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Abstract — Cache memories have been introduced into 

embedded systems to prevent memory access times from 

becoming an unacceptable performance bottleneck. Memory and 

cache are split into blocks containing instructions and data. 

During a pre-emption, blocks from the pre-empting task can 

evict those of the pre-empted task. When the pre-empted task is 

resumed, if it then has to re-load the evicited blocks, cache 

related pre-emption delays (CRPD) are introduced which then 

affect  schedulability of the task. In this paper, we show how 

existing approaches for calculating CRPD for FP scheduling can 

be adapted and integrated into schedulability analysis for EDF. 

We then compare the performance of the different approaches 

against an existing approach for calculating CRPD for EDF. 

Using a case study and empirical evaluation, we show the 

benefits of our CRPD analysis. 

I. INTRODUCTION 
Over the past 20 years, processor speeds have increased 

dramatically leaving memory access times as a major 

performance bottle-neck. To bridge this ever increasing gap, 

caches have been introduced between the processor and 
memory; however, they introduce significant complexity 

when trying to verify the timing properties of the system. 

Real-time systems, especially hard real-time systems, have 

very stringent timing requirements and the schedulability of 

each task must be known.  The schedulability of a taskset is 

determined using information about the scheduling algorithm, 

the arrival pattern of tasks and the tasks’ worst-case execution 

time. Worst-case execution times are typically obtained 

assuming no pre-emption. However, in pre-emptive multi-

tasking systems, caches introduce additional cache related 

pre-emption delays (CRPD) caused by the need to re-fetch 

blocks belonging to the pre-empted task which were evicted 
from cache by the pre-empting task. These CRPD effectively 

increase the worst-case execution time of the tasks. It is 

therefore important to be able to calculate, and therefore 

account for, CRPD when determining if a system is 

schedulable or not. 

The motivation for this work comes from the need to 

provide accurate schedulability analysis for applications 

running on processors with cache, scheduled under EDF. 

A. Related work 

Earliest deadline first (EDF) is a dynamic scheduling 

algorithm that always schedules the job of the task with the 
earliest absolute deadline first. In 1973, Liu and Layland [19] 

gave a necessary and sufficient schedulability test for EDF for 

tasksets with implicit deadlines. Then in 1974, Dertouzos [12] 

proved EDF to be optimal among all scheduling algorithms 

on a uniprocessor. In 1980, Leung and Merrill [18] introduced 

an exact schedulability test for tasksets with constrained 

deadlines that was later extended to sporadic tasksets in 1990 

by Baruah et al. [5], [6] via the processor demand bound 
function.  In 2009, Zhang and Burns [24] presented their 

Quick convergence Processor-demand Analysis (QPA) 

algorithm which provides an exact schedulability test for EDF 

which typically requires far fewer time points to be examined, 

than the test of  Baruah et al. [5], [6].  

Analysis of CRPD uses the concept of useful cache blocks 

(UCBs) and evicting cache blocks (ECBs) based on the work 

by Lee et al. [16]. ECBs are blocks that may be loaded into 

cache by the task during its execution. Out of the ECBs, some 

of them may also be UCBs. UCBs are blocks that are reused 

once they have been loaded into cache before potentially 

being evicted by the task, but not counting evictions from 
other pre-empting tasks. If a UCB is evicted by a pre-empting 

task, additional CRPD may be introduced as the UCB may 

have to be re-loaded when it otherwise would not have been. 

Depending on the approach used, the CRPD analysis 

combines the UCBs belonging to the pre-empted task(s) with 

the ECBs of the pre-empting task(s). Using this information, 

the total number of blocks that are evicted, which must then 

be reloaded after the pre-emption, can be calculated  and 

combined with the cost of reloading a block to then give the 

CRPD. 

A number of approaches have been developed for 
calculating the CRPD when using Fixed Priority (FP) pre-

emptive scheduling. They include Lee et al. [16] UCB-Only 

approach, which considers just the pre-empted task(s), and 

Busquets et al. [11] ECB-Only approach which considers just 

the pre-empting task. Approaches that consider the pre-

empted and pre-empting task(s) include Tan and Mooney [23] 

UCB-Union approach and Altmeyer et al. [2] ECB-Union 

approach. Finally, there are advanced multiset based 

approaches that consider the pre-empted and pre-empting 

task(s) by Altmeyer et al. [3], ECB-Union Multiset, UCB-

Union Multiset, and a combined multiset approach. 
There has, however, been little work towards integrating 

CRPD analysis into schedulability tests for dynamic 

scheduling algorithms. To the best of our knowledge, the only 

existing work on integrating CRPD analysis with EDF 

schedulability tests was developed by Ju et al. [15] in 2007. 



 

 

They considered the intersection of the pre-empted task’s 

UCBs with the pre-empting task’s ECBs. However, this 

method for handling nested pre-emptions can lead to 

significant pessimism as each pair of tasks is considered 

separately. We discuss this method in detail at the end of 

Section III. 

A complementary approach is to use limited pre-emption 

scheduling such as Bertogna and Baruah’s implementation for 

EDF [8] from 2010. Under limited pre-emption scheduling, 

pre-emptions are allowed, but strongly discouraged especially 

when they are not required to maintain the schedulability of 
the system. Pre-emption can either be deferred for as long as 

possible, or limited to specific points in the tasks’ execution. 

