

Integrating Cache Related Pre-emption Delay

Analysis into EDF Scheduling
Will Lunniss

1
, Sebastian Altmeyer

2
, Claire Maiza

3
, Robert I. Davis

1

1Department of Computer Science

University of York

York, UK

{wl510,rob.davis}@york.ac.uk

2Department of Computer Science

Saarland University

Saarbrücken, Germany

altmeyer@cs.uni-sb.de

3Verimag

Grenoble INP

Grenoble, France

claire.maiza@imag.fr
Abstract — Cache memories have been introduced into

embedded systems to prevent memory access times from

becoming an unacceptable performance bottleneck. Memory and

cache are split into blocks containing instructions and data.

During a pre-emption, blocks from the pre-empting task can

evict those of the pre-empted task. When the pre-empted task is

resumed, if it then has to re-load the evicited blocks, cache

related pre-emption delays (CRPD) are introduced which then

affect schedulability of the task. In this paper, we show how

existing approaches for calculating CRPD for FP scheduling can

be adapted and integrated into schedulability analysis for EDF.

We then compare the performance of the different approaches

against an existing approach for calculating CRPD for EDF.

Using a case study and empirical evaluation, we show the

benefits of our CRPD analysis.

I. INTRODUCTION
Over the past 20 years, processor speeds have increased

dramatically leaving memory access times as a major

performance bottle-neck. To bridge this ever increasing gap,

caches have been introduced between the processor and
memory; however, they introduce significant complexity

when trying to verify the timing properties of the system.

Real-time systems, especially hard real-time systems, have

very stringent timing requirements and the schedulability of

each task must be known. The schedulability of a taskset is

determined using information about the scheduling algorithm,

the arrival pattern of tasks and the tasks’ worst-case execution

time. Worst-case execution times are typically obtained

assuming no pre-emption. However, in pre-emptive multi-

tasking systems, caches introduce additional cache related

pre-emption delays (CRPD) caused by the need to re-fetch

blocks belonging to the pre-empted task which were evicted
from cache by the pre-empting task. These CRPD effectively

increase the worst-case execution time of the tasks. It is

therefore important to be able to calculate, and therefore

account for, CRPD when determining if a system is

schedulable or not.

The motivation for this work comes from the need to

provide accurate schedulability analysis for applications

running on processors with cache, scheduled under EDF.

A. Related work

Earliest deadline first (EDF) is a dynamic scheduling

algorithm that always schedules the job of the task with the
earliest absolute deadline first. In 1973, Liu and Layland [19]

gave a necessary and sufficient schedulability test for EDF for

tasksets with implicit deadlines. Then in 1974, Dertouzos [12]

proved EDF to be optimal among all scheduling algorithms

on a uniprocessor. In 1980, Leung and Merrill [18] introduced

an exact schedulability test for tasksets with constrained

deadlines that was later extended to sporadic tasksets in 1990

by Baruah et al. [5], [6] via the processor demand bound
function. In 2009, Zhang and Burns [24] presented their

Quick convergence Processor-demand Analysis (QPA)

algorithm which provides an exact schedulability test for EDF

which typically requires far fewer time points to be examined,

than the test of Baruah et al. [5], [6].

Analysis of CRPD uses the concept of useful cache blocks

(UCBs) and evicting cache blocks (ECBs) based on the work

by Lee et al. [16]. ECBs are blocks that may be loaded into

cache by the task during its execution. Out of the ECBs, some

of them may also be UCBs. UCBs are blocks that are reused

once they have been loaded into cache before potentially

being evicted by the task, but not counting evictions from
other pre-empting tasks. If a UCB is evicted by a pre-empting

task, additional CRPD may be introduced as the UCB may

have to be re-loaded when it otherwise would not have been.

Depending on the approach used, the CRPD analysis

combines the UCBs belonging to the pre-empted task(s) with

the ECBs of the pre-empting task(s). Using this information,

the total number of blocks that are evicted, which must then

be reloaded after the pre-emption, can be calculated and

combined with the cost of reloading a block to then give the

CRPD.

A number of approaches have been developed for
calculating the CRPD when using Fixed Priority (FP) pre-

emptive scheduling. They include Lee et al. [16] UCB-Only

approach, which considers just the pre-empted task(s), and

Busquets et al. [11] ECB-Only approach which considers just

the pre-empting task. Approaches that consider the pre-

empted and pre-empting task(s) include Tan and Mooney [23]

UCB-Union approach and Altmeyer et al. [2] ECB-Union

approach. Finally, there are advanced multiset based

approaches that consider the pre-empted and pre-empting

task(s) by Altmeyer et al. [3], ECB-Union Multiset, UCB-

Union Multiset, and a combined multiset approach.
There has, however, been little work towards integrating

CRPD analysis into schedulability tests for dynamic

scheduling algorithms. To the best of our knowledge, the only

existing work on integrating CRPD analysis with EDF

schedulability tests was developed by Ju et al. [15] in 2007.

They considered the intersection of the pre-empted task’s

UCBs with the pre-empting task’s ECBs. However, this

method for handling nested pre-emptions can lead to

significant pessimism as each pair of tasks is considered

separately. We discuss this method in detail at the end of

Section III.

A complementary approach is to use limited pre-emption

scheduling such as Bertogna and Baruah’s implementation for

EDF [8] from 2010. Under limited pre-emption scheduling,

pre-emptions are allowed, but strongly discouraged especially

when they are not required to maintain the schedulability of
the system. Pre-emption can either be deferred for as long as

possible, or limited to specific points in the tasks’ execution.

In the latter case, Bertogna et al. [9] presented an algorithm

for optimally selecting pre-emption points out of out of a list

of potential points. However, in order to limit complexity,

their algorithm uses a simplified model of CRPD that only

considers the pre-empted task.

In this paper, we build upon the ECB-Only, UCB-Only,

UCB-Union, ECB-Union, ECB-Union Multiset, UCB-Union

Multiset and combined multiset CRPD analysis for FP given

by Busquets et al. [11], Lee et al. [16], Tan and Mooney [23],
and Altmeyer et al. [2], [3], adapting them for EDF

scheduling. We integrate the resulting CRPD analysis for

EDF into the processor demand bound function, and hence the

schedulability test for EDF given by Baruah et al. [5], [6].

