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Abstract 
This paper examines the relative effectiveness of 

fixed priority pre-emptive scheduling in a uniprocessor 
system, compared to an optimal algorithm such as 
Earliest Deadline First (EDF).  

The quantitative metric used in this comparison is 
the processor speedup factor, equivalent to the factor by 
which processor speed needs to increase to ensure that 
any taskset that is schedulable according to an optimal 
scheduling algorithm can be scheduled using fixed 
priority pre-emptive scheduling, assuming an optimal 
priority assignment policy.  

For constrained-deadline tasksets where all task 
deadlines are less than or equal to their periods, the 
maximum value for the processor speedup factor is 
shown to be 76322.1/1 ≈Ω , (where Ω  is the 
mathematical constant defined by the transcendental 
equation Ω=Ω)/1ln( , hence, 0.567143 ≈Ω ). Further, 
for implicit-deadline tasksets where all task deadlines 
are equal to their periods, the maximum value for the 
processor speedup factor is shown to be 

1.44270  1/ln(2) ≈ . The derivation of this latter result 
provides an alternative proof of the well-known Liu and 
Layland result.

1. Introduction 
In this paper, we are interested in determining the 

largest factor by which the processing speed of a 
uniprocessor would need to be increased, such that any 
taskset, that was previously schedulable according to an 
optimal scheduling algorithm, could be guaranteed to be 
schedulable according to fixed priority pre-emptive 
scheduling, assuming an optimal priority assignment 
policy. We refer to this resource augmentation factor as 
the processor speedup factor (Kalyanasundaram and 
Pruhs, 1995). 

Analysis of fixed priority pre-emptive scheduling 
effectively began with Fineberg and Serlin (1967) who 
considered priority assignment for two independent 
periodic tasks with deadlines equal to their periods and 
bounded execution times. They noted that if the task 
with the shorter period is assigned the higher priority, 
then the taskset is guaranteed to be schedulable provided 
that its total utilisation1 %8.82)12(2 ≈−≤U . 

The above result was generalised by Liu and Layland 

1 The utilisation of a task is defined as its execution time divided by its 
period. The utilisation of a taskset is the sum of the utilisations of its 
tasks.
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(1973) who considered the pre-emptive scheduling of 
synchronous2 tasksets comprising independent periodic 
tasks, with bounded execution times, and deadlines 
equal to their periods. We refer to such tasksets as 
implicit-deadline tasksets. Liu and Layland (1973) 
showed that rate monotonic (RM) priority ordering is 
the optimal fixed priority assignment policy for implicit-
deadline tasksets, and that using rate monotonic priority 
ordering, fixed priority pre-emptive scheduling can 
schedule any implicit-deadline taskset with a total 
utilisation %3.69)2ln( ≈≤U . 

Liu and Layland (1973) also showed that Earliest 
Deadline First (EDF) is an optimal dynamic priority 
scheduling algorithm for implicit-deadline tasksets, and 
that EDF can schedule any such taskset with a total 
utilisation 1≤U . 

Dertouzos (1974) showed that EDF is in fact an 
optimal pre-emptive uniprocessor scheduling algorithm, 
in the sense that if a schedule exists for a taskset, then 
the schedule produced by EDF will also be feasible. 

Combining the result of Dertouzos (1974) with the 
results of Liu and Layland (1973) for both EDF and 
fixed priority pre-emptive scheduling, we can see that 
the processor speedup factor required to guarantee that 
fixed priority pre-emptive scheduling can schedule any 
feasible implicit-deadline taskset is 44270.1)2ln(/1 ≈ . 

In the 1980�s, and early 1990�s research into real-
time scheduling focused on constrained-deadline
tasksets; synchronous tasksets comprising independent 
sporadic tasks with bounded execution times, known 
minimal inter-arrival times or periods, and deadlines 
constrained to be less than or equal to their periods. 

Leung and Whitehead (1982) showed that deadline 
monotonic3 (DM) priority ordering is the optimal fixed 
priority ordering for constrained-deadline tasksets. Exact 
fixed priority schedulability tests for constrained-
deadline tasksets were introduced by Joseph and Pandya 
(1986), Lehoczky et al. (1989), and Audsley et al. 
(1993). Exact EDF schedulability tests for constrained-
deadline tasksets were introduced by Baruah et al. 
(1990a, 1990b). 

Recently, Baruah and Burns (2008) showed that the 
processor speedup factor required for fixed priority pre-
emptive scheduling of constrained-deadline tasksets is 
upper-bounded by 2 and lower-bounded by 1.5. 

In this paper, we prove that the exact processor 
speedup factor required for fixed priority pre-emptive 
scheduling of constrained-deadline tasksets is 

76322.1/1 ≈Ω (where Ω  is the mathematical constant 

2 A taskset is synchronous if all of its tasks share a common release 
time.
3 Deadline monotonic priority ordering assigns priorities in order of 
task deadlines, such that the task with the shortest deadline is given the 
highest priority.

defined by the transcendental equation Ω=Ω)/1ln( , 
hence, 0.567143 ≈Ω ). 

The significance of our main result is to provide a 
bound, analogous to the seminal schedulability result of 
Liu and Layland (1973) ( %3.69)2ln( ≈≤U ), that 
applies to constrained-deadline rather than implicit-
deadline tasksets. 

An exact condition for the schedulability of a 
constrained-deadline taskset under an optimal pre-
emptive uniprocessor scheduling algorithm, such as 
EDF (Dertouzos, 1974), is that a quantity referred to as 
the processor LOAD (see Section 2.4) does not exceed 
the capacity of the processor (i.e. LOAD 1≤ ) (Baruah et 
al. 1990a, 1990b). 

The processor speedup factor derived in this paper 
shows that every constrained-deadline taskset with 
LOAD 567143.0≈Ω≤  is guaranteed to be schedulable 
according to fixed priority pre-emptive scheduling using 
deadline-monotonic priority assignment. 

While the results presented in this paper are mainly 
theoretical, they also have practical utility in enabling 
system designers to quantify the maximum penalty for 
using fixed priority pre-emptive scheduling in terms of 
the additional processing capacity required. This 
performance penalty can then be weighed against other 
factors such as implementation overheads when 
considering which scheduling algorithm to use. 

1.1. Related work on average case sub-
optimality 

This paper examines the sub-optimality of fixed 
priority pre-emptive scheduling in the worst-case, other 
research has examined its behaviour in the average-case. 

Lehoczky et al. (1989) introduced the breakdown 
utilisation metric: A taskset is randomly generated, and 
then all task execution times are scaled until a deadline 
is just missed. The utilisation of the scaled taskset gives 
the breakdown utilisation. Lehoczky et al. (1989) 
showed that the average breakdown utilisation, for 
implicit-deadline tasksets of large cardinality under 
fixed priority pre-emptive scheduling is approximately 
88%, corresponding to a penalty of approximately 12% 
of processing capacity with respect to an optimal 
algorithm such as EDF. 

Bini and Buttazzo (2005) showed that breakdown 
utilisation suffers from a bias which tends to penalise 
fixed priority scheduling by favouring tasksets where the 
utilisation of individual tasks is similar. Bini and 
Buttazzo (2005) introduced the optimality degree metric, 
defined as the number of tasksets in a given domain that 
are schedulable according to some algorithm A divided 
by the number that are schedulable according to an 
optimal algorithm. Using this metric, they showed that 
the penalty for using fixed priority-pre-emptive 
scheduling for implicit-deadline tasksets is typically 
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significantly lower than that assumed by determining the 
average breakdown utilisation. 

1.2. Organisation 
The remainder of this paper is organised as follows. 

Section 2 describes the system model and notation used, 
recapitulates exact schedulability analysis for both fixed 
priority and EDF scheduling, and provides a number of 
key definitions. Section 3 derives the structure and 
parameters of a speedup-optimal taskset (defined in 
Section 2) for the class of tasksets with constrained 
deadlines. Section 4 derives the exact processor speedup 
factor required for constrained-deadline tasksets of 
arbitrary cardinality, under fixed priority pre-emptive 
scheduling. Appendix A complements Section 4 by 
providing an upper bound on the processor speedup 
factor for tasksets of cardinality n which improves upon 
the general result for arbitrary n. Section 5 extends the 
results of Sections 3 and 4 to implicit-deadline tasksets, 
providing an alternative proof of the seminal results of 
Fineberg and Serlin (1967) and Liu and Layland (1973). 
Finally, Section 6 concludes with a summary of the 
results. 

2. Scheduling model and schedulability 
analysis 

In this section, we outline the scheduling model, 
notation and terminology used in the rest of the paper. 
We then recapitulate the exact schedulability analysis 
for both fixed priority pre-emptive scheduling and EDF 
scheduling. Finally, we provide a number of definitions 
that are used in subsequent analysis and illustrate the 
fundamental concepts with an example. 

2.1. Scheduling model, terminology and notation 
In this paper, we consider the pre-emptive 

scheduling of a set of tasks (or taskset) on a 
uniprocessor.  

Each taskset comprises a static set of n tasks ( nττ ..1 ), 
where n is a positive integer. We assume that the index i
of task iτ  also represents the task priority used in fixed 
priority pre-emptive scheduling, hence 1τ  has the 
highest fixed-priority, and nτ  the lowest. 