In the latter case, Bertogna et al. [9] presented an algorithm 

for optimally selecting pre-emption points out of out of a list 

of potential points. However, in order to limit complexity, 

their algorithm uses a simplified model of CRPD that only 

considers the pre-empted task.   

In this paper, we build upon the ECB-Only, UCB-Only, 

UCB-Union, ECB-Union, ECB-Union Multiset, UCB-Union 

Multiset and combined multiset CRPD analysis for FP given 

by Busquets et al. [11], Lee et al. [16], Tan and Mooney [23], 
and Altmeyer et al. [2], [3], adapting them for EDF 

scheduling. We integrate the resulting CRPD analysis for 

EDF into the processor demand bound function, and hence the 

schedulability test for EDF given by Baruah et al. [5], [6]. 

B. Organisation 

The paper is organised as follows. Section II introduces 

the system model, terminology and notation. Section III 

outlines existing EDF schedulability analysis and CRPD 

analysis for EDF. We then show how CRPD analysis for FP 

can be adapted for EDF in Section IV and V. In Section VI, 

we compare the performance of EDF schedulability tests 
incorporating the various CRPD analyses using a case study, 

and in Section VII using experiments based on synthetically 

generated tasksets. Finally, Section VIII concludes with a 

summary and directions for future work. 

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION 
This section describes the system model, terminology, and 

notation used in the rest of the paper. 

We assume a single processor system, running a statically 

defined taskset under pre-emptive EDF scheduling. A taskset 

contains a fixed number of tasks (τ1..τn) where n is a positive 

integer. Each task, τi may produce a potentially infinite stream 

of jobs that are separated by a minimum inter-arrival time or 

period Ti. Each task has a relative deadline Di, and each job of 
a task has an absolute deadline di which is Di after it is 

released. Each task has a unique task index ordered by 

relative deadline from smallest to largest. In the case of a tie 

when assigning the unique task indexes, an arbitrary choice is 

made. Each task also has a WCET Ci (determined for non-

pre-emptive execution). In this paper, we consider tasks with 

arbitrary deadlines. (Task deadlines may be referred to as 

constrained deadlines, i.e. Di ≤ Ti  or implicit i.e. Di = Ti). We 

assume a discrete time model. We define Tmax as the largest 

period of any task in the taskset, and Dmax as the largest 

relative deadline of any task in the taskset. Each task has a 

utilisation Ui, where Ui = Ci / Ti, and each taskset has a 

utilisation U which is equal to the sum of its tasks’ 

utilisations. 

A taskset is said to be schedulable with respect to a 

scheduling algorithm if all valid sequences of jobs generated 

by the taskset can be scheduled by the algorithm without any 

missed deadlines. A taskset is feasible if there exists some 

scheduling algorithm that can schedule all possible sequences 

of jobs that may be generated by the taskset without any 

missed deadlines. A scheduling algorithm is said to be 
optimal with respect to a task model if it can schedule all of 

the feasible tasksets that comply with the task model. 

The EDF scheduling algorithm is an optimal dynamic 

scheduling algorithm for single processors which always 

schedules the job with the earliest absolute deadline first. Any 

time a job arrives with an earlier absolute deadline than the 

current running job, it will pre-empt the current job. When a 

job completes its execution, the EDF scheduler chooses the 

pending job with the earliest absolute deadline to execute 

next. In the case where two or more jobs have the same 

absolute deadline, we assume the scheduler always picks the 
job belonging to the task with the lowest unique task index, 

see Fig. 1. This has the benefit of minimising the number of 

pre-emptions. In the case where two task jobs have the same 

absolute and relative deadlines, it ensures that they cannot 

pre-empt each other. Furthermore, it ensures that after a pre-

emption, the task that was pre-empted last is resumed first.  

 
Fig. 1 – Example schedule showing how the scheduler chooses which task 

should execute. Task τ3 is released at t = 0. At t = 5, task τ2 is released, pre-

empting τ3 as although it has the same absolute deadline, it has a lower task 

index. At t = 6, task τ1 is released, pre-empting task τ2. At t = 7, τ1 completes, 

the scheduler then chooses to resume task τ2 as although it has the same 
absolute deadline as task τ3, it has the lower task index. 

We assume that any task τj with a relative deadline Dj < Di 

can pre-empt task τi. Therefore, we define the set of tasks that 

may have a higher priority, and can pre-empt task τi, as: 

}|{)( iDDihp jj    

We use Pj(Di) to denote the maximum number of times 
that jobs of task τj can pre-empt a single job of task τi which 

we calculate as follows: 
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We use Ej(t) to denote the maximum number of jobs of 
task τj that can have both their release times and their 

deadlines in an interval of length t, which we calculate as 

follows: 
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Finally, each task τi has a set of UCBs, UCBi and a set of 

ECBs, ECBi represented by a set of integers. If for example, 

task τ1 contains 4 ECBs, where the second and fourth ECBs 

are also UCBs, these would be represented using               

ECB1 = {1,2,3,4} and UCB1 = {2,4}. 

Each time a block is reloaded, a cost is introduced that is 

equal to the block reload time (BRT). 

We assume a direct mapped cache, but the work extends 

to set-associative caches with the LRU replacement policy as 

described in Section 2 of [3]. We focus on instruction only 

caches. In the case of data caches, the analysis would either 
require a write-through cache or further extension in order to 

be applied to write-back caches. We also assume that tasks do 

not share any code. 