B. Organisation

The paper is organised as follows. Section II introduces

the system model, terminology and notation. Section III

outlines existing EDF schedulability analysis and CRPD

analysis for EDF. We then show how CRPD analysis for FP

can be adapted for EDF in Section IV and V. In Section VI,

we compare the performance of EDF schedulability tests
incorporating the various CRPD analyses using a case study,

and in Section VII using experiments based on synthetically

generated tasksets. Finally, Section VIII concludes with a

summary and directions for future work.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION
This section describes the system model, terminology, and

notation used in the rest of the paper.

We assume a single processor system, running a statically

defined taskset under pre-emptive EDF scheduling. A taskset

contains a fixed number of tasks (τ1..τn) where n is a positive

integer. Each task, τi may produce a potentially infinite stream

of jobs that are separated by a minimum inter-arrival time or

period Ti. Each task has a relative deadline Di, and each job of
a task has an absolute deadline di which is Di after it is

released. Each task has a unique task index ordered by

relative deadline from smallest to largest. In the case of a tie

when assigning the unique task indexes, an arbitrary choice is

made. Each task also has a WCET Ci (determined for non-

pre-emptive execution). In this paper, we consider tasks with

arbitrary deadlines. (Task deadlines may be referred to as

constrained deadlines, i.e. Di ≤ Ti or implicit i.e. Di = Ti). We

assume a discrete time model. We define Tmax as the largest

period of any task in the taskset, and Dmax as the largest

relative deadline of any task in the taskset. Each task has a

utilisation Ui, where Ui = Ci / Ti, and each taskset has a

utilisation U which is equal to the sum of its tasks’

utilisations.

A taskset is said to be schedulable with respect to a

scheduling algorithm if all valid sequences of jobs generated

by the taskset can be scheduled by the algorithm without any

missed deadlines. A taskset is feasible if there exists some

scheduling algorithm that can schedule all possible sequences

of jobs that may be generated by the taskset without any

missed deadlines. A scheduling algorithm is said to be
optimal with respect to a task model if it can schedule all of

the feasible tasksets that comply with the task model.

The EDF scheduling algorithm is an optimal dynamic

scheduling algorithm for single processors which always

schedules the job with the earliest absolute deadline first. Any

time a job arrives with an earlier absolute deadline than the

current running job, it will pre-empt the current job. When a

job completes its execution, the EDF scheduler chooses the

pending job with the earliest absolute deadline to execute

next. In the case where two or more jobs have the same

absolute deadline, we assume the scheduler always picks the
job belonging to the task with the lowest unique task index,

see Fig. 1. This has the benefit of minimising the number of

pre-emptions. In the case where two task jobs have the same

absolute and relative deadlines, it ensures that they cannot

pre-empt each other. Furthermore, it ensures that after a pre-

emption, the task that was pre-empted last is resumed first.

Fig. 1 – Example schedule showing how the scheduler chooses which task

should execute. Task τ3 is released at t = 0. At t = 5, task τ2 is released, pre-

empting τ3 as although it has the same absolute deadline, it has a lower task

index. At t = 6, task τ1 is released, pre-empting task τ2. At t = 7, τ1 completes,

the scheduler then chooses to resume task τ2 as although it has the same
absolute deadline as task τ3, it has the lower task index.

We assume that any task τj with a relative deadline Dj < Di

can pre-empt task τi. Therefore, we define the set of tasks that

may have a higher priority, and can pre-empt task τi, as:

}|{)(iDDihp jj

We use Pj(Di) to denote the maximum number of times
that jobs of task τj can pre-empt a single job of task τi which

we calculate as follows:

j

ji
ij

T

DD
DP ,0max)(

We use Ej(t) to denote the maximum number of jobs of
task τj that can have both their release times and their

deadlines in an interval of length t, which we calculate as

follows:

j

j
j

T

Dt
tE 1 ,0max)(

(1)

(2)

(3)

Finally, each task τi has a set of UCBs, UCBi and a set of

ECBs, ECBi represented by a set of integers. If for example,

task τ1 contains 4 ECBs, where the second and fourth ECBs

are also UCBs, these would be represented using

ECB1 = {1,2,3,4} and UCB1 = {2,4}.

Each time a block is reloaded, a cost is introduced that is

equal to the block reload time (BRT).

We assume a direct mapped cache, but the work extends

to set-associative caches with the LRU replacement policy as

described in Section 2 of [3]. We focus on instruction only

caches. In the case of data caches, the analysis would either
require a write-through cache or further extension in order to

be applied to write-back caches. We also assume that tasks do

not share any code.

III. EDF SCHEDULABILITY ANALYSIS
In this section we recap on schedulability tests for EDF

and then cover existing CRPD analysis for EDF.

A. EDF Schedulability Tests

In 1973, Liu and Layland [19] gave a necessary and

sufficient schedulability test that indicates whether a taskset is

schedulable under EDF iff U ≤ 1, under the assumption that

all tasks have implicit deadlines (Di =Ti). In the case where Di

≠ Ti this test is still necessary, but is no longer sufficient.
In 1974, Dertouzos [12] proved EDF to be optimal among

all scheduling algorithms on a uniprocessor, in the sense that

if a taskset cannot be scheduled by pre-emptive EDF, then

this taskset cannot be scheduled by any algorithm.

In 1980, Leung and Merrill [18] showed that a set of

periodic tasks is schedulable under EDF iff all absolute

deadlines in the period [0,max{si}+ 2H] are met, where si is

the start time of task τi, min{si}=0, and H is the hyperperiod

(least common multiple) of all tasks’ periods.