Each task iτ  is characterised by its bounded worst-
case execution time iC , minimum inter-arrival time or 
period iT , and relative deadline iD . Each task iτ
therefore gives rise to a potentially infinite sequence of 
invocations, each of which has an execution time upper 
bounded by iC , an arrival time at least iT  after the 
arrival of its previous invocation, and an absolute 
deadline iD  time units after its arrival.  

In a constrained-deadline taskset, all tasks 
have ii TD ≤ , while in an implicit-deadline taskset, all 
tasks have ii TD = . 

The utilisation iU , of a task is given by its execution 

time divided by its period ( iU = iC / iT ). The total 
utilisation U, of a taskset is the sum of the utilisation of 
all of its tasks. 

The following assumptions are made about the 
behaviour of the tasks: 

o The arrival times of the tasks are independent 
and hence the tasks may share a common 
release time. 

o Each task is released (i.e. becomes ready to 
execute) as soon as it arrives. 

o The tasks are independent and so cannot block 
each other from executing by accessing 
mutually exclusive shared resources, with the 
exception of the processor. 

o The tasks do not voluntarily suspend 
themselves. 

A task is said to be ready if it has outstanding 
computation and so is awaiting execution by the 
processor. 

A taskset is said to be schedulable with respect to 
some scheduling algorithm and some system, if any 
sequence of invocations generated by the taskset can be 
scheduled on the system by the scheduling algorithm 
without any deadlines being missed. 

Under Earliest Deadline First (EDF) scheduling, at 
any given time, the ready task (invocation) with the 
earliest absolute deadline is executed by the processor. 
In contrast, under fixed priority pre-emptive scheduling, 
at any given time, the highest priority ready task is 
executed by the processor. 

We assume that when a taskset is scheduled 
according to fixed priorities, these priorities are assigned 
according to deadline-monotonic priority ordering, as 
deadline-monotonic is known to be the optimal priority 
ordering for both constrained-deadline (Leung and 
Whitehead, 1982) and implicit-deadline tasksets (Liu 
and Layland, 1973). 

We note that deadline-monotonic is the optimal 
priority ordering in the sense that there are no 
constrained-deadline tasksets that are schedulable 
according to fixed priority pre-emptive scheduling using 
any other priority ordering that are not also schedulable 
using deadline-monotonic priority ordering. This does 
not however mean that deadline-monotonic fixed 
priority pre-emptive scheduling is an optimal scheduling 
algorithm for such tasksets. (The definition of 
scheduling algorithm optimality is given below). 

2.2. Feasibility and optimality 
A taskset is said to be feasible with respect to a 

given system model if there exists some scheduling 
algorithm that can schedule the taskset on that system 
without missing any deadlines. Note, in this paper, we 
are primarily interested in a reference system model that 
consists of a pre-emptive uniprocessor with unit 
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processing speed. 
A scheduling algorithm is said to be optimal with 

respect to a system model and a tasking model if it can 
schedule all of the tasksets that comply with the tasking 
model and are feasible on the system. 

We note that EDF is known to be an optimal pre-
emptive uniprocessor scheduling algorithm for 
constrained-deadline tasksets compliant with the tasking 
model described in Section 2.1 (Dertouzos, 1974). Least 
Laxity First is another such optimal algorithm (Mok, 
1983). 

2.3. Exact schedulability analysis for FPPS 
In this section, we give a brief summary of Response 

Time Analysis (Audsley et al., 1993) used to provide an 
exact schedulability test for fixed priority pre-emptive 
scheduling on a uniprocessor. First, we introduce the 
concepts of worst-case response time, critical instant, 
and busy periods, which are fundamental to this form of 
analysis. 

For a given taskset scheduled under fixed priority 
pre-emptive scheduling, the worst-case response time

iR  of task iτ is given by the longest possible time from 
release of the task until it completes execution. Thus 
task iτ  is schedulable if and only if ii DR ≤ , and the 
taskset is schedulable if and only if ii DRi ≤∀ . 

A critical instant for task iτ , refers to a time at 
which task iτ  is released, and the pattern of releases of 
other tasks in the taskset is such that task iτ  exhibits its 
worst-case response time (Liu and Layland, 1973). 
Under fixed priority pre-emptive scheduling, for 
independent tasks with constrained-deadlines, a critical 
instant occurs when all of the tasks are released 
simultaneously, and then subsequent task releases occur 
as early as possible. 

The term priority level-i busy period refers to a 
period of time ),[ 21 tt  during which the processor is 
busy executing computation at priority i or higher, that 
was released at the start of the busy period at 1t , or 
during the busy period but strictly before its end at 2t . 

Under fixed priority pre-emptive scheduling, the 
worst-case response time iR  of a constrained-deadline 
task iτ  corresponds to the length of the longest priority 
level-i busy period, which starts at a critical instant.  

The busy period comprises two components, the 
execution time iC  of the task itself, and so called 
interference, equal to the time for which task iτ  is 
prevented from executing by higher priority tasks. The 
length of the busy period iw , can be computed using the 
following fixed point iteration (Audsley et al., 1993), 
with the summation term giving the interference due to 
the set of higher priority tasks hp(i).  
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Iteration starts with an initial value 0
iw , typically 

ii Cw =0 , and ends when either m
i

m
i ww =+1  in which 

case the worst-case response time iR , is given by 1+m
iw , 

or when i
m
i Dw >+1  in which case the task is 

unschedulable. 
Note, the values of m

iw  are monotonically non-
decreasing with respect to the iteration count m (Tindell, 
1994), and so the fixed point iteration is guaranteed to 
converge to the worst-case response time iR , provided 
that the overall taskset utilisation is less than or equal to 
1, and the initial value 0

iw  is a lower bound on iR
(Sjodin and Hansson, 1998). 

Response Time Analysis, as embodied in Equation 
(1), thus provides an exact schedulability test for 
constrained-deadline tasksets scheduled under fixed 
priority pre-emptive scheduling. 

In subsequent analysis, we also make use of the 
concept of a priority level-i idle period. This is defined 
as an interval of time ),[ 43 tt  of length greater than zero, 
during which no tasks are ready to execute at priority i
or higher strictly before the end of the idle period at 4t . 

2.4. Exact schedulability analysis for EDF 
The schedulability of a constrained-deadline taskset 

under EDF can be determined via the processor demand 
bound function h(t) given below:  
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Baruah et al (1990a, 1990b) showed that a taskset is 
schedulable under EDF if and only if a quantity referred 
to as the processor LOAD is 1≤  where the processor 
LOAD is defined as follows: 

LOAD ⎟
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Further, they showed that the maximum value of 
tth /)(  occurs for some value of t in the interval ),0( L , 

where L is defined as follows, thus limiting the number 
of values of t that need to be checked to determine 
schedulability. 
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Significant developments have been made, extending 
the scope of the schedulability tests given in Equations 
(1) and (2); however, these basic forms are sufficient for 
the purposes of this paper. 

2.5. Definitions 
Our analysis uses the concept of uniform processors. 

We refer to two processors as uniform (or similar) if the 
rate of execution of any task on each of the two 
processors depends only on the difference in clock speed 
of the processors. Thus a processor of speed 1 takes 
exactly twice the time to execute any given task as a 
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similar processor of speed 2. 

Definition 1: Let Ψ  be a taskset that is feasible (i.e. 
schedulable according to an optimal scheduling 
algorithm) on a processor of speed 1. Now assume that 

)(Ψf  is the lowest speed of any similar processor that 
will schedule taskset Ψ  using scheduling algorithm A. 
The processor speedup factor Af  for scheduling 
algorithm A is given by the maximum processor speed 
required to schedule any such taskset Ψ . 

( ))(max Ψ=
Ψ∀

ff A

For any scheduling algorithm A, we have4 1≥Af , with 
smaller values of Af  indicative of a more effective 
scheduling algorithm, and 1=Af  implying that A is an 
optimal algorithm. 

In the remainder of the paper, unless otherwise 
stated, when we refer to the processor speedup factor, 
we mean the processor speedup factor for fixed priority 
pre-emptive scheduling using an optimal priority 
assignment policy. The problem of determining this 
processor speedup factor can be addressed from two 
different perspectives: 

1. Speeding up a processor to guarantee that a 
taskset that is already schedulable under an 
optimal algorithm becomes schedulable under 
fixed priority pre-emptive scheduling. 

2. Slowing down a processor and hence scaling up 
the execution times of a set of tasks that are only 
just schedulable according to fixed priority pre-
emptive scheduling, until they are only just 
schedulable according to an optimal algorithm. 

Our analysis addresses the problem from the latter 
perspective. 

For a taskset S to be schedulable according to fixed 
priorities, let Sα  ( 1≥Sα ) be the largest factor by which 
all of the execution times of the tasks in S can be scaled 
and the taskset remain schedulable under fixed priority 
pre-emptive scheduling. We refer to Sα  as the fixed 
priority scaling factor. Similarly, let Sf  ( 1≥Sf ) be the 
largest factor by which all of the execution times of the 
tasks in S can be scaled and the taskset remain 
schedulable under EDF scheduling. We refer to Sf  as 
the EDF scaling factor. 