III. EDF SCHEDULABILITY ANALYSIS 
In this section we recap on schedulability tests for EDF 

and then cover existing CRPD analysis for EDF. 

A. EDF Schedulability Tests 

In 1973, Liu and Layland [19] gave a necessary and 

sufficient schedulability test that indicates whether a taskset is 

schedulable under EDF iff U ≤ 1, under the assumption that 

all tasks have implicit deadlines (Di =Ti). In the case where Di 

≠ Ti this test is still necessary, but is no longer sufficient.  
In 1974, Dertouzos [12] proved EDF to be optimal among 

all scheduling algorithms on a uniprocessor, in the sense that 

if a taskset cannot be scheduled by pre-emptive EDF, then 

this taskset cannot be scheduled by any algorithm. 

In 1980, Leung and Merrill [18] showed that a set of 

periodic tasks is schedulable under EDF iff all absolute 

deadlines in the period [0,max{si}+ 2H] are met, where si is 

the start time of task τi, min{si}=0, and H is the hyperperiod 

(least common multiple) of all tasks’ periods. 

In 1990 Baruah et al. [5], [6] extended Leung and 

Merrill’s work [18] to sporadic tasksets. They introduced h(t), 

the processor demand function, which denotes the maximum 
execution time requirement of all tasks’ jobs which have both 

their arrival times and their deadlines in a contiguous interval 

of length t. Using this they showed that a taskset is 

schedulable iff ttht  )(,0  where h(t) is defined as: 
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Examining (4), it can be seen that h(t) can only change 

when t is equal to an absolute deadline, which restricts the 
number of values of t that need to be checked. In order to 

place an upper bound on t, and therefore the number of 

calculations of h(t), the minimum interval in which it can be 

guaranteed that an unschedulable taskset will be shown to be 

unschedulable must be found. For a general taskset with 

arbitrary deadlines t can be bounded by La [13]: 
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Spuri [22] and Ripoll et al. [21] showed that an alternative 

bound Lb, given by the length of the synchronous busy period 

can be used. Where Lb is computed by solving the following 

equation using fixed point iteration:  
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There is no direct relationship between La and Lb, which 
enables t to be bounded by L = min(La, Lb). Combined with 

the knowledge that h(t) can only change at an absolute 

deadline, a taskset is therefore schedulable under EDF iff 

    and: 

tthQt  )( ,  

Where Q is defined as:  

  NkLLdDkTddQ bakiikk  ,,min|  

In 2009, Zhang and Burns [24] presented their Quick 

convergence Processor-demand Analysis (QPA) algorithm 
which exploits the monotonicity of h(t). QPA determines 

schedulability by starting with a value of t that is close to L, 

and then iterating back towards 0 checking a significantly 

smaller number of values of t than would otherwise be 

required. 

B. Existing CRPD Analysis 

In 2007, Ju et al. [15] presented an approach for 

integrating CRPD analysis into EDF schedulability analysis. 

We refer to this approach as the JCR approach after the 

initials of the authors’ names. The JCR approach calculates 

the number of blocks evicted due to task τj directly pre-
empting task τi multiplied by the number of times that pre-

emption could occur, Pj(Di). This is repeated for each task 

that could pre-empt task τi and summed up. Using our 

notation, this gives the CRPD associated with task τi being 

pre-empted as follows: 
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One source of pessimism in this approach is how it deals 

with nested, or indirect, pre-emptions. It always defines the 
CRPD between a pair of tasks and adds them together. For 

example, if during the pre-emption of task τi by task τj, task τj 

was itself pre-empted by task τk the JCR approach calculates 

i  to be the sum of the pre-emptions. However, unless 

ØECBECB  kj  the analysis could pessimistically 

calculate that some UCBs are evicted multiple times. 

In [15], the JCR approach was evaluated by choosing the 

CRPD due to task τj directly pre-empting task τi  at random to 

be approximately 5% of Ci. When making comparisons in 

Section VI and VII, we use (9) for calculating the CRPD. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 



 

 

IV. INTEGRATING CRPD ANALYSIS INTO EDF 
In this section we show how existing CRPD analysis 

derived for FP scheduling can be adapted for EDF scheduling 

and integrated into EDF schedulability tests. 

In order to account for CRPD using EDF scheduling, we 

include a component jt ,  which represents the CRPD 

associated with a pre-emption by a single job of task τj on 

jobs of other tasks that are both released and have their 

deadlines in an interval of length t. Note, unlike its 

counterpart in CRPD analysis for FP scheduling, jt ,  refers to 

the pre-empting task τj and t, rather than the pre-empting and 

pre-empted tasks. Including jt , in (4) we get our revised 
equation for h(t): 
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In (11), we are effectively including the CRPD caused by 

task τj as if it were part of the execution time of task τj. Fig. 2 

and Fig. 3 illustrate the CRPD increasing the execution time 

of the pre-empted task and modelling it as an increase in the 

execution time of the pre-empting task respectively. 

 
Fig. 2 – Including the CRPD caused by τ1 pre-empting τ2 in the execution 

time of τ2 

 
Fig. 3 – Representing the taskset in Fig. 2 by including the CRPD caused by 

τ1 pre-empting τ2 in the execution time of τ1 which is the approach used in 

(11) 

We make use of the approach used to prove theorem 4 in 

Baruah and Burns [4] to show that if a taskset is deemed 

schedulable by (11), e.g. Fig. 3 then the equivalent taskset 

which it represents, e.g. Fig. 2, is also schedulable. 