In 1990 Baruah et al. [5], [6] extended Leung and

Merrill’s work [18] to sporadic tasksets. They introduced h(t),

the processor demand function, which denotes the maximum
execution time requirement of all tasks’ jobs which have both

their arrival times and their deadlines in a contiguous interval

of length t. Using this they showed that a taskset is

schedulable iff ttht)(,0 where h(t) is defined as:

1

1 ,0max)(
i

i
i

i
C

T

Dt
th

Examining (4), it can be seen that h(t) can only change

when t is equal to an absolute deadline, which restricts the
number of values of t that need to be checked. In order to

place an upper bound on t, and therefore the number of

calculations of h(t), the minimum interval in which it can be

guaranteed that an unschedulable taskset will be shown to be

unschedulable must be found. For a general taskset with

arbitrary deadlines t can be bounded by La [13]:

U

UDT
DDL

n

i
iii

na
1

,,...,max 1

1

Spuri [22] and Ripoll et al. [21] showed that an alternative

bound Lb, given by the length of the synchronous busy period

can be used. Where Lb is computed by solving the following

equation using fixed point iteration:

n

i

i
i

C
T

w
w

1

1

There is no direct relationship between La and Lb, which
enables t to be bounded by L = min(La, Lb). Combined with

the knowledge that h(t) can only change at an absolute

deadline, a taskset is therefore schedulable under EDF iff

 and:

tthQt)(,

Where Q is defined as:

 NkLLdDkTddQ bakiikk ,,min|

In 2009, Zhang and Burns [24] presented their Quick

convergence Processor-demand Analysis (QPA) algorithm
which exploits the monotonicity of h(t). QPA determines

schedulability by starting with a value of t that is close to L,

and then iterating back towards 0 checking a significantly

smaller number of values of t than would otherwise be

required.

B. Existing CRPD Analysis

In 2007, Ju et al. [15] presented an approach for

integrating CRPD analysis into EDF schedulability analysis.

We refer to this approach as the JCR approach after the

initials of the authors’ names. The JCR approach calculates

the number of blocks evicted due to task τj directly pre-
empting task τi multiplied by the number of times that pre-

emption could occur, Pj(Di). This is repeated for each task

that could pre-empt task τi and summed up. Using our

notation, this gives the CRPD associated with task τi being

pre-empted as follows:

)(

ECBUCB)(BRT
ihpj

jiij
jcr

i DP

i can then be integrated into (4) to give:

 jcr
ii

n

i i

i
C

T

Dt
th

1

1 ,0max)(

One source of pessimism in this approach is how it deals

with nested, or indirect, pre-emptions. It always defines the
CRPD between a pair of tasks and adds them together. For

example, if during the pre-emption of task τi by task τj, task τj

was itself pre-empted by task τk the JCR approach calculates

i to be the sum of the pre-emptions. However, unless

ØECBECB kj the analysis could pessimistically

calculate that some UCBs are evicted multiple times.

In [15], the JCR approach was evaluated by choosing the

CRPD due to task τj directly pre-empting task τi at random to

be approximately 5% of Ci. When making comparisons in

Section VI and VII, we use (9) for calculating the CRPD.

(4)

(5)

(6)

(7)

(8)

(9)

(10)

IV. INTEGRATING CRPD ANALYSIS INTO EDF
In this section we show how existing CRPD analysis

derived for FP scheduling can be adapted for EDF scheduling

and integrated into EDF schedulability tests.

In order to account for CRPD using EDF scheduling, we

include a component jt , which represents the CRPD

associated with a pre-emption by a single job of task τj on

jobs of other tasks that are both released and have their

deadlines in an interval of length t. Note, unlike its

counterpart in CRPD analysis for FP scheduling, jt , refers to

the pre-empting task τj and t, rather than the pre-empting and

pre-empted tasks. Including jt , in (4) we get our revised
equation for h(t):

n

j

jtj
j

j
C

T

Dt
th

1

,1 ,0max)(

In (11), we are effectively including the CRPD caused by

task τj as if it were part of the execution time of task τj. Fig. 2

and Fig. 3 illustrate the CRPD increasing the execution time

of the pre-empted task and modelling it as an increase in the

execution time of the pre-empting task respectively.

Fig. 2 – Including the CRPD caused by τ1 pre-empting τ2 in the execution

time of τ2

Fig. 3 – Representing the taskset in Fig. 2 by including the CRPD caused by

τ1 pre-empting τ2 in the execution time of τ1 which is the approach used in

(11)

We make use of the approach used to prove theorem 4 in

Baruah and Burns [4] to show that if a taskset is deemed

schedulable by (11), e.g. Fig. 3 then the equivalent taskset

which it represents, e.g. Fig. 2, is also schedulable.

Theorem 1: Let J = {(rv, cv dv)} denote a collection of

independent jobs represented by a release time rv execution

time cv and absolute deadline dv. Let S be an EDF schedule of

J. Let w and x be jobs of J, such that rw ≤ rx and dw ≥ dx, i.e.

job x is a job that pre-empts job w. Let J ′ be obtained from J

by modifying jobs w and x to obtain jobs y and z such that

cz = cx - a and cy = cw + a where a ≤ cx. (The release times and

absolute deadlines of the jobs in J ′ are identical to their

counterpart jobs in J). If J is schedulable by EDF, then so is

J ′.

Proof: J is equivalent to K where K is a set of sub-jobs
containing cv sub-jobs of unit length for each job v in J. Each

sub-job qv q is described by (r
vq = rv, c

vq = 1, d

vq = dv). Let K ′

be a transformation of K such that a sub-jobs qx q have their

deadline increased from dxq = dx to dz. Hence, K ′ is equivalent

to J ′. As S is a valid schedule for J, it is also a valid schedule

for K. It follows that S is also a valid schedule for K ′ and

hence J ′. Therefore, the EDF schedule S of J proves the

feasibility of J ′. Since EDF is optimal on pre-emptive

uniprocessors, it is therefore guaranteed to successfully

schedule J ′ to meet all deadlines □

We need to define the set of tasks that can be pre-empted

by jobs of task τj in an interval of length t, aff(t, j). For EDF,

this set is based on the relative deadlines of the tasks. We

therefore want to capture all of the tasks whose relative

deadlines are greater than the relative deadline of task τj

giving our initial definition of aff(t, j) as:

 jii DDjt |,ffa

However, we can refine this by excluding tasks whose

deadlines are larger than t as they do not need to be included

when calculating h(t):

 jii DDtjt |,ffa

as shown by Theorem 2 below.