We now give an alternative but equivalent definition 
of the processor speedup factor. (In Appendix B, we 
prove that Definition 2 is equivalent to Definition 1). 

Definition 2: The processor speedup factor for fixed 
priority pre-emptive scheduling is the maximum scaling 

4 The set of all tasksets that are feasible on a processor of speed 1 
contains tasksets that fully utilise the processor. For example Ci = Di = 
Ti = 1. Given such a taskset, the processor speedup factor for any 
scheduling algorithm cannot be less than 1.

factor by which the execution times of a set of tasks, that 
are only just schedulable according to fixed priority pre-
emptive scheduling (i.e. with 1=Sα ), can be increased, 
and yet the taskset remain schedulable according to an 
optimal scheduling algorithm (e.g. EDF). 

Corollary 1: The processor speedup factor for fixed 
priority pre-emptive scheduling is equal to the largest 
EDF scaling factor Sf  of any taskset with a fixed 
priority scaling factor 1=Sα . 

Definition 3: A taskset is said to be speedup-optimal if 
it has the largest EDF scaling factor Sf  of any taskset 
that is only just schedulable according to fixed priority 
pre-emptive scheduling ( 1=Sα ). 

Corollary 2: The processor speedup factor is equal to 
the EDF scaling factor Sf  of a speedup-optimal taskset. 

We note that the value of the processor speedup factor
and the parameters of speedup-optimal tasksets depend 
on the class of tasksets considered. For example the 
class of implicit-deadline tasksets of cardinality two has 
a smaller processor speedup factor than the class of 
constrained-deadline tasksets with arbitrary cardinality, 
and different speedup-optimal tasksets. In the remainder 
of the paper, when the terms processor speedup factor 
and speedup-optimal taskset are used, the class of 
tasksets considered is explicitly stated only when this is 
not readily apparent from the context. 

Definition 4: A constraining task is defined as a task 
that cannot have its execution time increased without 
missing its deadline, and hence the taskset becoming 
unschedulable. 

Corollary 3: Under fixed priority pre-emptive 
scheduling, for a constraining task iτ , the interval 

),0[ iD , starting with a critical instant at t=0, where all 
tasks are released simultaneously and then subsequently 
released as early as possible, contains no priority level-i
idle time.  

Corollary 4: Any taskset S with Sα  = 1, has at least one 
constraining task. 

2.6. Example 
The concepts introduced in this section can be 

illustrated by means of an example. Consider an 
implicit-deadline taskset S comprising the two tasks 
defined in Table 1. The parameters of these tasks appear 
to have some rather unusual values; however, this is 
because they have been chosen so that the taskset is 
speedup-optimal with respect to the class of implicit-
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deadline tasksets with cardinality two. The total 
utilisation of the taskset is 0.8284271)-22( ≈ . 

Table 1 
Task iC ii TD = iU iR

1τ 1 21+ 1-2 1 
2τ 2 22 + 1-2 21+

1 √2

T2T1

D2D1

1

Figure 1 
Figure 1 illustrates the execution of the tasks under 

fixed priority pre-emptive scheduling, starting at a 
critical instant. Note that although the worst-case 
response time of task 2τ  is significantly less than its 
deadline 2D , 2τ  is a constraining task; since any 
increase in its execution time will cause its deadline to 
be missed. 

Taskset S has a fixed priority scaling factor 1=Sα , 
as increasing the execution times of the tasks by any 
factor greater than 1 would result in the taskset 
becoming unschedulable. 

As EDF can schedule any implicit deadline taskset 
with utilisation no greater than 100%, we can scale the 
execution times of tasks 1τ  and 2τ  by a factor of 

1))-21/(2( , and the resulting taskset, with 100% 
utilisation, will be just schedulable under EDF. The EDF 
scaling factor Sf  for taskset S is therefore 

1.207107  1))-21/(2( ≈ . 
We note that the parameters of the tasks in taskset S

have been carefully selected so that the utilisation of this 
taskset matches the Fineberg and Serlin (1967) 
utilisation bound of 1)-22(  for implicit-deadline 
tasksets of cardinality two. As all tasksets with 
cardinality two and utilisation less than or equal to this 
bound are known to be schedulable, any taskset with 
utilisation strictly less than the bound must have a fixed 
priority scaling factor that is strictly greater than 1. 
Hence taskset S has the minimum utilisation of any 
taskset that is only just schedulable according to fixed 
priority pre-emptive scheduling ( 1=Sα ). Taskset S
therefore exhibits the largest EDF scaling factor Sf  of 
any taskset that has 1=Sα , and hence is a speedup-
optimal taskset. 

The processor speedup factor is equal to the EDF 
scaling factor Sf  of a speedup-optimal taskset, hence 
the processor speedup factor for fixed priority pre-
emptive scheduling of implicit deadline tasksets of 

cardinality two is 1.207107  1))-21/(2( ≈ . 
Note, in Section 5 we prove this result 

independently without using the utilisation bound of 
Fineberg and Serlin (1967). 

3. Speedup-optimal tasksets 
In this section, we derive the structure and 

parameters of speedup-optimal tasksets for the class of 
tasksets with constrained deadlines ( ii TD ≤ ). 

Before considering tasksets of arbitrary cardinality, 
we first present results for tasksets comprising just two 
tasks. The derivation of this result provides the intuition 
for the general case. 

Theorem 1 describes the parameters of a taskset that 
is speedup-optimal with respect to all constrained-
deadline tasksets of cardinality two.  

Theorem 2 describes the parameters of a taskset that 
is speedup-optimal with respect to all constrained-
deadline tasksets. 

The proofs of Theorems 1 and 2 rely on Lemmas 1-
8. The basic method and intuition behind the proofs of 
Lemmas 1-8 is given after the Theorems, this followed 
by the Lemmas and their specific proofs. 

Note that in the various discussions, theorems, 
lemmas, and proofs in this and subsequent sections, 
fixed priority pre-emptive scheduling should be assumed 
unless otherwise stated. 

Theorem 1: For constrained-deadline tasksets of 
cardinality two, there is a speedup-optimal taskset V, 
with Vα  = 1, which has the following parameters:  

1τ : 11 =C , XTD +== 111

2τ : XC =2 , XD += 22 , ∞=2T
Where 0≥X  is some as yet unknown value for the 

execution time of 2τ . 
Note that the execution time of 1τ  in Theorem 1 has 

been normalised to 1 and the task periods and deadlines 
adjusted accordingly5. There is one free variable in the 
taskset parameters, that is X, the execution time of task 

2τ . This taskset is illustrated in Figure 2. 

Figure 2 
Proof: Proof follows directly from Lemmas 1 to 8, 
specifically: 

5 All of the task parameters can be scaled linearly without changing 
the fundamental properties of the taskset.
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o 2τ  must be a constraining task, with the longest 
deadline and the lowest priority (Lemma 1). 

o 2τ  must have an infinite period (Lemma 2). 
o 2Dt =  must be the start of an idle period 

(Lemma 3). 
o 21 DT <  (Lemma 4) 
o 11 TD =  (Lemma 5). 
o 2/21 DT >  (Lemma 6). 
o Following a critical instant, 2τ  must execute 

continuously from when it first starts execution 
until it completes (Lemma 7). 

o The parameters of task 1τ  must comply with 
XCCTD +=+== 12111  (Lemma 8). 

□

Theorem 2: For constrained-deadline tasksets with 
arbitrary cardinality, there is a speedup-optimal taskset 
V, with Vα  = 1, which has the following parameters:  

Taskset V has an infinite number of tasks and is 
expressed as the limit of the following taskset as 

∞→n . 
)1/()1(1 −−++==≠∀ niXTDni ii

)1/(1 −= nCi

XCn = , XDn += 2 , ∞=nT    (12) 
Where 0≥X  is some as yet unknown value for the 
execution time of nτ . 

Note that in Theorem 2, the total higher priority task 
execution time has again been normalised to 1 and the 
task periods and deadlines adjusted accordingly. There is 
one free variable in the taskset parameters, that is X, the 
execution time of task nτ . This taskset is illustrated in 
Figure 3. 

Figure 3 
Proof: Proof follows directly from Lemmas 1 to 9, 
specifically: 

o nτ  must be a constraining task, with the longest 
deadline and the lowest priority (Lemma 1). 

o nτ  must have an infinite period (Lemma 2). 
o nDt =  must be the start of an idle period 

(Lemma 3). 
o ni DTni <≠∀  (Lemma 4) 
o ii TDni =≠∀  (Lemma 5). 
o 2/ni DTni >≠∀  (Lemma 6). 
o Following a critical instant, nτ  must execute 

continuously from when it first starts execution 
until it completes (Lemma 7). 

o The task parameters must comply with the 
following equation (Lemma 8): 

∑∑
∈∀∀

+==≠∀
)(ihpj

j
j

jii CCTDni

Finally, applying Lemma 9 repeatedly shows that 
slicing the total amount of higher priority task execution 
time into an infinite number of tasks each with an 
infinitesimal execution time leads to a speedup-optimal 
taskset6

□

3.1. Method and intuition 
The problem of determining the parameters of a 

speedup-optimal taskset for the class of tasksets with 
constrained-deadlines is solved by breaking it down into 
a series of basic steps corresponding to Lemmas 1 to 8. 