Theorem 1: Let J = {(rv, cv dv)} denote a collection of 

independent jobs represented by a release time rv execution 

time cv and absolute deadline dv. Let S be an EDF schedule of 

J. Let w and x be jobs of J, such that rw ≤  rx and dw ≥  dx, i.e. 

job x is a job that pre-empts job w. Let J ′ be obtained from J 

by modifying jobs w and x to obtain jobs y and z such that     

cz = cx - a and cy = cw + a where a ≤ cx. (The release times and 

absolute deadlines of the jobs in J  ′ are identical to their 

counterpart jobs in J ). If J is schedulable by EDF, then so is   

J ′. 

Proof: J is equivalent to K where K is a set of sub-jobs 
containing cv sub-jobs of unit length for each job v in J. Each 

sub-job qv q is described by (r 
vq = rv, c

 
vq = 1, d 

vq = dv). Let K ′ 

be a transformation of K such that a sub-jobs qx q have their 

deadline increased from dxq = dx to dz. Hence, K ′ is equivalent 

to J ′. As S is a valid schedule for J, it is also a valid schedule 

for K. It follows that S is also a valid schedule for K ′ and 

hence J  ′. Therefore, the EDF schedule S of J proves the 

feasibility of J  ′. Since EDF is optimal on pre-emptive 

uniprocessors, it is therefore guaranteed to successfully 

schedule J ′ to meet all deadlines □ 

We need to define the set of tasks that can be pre-empted 

by jobs of task τj in an interval of length t, aff(t, j). For EDF, 

this set is based on the relative deadlines of the tasks. We 

therefore want to capture all of the tasks whose relative 

deadlines are greater than the relative deadline of task τj 

giving our initial definition of aff(t, j) as: 

   jii DDjt  |,ffa   

However, we can refine this by excluding tasks whose 

deadlines are larger than t as they do not need to be included 

when calculating h(t): 

   jii DDtjt  |,ffa   

as shown by Theorem 2 below. 

Theorem 2: When evaluating the processor demand h(t) 

(11) for taskset τ, the execution requirement of any task τk, 

where Dk > t, is not considered. Therefore, we may safely 

exclude any contribution to jt ,  due to the CRPD incurred by 

any task τk (where Dk > t) as a result of its pre-emption. 

Proof: We use the proof by Baruah et al. [6] that was used 

to prove that (4) is necessary. Assume that taskset τ satisfies 
(11) and yet τ is not feasible. Let S be an EDF schedule of τ 

where there is a missed deadline. Let t2 be the time of the first 

missed deadline and let t1 be the last time prior to t2 such that 

there is no task with a deadline ≤ t2 scheduled at t1 - 1 in S. 

Since the deadline t2 is not met, there is an active task at t2 - 1, 

so some task must be scheduled at t2 - 1. By definition of t1 it 

follows that there is a task scheduled at every time in [t1, t2]. 

By the choice of t1 and t2, only jobs with deadlines ≤ t2 

execute during [t1, t2] and all jobs released by tasks with 

relative deadlines < t2 - t1 = t prior to t1 will have completed 

by t1. Therefore, as there is a task scheduled at every time in 

[t1, t2] and the deadline t2 is missed, h(t2 - t1) > t2 - t1, which 
contradicts our original assumption that τ satisfies (11). Note 

in the case of a missed deadline, no job of a task τk with Dk > 

t2 - t1 executes in the interval [t1, t2], hence it is not necessary 

to include any CRPD arising in such a task □ 

We now show how a number of existing approaches [2] to 

CRPD analysis for FP scheduling can be adapted to work 

with EDF scheduling.  

A. ECB-Only 

We start with the ECB-Only approach by Busquets et al. 

[11], seecd Equation (3) in [3]. It captures the worst case 

effect of task τj pre-empting any task regardless of that task’s 

UCBs, by assuming that every block evicted by task τj will 
have to be reloaded. For EDF, ECB-Only is simply: 

j
ecb

jt ECB   BRT,   

 

(11) 

(12) 

(13) 

(14) 



 

 

B. UCB-Only 

The alternative UCB-Only approach by Lee et al. [16], see 

Equation (4) in [3], considers just the UCBs of the pre-empted 

task(s). The UCB-only approach accounts for nested pre-

emptions by calculating the maximum number of UCBs that 

may need to be reloaded by any task that may be directly pre-

empted by task τj. For EDF, this equates to the maximum 

number of UCBs belonging to any task that can be pre-

empted by task τj and can also have a job with a release time 

and absolute deadline within an interval of length t. This set 

of tasks is given by aff(t, j), hence we can define the UCB-
Only approach for EDF as: 

  UCB max BRT
),aff(

, k
jtk

ucb
jt


  

C. UCB-Union 

The UCB-Union approach of Tan and  Mooney [23], see 

Equation (5) in [3], accounts for the effects of nested pre-

emptions by assuming that the UCBs of any tasks that could 

be pre-empted, including nested pre-emptions, by task τj are 

evicted by the ECBs of task τj. When adapting this approach 

for EDF, we are interested in the UCBs of any tasks that may 

be pre-empted by task τj and can also have a job with a release 
time and absolute deadline within an interval of length t. This 

set of tasks is again given by aff(t, j), hence, we can define the 

UCB-Union approach for EDF as: 

j

jtk

k
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jt ECBUCB  BRT
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D. ECB-Union 