Theorem 2: When evaluating the processor demand h(t)

(11) for taskset τ, the execution requirement of any task τk,

where Dk > t, is not considered. Therefore, we may safely

exclude any contribution to jt , due to the CRPD incurred by

any task τk (where Dk > t) as a result of its pre-emption.

Proof: We use the proof by Baruah et al. [6] that was used

to prove that (4) is necessary. Assume that taskset τ satisfies
(11) and yet τ is not feasible. Let S be an EDF schedule of τ

where there is a missed deadline. Let t2 be the time of the first

missed deadline and let t1 be the last time prior to t2 such that

there is no task with a deadline ≤ t2 scheduled at t1 - 1 in S.

Since the deadline t2 is not met, there is an active task at t2 - 1,

so some task must be scheduled at t2 - 1. By definition of t1 it

follows that there is a task scheduled at every time in [t1, t2].

By the choice of t1 and t2, only jobs with deadlines ≤ t2

execute during [t1, t2] and all jobs released by tasks with

relative deadlines < t2 - t1 = t prior to t1 will have completed

by t1. Therefore, as there is a task scheduled at every time in

[t1, t2] and the deadline t2 is missed, h(t2 - t1) > t2 - t1, which
contradicts our original assumption that τ satisfies (11). Note

in the case of a missed deadline, no job of a task τk with Dk >

t2 - t1 executes in the interval [t1, t2], hence it is not necessary

to include any CRPD arising in such a task □

We now show how a number of existing approaches [2] to

CRPD analysis for FP scheduling can be adapted to work

with EDF scheduling.

A. ECB-Only

We start with the ECB-Only approach by Busquets et al.

[11], seecd Equation (3) in [3]. It captures the worst case

effect of task τj pre-empting any task regardless of that task’s

UCBs, by assuming that every block evicted by task τj will
have to be reloaded. For EDF, ECB-Only is simply:

j
ecb

jt ECB BRT,

(11)

(12)

(13)

(14)

B. UCB-Only

The alternative UCB-Only approach by Lee et al. [16], see

Equation (4) in [3], considers just the UCBs of the pre-empted

task(s). The UCB-only approach accounts for nested pre-

emptions by calculating the maximum number of UCBs that

may need to be reloaded by any task that may be directly pre-

empted by task τj. For EDF, this equates to the maximum

number of UCBs belonging to any task that can be pre-

empted by task τj and can also have a job with a release time

and absolute deadline within an interval of length t. This set

of tasks is given by aff(t, j), hence we can define the UCB-
Only approach for EDF as:

 UCB max BRT
),aff(

, k
jtk

ucb
jt

C. UCB-Union

The UCB-Union approach of Tan and Mooney [23], see

Equation (5) in [3], accounts for the effects of nested pre-

emptions by assuming that the UCBs of any tasks that could

be pre-empted, including nested pre-emptions, by task τj are

evicted by the ECBs of task τj. When adapting this approach

for EDF, we are interested in the UCBs of any tasks that may

be pre-empted by task τj and can also have a job with a release
time and absolute deadline within an interval of length t. This

set of tasks is again given by aff(t, j), hence, we can define the

UCB-Union approach for EDF as:

j

jtk

k
uucb

jt ECBUCB BRT
),aff(

,

D. ECB-Union

The ECB-Union approach by Altmeyer et al. [2], see

Equation (10) in [3], accounts for nested pre-emptions by
making the pessimistic assumption that in any pre-emption by

task τj, task τj may itself have already been pre-empted by all

of the other tasks that may pre-empt it. For EDF, this set of

tasks is given by }{)(jjhp . Note in general this is different

to the set of tasks with relative deadlines less than or equal to

that of task τj, as tasks with the same deadline as task τj cannot

pre-empt it. Pre-emption by task τj is therefore assumed to

potentially evict blocks in the set hjjhph ECB}{)(. The

maximum number of blocks that may be evicted as a result of

an already nested pre-emption by task τj is then obtained by

considering the maximum number of UCBs that may need to

be reloaded by any task that may be directly pre-empted by
task τj, as in the UCB-Only case. Hence we can define the

ECB-Union approach for EDF as:

 ECBUCBmax BRT
}{)(

),aff(
,

jjhph

hk
jtk

uecb
jt

E. Effect on Task Utilisation and h(t) Calculation

We have shown how ECB-only, UCB-Only, UCB-Union,

and ECB-Union CRPD analysis can be integrated into the

calculation of the processor demand h(t). However, to obtain

a schedulability test for EDF incorporating these CRPD

analyses, we also have to adjust how we calculate task

utilisation and the upper bound on the values of t that must be

checked. Effectively, we are increasing jC by jt , . To account

for this we introduce a modified utilisation *
jU for task τj that

includes the CRPD:

j

jtj
j

T

C
U

,*

We then adjust the two upper bounds for t by substituting
*
jU for jU in (5) and substituting jtjj CC ,

* for jC in

(6). (Note, when calculating jt , to include in *
jC and *

jU ,

we use t = Dmax, the largest relative deadline, as it gives the

maximum value for jt ,).

Finally, we note that jt , is monotonically non-decreasing

in t and hence using the above bounds, (11) can be used with

the QPA method to obtain an efficient schedulability test for

EDF scheduling accounting for CRPD. We note that this test
is no longer exact as the CRPD analysis is only sufficient.

We observe that for implicit deadline tasksets, a sufficient

schedulability test is simply:

1* U

V. IMPROVED CRPD ANALYSIS FOR EDF
In this section, we present improved CRPD analysis for

EDF based on the multiset approaches to CRPD analysis for
FP scheduling by Altmeyer et al. [3].