At each step, we start with a set Z of tasksets, where 
Z is known to contain at least one speedup-optimal 
taskset. We then place a condition on the task 
parameters which selects a subset Y of the tasksets in Z 
( ZY ⊆ ). We then prove that for every taskset S that is 
in Z but is not a member of Y ( cYZS ∩∈ , where cY  is 
the complement of Y), there is a taskset YV ∈ that has 
an EDF scaling factor Vf  at least as large as that of 
taskset S ( SV ff ≥ ). Hence we show that the reduced set 
Y also contains at least one speedup-optimal taskset. 

Lemmas 1-8 are proved by contradiction. They 
work in the following way: First we assume (for 
contradiction) that there is a taskset cYZS ∩∈  with an 
EDF scaling factor strictly larger than that of any taskset 
in Y. We then show that this cannot be the case, by 
transforming taskset S into another taskset YV ∈  which 
we show has an EDF scaling factor at least as large as 
that of S ( SV ff ≥ ). This contradicts the original 
assumption. It follows that there are no tasksets in 

cYZ ∩  that have an EDF scaling factor strictly greater 
than the maximum EDF scaling factor of any task in Y. 
As Z was known to contain at least one speedup-optimal 
taskset (with the maximum EDF scaling factor), then it 
follows that there must be at least one taskset in Y that 
has the maximum EDF scaling factor, and so is a 
speedup-optimal taskset, which proves the Lemma. 

Lemma 1 starts with Z representing the set of all 
tasksets that are just schedulable according to fixed 
priority pre-emptive scheduling. By definition, this set 
contains at least one speedup-optimal taskset. Once 

6 Strictly speaking, a speedup optimal taskset does not exist for the 
case of tasksets with arbitrary cardinality, in the same way that a 
largest integer does not exist for the infinite set of all integers. The 
concept of a speedup optimal taskset is however extremely useful in 
understanding processor speedup factors. In Theorem 2 we therefore 
express the speedup optimal taskset in terms of the limit of a taskset as 
its cardinality approaches infinity, and refer to it in subsequent text as 
if it does exist. We note that in practice, all real-time systems have a 
finite number of tasks, and speedup optimal tasksets exist for any class 
of tasksets with cardinality limited by a finite value. 
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Lemma 1 is proven, we know that the subset ZY ⊆
contains at least one speedup-optimal taskset. 

Each subsequent lemma starts by setting Z equal to 
the subset Y defined by the previous lemma; hence 
multiple conditions are applied resulting in a constrained 
subset that is known to contain at least one speedup-
optimal taskset. At the end of Lemmas 1-8, this allows 
for just one free variable X among the taskset 
parameters, aside from the number of tasks which is 
addressed by Lemma 9. By virtue of Lemmas 1-9, 
Theorems 1 and 2 define speedup-optimal tasksets 
sufficiently well for subsequent analysis of the exact 
processor speedup factor in Section 4. 

In a number of the lemmas, we make use of the 
concept of a sustainable change. A change to the 
parameters of the tasks in a schedulable taskset is said to 
be sustainable (Baruah and Burns, 2006) if following 
that change the taskset is guaranteed to remain 
schedulable. Baruah and Burns (2006) showed that 
under both EDF and fixed priority pre-emptive 
scheduling, increases in task periods, increases in task 
deadlines, and decreases in task execution times are all 
sustainable changes. 

3.2. Lemmas 1-9 
The following lemmas are applicable to the class of 

tasksets with constrained deadlines. 

Lemma 1: Let Z be the set of all (constrained-deadline) 
tasksets that are just schedulable according to fixed 
priority pre-emptive scheduling ( 1=Sα  for all the 
tasksets in Z). By definition, this set contains at least one 
taskset that is speedup-optimal with respect to the class 
of tasksets with constrained deadlines. Let ZY ⊆  such 
that every taskset in Y has a single constraining task, and 
that task has the lowest priority, and hence the longest 
deadline. The set Y contains at least one speedup-
optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

By Corollary 4, taskset S contains at least one 
constraining task. Let task iτ  ( )ni ≠  be the highest 
priority constraining task in S . (Note, nτ  cannot be the 
highest priority constraining task in S, otherwise S
would be a member of Y). We now create a new taskset 
V by removing all tasks of lower priority than i from S. 
As the lowest priority task in V is a constraining task, 

Vα  = 1, and hence YV ∈ . Further, the tasks in V are a 
subset of the tasks in S. Removing a task is equivalent to 
decreasing its execution time to zero, and decreasing the 
execution time of any task is a sustainable change under 
both fixed priority and EDF scheduling. Taskset V, 
scaled by a factor of Sf  is therefore schedulable under 

EDF, hence SV ff ≥ . This contradicts our original 
assumption, hence there are no tasksets in cYZ ∩  that 
have an EDF scaling factor strictly greater than the 
maximum EDF scaling factor of any taskset in Y, and so 
there must be at least one speedup-optimal taskset in Y 
□

Lemma 2: Let Z be the set Y defined by Lemma 1, and 
Y be redefined as follows: ZY ⊆  such that every taskset 
in Y has a lowest priority task nτ  with an infinite period. 
The set Y contains at least one speedup-optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

We now create a new taskset V from taskset S, by 
increasing the period of task nτ  to infinity. Taskset V
has Vα  = 1, as schedulability of nτ  under fixed priority 
pre-emptive scheduling is independent of its period nT
provided that nn TD ≤  (see Equation (1)), hence YV ∈ . 

Increasing the period of any task is a sustainable 
change under fixed priority and EDF scheduling and so 
taskset V, scaled by a factor of Sf  is schedulable under 
EDF, hence SV ff ≥ . This contradicts our original 
assumption, hence there are no tasksets in cYZ ∩  that 
have an EDF scaling factor strictly greater than the 
maximum EDF scaling factor of any taskset in Y, and so 
there must be at least one speedup-optimal taskset in Y 
□

Lemma 3: Let Z be the set Y defined by Lemma 2, and Y
be redefined as follows: ZY ⊆  such that every taskset 
in Y has a priority level-(n-1) idle period starting at time 

nDt = , following a critical instant at time t = 0, when 
all of the tasks are released simultaneously, and are then 
released again as early as possible. Stated otherwise, all 
of the task execution released in the interval ),0[ nD  is 
completed by nD , and no task of priority higher than n
is released at time nD . The set Y contains at least one 
speedup-optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

For taskset S, with a critical instant at time t = 0, 
time nDt =  is not the start of a priority level-(n-1) idle 
period, otherwise S would be a member of Y. Let the 
next such idle period start at some later time 

nn DDt >′= . We now create a new taskset V from
taskset S by increasing the deadline of nτ  to nD′ . We 
refer to the modified task as nτ ′ . As nτ ′  is a constraining 
task, taskset V has Vα  = 1 and hence YV ∈ . 

Increasing the deadline of any task is a sustainable 
change under fixed priority and EDF scheduling and so 
taskset V, scaled by a factor of Sf  is schedulable under 
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EDF, hence SV ff ≥ . This contradicts our original 
assumption, hence there are no tasksets in cYZ ∩  that 
have an EDF scaling factor strictly greater than the 
maximum EDF scaling factor of any taskset in Y, and so 
there must be at least one speedup-optimal taskset in Y 
□

Lemma 4: Let Z be the set Y defined by Lemma 3, and 
Y be redefined as follows: ZY ⊆  such that every taskset 
in Y has task periods such that ni DTni <≠∀ . The set 
Y contains at least one speedup-optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

Let iτ  be a task in taskset S that has ni DT ≥ . We 
now create a new taskset V from taskset S by removing 
each such task iτ  with ni DT ≥ , and increasing the 
execution time of nτ  by iC  (to form task nτ ′ ). As there 
was only one invocation of each such task iτ  in the 
interval ),0[ nD , the same amount of computation 
remains in this interval, hence nτ ′  is a constraining task 
and Vα  = 1, hence YV ∈ . 

As nτ ′  has an infinite period (due to the constraints 
placed on the tasksets in set Z by Lemma 2) and a 
deadline not less than that of iτ  (due to the constraints 
placed on the tasksets in the set Z by Lemma 1), then the 
processor demand function )(th  for taskset V is never 
larger than that for taskset S. Taskset V scaled by a 
factor of Sf  is therefore schedulable under EDF, hence 

SV ff ≥ . This contradicts our original assumption, 
hence there are no tasksets in cYZ ∩  that have an EDF 
scaling factor strictly greater than the maximum EDF 
scaling factor of any taskset in Y, and so there must be at 
least one speedup-optimal taskset in Y 
□

Lemma 5: Let Z be the set Y defined by Lemma 4, and 
Y be redefined as follows: ZY ⊆  such that every taskset 
in Y has task periods and deadlines such that 

ii TDni =≠∀ . The set Y contains at least one 
speedup-optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

Let iτ  be a task in taskset S that has ii TD < . We 
now create a new taskset V from taskset S by increasing 
the deadline of each such task iτ , to form task iτ ′  with 

ii TD =′ . The total execution time in ),0[ nD  remains the 
same, and so nτ  remains a constraining task and so Vα
= 1, hence YV ∈ .  

