on, then “Deadline minus
Jitter” monotonic priority ordering is always the most
robust priority ordering to use. Theorem 6 shows that
this is the case even if the exact form of the additional
interference function is unknown, that is, if we have
little or no information about the type of additional
interference, its extent or its exact timing behaviour. It
is also the case if we have only rough estimates or
indeed no information at all, about task worst-case
execution times.

Theorem 6 has important implications when
upgrading a real-time system which has a scheduling
policy and tasking model that comply with the D-JM
system model. Using a different microprocessor and
operating system affects interrupt latencies, execution
times, OS overheads and other forms of additional
interference as well as task execution times. However,
assuming only that the additional interference meets
the broad monotonicity criteria, “Deadline minus
Jitter” monotonic priority ordering remains the most
robust priority ordering to use.

We note that Theorem 6 subsumes the result of

Regehr [27], which showed that DMPO maximises the
critical scaling factor for task execution times.

8. Summary and conclusions
In this paper we introduced the concept of robust

priority ordering and provided an algorithm that can
determine the robust priority ordering for a wide range
of real-time systems scheduled using fixed priorities.

8.1. Applicability
The motivation for finding a robust priority

ordering is that it is the optimal fixed priority ordering
to use in single-processor, real-time systems which are
subject to additional interference from sources such as
interrupts, RTOS overheads, DMA cycle stealing,
execution of checkpoints and error recovery blocks or
indeed any other additional interference that can be
characterised by a monotonically non-decreasing
function of time interval and priority level.
 As well as processor scheduling, the Robust
Priority Assignment algorithm is also applicable to
communications networks scheduled according to
fixed priorities. For example, the RPA algorithm could
be used to obtain a robust priority ordering for
messages on Controller Area Network (CAN) [20] in
the presence of additional interference due to errors on
the bus.
 The results described in Section 6 are also relevant
to hierarchical systems where a mix of Deferrable,
Sporadic and Periodic servers are used to schedule
applications in the same system [14]. Both Periodic
and Sporadic servers comply with the D-JM system
model, whereas Deferrable servers do not10. For such
systems, Theorem 5 shows that the robust priority
ordering always has the Periodic and Sporadic servers
in “Deadline minus Jitter” monotonic partial order.
This implies that the more efficient form of Audsley’s
optimal priority assignment algorithm can be used to
assign server priorities. This is particularly useful when
a new application is added to the system and revised
server priorities need to be determined at run-time.

8.2. Contribution
The major contributions of this work are:
• The introduction of the concept of robust priority

ordering.
• The definition of an algorithm that determines the

most robust priority ordering if any feasible
ordering exists. This algorithm is applicable to a
wide range of system models; provided that they
meet simple rules in terms of how worst-case
response times depend upon priority.

10 In [13], the authors show that rate/deadline monotonic priority
assignment is not optimal for Deferrable servers.

• Showing that in general, the most robust priority
ordering depends upon the exact form of the
additional interference function.

• Proving that for systems where “Deadline minus
Jitter” monotonic priority ordering is optimal, it is
also the most robust priority ordering effectively
independent of the form of the additional
interference function.

• Proving that for mixed systems, where some tasks
comply with the simple D-JM system model, but
other tasks do not (because they have offsets,
arbitrary deadlines, co-operative / non-pre-emptive
execution etc.), then if a feasible priority ordering
exists, then a robust priority ordering also exists
that has the D-JM system model tasks in
“Deadline minus Jitter” monotonic partial order.

• Using the above result to improve the efficiency of
both the Robust Priority Assignment algorithm
and Audsley’s optimal priority assignment
algorithm.

These contributions make significant improvements to
the set of known priority assignment techniques that
are appropriate for use in the design of complex real-
world, real-time systems.

8.3. Acknowledgements and future work
This work was funded in part by the EU Frescor

project. As part of this project, we aim to extend our
research into priority assignment and to utilise the
results described in this paper within the context of the
Frescor contract framework.

9. References
[1] M.S. Fineberg and O. Serlin, “Multiprogramming for hybrid
computation”, In proceedings AFIPS Fall Joint Computing
Conference, pp 1-13, 1967
[2] O. Serlin, “Scheduling of time critical processes”. In
proceedings AFIPS Spring Computing Conference, pp 925-932,
1972.
[3] C. L. Liu and J. W. Layland. "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of
the ACM, 20(1): 46-61, January 1973.
[4] J. Y.-T. Leung and J. Whitehead, "On the complexity of
fixed-priority scheduling of periodic real-time tasks,"
Performance Evaluation, 2(4): 237-250, December 1982.
[5] J. Lehoczky. “Fixed priority scheduling of periodic task sets
with arbitrary deadlines”. In Proceedings 11th IEEE Real-Time
Systems Symposium, pp. 201–209, IEEE Computer Society
Press, December 1990.
[6] N.C. Audsley, "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report
YCS 164, Dept. Computer Science, University of York, UK,
December 1991.
[7] L. George, N. Rivierre, and M. Spuri. “Pre-emptive and non-
pre-emptive real-time uni-processor scheduling. Technical
Report 2966, Institut National de Recherche et Informatique et
en Automatique (INRIA), France, September 1996
[8] N.C. Audsley, “Optimal priority assignment in fixed priority
scheduling”. Information Processing Letters Vol. 79, No. 1,
pp39-44, 2001.