In the following analysis, we use jt , to represent the cost

of the maximum number Ej(t) of pre-emptions by jobs of task

τj that have their release times and absolute deadlines in an

interval of length t. It is therefore included in (4) as follows:

n

j

jtj
j

j
C

T

Dt
th

1

,1 ,0max)(

A. ECB-Union Multiset Approach

We now present the ECB-Union Multiset approach for

EDF which is derived from the ECB-Union Multiset approach

for FP scheduling, see Equations (11), (12) and (13) in

Altmeyer et al. [3].
The ECB-Union approach is pessimistic in that it assumes

that task τj can pre-empt any task τkaff(t, j) up to Ej(t) times

in an interval of length t. While this is potentially true if Dk =

t, it can be a pessimistic assumption when Dk < t and

particularly when Dk << Tk < t. We can calculate a tighter

bound on the number of times that jobs of task τk can be pre-

empted by jobs of task τj in an interval of length t. This can be

found by multiplying the maximum number of times task τj

can pre-empt a single job of task τk, given by Pj(Dk), by the

number of jobs of task τk that are released and have their

deadlines in an interval of length t, given by Ek(t).

Fig. 4 – Illustration of possible pessimism with the ECB-Union approach.

The pre-emption cost of task τ1 pre-empting task τ2 contributes three times to

the total pre-emption cost of task τ1 pre-empting other tasks in an interval of

length 10; despite it only really contributing at most once.

(15)

(16)

(17)

(18)

(19)

(20)

First we form a multiset jtM , that contains the cost:

}{)(

ECBUCB
jjhph

hk

of task τj pre-empting task τk repeated Pj(Dk)Ek(t) times, for

each task τkaff(t, j), hence:

),(aff }{)()()(

, ECBUCB
jtk jjhph

hk

tEDP

jt

kkj

M

As there are only Ej(t) jobs of task τj with release times and

deadlines in an interval of length t, the maximum CRPD is

obtained by summing the Ej(t) largest values in jtM , .

)(

1
,, BRT

tE

l

l
jt

mecb
jt

j

M

Where l
jtM , is the l th largest integer value from the multiset

jtM , .

B. UCB-Union Multiset Approach

The UCB-Union approach is also pessimistic in that it

assumes that task τj can pre-empt any task τkaff(t, j) up to

Ej(t) times. The UCB-Union Multiset approach for EDF

removes this source of pessimism. It is based on the UCB-

Union Multiset approach for FP scheduling, see Equations

(14), (15) and (16) in Altmeyer et al. [3].

First we form a multiset ucb
jtM , containing Pj(Dk)Ek(t)

copies of the UCBk of each task τkaff(t, j). This multiset

reflects the fact that jobs of task τj cannot evict the UCBs of

jobs of task τk that have both their release times and deadlines

in an interval of length t more than Pj(Dk)Ek(t) times. Hence:

)()(),(aff

, UCB
tEDP

k

jtk

ucb
jt

kkj

M

Next we form a multiset
ecb

jtM , containing Ej(t) copies of

the ECBj of task τj. This multiset reflects the fact that there

are at most Ej(t) jobs of task τj that have their release times
and deadlines in an interval of length t, each of which can

evict ECBs in the set ECBj.

)(

, ECB
tE

j
ecb

jt

j

M

mucb
jt

, is then given by the size of the multi-set intersection

between
ucb

jtM , and
ecb

jtM , :

ecb
jt

ucb
jt

mucb
jt MM ,,, BRT

C. Combined Multiset Approach

The ECB-Union Multiset and UCB-Union Multiset

approaches are incomparable, we can therefore calculate h(t)

at each stage of the QPA algorithm using both approaches and

take the minimum to form a combined approach:

 mecbmucb ththth)(,)(min)(

D. Effect on Task Utilisation and h(t) Calculation

The multiset approaches calculate the CRPD for all of the

tasks in one go. Therefore, inflating the upper bounds on t

used in the schedulability test (5), (6) by substituting in U*

and C* as described in Section IV.E is not possible. This is

because the test that U* ≤ 1 may pass even though one or more

tasks may have utilisations > 1, causing them to miss a

deadline. Therefore, we need a new upper bound.

The method we use to determine a suitable upper bound is

based on using an upper bound on the utilisation due to CRPD

that is valid for all intervals of length greater than some value
Lc. We then use this CRPD utilisation value to inflate the

taskset utilisation and thus compute an upper bound Ld on the

maximum length of the synchronous busy period. This upper

bound is valid provided that it is greater than Lc, otherwise the

actual maximum length of the busy period may lie somewhere

in the interval [Ld, Lc], hence we can use max(Lc, Ld) as a

bound.

We choose a value of t = Lc = 100 Tmax which limits the

overestimation of the CRPD utilisation U = γt /t to at most

1%. We then calculate γt using (23) for ECB-Union Multiset

and (26) for UCB-Union Multiset. However, in (22) and (24)

& (25), we substitute)(tEmax
x for)(tEx to ensure that the

computed value of U is a valid upper bound for all intervals

of length t ≥ Lc.

x

xmax
x

T

Dt
tE 1 ,0max)(

We then check that U + U < 1, if not then we deem the

taskset unschedulable, otherwise we compute an upper bound

on the length of the busy period via a modified version of (3):

j

j
j

UwC
T

w
w

 11

rearranged to give:

j

jjTU

UU

w

 1

1

Then, substituting in Tmax for each value of Tj we get our

upper bound:

 1

UU

TU
Ld

max

We then use L = max(Lc, Ld) as the maximum value of t to

check in the EDF schedulability test.

E. Comparability and Dominance

The CRPD analyses for EDF scheduling have similar

comparability relationships to their counterparts presented in

[3] for FP scheduling. The UCB-Union approach dominates

the ECB-Only approach, and the ECB-Union approach

dominates the UCB-Only approach. The JCR approach is

incomparable with all of the non-multiset approaches.

However, if we re-write the JCR approach (9) so that it

calculates the cost of all Ej(t) pre-emptions at once, then it can
be seen that the UCB-Union Multiset approach dominates it.