Increasing the deadline of any task is a sustainable 
change under fixed priority and EDF scheduling and so 
taskset V, scaled by a factor of Sf  is schedulable under 

EDF, hence SV ff ≥ . This contradicts our original 
assumption, hence there are no tasksets in cYZ ∩  that 
have an EDF scaling factor strictly greater than the 
maximum EDF scaling factor of any taskset in Y, and so 
there must be at least one speedup-optimal taskset in Y 
□

We note that the transformation detailed in the proof 
of Lemma 5 may result in changes to the order of task 
deadlines with respect to task priority. We assume that if 
this is the case, then the task priorities are altered so that 
they are once again in deadline monotonic priority order. 
We note that this does not affect taskset schedulability 
as deadline monotonic priority ordering is known to be 
optimal (Leung and Whitehead, 1982), and the taskset 
remains schedulable with its original priority ordering. 
Further, Lemma 4, shows that ni DTni <≠∀ , hence 
after the above transformation, ni DDni <≠∀ , so 
task nτ  remains the lowest priority and constraining 
task. 

Lemma 6: Let Z be the set Y defined by Lemma 5, and 
Y be redefined as follows: ZY ⊆  such that every taskset 
in Y has task periods such that 2/ni DTni >≠∀ . The 
set Y contains at least one speedup-optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

Let iτ  be a task in S that has 2/ni DT ≤ . We now 
create a new taskset V from taskset S by transforming 
the parameters of each such task iτ  (to form task iτ ′ ) as 
follows. ii mCC =′ , iii mTTD =′=′  where ⎣ ⎦in TDm /= . 
As 2/ni DT ≤  we have 2/nin DTD ≥′≥ . 

We note that this transformation may result in 
changes to the order of task deadlines with respect to 
task priority. We assume that if this is the case, then the 
task priorities are altered so that the tasks are once again 
in deadline monotonic priority order. Note that nτ
remains the lowest priority task. 

Following the above transformation, the amount of 
execution time released by iτ ′  in the interval ),0[ nD
cannot be less than that released by iτ , hence taskset V
has 1≤Vα . (We consider the fact that taskset V may 
now be unschedulable according to fixed priority 
scheduling (i.e. 1<Vα ) later in the proof). 
 Considering EDF scheduling, the contribution to the 
processor demand function from each original task iτ
(with ii TD = ) is given by: 

i
i

i C
T
tth ⎥
⎦

⎥
⎢
⎣

⎢
=)(       (4) 

Similarly, the contribution to the processor demand 
function from each transformed task iτ ′  is given by: 
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i
i

i mC
mT

tth ⎥
⎦

⎥
⎢
⎣

⎢
=′ )(      (5) 

Equations (4) and (5) are both monotonically non-
decreasing functions of t. 

)(thi  is zero for iTt < , and only increases in value 
at times igTt = , for integer values of g. At these 
times, ii gCth =)( . 

)(thi′  is zero for imTt < , and only increases in 
value at times ikmTt = , for integer values of k. At 
these times, ii kmCth =′ )( . 

Now substituting the times at which Equation (5) 
increases into Equation (4), we find that at these times, 

ii kmCth =)( , hence )()( ththt ii ′≥∀ . 
As the processor demand function )(th  for taskset V

is never larger than that for taskset S, taskset V, scaled 
by a factor of Sf  is schedulable under EDF, hence 

SV ff ≥ . 
We now further transform taskset V ensuring that it 

is just schedulable according to fixed priority pre-
emptive scheduling, and a member of the set Y. We 
achieve this by applying the following steps 1-6 
repeatedly until the parameters of the taskset cease to 
change on step 6: 

1. Reduce all task execution times by the same 
scaling factor until taskset V is just schedulable 
according to fixed priority pre-emptive 
scheduling. We now have 1=Vα . Reducing 
task execution times is a sustainable change, 
and so cannot decrease the taskset�s EDF 
scaling factor Vf . 

2. Remove all tasks of lower priority than the 
highest priority constraining task (Lemma 1). 

3. Give the lowest priority task nτ , the longest 
possible (e.g. infinite) period (Lemma 2). 

4. Increase the deadline of task nτ  until there is a 
priority level-(n-1) idle period starting at nD
(Lemma 3). 

5. Remove any task iτ  with ni DT ≥ , and add its 
execution time to that of the lowest priority task 
(Lemma 4). 

6. Transform the parameters of any task iτ  with 
2/ni DT ≤ , as described in the 2nd paragraph of 

this proof, and re-assign task priorities in 
deadline monotonic priority order.  

Note that step 6 can only change the taskset 
parameters if a task was removed in step 2, and so the 
number of times that the sequence of six steps can repeat 
is limited by the cardinality of the original taskset. 

Once the repeated transformation is complete, then 
taskset V complies with the constraints imposed by 
Lemmas 1-6 and has 1=Vα , hence YV ∈ . 

As none of the above six steps can decrease the EDF 
scaling factor of taskset V, we have SV ff ≥ . This 
contradicts our original assumption, hence there are no 
tasksets in cYZ ∩  that have an EDF scaling factor 
strictly greater than the maximum EDF scaling factor of 
any taskset in Y, and so there must be at least one 
speedup-optimal taskset in Y 
□

Corollary 3: There is a speedup-optimal taskset where, 
following a critical instant, all tasks with priorities 
greater than n execute exactly twice in the interval 

),0[ nD . This follows directly from the fact that all 
tasksets in the set Y defined by Lemma 6 have this 
property. 

Lemma 7: Let Z be the set Y defined by Lemma 6, and 
Y be redefined as follows: ZY ⊆  such that every taskset 
in Y, has task nτ  executing continuously from when it 
first starts execution until it completes, without pre-
emption by any higher priority task iτ  (assuming the 
tasks are released at a critical instant). The set Y contains 
at least one speedup-optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

Corollary 3 shows that any task iτ  ( ni ≠ ) in taskset 
S executes exactly twice in the interval ),0[ nD . 

We now construct a new taskset V from taskset S, 
initially, we make V a copy of S, then we apply the 
following transformation repeatedly until there are no 
tasks in V whose second invocation is released prior to 
the completion of nτ . 

Transformation: Let iτ  ( ni ≠ ) be a task in V that 
initially pre-empts nτ  at time iT , and that an amount of 
execution time 0≠nc , of task nτ  remains at this time. 
We increase both the period and deadline of iτ  by nc
(to form task iτ ′ ), hence niii cTTD +=′=′ . We note that 
there is no idle time in the interval ),0[ iT ′  as any time in 
this interval that is not now taken up processing iτ ′  will 
instead be used to execute nτ  (or another task of higher 
priority than n).  

Each time the transformation is applied, the total 
execution time in ),0[ nD  remains the same, it is just re-
ordered, hence nτ  remains a constraining task and Vα  = 
1. 

Repeated application of the above transformation 
until there are no tasks whose second invocation is 
released prior to the completion of nτ  results in a taskset 
V where nτ  is not pre-empted following a critical 
instant, and Vα  = 1, hence YV ∈ . 

Increasing the deadline or period of any task is a 
sustainable change under fixed priority and EDF 
scheduling and so taskset V, scaled by a factor of Sf  is 
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schedulable under EDF, hence SV ff ≥ . This 
contradicts our original assumption, hence there are no 
tasksets in cYZ ∩  that have an EDF scaling factor 
strictly greater than the maximum EDF scaling factor of 
any taskset in Y, and so there must be at least one 
speedup-optimal taskset in Y 
□

We note that the transformation detailed in the proof 
of Lemma 7 may also result in changes to the order of 
task deadlines with respect to task priority. Again, we 
assume that if this is the case, then the task priorities are 
altered so that they are once again in deadline monotonic 
priority order. We note again that this does not affect 
taskset schedulability as deadline monotonic priority 
ordering is optimal, and the taskset remains schedulable 
with its original priority ordering. Further, Lemma 4, 
shows that ni DTni <≠∀ , hence after the above 
transformation, ni DDni <≠∀ , so task nτ  remains 
the lowest priority and constraining task. 

We further note that the transformation detailed in 
the proof of Lemma 7 may, in some cases, need to be 
applied more than once per higher priority task, before 
the final state with no second invocations prior to the 
completion of nτ  is reached. 

Lemma 8: Let Z be the set Y defined by Lemma 7, and 
Y be redefined as follows: ZY ⊆  such that every taskset 
in Y, has task parameters related according to Equation 
(6).  

∑∑
∈∀∀

+==≠∀
)(ihpj

j
j

jii CCTDni   (6) 

The set Y contains at least one speedup-optimal taskset. 

Proof: We assume (for contradiction) that there is a 
taskset cYZS ∩∈  that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y. 

By Lemma 1, as nτ  is a constraining task, taskset S
has no idle time in the interval ),0[ nD . By Lemma 7, 
assuming priorities in deadline monotonic order, the 
period and deadline of 1τ  are equal to the completion 
time of task nτ . 