The ECB-Union approach by Altmeyer et al. [2], see 

Equation (10) in [3], accounts for nested pre-emptions by 
making the pessimistic assumption that in any pre-emption by 

task τj, task τj may itself have already been pre-empted by all 

of the other tasks that may pre-empt it. For EDF, this set of 

tasks is given by }{)( jjhp  . Note in general this is different 

to the set of tasks with relative deadlines less than or equal to 

that of task τj, as tasks with the same deadline as task τj cannot 

pre-empt it. Pre-emption by task τj is therefore assumed to 

potentially evict blocks in the set hjjhph ECB}{)(  . The 

maximum number of blocks that may be evicted as a result of 

an already nested pre-emption by task τj is then obtained by 

considering the maximum number of UCBs that may need to 

be reloaded by any task that may be directly pre-empted by 
task τj, as in the UCB-Only case. Hence we can define the 

ECB-Union approach for EDF as: 
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E. Effect on Task Utilisation and h(t) Calculation 

We have shown how ECB-only, UCB-Only, UCB-Union, 

and ECB-Union CRPD analysis can be integrated into the 

calculation of the processor demand h(t). However, to obtain 

a schedulability test for EDF incorporating these CRPD 

analyses, we also have to adjust how we calculate task 

utilisation and the upper bound on the values of t that must be 

checked. Effectively, we are increasing jC by jt , . To account 

for this we introduce a modified utilisation *
jU  for task τj that 

includes the CRPD: 

j

jtj
j

T

C
U

,* 
  

We then adjust the two upper bounds for t by substituting 
*
jU  for jU  in (5) and substituting jtjj CC ,

*  for jC in 

(6). (Note, when calculating jt ,  to include in *
jC  and *

jU , 

we use t = Dmax, the largest relative deadline, as it gives the 

maximum value for jt , ).  

Finally, we note that jt , is monotonically non-decreasing 

in t and hence using the above bounds, (11) can be used with 

the QPA method to obtain an efficient schedulability test for 

EDF scheduling accounting for CRPD. We note that this test 
is no longer exact as the CRPD analysis is only sufficient. 

We observe that for implicit deadline tasksets, a sufficient 

schedulability test is simply:  

1* U  

V. IMPROVED CRPD ANALYSIS FOR EDF 
In this section, we present improved CRPD analysis for 

EDF based on the multiset approaches to CRPD analysis for 
FP scheduling by Altmeyer et al. [3]. 

In the following analysis, we use jt ,  to represent the cost 

of the maximum number Ej(t) of pre-emptions by jobs of task 

τj that have their release times and absolute deadlines in an 

interval of length t. It is therefore included in (4) as follows: 
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A. ECB-Union Multiset Approach 

We now present the ECB-Union Multiset approach for 

EDF which is derived from the ECB-Union Multiset approach 

for FP scheduling, see Equations (11), (12) and (13) in 

Altmeyer et al. [3]. 
The ECB-Union approach is pessimistic in that it assumes 

that task τj can pre-empt any task τkaff(t, j) up to Ej(t) times 

in an interval of length t. While this is potentially true if Dk = 

t, it can be a pessimistic assumption when Dk < t and 

particularly when Dk << Tk < t. We can calculate a tighter 

bound on the number of times that jobs of task τk can be pre-

empted by jobs of task τj in an interval of length t. This can be 

found by multiplying the maximum number of times task τj 

can pre-empt a single job of task τk, given by Pj(Dk), by the 

number of jobs of task τk that are released and have their 

deadlines in an interval of length t, given by Ek(t). 

 
Fig. 4 – Illustration of possible pessimism with the ECB-Union approach. 

The pre-emption cost of task τ1 pre-empting task τ2 contributes three times to 

the total pre-emption cost of task τ1 pre-empting other tasks in an interval of 

length 10; despite it only really contributing at most once. 
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First we form a multiset jtM , that contains the cost: 
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of task τj pre-empting task τk repeated Pj(Dk)Ek(t) times, for 

each task τkaff(t, j), hence: 
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As there are only Ej(t) jobs of task τj with release times and 

deadlines in an interval of length t, the maximum CRPD is 

obtained by summing the Ej(t) largest values in jtM , .  
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Where l
jtM , is the l th largest integer value from the multiset

jtM , .  

B. UCB-Union Multiset Approach 

The UCB-Union approach is also pessimistic in that it 

assumes that task τj can pre-empt any task τkaff(t, j) up to 

Ej(t) times. The UCB-Union Multiset approach for EDF 

removes this source of pessimism. It is based on the UCB-

Union Multiset approach for FP scheduling, see Equations 

(14), (15) and (16) in Altmeyer et al. [3]. 