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

jiDDj

jijij
jcr
it

ji

tEDP

, ECB UCB)()(BRT

Furthermore, the UCB-Union Multiset approach

dominates the UCB-Union approach and the ECB-Union

Multiset approach dominates the ECB-Union approach. This
is because the sum of the Ej(t) largest pre-emption costs will

always be less than or equal to Ej(t) multiplied by the largest

pre-emption cost. The combined multiset approach dominates

all other approaches as shown in Fig. 5. Furthermore, because

the combined approach uses the two multiset approaches at

each stage of the QPA algorithm, the number of tasksets that

it deems schedulable can is greater than a simple union of the

two multiset approaches.

We note that including the CRPD as if it were additional

execution time of the pre-empting task, as we have done in all

of the non-multiset approaches, has the potential for
significant pessimism if the execution time of a task τi is close

to its deadline such that

jtjjj CDC ,

In this case task τi would be deemed unschedulable when

it may not be. This problem is avoided by the multiset

approaches.

Fig. 5 - Venn diagram illustrating the relationship between the different

approaches used to calculate CRPD. The larger the area, the more tasksets

deemed schedulable by the approach.

I. CASE STUDY
In this section we evaluate the schedulability tests for EDF

including integrated CRPD analysis using the approaches

introduced in this paper: ECB-Only, UCB-Only, UCB-Union,

ECB-Union, ECB-Union Multiset, UCB-Union Multiset and

the combined multiset approaches, as well as the JCR
approach of Ju et al. [15] on a case study. For comparison

purposes, we also used the EDF schedulability test assuming

no pre-emption costs.

The case study is the same one used in Altmeyer et al [2]

to evaluate CRPD analysis for systems using FP scheduling.

The case study comprises a number of tasks from the

Mälardalen benchmark suite1 [14]. While these tasks do not

1 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

represent a real taskset, they do represent typical code found

in real-time systems. For each task, the WCET and number of

ECBs and UCBs are taken from [1], details for each task can

be found in Table 1 of [2], and [3]. The system was setup to

model an ARM7 processor2 clocked at 10MHz with a 2KB

direct-mapped instruction cache with a line size of 8 Bytes

giving 256 cache sets, 4 Byte instructions, and a BRT of 8μs.

The taskset was created by assigning periods and implicit

deadlines such that all 15 tasks had equal utilisation. The

periods were generated by multiplying the execution times by

a constant c such that Ti = c Ci for all tasks. We varied c from
15 upwards in steps of 0.25, which varied the utilisation from

1.0 downwards. In order to evaluate different approaches, we

found the breakdown utilisation [17] of the tasksets. By

scaling the deadlines and periods of the tasks, we simulated

scaling the speed of the CPU and memory. Using this

technique the breakdown utilisation, the point at which the

taskset is deemed unschedulable, can be found.

The breakdown utilisation for each approach is shown in

Table I. The ECB-Union Multiset, and hence the combined

multiset, approach performed the best with a breakdown

utilisation of 0.659. The JCR approach outperformed the
ECB-Only and UCB-Only approaches with a breakdown

utilisation of 0.488, but did worse than the other approaches

presented in this paper.

TABLE I

BREAKDOWN UTILISATION FOR THE CASE STUDY TASKSET FOR

THE DIFFERENT APPROACHES USED TO CALCULATE THE CRPD

 Breakdown utilisation

No pre-emption cost 1

Combined Multiset 0.659

ECB-Union Multiset 0.659

UCB-Union Multiset 0.594

ECB-Union 0.612

UCB-Union 0.583

UCB-Only 0.462

ECB-Only 0.364

JCR 0.488

II. EXPERIMENTAL EVALUATION
In addition to the case study, we evaluated the

schedulability tests for EDF with integrated CRPD analysis

using synthetically generated tasksets. This enabled us to

investigate the behaviour of the different approaches as we

varied a number of key parameters.
The UUnifast algorithm [10] was used to calculate the

utilisation, Ui of each task so that the utilisations add up to the

desired utilisation level for the taskset. Task periods Ti, were

generated at random between 5ms and 500ms according to a

log-uniform distribution. From this, Ci was calculated via

Ci = Ui Ti.

We generated two sets of tasksets, one with implicit

deadlines and one with constrained deadlines. We used

Di = min(Ti, 2Ci + x(Ti - 2Ci)) to generate the constrained

deadlines, where x is a random number between 0 and 1. In

the following section we present the results for implicit

2 http://www.arm.com/products/processors/classic/arm7/index.php

(32)

(33)

deadline tasksets. Results for these experiments for tasksets

with constrained deadlines are available in Appendix 1 of the

technical report [20] on which this paper is based. In general,

using constrained deadlines resulted in an overall reduction in

schedulable tasksets compared to implicit deadline tasksets.

The UCB percentage for each task was based on a random

number between 0 and a maximum UCB percentage specified

for the experiment. UCBs were placed in a continuous group

at the start of the task’s ECBs.

A. Baseline Experiments
A number of experiments were run in order to investigate

how the integrated CRPD and EDF schedulability analysis

performed under varied cache and task configurations. These

experiments varied the following parameters:

 Cache utilisation (default of 10)

 Maximum UCB percentage (default of 30%)

 Number of tasks (default of 10)

 Number of cache sets (default of 256)

 Block Reload Time (BRT) (default of 8μs)

Here, cache utilisation describes the ratio of the total size of

the tasks to the size of the cache. A cache utilisation of 1

means that the tasks fit exactly in the cache, whereas a cache

utilisation of 5 means the total size of the tasks is 5 times the

size of the cache. We used 10,000 tasksets per experiment,

and assumed a direct mapped cache.

The first experiment investigates how the integrated

CRPD and EDF schedulability analysis performed under the

default configuration for implicit deadline tasksets. We varied

the utilisation, excluding any pre-emption cost, from 0.025 to
1 in steps of 0.025 and recorded how many tasksets were

deemed schedulable by the EDF schedulability test. The

results are shown in Fig. 6 and in Table II in the form of

weighted schedulability measures, see next sub-section, sub-

section B for a definition.

The results follow a similar pattern to the equivalent

CRPD analyses for FP scheduling, see Figure 9 in [3].

Furthermore, the results confirm the dominance relationships

between approaches with the combined multiset approach

performing the best. Additionally, with the exception of ECB-

Only, all of the approaches presented in this paper
outperformed JCR with the combined multiset approach

achieving a weighted schedulability measure of 0.528

compared to 0.333 for JCR.