∑
∀

=
j

jCD1        (7) 

For i = 2..(n-1), as there is no idle time in the 
interval, then task iτ  must have a period (and deadline) 
less than or equal to the completion time of the second 
invocation of 1−iτ . This completion time is given by: 

∑∑
∈∀∀

+
)(ihpj

j
j

j CC        (8) 

Let iτ  be a task in taskset S where the period and 
deadline of iτ  are less than this completion time. 

We now create a new taskset V from taskset S by 
increasing the period and deadline of each such task iτ , 
to the completion time of task 1−iτ . Following this 

transformation, the total execution time in ),0[ nD
remains the same, hence nτ  remains a constraining task 
and Vα  = 1, hence YV ∈ . 

Increasing the deadline or period of any task is a 
sustainable change under fixed priority and EDF 
scheduling and so taskset V, scaled by a factor of Sf  is 
schedulable under EDF, hence SV ff ≥ . This 
contradicts our original assumption, hence there are no 
tasksets in cYZ ∩  that have an EDF scaling factor 
strictly greater than the maximum EDF scaling factor of 
any taskset in Y, and so there must be at least one 
speedup-optimal taskset in Y 
□

Lemma 9: Let the set Y be as defined by Lemma 8. For 
a taskset YS ∈ , splitting a task iτ  ( ni ≠ ) with 
parameters iC , ii TD = , into two new tasks, iτ ′  and iτ ′′
with parameters iC ′  (where iC ′  is any arbitrary non-zero 
value that is less than iC ), iii DTD =′=′  and 

iii CCC ′−=′′ , iiii CDTD ′+=′′=′′  results in a new taskset 
YV ∈  with a speedup factor at least as large as that for 

taskset S (i.e. SV ff ≥ ). 

Proof: The execution of tasks iτ ′  and iτ ′′  (from taskset 
V) exactly replaces that of task iτ  (from taskset S) in the 
interval ),0[ nD  starting from a critical instant, hence nτ
remains a constraining task and Vα  = 1.  

We prove the Lemma by showing that at any 
arbitrary time t, the processor demand bound function 
for taskset V is no greater than that for taskset S. The 
demand bound functions are identical save for the 
contributions from tasks iτ , iτ ′  and iτ ′′ . We therefore 
only consider the contributions from these tasks. 
The contribution from tasks iτ ′  and iτ ′′  is given by: 
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The contribution from task iτ  is given by: 
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For positive values of iC ′ , then: 
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Hence )()()( ththth iii ≤′′+′  and so taskset V is 
schedulable with an EDF scaling factor at least as large 
as that for taskset S (i.e. SV ff ≥ ) 
□

4. Processor speedup factor for constrained-
deadline tasksets

In this section, we derive the processor speedup 
factor for constrained-deadline tasksets under fixed 
priority pre-emptive scheduling. We do this first for 
tasksets of cardinality two and then for the general case 
of cardinality n. 

In each case, the basic approach we use is as follows: 
o First, we derive an upper bound on the 

maximum EDF scaling factor of the appropriate 
speedup-optimal taskset (defined in either 
Theorem 1 or Theorem 2), assuming any 
arbitrary value for the execution time X, of the 
lowest priority task. As part of this derivation, 
we determine the value of X that results in this 
upper bound. 

o Second, we prove that the maximum EDF 
scaling factor is in fact equal to the upper 
bound. We do this by showing that the speedup-
optimal taskset, characterised by the previously 
obtained value of X, is schedulable according to 
EDF when all task execution times are scaled 
by the upper bound. This shows that the bound 
is tight.  

o Finally, the processor speedup factor for fixed 
priority pre-emptive scheduling is equal to the 
maximum EDF scaling factor (for any value of 
X) for the speedup-optimal taskset. So the 
processor speedup factor is equal to our tight 
upper bound. 

Theorem 3: For a constrained-deadline taskset of 
cardinality two, the processor speedup factor for fixed 
priority pre-emptive scheduling is 414214.12 ≈ . 

Proof: We prove the theorem by determining the 
maximum EDF scaling factor for the taskset V described 
in Theorem 1, for any value of X. 

Three constraints on the EDF scheduling of the 
taskset described in Theorem 1, after it is scaled by a 
factor f are: 

(i) Task 2τ  with execution time fX must 
complete by its deadline at 2+X (subject to 
interference of f from task 1τ ). 

(ii) The second invocation of task 1τ  must 
complete by its deadline at 2X+2. 

(iii) The total utilisation of task 1τ  must be less 
than or equal to 1 (The utilisation of task 

2τ  is effectively zero as it has an infinite 
period). 

Constraint (i), leads to the following equation 
bounding the EDF scaling factor as a function of X: 

X
XXf

+
+

=
1
2)(1         (13)

Constraint (ii), leads to the following equation, also 
bounding the EDF scaling factor as a function of X: 

X
XXf
+
+

=
2

22)(2       (14)

Constraint (iii), again leads to an equation bounding the 
EDF scaling factor: 

XXf +=1)(3        (15)
As )(2)(3 XfXf ≥  for all values of X, we may 
disregard )(3 Xf  as )(2 Xf  provides a tighter bound. 

Figure 4 illustrates the three functions bounding the 
EDF scaling factor for two tasks. 

Equation (13) is a continuous non-increasing 
function of X with a maximum value of f1(0) = 2. 
Equation (14) is a continuous non-decreasing function of 
X with a minimum value of f2(0) =1. Hence, the 
intersection of these two functions determines an upper 
bound on the maximum EDF scaling factor f. We have: 

X
X

X
X

+
+

=
+
+

2
22

1
2

)1)(22()2( 2 XXX ++=+

24244 22 ++=++ XXXX
22 =X
2=X

2
222

)222(2
22
222)2(2 =

+

+
=

+

+
=f   (16) 

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
X

Sp
ee

du
p 

fa
ct

or
 f

f1(X)
f2(X)
f3(X)

Figure 4: Constraints on the speedup factor for 
two tasks 

To show that the maximum EDF scaling factor is 
equal to this upper bound, we must show that the taskset 
is schedulable, with scaled parameters, under EDF. 
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 The scaled taskset parameters are as follows: 
21 =C , 211 +=D , 211 +=T

22 =C , 222 +=D , ∞=2T
The taskset is schedulable provided that 1/)( ≤∀ ttht
(See Equation (2)). From Equation (2), we note that the 
maximum value of tth /)(  occurs at the deadline of 
some invocation of a task. It is therefore sufficient to 
check that 1/)( ≤tth  at the deadlines of all task 
invocations. 

For task 2τ , there is only one deadline to consider, 
222 +=D , and: 

1
22
22

2222
)22( 12 =

+

+
=

+

+
=

+

+ CCh    (17) 

For task 1τ , there are deadlines to consider at times 
)21(1 +== kkDt , where k is a positive integer. For 

1=k , we have: 

1
21

2
2121

)21( 1 <
+

=
+

=
+

+ Ch    (18) 

Further, for 2≥k , we have: 

1
)21(

)21(

)21(
22

)21()21(
))21(( 2

21 =
+

+
≤

+

+
=

+

+
=

+

+ ≥

k
k

k
k

k
CkC

k
kh k

 (19) 
Hence the taskset is schedulable. The maximum EDF 
scaling factor, for any value of X, is therefore 2 . 

For a constrained-deadline taskset of cardinality 
two, the processor speedup factor for fixed priority pre-
emptive scheduling is equal to the maximum EDF 
scaling factor (for any value of X) for the speedup-
optimal taskset described Theorem 1 
□

Corollary 5: The maximum EDF scaling factor and 
hence the processor speedup factor for a constrained-
deadline taskset of cardinality two is achieved for the 
taskset described in Theorem 1, with a value of 

2=X . 

Next we derive the processor speedup factor for the 
general case of n tasks. We do this by reference to the 
speedup-optimal taskset described in Theorem 2; 
however, first we prove the following Lemma. 

Lemma 10: The total utilisation of the higher priority 
tasks 1τ  to 1−nτ  in taskset V described in Theorem 2 is 
given by: 

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
X
XU V

1
2ln        (20) 

Proof: Given that the execution time of each higher 
priority task is 1/(n-1) and the period of task iτ  is 

))1/()1(1( −−++ niX , the total utilisation of tasks 1τ

to 1−nτ  described in Theorem 2, is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++−

= ∑
−

=
∞→−

1

11 ))1/()1(1(
1

)1(
1lim

n

in

V

niXn
U  (21) 

Substituting k = n-1 gives: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

= ∑
=

∞→

k

ik

V

kiXk
U

1 )/)1(1(
11lim    (22) 

Equation (22) is recognisable as the Riemann sum7 of 
the function y =1/z over the partition [(1+X), (1+X)+1]. 
The start of each of the k intervals in the Riemann sum is 
at kiX /)1(1 −++  (for i = 1 to k), and the width of each 
interval is 1/k. 
 The limit as ∞→k  of the Riemann sum is simply 
the integral over the partition so: 

∫
+

+

⎟
⎠
⎞

⎜
⎝
⎛

+
+

==
X

X

V

X
Xdz

z
U

2

1 1
2ln1      (23) 

□

Theorem 4: For a constrained-deadline taskset of 
arbitrary cardinality, the processor speedup factor for 
fixed priority pre-emptive scheduling is 1.76322/1 ≈Ω
(Where Ω  is the mathematical constant defined by the 
transcendental equation Ω=Ω)/1ln( . Hence, 

0.567143≈Ω ). 