First we form a multiset ucb
jtM ,  containing Pj(Dk)Ek(t) 

copies of the UCBk of each task τkaff(t, j). This multiset 

reflects the fact that jobs of task τj cannot evict the UCBs of 

jobs of task τk that have both their release times and deadlines 

in an interval of length t more than Pj(Dk)Ek(t) times. Hence: 
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Next we form a multiset 
ecb

jtM ,  containing Ej(t) copies of 

the ECBj of task τj. This multiset reflects the fact that there 

are at most Ej(t) jobs of task τj that have their release times 
and deadlines in an interval of length t, each of which can 

evict ECBs in the set ECBj. 
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, is then given by the size of the multi-set intersection 

between 
ucb

jtM , and 
ecb

jtM , : 

ecb
jt

ucb
jt

mucb
jt MM ,,,   BRT   

C. Combined Multiset Approach 

The ECB-Union Multiset and UCB-Union Multiset 

approaches are incomparable, we can therefore calculate h(t) 

at each stage of the QPA algorithm using both approaches and 

take the minimum to form a combined approach:  

 mecbmucb ththth  )(,)(min)(  

D. Effect on Task Utilisation and h(t) Calculation 

The multiset approaches calculate the CRPD for all of the 

tasks in one go. Therefore, inflating the upper bounds on t 

used in the schedulability test (5), (6) by substituting in U* 

and C* as described in Section IV.E is not possible. This is 

because the test that U* ≤ 1 may pass even though one or more 

tasks may have utilisations > 1, causing them to miss a 

deadline. Therefore, we need a new upper bound. 

The method we use to determine a suitable upper bound is 

based on using an upper bound on the utilisation due to CRPD 

that is valid for all intervals of length greater than some value 
Lc. We then use this CRPD utilisation value to inflate the 

taskset utilisation and thus compute an upper bound Ld on the 

maximum length of the synchronous busy period. This upper 

bound is valid provided that it is greater than Lc, otherwise the 

actual maximum length of the busy period may lie somewhere 

in the interval [Ld, Lc], hence we can use max(Lc, Ld) as a 

bound. 

We choose a value of t = Lc = 100 Tmax which limits the 

overestimation of the CRPD utilisation U = γt /t to at most 

1%. We then calculate γt  using (23) for ECB-Union Multiset 

and (26) for UCB-Union Multiset. However, in (22) and (24) 

& (25), we substitute )(tEmax
x  for )(tEx  to ensure that the 

computed value of U is a valid upper bound for all intervals 

of length t ≥ Lc. 
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We then check that U + U < 1, if not then we deem the 

taskset unschedulable, otherwise we compute an upper bound 

on the length of the busy period via a modified version of (3): 
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rearranged to give:  
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Then, substituting in Tmax for each value of Tj we get our 

upper bound: 

    1 

  

UU

TU
Ld






max
 

We then use L = max(Lc, Ld) as the maximum value of t to 

check in the EDF schedulability test. 

E. Comparability and Dominance 

The CRPD analyses for EDF scheduling have similar 

comparability relationships to their counterparts presented in 

[3] for FP scheduling. The UCB-Union approach dominates 

the ECB-Only approach, and the ECB-Union approach 

dominates the UCB-Only approach. The JCR approach is 

incomparable with all of the non-multiset approaches. 

However, if we re-write the JCR approach (9) so that it 

calculates the cost of all Ej(t) pre-emptions at once, then it can 
be seen that the UCB-Union Multiset approach dominates it. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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Furthermore, the UCB-Union Multiset approach 

dominates the UCB-Union approach and the ECB-Union 

Multiset approach dominates the ECB-Union approach. This 
is because the sum of the Ej(t) largest pre-emption costs will 

always be less than or equal to Ej(t) multiplied by the largest 

pre-emption cost. The combined multiset approach dominates 

all other approaches as shown in Fig. 5. Furthermore, because 

the combined approach uses the two multiset approaches at 

each stage of the QPA algorithm, the number of tasksets that 

it deems schedulable can is greater than a simple union of the 

two multiset approaches. 

We note that including the CRPD as if it were additional 

execution time of the pre-empting task, as we have done in all 

of the non-multiset approaches, has the potential for 
significant pessimism if the execution time of a task τi is close 

to its deadline such that

jtjjj CDC ,  

In this case task τi would be deemed unschedulable when 

it may not be. This problem is avoided by the multiset 

approaches. 

 
Fig. 5 - Venn diagram illustrating the relationship between the different 

approaches used to calculate CRPD. The larger the area, the more tasksets 

deemed schedulable by the approach. 

I. CASE STUDY 
In this section we evaluate the schedulability tests for EDF 

including integrated CRPD analysis using the approaches 

introduced in this paper: ECB-Only, UCB-Only, UCB-Union, 

ECB-Union, ECB-Union Multiset, UCB-Union Multiset and 

the combined multiset approaches, as well as the JCR 
approach of Ju et al. [15] on a case study. For comparison 

purposes, we also used the EDF schedulability test assuming 

no pre-emption costs.  

The case study is the same one used in Altmeyer et al [2] 

to evaluate CRPD analysis for systems using FP scheduling.  

The case study comprises a number of tasks from the 

Mälardalen benchmark suite1 [14]. While these tasks do not 

                                                        
1 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html 

represent a real taskset, they do represent typical code found 

in real-time systems. For each task, the WCET and number of 

ECBs and UCBs are taken from [1], details for each task can 

be found in Table 1 of [2], and [3]. The system was setup to 

model an ARM7 processor2 clocked at 10MHz with a 2KB 

direct-mapped instruction cache with a line size of 8 Bytes 

giving 256 cache sets, 4 Byte instructions, and a BRT of 8μs. 