The second experiment was effectively a repeat of the

first, but with constrained deadlines and it showed an overall

reduction in the number of schedulable tasksets due to the

tighter deadlines. However, the JCR approach performs better

than with implicit deadlines, outperforming ECB-Only and

UCB-Only. This is because the number of times task pre-

empts task τk, Pj(Dk), is reduced. (As Dk is now smaller than
Tk, and smaller in relation to Tj, there is a smaller window in

which task τj can pre-empt task τk). A graph showing the

results for this experiment is available in [20].

Fig. 6 – Schedulable tasksets vs Utilisation for the baseline parameters under
implicit deadlines

B. Weighted Schedulability

Evaluating all combinations of different parameters is not

possible. Therefore, the majority of our experiments focused

on varying one parameter at a time. To present the results,

weighted schedulability measures [7] are used. This allows a
graph to be drawn which shows the weighted schedulability,

Wl (p), for each method used to obtain a layout l as a function

of parameter p. For each value of p, this measure combines

the data for all of the generated tasksets τ for all of a set of

equally spaced utilisation levels, where the utilisation is based

on no pre-emption cost. The schedulability test returns a

binary result of 1 or 0 for each layout at each utilisation level.

If this result is given by Sl (τ,p), and u(τ) is the utilisation of

taskset τ, then:

T

ll upSupW)(),()()(

The benefit of using a weighted schedulability measure is

that it reduces a 3-dimensional plot to 2 dimensions.

Individual results are weighted by taskset utilisation to reflect

the higher value placed on a being able to schedule higher

utilisation tasksets.

Table II gives the weighted schedulability measures for

the baseline experiment i.e. for each line shown on Figure 6.

TABLE II

WEIGHTED SCHEDULABILITY MEASURES FOR THE BASELINE

EXPERIMENTS SHOW IN FIGURE 6

 Weighted schedulability

No pre-emption cost 1

Combined Multiset 0.528

ECB-Union Multiset 0.501

UCB-Union Multiset 0.455

ECB-Union 0.481

UCB-Union 0.427

UCB-Only 0.416

ECB-Only 0.236

JCR 0.333

(34)

C. Weighted Schedulability Experiments

For these weighted schedulability experiments, we used

1,000 tasksets, rather than 10,000 tasksets. The following

results are all for implicit deadline tasksets.

CACHE UTILISATION AND MAXIMUM UCB PERCENTAGE

As the cache utilisation increases, see Fig. 7, all

approaches that consider CRPD show a decrease in

schedulability. In particular, the ECB-Only approach shows a

very rapid decrease because the cache utilisation directly

correlates with the number of ECBs which is all that the

approach considers. Additionally, the JCR approach starts to
drop off at around a cache utilisation of 8, and by a cache

utilisation of 14, it performs the worst. This is due to the

pessimistic handling of nested pre-emptions leading to it

calculating that the same UCBs are evicted multiple times as

tasks share an increasing number of cache blocks.

As the maximum UCB percentage increases, see Fig. 8, all

approaches except ECB-Only show a decrease in

schedulability. The ECB-Only approach shows no change

because it does not consider any tasks’ UCBs. The UCB-Only

approach is particularly vulnerable to high numbers of UCBs.

Additionally, the JCR approach also shows a large decrease in
the number of schedulable tasksets. This is because it deals

with nested pre-emptions by considering the pre-empting and

intermediate tasks individually. As the number of UCBs

increases, the chances of the analysis assuming that the UCBs

get evicted more than once increases.

NUMBER OF TASKS AND CACHE SIZE
As the number of tasks increases, see Fig. 9, all

approaches that consider pre-emption cost show a decrease in

schedulability due to the increased number of pre-emptions.

We note that as the number of tasks becomes very high, some

of the approaches level off. This is due to the fact that the

other parameters, specifically cache utilisation and maximum

UCB percentage are fixed. As the number of tasks increases,

the size of the tasks, and therefore the number of UCBs

decreases, reducing the cost of a pre-emption, especially for
the approaches that rely heavily on the number of UCBs.

Fig. 7 – Weighted schedulability measure; varying cache utilisation from 0 to
20 in steps of 2

This could be avoided by fixing the task size by increasing the

cache utilisation, but then this in turn would affect the results.

Fig. 8 – Weighted schedulability measure; varying the maximum UCB
percentage from 0 to 100% in steps of 10%

Fig. 9 – Weighted schedulability measure; varying the number of tasks from

2
1
 = 2 to 2

6
 = 64 for implicit deadline tasksets

Fig. 10 – Weighted schedulability measure; varying the number of cache sets

from 2
6
 = 64 to 2

10
 = 1024 for implicit deadline tasksets

The cache size also has an effect of the schedulability of

tasksets, see Fig. 10. As the number of cache sets increases,

all approaches show a decrease in schedulability because the

potential impact of a pre-emption increases. Varying the BRT

also has a similar effect of increasing the cost of a pre-

emption which in turn results in fewer tasksets being deemed

schedulable. A graph for this experiment is available in [20].

III. CONCLUSION
In this paper, we have presented new CRPD aware

analysis for the EDF scheduling algorithm based on similar

work for FP scheduling. We compared our new approaches

against an existing approach for EDF by Ju et al. [15],
referred to as JCR, and showed that our combined multiset

approach dominates the JCR approach. This was confirmed in

both a case study and experiments based on synthetically

generated tasksets. Through a series of experiments, we

examined the effects of different cache and taskset parameters

on the different approaches, highlighting the strengths and

weaknesses of the different approaches. We found that the

JCR approach was especially vulnerable to high numbers of

tasks, high cache utilisation and high UCB percentages. In all

of our experiments, our new combined multiset approach was

able to schedule the highest number of tasksets out of the
approaches that consider CRPD.

In the future, we aim to perform a detailed comparison

between FP and EDF scheduling with integrated CRPD

analysis. Additionally, we aim to perform a more

comprehensive case study using code from a multitasking

application.