Proof: We prove the theorem by determining the 
maximum EDF scaling factor for the taskset V described 
in Theorem 2, for any value of X. 
 Two constraints on the EDF scheduling of taskset V, 
after it is scaled by a factor f are: 

(i) nτ  with execution time fX must complete 
by 2+X (subject also to interference in total 
of f from tasks 1τ  to 1−nτ ). 

(ii) The total utilisation of tasks 1τ  to 1−nτ
must be less than or equal to 1. (The 
utilisation of task nτ  is effectively zero as 
it has an infinite period). 

Constraint (i), leads to the following equation 
bounding the EDF scaling factor as a function of X. 

X
XXf

+
+

=
1
2)(1        (24)

Constraint (ii), leads via Lemma 10, to the following 
equation which bounds the EDF scaling factor as a 
function of X (assuming U = 1): 

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=

X
X

Xf

1
2ln

1)(2      (25) 

7 Technically it is the �left Riemann sum� as the function is 
approximated by its value at the left end point of each interval. 
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Figure 5: Constraints on the speedup factor for 
n tasks with D≤≤T 

Equation (24) is a continuous non-increasing function of 
X with a maximum value of f1(0) = 2. Equation (25) is a 
continuous non-decreasing function of X with a 
minimum value of f2(0) = 44270.1)2ln(/1 ≈ . Hence, the 
intersection of the two functions determines an upper 
bound on the EDF scaling factor f. 

Figure 5 illustrates the two functions bounding the 
EDF scaling factor, plotted against values of X. 

The intersection of the two functions is given by: 

)(1
1
2

1
2ln

1)(2 Xf
X
X

X
X

Xf =
+
+

=
⎟
⎠
⎞

⎜
⎝
⎛

+
+

=   (26) 

Hence we need to find the value of X such that: 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
+

X
XX

X

1
2

1
1
2ln      (27) 

Which can be re-written as: 

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
+ X

X

X
X 2

1

2
1

1ln     (28) 

Noticing the similarity between Equation (28) and 
that defining the mathematical constant 
Ω ( Ω=Ω)/1ln( ), we have: 

Ω=
+
+

X
X

2
1         (29) 

Ω
=

+
+ 1

1
2

X
X         (30)

and hence 

Ω−
−Ω

=
1

12X          (31) 

Therefore 

Ω
=⎟

⎠
⎞

⎜
⎝
⎛

Ω−
−Ω

=⎟
⎠
⎞

⎜
⎝
⎛

Ω−
−Ω 1

1
121

1
122 ff     (32) 

To show that the maximum EDF scaling factor is 
equal to this upper bound, we must show that the taskset 
given in Theorem 2 is schedulable under EDF, for the 
value of X given by Equation (31) and with execution 
times scaled by a factor of Ω= /1f . 

To prove that this taskset is schedulable, we show 
that its processor demand bound function )(th , is such 
that 1/)( ≤∀ ttht . Our proof proceeds as follows: 

o First, we represent )(th  by an infinite series of 
piecewise linear functions, the kth of which 
corresponds to the processor demand from the 
kth invocations of all the higher priority tasks 
( ni ≠ ). 

o Next, using these piecewise linear functions, 
we show that the maximum value of tth /)(
must occur for some value of )2( Xkt += , 
where k is an integer. We use the discrete 
function H(k) to denote the values of tth /)(  at 
these maxima. 

o Finally, we show that 1)(1 ≤≥∀ kHk , hence 
proving that 1/)( ≤∀ ttht . 

We first consider the contribution )(th′ , to the 
processor demand bound function )(th , from all the 
higher priority tasks ( ni ≠∀ ): 

∑
−

=∞→− ⎥
⎦

⎥
⎢
⎣

⎢
−−++−

=′
1

11 )1/()1(11
lim)(

n

in niX
t

n
fth   (33) 

In the limit as ∞→−1n , we can represent this 
contribution as the sum of an infinite series of piecewise 
linear functions ),( tkg ′  for ∞= ..1k , where the kth 
function represents the contribution from the kth 
invocations of all the higher priority tasks ( ni ≠ ). 

∑
∞

=

′=′
1

),()(
k

tkgth        (34) 

where: 

⎪
⎩

⎪
⎨

⎧

+≥
+<≤+

+<≤
+−=′

)2(
)2()1(

)1(0
))1((

0
),(

Xkt
XktXk

Xkt

f

Xkt
k
ftkg

 (35) 
The contribution from task nτ  is similarly represented 
by a piecewise linear function: 

)2(
)2(00

)(
Xt

Xt
fX

tg
+≥
+<≤

⎩
⎨
⎧

=′′      (36) 

The processor demand bound function )(th , is therefore: 

∑
∞

=

′+′′=
1

),()()(
k

tkgtgth       (37) 

Figure 6 illustrates tth /)(  plotted against )2/( Xt + .  
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Figure 6: h(t)/t for the speedup-optimal taskset 
As )(th  is composed from the piecewise linear functions 

),( tkg ′  and )(tg ′′ , tthty /)()( =  is itself a piecewise 
continuous function, which is differentiable at all values 
of t, with the exception of the start and end points of the 
pieces, given by )1( Xj + , and )2( Xk + , where j and k
are integers. 
 Within each piece, )(ty  is differentiable with 
respect to t. From Equations (35), (36) and (37): 

2t
c

dt
dy p=      (38) 

where pc  is a constant for the particular piece. Note that 
pc  can be computed from Equation (37), and could take 

positive, zero or negative values for a given piece; 
however, the actual values for different pieces are 
irrelevant, what is important is the form of the first 
derivative. 
 Equation (38) indicates that there are no turning 
points (maxima or minima where 0/ =dtdy ) within 
each piece, unless 0=pc , in which case all points 
within the piece and its end points are potentially 
maxima or minima that have the same value. Thus, to 
find the maximum value of the function tth /)( , we need 
only consider the end points of the pieces. 
 Further, from Equation (35), we observe that at 
points )1( Xj + , the slope of tth /)(  increases, as the jth 
invocations begin to contribute to )(th , whilst at points 

)2( Xk + , the slope of tth /)(  decreases, as the kth 
invocations cease to contribute to )(th . Thus for tth /)( , 
maxima (but not minima) can occur at )2( Xkt += . 
Similarly, minima (but not maxima) can occur at 

)1( Xjt += . These maxima and minima are depicted in 
Figure 6. 

As the maximum value of tth /)(  must occur for 
some value of )2( Xkt += , we need only consider 

tth /)(  at these specific values of t. We use the discrete 

function H(k) to denote the value of )(th  at 
)2( Xkt += , for ∞= ..1k . 

)2(
))2(()(

Xk
XkhkH

+
+

=        (39) 

 We now use this function to prove that the taskset is 
schedulable, by showing that:  

1)(1 ≤≥∀ kHk       (40) 
Proof of the inequality in equation (40) is in three 
Lemmas: 

1. Lemma 11 shows that as ∞→k , 1)( →kH . 
2. Lemma 12 shows that 6≥∀k , )(kH  is a 

monotonic non-decreasing function of k, with 
)()1( kHkH ≥+ . 

3. Lemma 13 shows that 6≤∀k , 1)( ≤kH

Lemma 11: As ∞→k , 1)( →kH . 

Proof: For 2≥k , and by reference to Equations (35) 
and (36), we can separate the processor demand in the 
interval [0, )2( Xk + ) into 3 components: 

(i) fXXkg =+′′ ))2((
(ii) ))2(,( Xkjg +′  for invocations j=1 to k of 

all the higher priority tasks iτ  ( ni ≠ ). 

fkXkjg
k

j
=+′∑

=1
))2(,(

(iii) ))2(,( Xkjg +′  for invocations j = k+1 to 
∞  of the higher priority tasks iτ  ( ni ≠ ). 
The index of the final invocations that can 
contribute to the processor demand in the 
interval [0, )2( Xk + ), is given 
by ⎣ ⎦)1/()2( XXk ++ , hence: 

∑∑
⎥
⎦

⎥
⎢
⎣

⎢
+
+

+=

∞

+=

+−+
=+′

)1(
)2(

11

)1()2())2(,(
X
Xk

kjkj j
XjXkfXkjg

We can therefore write H(k) as follows: 

∑
⎥
⎦

⎥
⎢
⎣

⎢
+
+

+=

+−+
+

+
+
+

=
)1(
)2(

1

)1()2(
)2()2(

)()(
X
Xk

kj j
XjXk

Xk
f

Xk
XkfkH

(41) 
Noting that fXX =++ )1/()2( , we have: 

⎣ ⎦

∑
+=

−
+

+
+

=
fk

kj j
jfk

kXk
XkkH

1

)(1
)1(
)()(

⎣ ⎦ ⎣ ⎦

∑
+=

+
++−

−
+
+

=
fk

kj j
f

k
kfk

Xk
Xk

1

11)1(
)1(
)(

⎣ ⎦ ⎣ ⎦

∑
+=

++−
+
+

=
fk

kj j
f

k
fk

Xk
Xk

1

11
)1(
)(
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⎣ ⎦ ⎣ ⎦

∑
+=

+−
+

++
=

fk

kj j
f

k
fk

Xk
XXk

1

1
)1(

)2(    (42) 

Substituting, )1/()12( Ω−−Ω=X , )1/(1 Ω−Ω=+ X , 
)1/(12 Ω−=+ X , and Ω= /1f  in Equation (42) gives: 

⎣ ⎦ ⎣ ⎦

∑
Ω

+=Ω
+

Ω
−

Ω
−Ω+

=
/

1

11/12)(
k

kj jk
k

k
kkH

⎣ ⎦ ⎣ ⎦

∑
Ω

+=Ω
+

Ω
−

Ω
−+

Ω
=

/

1

11/121 k

kj jk
k

kk
   (43) 

Note that Equation (43) is only valid for 2≥k , as for 
1=k , ⎣ ⎦Ω>+ /1 kk . 
As 1/z is a positive decreasing function, the 

summation term in Equation (43) is bounded by the 
following integral, (given that ⎣ ⎦ Ω≤Ω // kk ). 