The taskset was created by assigning periods and implicit 

deadlines such that all 15 tasks had equal utilisation. The 

periods were generated by multiplying the execution times by 

a constant c such that Ti = c Ci for all tasks. We varied c from 
15 upwards in steps of 0.25, which varied the utilisation from 

1.0 downwards. In order to evaluate different approaches, we 

found the breakdown utilisation [17] of the tasksets. By 

scaling the deadlines and periods of the tasks, we simulated 

scaling the speed of the CPU and memory. Using this 

technique the breakdown utilisation, the point at which the 

taskset is deemed unschedulable, can be found. 

The breakdown utilisation for each approach is shown in 

Table I. The ECB-Union Multiset, and hence the combined 

multiset, approach performed the best with a breakdown 

utilisation of 0.659. The JCR approach outperformed the 
ECB-Only and UCB-Only approaches with a breakdown 

utilisation of 0.488, but did worse than the other approaches 

presented in this paper.  

TABLE I 

BREAKDOWN UTILISATION FOR THE CASE STUDY TASKSET FOR 

THE DIFFERENT APPROACHES USED TO CALCULATE THE CRPD 

 Breakdown utilisation 

No pre-emption cost 1 

Combined Multiset 0.659 

ECB-Union Multiset 0.659 

UCB-Union Multiset 0.594 

ECB-Union 0.612 

UCB-Union 0.583 

UCB-Only 0.462 

ECB-Only 0.364 

JCR 0.488 

II. EXPERIMENTAL EVALUATION 
In addition to the case study, we evaluated the 

schedulability tests for EDF with integrated CRPD analysis 

using synthetically generated tasksets. This enabled us to 

investigate the behaviour of the different approaches as we 

varied a number of key parameters.  
The UUnifast algorithm [10] was used to calculate the 

utilisation, Ui of each task so that the utilisations add up to the 

desired utilisation level for the taskset. Task periods Ti, were 

generated at random between 5ms and 500ms according to a 

log-uniform distribution. From this, Ci was calculated via      

Ci = Ui Ti. 

We generated two sets of tasksets, one with implicit 

deadlines and one with constrained deadlines. We used         

Di = min(Ti, 2Ci + x(Ti - 2Ci)) to generate the constrained 

deadlines, where x is a random number between 0 and 1. In 

the following section we present the results for implicit 

                                                        
2 http://www.arm.com/products/processors/classic/arm7/index.php 
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deadline tasksets. Results for these experiments for tasksets 

with constrained deadlines are available in Appendix 1 of the 

technical report [20] on which this paper is based. In general, 

using constrained deadlines resulted in an overall reduction in 

schedulable tasksets compared to implicit deadline tasksets.  

The UCB percentage for each task was based on a random 

number between 0 and a maximum UCB percentage specified 

for the experiment. UCBs were placed in a continuous group 

at the start of the task’s ECBs. 

A. Baseline Experiments 
A number of experiments were run in order to investigate 

how the integrated CRPD and EDF schedulability analysis 

performed under varied cache and task configurations. These 

experiments varied the following parameters: 

 Cache utilisation (default of 10) 

 Maximum UCB percentage (default of 30%) 

 Number of tasks  (default of 10) 

 Number of cache sets (default of 256) 

 Block Reload Time (BRT) (default of 8μs) 

Here, cache utilisation describes the ratio of the total size of 

the tasks to the size of the cache. A cache utilisation of 1 

means that the tasks fit exactly in the cache, whereas a cache 

utilisation of 5 means the total size of the tasks is 5 times the 

size of the cache. We used 10,000 tasksets per experiment, 

and assumed a direct mapped cache.  

The first experiment investigates how the integrated 

CRPD and EDF schedulability analysis performed under the 

default configuration for implicit deadline tasksets. We varied 

the utilisation, excluding any pre-emption cost, from 0.025 to 
1 in steps of 0.025 and recorded how many tasksets were 

deemed schedulable by the EDF schedulability test. The 

results are shown in Fig. 6 and in Table II in the form of 

weighted schedulability measures, see next sub-section, sub-

section B for a definition. 

The results follow a similar pattern to the equivalent 

CRPD analyses for FP scheduling, see Figure 9 in [3]. 

Furthermore, the results confirm the dominance relationships 

between approaches with the combined multiset approach 

performing the best. Additionally, with the exception of ECB-

Only, all of the approaches presented in this paper 
outperformed JCR with the combined multiset approach 

achieving a weighted schedulability measure of 0.528 

compared to 0.333 for JCR. 

The second experiment was effectively a repeat of the 

first, but with constrained deadlines and it showed an overall 

reduction in the number of schedulable tasksets due to the 

tighter deadlines. However, the JCR approach performs better 

than with implicit deadlines, outperforming ECB-Only and 

UCB-Only. This is because the number of times task    pre-

empts task τk, Pj(Dk), is reduced. (As Dk is now smaller than 
Tk, and smaller in relation to Tj, there is a smaller window in 

which task τj can pre-empt task τk). A graph showing the 

results for this experiment is available in [20]. 

 
Fig. 6 – Schedulable tasksets vs Utilisation for the baseline parameters under 
implicit deadlines 

B. Weighted Schedulability 

Evaluating all combinations of different parameters is not 

possible. Therefore, the majority of our experiments focused 

on varying one parameter at a time. To present the results, 

weighted schedulability measures [7] are used. This allows a 
graph to be drawn which shows the weighted schedulability, 

Wl (p), for each method used to obtain a layout l as a function 

of parameter p. For each value of p, this measure combines 

the data for all of the generated tasksets τ for all of a set of 

equally spaced utilisation levels, where the utilisation is based 

on no pre-emption cost. The schedulability test returns a 

binary result of 1 or 0 for each layout at each utilisation level. 