ACKNOWLEDGEMENTS

This work was partially funded by the UK EPSRC

through the Engineering Doctorate Centre in Large-Scale

Complex IT Systems (EP/F501374/1), the UK EPSRC funded

Tempo project (EP/G055548/1), the Transregional
Collaborative Research Center AVACS of the German

Research Council (DFG), and the European Community's

ARTEMIS Programme and UK Technology Strategy Board,

under ARTEMIS grant agreement 295371-2 CRAFTERS.

The authors would like to thank Antoine Colin for his incisive

comments on a previous draft of this paper.

REFERENCES

[1] S. Altmeyer and C. Burguière, "Cache-related Preemption Delay via

Useful Cache Blocks: Survey and Redefinition," Journal of Systems

Architecture, 2010.

[2] S. Altmeyer, R.I. Davis, and C. Maiza, "Cache Related Pre-emption

Delay Aware Response Time Analysis for Fixed Priority Pre-emptive

Systems," in Proceedings of the 32nd IEEE Real-Time Systems

Symposium (RTSS), Vienna, Austria, 2011, pp. 261-271.

[3] S. Altmeyer, R.I. Davis, and C. Maiza, "Improved Cache Related Pre-

emption Delay Aware Response Time Analysis for Fixed Priority Pre-

emptive Systems," Real-Time Systems, vol. 48, no. 5, pp. 499-512,

September 2012.

[4] S. Baruah and A. Burns, "Sustainable Scheduling Analysis," in

Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS),

2006, pp. 159-168.

[5] S. K. Baruah, A. K. Mok, and L. E. Rosier, "Preemptive Scheduling

Hard-Real-Time Sporadic Tasks on One Processor," in Proceedings of

the 11th IEEE Real-Time Systems Symposium (RTSS), Lake Buena

Vista, Florida, USA, 1990, pp. 182-190.

[6] S. K. Baruah, L. E. Rosier, and R. R. Howell, "Algorithms and

Complexity Concerning the Preemptive Scheduling of Periodic Real-

Time Tasks on One Processor," Real-Time Systems, vol. 2, no. 4, pp.

301-324, 1990.

[7] A. Bastoni, B. Brandenburg, and J. Anderson, "Cache-Related

Preemption and Migration Delays: Empirical Approximation and Impact

on Schedulability," in Proceedings of OSPERT, Brussels, Belgum, 2010,

pp. 33-44.

[8] M. Bertogna and S. Baruah, "Limited Preemption EDF Scheduling of

Sporadic Task Systems," IEEE Transactions on Industrial Informatics,

vol. 6, no. 4, pp. 579-591, November 2010.

[9] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo,

"Optimal Selection of Preemption Points to Minimize Preemption

Overhead," in Proceedings of 23rd Euromicro Conference on Real-Time

Systems (ECRTS), Porto, Portugal, 2011, pp. 217-227.

[10] E. Bini and G. Buttazzo, "Measuring the Performance of Schedulability

Tests ," Real-Time Systems, vol. 30, no. 1, pp. 129-154, 2005.

[11] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings,

"Adding Instruction Cache Effect to Schedulability Analysis of

Preemptive Real-Time Systems," in Proceedings of the 2nd IEEE Real-

Time Technology and Applications Symposium (RTAS), 1996, pp. 204-

212.

[12] M. L. Dertouzos, "Control Robotics: The Procedural Control of Physical

Processes," in Proceedings of the International Federation for

Information Processing (IFIP) Congress, 1974, pp. 807-813.

[13] L. George, N. Rivierre, and M. Spuri, "Preemptive and Non-Preemptive

Real0Time Uniprocessor Scheduling," INRIA, Technical Report 2966,

1996.

[14] J. Gustafsson, A. Betts, A. Ermedah, and B. Lisper, "The Mälardalen

WCET benchmarks – past, present and future," in Proceedings of the

10th International Workshop on Worst-Case Execution Time Analysis

(WCET’2010), Brussels, Belgium, September 2010, pp. 137-147.

[15] l. Ju, S. Chakraborty, and A. Roychoudhury, "Accounting for Cache-

Related Preemption Delay in Dynamic Priority Schedulability

Analysis," in Design, Automation and Test in Europe Conference and

Exposition (DATE), Nice, France, 2007, pp. 1623-1628.

[16] C. Lee et al., "Analysis of Cache-related Preemption Delay in Fixed-

priority Preemptive Scheduling," IEEE Transactions on Computers, vol.

47, no. 6, pp. 700-713, June 1998.

[17] J. Lehoczky, "The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior," in Proceedings of the

10th Real Time Systems Symposium (RTSS), Santa Monica, California,

USA, 1989, pp. 166-171.

[18] J. Y.-T. Leung and M. L. Merrill, "A Note on Preemptive Scheduling of

Periodic, Real-Time Tasks," Information Processing Letters, vol. 11, no.

3, pp. 115-118, 1980.

[19] C. L. Liu and J. W. Layland, "Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment," Journal of the

ACM, vol. 20, no. 1, pp. 46-61, January 1973.

[20] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis, "Intergrating Cache

Related Pre-emption Delay Analysis into EDF Scheduling," University

of York, York, UK, Technical Report YCS-2012-478. Available from

http://www-users.cs.york.ac.uk/~wlunniss/, 2012.

[21] I. Ripoll, A. Crespo, and A. K. Mok, "Improvement in Feasibility

Testing for Real-Time Tasks," Real-Time Systems, vol. 11, no. 1, pp. 19-

39, 1996.

[22] M. Spuri, "Analysis of Deadline Schedule Real-Time Systems," INRIA,

Technical Report 2772, 1996.

[23] Y. Tan and V. Mooney, "Timing Analysis for Preemptive Multitasking

Real-Time Systems with Caches," ACM Transactions on Embedded

Computing Systems (TECS), vol. 6, no. 1, February 2007.

[24] F. Zhang and A. Burns, "Schedulability Analysis for Real-Time Systems

with EDF Scheduling," IEEE Transactions on Computers, vol. 58, no. 9,

pp. 1250-1258, September 2009.