[9] A. Zuhily and A. Burns, “Optimality of (D-J)-monotonic
priority assignment”. Information Processing Letters. Volume
103, Number 6, pp. 247-250, April 2007.
[10] K. Bletsas, and N.C. Audsley, “Optimal priority assignment
in the presence of blocking”. Information Processing Letters
Vol. 99, No. 3, pp83-86, August. 2006.
[11] T.P. Baker. “Stack-based Scheduling of Real-Time
Processes.” Real-Time Systems Journal (3)1, pp. 67-100, 1991.
[12] L. Sha, R. Rajkumar, and J.P. Lehoczky. “Priority
inheritance protocols: An approach to real-time
synchronization”. IEEE Transactions on Computers, 39(9):
1175-1185, 1990.
[13] R.I. Davis, A. Burns. “Hierarchical Fixed Priority Pre-
emptive Scheduling”. Technical Report YCS-2005-385,
University of York, Dept. of Computer Science, April 2005.
[14] R.I. Davis, A. Burns. “Hierarchical Fixed Priority Pre-
emptive Scheduling” In proceedings IEEE Real-Time Systems
Symposium. pp. 389-398. December 2005.
[15] R.I. Davis and A. Burns, “Optimal Priority Assignment for
Aperiodic Tasks with Firm Deadlines in Fixed Priority Pre-
emptive Systems”. Information Processing Letters 53(5). 1995.
[16] A. Burns, K. Tindell, and A. J. Wellings. “Fixed priority
scheduling with deadlines prior to completion”. In proceedings
of the 6th Euromicro Workshop on Real-Time Systems, pp 138-
142, June 1994.
[17] N.C. Audsley, A. Burns, M. Richardson, A.J.Wellings.
“Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling”. Software Engineering Journal, 8(5) pp. 284-292,
1993.
[18] K.W. Tindell, , A. Burns, A.J.Wellings. “An extendible
approach for analyzing fixed priority hard real-time tasks”. Real-
Time Systems. Volume 6, Number 2, pp133-151 March 1994.
[19] S. Baruah and A. Burns. “Sustainable Scheduling Analysis”.
In proceedings 27th IEEE Real-Time Systems Symposium, pp.
159–168, IEEE Computer Society Press, December 2006.
[20] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. “Controller
Area Network (CAN) schedulability analysis: Refuted, revisited
and revised”. Real-Time Systems, Volume 35, Number 3, pp
239-272. April 2007.
[21] K. W. Tindell. “Using Offset Information to Analyse Static
Priority Pre-Emptively Scheduled Task Sets”. Technical Report
YCS-92-182. Dept. of Computer Science, University of York,
UK, 1992.
[22] G. Bernat “Specification and Analysis of Weakly Hard
Real-Time Systems”. PhD Thesis. Universitat de les Illes
Balears. 1998.
[23] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh, “Worst-case
response time analysis of real-time tasks under fixed priority
scheduling with deferred preemption revisited”, CS Report 06-
34, Technische Universiteit Eindhoven (TU/e), The Netherlands,
December 2006.
[24] J.P. Lehoczky, L. Sha, Y. Ding, “The rate monotonic
scheduling algorithm: Exact characterization and average
case behaviour”. In Proceedings of the 10th IEEE Real-Time
Systems Symposium, pp. 166–171, Santa Monica, CA, December
1989.
[25] D.I. Katcher, H. Arakawa, J.K. Strosnider, ”Engineering
and analysis of fixed priority schedulers”. IEEE Transactions on
Software Engineering, 19(9):920–934, September 1993.
[26] S. Punnekkat, R. Davis, A. Burns, “Sensitivity analysis of
real-time task sets”. In Proceedings of the Asian Computing
Science Conference, pp72–82, Nepal, December 1997.
[27] J. Regehr, “Scheduling tasks with mixed pre-emption
relations for robustness to timing faults”. In proceedings 23th
IEEE Real-Time Systems Symposium, pp. 315–326, IEEE
Computer Society Press, December 2002.