If this result is given by Sl (τ,p), and u(τ) is the utilisation of 

taskset τ, then:  
















T

ll upSupW )(),()()( 


 

The benefit of using a weighted schedulability measure is 

that it reduces a 3-dimensional plot to 2 dimensions. 

Individual results are weighted by taskset utilisation to reflect 

the higher value placed on a being able to schedule higher 

utilisation tasksets.  

Table II gives the weighted schedulability measures for 

the baseline experiment i.e. for each line shown on Figure 6. 

TABLE II 

WEIGHTED SCHEDULABILITY MEASURES FOR THE BASELINE 

EXPERIMENTS SHOW IN FIGURE 6 

 Weighted schedulability 

No pre-emption cost 1 

Combined Multiset 0.528 

ECB-Union Multiset 0.501 

UCB-Union Multiset 0.455 

ECB-Union 0.481 

UCB-Union 0.427 

UCB-Only 0.416 

ECB-Only 0.236 

JCR 0.333 
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C. Weighted Schedulability Experiments 

For these weighted schedulability experiments, we used 

1,000 tasksets, rather than 10,000 tasksets. The following 

results are all for implicit deadline tasksets.  

CACHE UTILISATION AND MAXIMUM UCB PERCENTAGE 

As the cache utilisation increases, see Fig. 7, all 

approaches that consider CRPD show a decrease in 

schedulability. In particular, the ECB-Only approach shows a 

very rapid decrease because the cache utilisation directly 

correlates with the number of ECBs which is all that the 

approach considers. Additionally, the JCR approach starts to 
drop off at around a cache utilisation of 8, and by a cache 

utilisation of 14, it performs the worst. This is due to the 

pessimistic handling of nested pre-emptions leading to it 

calculating that the same UCBs are evicted multiple times as 

tasks share an increasing number of cache blocks. 

As the maximum UCB percentage increases, see Fig. 8, all 

approaches except ECB-Only show a decrease in 

schedulability. The ECB-Only approach shows no change 

because it does not consider any tasks’ UCBs. The UCB-Only 

approach is particularly vulnerable to high numbers of UCBs. 

Additionally, the JCR approach also shows a large decrease in 
the number of schedulable tasksets. This is because it deals 

with nested pre-emptions by considering the pre-empting and 

intermediate tasks individually. As the number of UCBs 

increases, the chances of the analysis assuming that the UCBs 

get evicted more than once increases. 

NUMBER OF TASKS AND CACHE SIZE 
As the number of tasks increases, see Fig. 9, all 

approaches that consider pre-emption cost show a decrease in 

schedulability due to the increased number of pre-emptions. 

We note that as the number of tasks becomes very high, some 

of the approaches level off. This is due to the fact that the 

other parameters, specifically cache utilisation and maximum 

UCB percentage are fixed. As the number of tasks increases, 

the size of the tasks, and therefore the number of UCBs 

decreases, reducing the cost of a pre-emption, especially for 
the approaches that rely heavily on the number of UCBs.  

 
Fig. 7 – Weighted schedulability measure; varying cache utilisation from 0 to 
20 in steps of 2 

This could be avoided by fixing the task size by increasing the 

cache utilisation, but then this in turn would affect the results. 

 
Fig. 8 – Weighted schedulability measure; varying the maximum UCB 
percentage from 0 to 100% in steps of 10% 

 
Fig. 9 – Weighted schedulability measure; varying the number of tasks from 

2
1
 = 2 to 2

6
 = 64 for implicit deadline tasksets 

 

Fig. 10 – Weighted schedulability measure; varying the number of cache sets 

from 2
6
 = 64 to 2

10
 = 1024 for implicit deadline tasksets 



 

 

The cache size also has an effect of the schedulability of 

tasksets, see Fig. 10. As the number of cache sets increases, 

all approaches show a decrease in schedulability because the 

potential impact of a pre-emption increases. Varying the BRT 

also has a similar effect of increasing the cost of a pre-

emption which in turn results in fewer tasksets being deemed 

schedulable. A graph for this experiment is available in [20]. 

III. CONCLUSION 
In this paper, we have presented new CRPD aware 

analysis for the EDF scheduling algorithm based on similar 

work for FP scheduling. We compared our new approaches 

against an existing approach for EDF by Ju et al. [15], 
referred to as JCR, and showed that our combined multiset 

approach dominates the JCR approach. This was confirmed in 

both a case study and experiments based on synthetically 

generated tasksets. Through a series of experiments, we 

examined the effects of different cache and taskset parameters 

on the different approaches, highlighting the strengths and 

weaknesses of the different approaches. We found that the 

JCR approach was especially vulnerable to high numbers of 

tasks, high cache utilisation and high UCB percentages. In all 

of our experiments, our new combined multiset approach was 

able to schedule the highest number of tasksets out of the 
approaches that consider CRPD. 

In the future, we aim to perform a detailed comparison 

between FP and EDF scheduling with integrated CRPD 

analysis. Additionally, we aim to perform a more 

comprehensive case study using code from a multitasking 

application. 
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