⎣ ⎦
11ln1)/(ln11111 //

1
=⎟

⎠
⎞

⎜
⎝
⎛
ΩΩ

=⎟
⎠
⎞

⎜
⎝
⎛ Ω

Ω
=

Ω
≤

Ω ∫∑
Ω

=

Ω

+= k
kdz

zj

k

kj

k

kj

 (44) 
As ∞→k , ⎣ ⎦ Ω→Ω // kk  hence we have: 

111121)( =+
Ω

−
Ω

−+
Ω

=
∞→

kk
kH

k
   (45) 

□

Lemma 12: 6≥∀k , )(kH  is a monotonic non-
decreasing function, with )()1( kHkH ≥+ . 

Proof: As 76322.1/1 ≈Ω , there are two distinct cases 
to consider: 

Case 1: ⎣ ⎦ ⎣ ⎦ 1//)1( +Ω=Ω+ kk
Case 2: ⎣ ⎦ ⎣ ⎦ 2//)1( +Ω=Ω+ kk

Case 1: ⎣ ⎦ ⎣ ⎦ 1//)1( +Ω=Ω+ kk : 
From Equation (43) we have: 

⎣ ⎦
)1(

1/
)1(

1
)1(

2)()1(
+
+Ω

−
Ω+

−
+

=−+
k

k
kk

kHkH

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑∑
Ω

+=

+Ω

+= Ω
−

Ω
+

Ω
+−

Ω
+

/

1

1/

2

11/1211 k

kj

k

kj jk
k

kkj

⎣ ⎦
)1(

/
)1(

1
)1(

2
+
−Ω

+
Ω+

+
+

−=
kk

kk
kkkk

⎣ ⎦ )1(
1

)1/(
1

+Ω
−

+ΩΩ
+

kk
(46) 

As we are interested only in showing that 
0)()1( ≥−+ kHkH , we are free to multiply the 

expression in Equation (46) by any positive quantity. 
Multiplying by ⎣ ⎦ )1/)(1( +Ω+Ω kkk  gives: 

⎣ ⎦ ⎣ ⎦ )1()/)1(21)(1/( ++ΩΩ+Ω+−Ω−+Ω kkkkk
 (47) 

Substituting ⎣ ⎦ ε−Ω=Ω )/(/ kk , where ε  is a value in 
the range 10 <≤ ε , gives: 

)1()21)(1)/(( ++Ω−Ω−Ω−+−Ω kkkk εε   (48) 
For ease of reference, we refer to the expression in 
Equation (48) as )(εy . Expanding, simplifying and re-
arranging, we have: 

22 22/)( εεεεεε Ω+Ω+Ω+−−−−Ω= kkkkky

kkk ++Ω−Ω−Ω−+ 221 ε
Ω−+Ω−−Ω+−Ω+−Ω+Ω= 21)1/1()1(2 kkk εε

 (49) 
To find the minimum / maximum value of )(εy  for 

any possible value of ε , we differentiate with respect to 
ε : 

)1)(1(2 −Ω++Ω= k
d
dy ε
ε

    (50) 

The turning point (minimum / maximum value) of )(εy
occurs when 0/ =εddy , i.e. for a value of ε  given by: 

Ω
Ω−+

=
2

)1)(1(kε      (51) 

For 2≥k , it follows that the turning point occurs for 
1>ε , which is outside the permitted range of values for 

ε . Hence the maximum / minimum values of )(εy
must occur for the maximum and minimum permitted 
values of ε .  
 We now show that the range of values that ε  can 
take is constrained by the fact that 
⎣ ⎦ ⎣ ⎦ 1//)1( +Ω=Ω+ kk .  
 Assuming that )/1(2 Ω−≥ε , then: 

Ω
−+⎥⎦

⎥
⎢⎣
⎢
Ω

≥+⎥⎦
⎥

⎢⎣
⎢
Ω

=
Ω

12kkk ε     (52) 

and so 

21
+⎥⎦

⎥
⎢⎣
⎢
Ω

≥
Ω
+ kk         (53) 

which implies that ⎣ ⎦ ⎣ ⎦ 2//)1( +Ω=Ω+ kk . This 
contradicts the assumption that ⎣ ⎦ ⎣ ⎦ 1//)1( +Ω=Ω+ kk , 
and so ε  is constrained (for this, Case 1) to be in the 
range )/1(20 Ω−<≤ ε . 
 We now evaluate )(εy  for the minimum and 
maximum possible values of ε . 
For 0=ε , we have: 

Ω−+Ω−−Ω= 21)1/1()0( ky    (54) 
So 0)0( ≥y  provided that: 

684876.0
)1(/1

12
≈

Ω+−Ω
−Ω

≥k    (55) 

Hence 2≥∀k , 0)0( ≥y . 
For )/1(2 Ω−=ε , from Equation (49), we have: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

Ω
+−−Ω+

Ω
+−−Ω=Ω−

122212)/1(2 kkkky

⎟
⎠
⎞

⎜
⎝
⎛ Ω−+Ω−−
Ω

+⎟
⎠
⎞

⎜
⎝
⎛

Ω
−Ω+ 2112

2

kkk   (56) 

Simplifying: 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛

Ω
−−⎟

⎠
⎞

⎜
⎝
⎛ Ω+−
Ω

+⎟
⎠
⎞

⎜
⎝
⎛

Ω
−Ω=Ω−

124212)/1(2
2

ky

 (57) 
So ( ) 0)/1(2 ≥Ω−y  provided that: 

190228.2
42

1212
2

≈
⎟
⎠
⎞

⎜
⎝
⎛ Ω+−
Ω

⎟
⎠
⎞

⎜
⎝
⎛

Ω
−Ω−⎟

⎠
⎞

⎜
⎝
⎛

Ω
−

≥k  (58) 

Hence 3≥∀k , ( ) 0)/1(2 ≥Ω−y . 

To summarise,  
(i) In this case, the range of potential values 

for ε  is limited to 
236778.0)/1(20 ≈Ω−<≤ ε . 

(ii) Equation (51) shows that provided 2≥k , 
)(εy  has no turning points in the range 

10 <≤ ε , and so the maximum and 
minimum values of )(εy  must occur for 
the maximum and minimum permitted 
values of ε . 

(iii) Equations (55) and (58) show that for 
3≥k , the maximum and minimum values 

of )(εy  are both positive. 
We conclude that for 3≥k , )(εy  is always positive and 
hence for 3≥k  and ⎣ ⎦ ⎣ ⎦ 1//)1( +Ω=Ω+ kk , 

)()1( kHkH ≥+ . 

Case 2: ⎣ ⎦ ⎣ ⎦ 2//)1( +Ω=Ω+ kk : 
From Equation (43) we have: 
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kkk
(59) 

As we are interested only in showing that 
0)()1( ≥−+ kHkH , we are free to multiply the 

expression in Equation (59) by any positive quantity. 
Multiplying by ⎣ ⎦ ⎣ ⎦ )2/)(1/)(1( +Ω+Ω+Ω kkkk  gives: 

⎣ ⎦ ⎣ ⎦ ⎣ ⎦)/)21(21)(1/)(2/( ΩΩ+Ω+−Ω−+Ω+Ω kkkk

⎣ ⎦ ⎣ ⎦ )2/)(1()1/)(1( +Ω+++Ω++ kkkkkk  (60) 
Substituting ⎣ ⎦ ε−Ω=Ω )/(/ kk , where ε  is a value in 
the range 10 <≤ ε , gives: 
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Expanding we have: 

kkkkkkkk 22
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 (62) 
For ease of reference, we refer to the expression in 
Equation (62) as the function )(εy . Simplifying and re-
arranging, we have: 

( ) 3)( εε Ω−=y

( ) 2212 εkk Ω−+Ω++

ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω+Ω+−+−

Ω
−

Ω
−+ kkkkk 64322 2

2

kkkkk
Ω−Ω−+−−

Ω
+

Ω
+ 442333 2

2

2

(63) 
To find the minimum / maximum value of )(εy  for 

any possible value of ε , we differentiate with respect to 
ε : 

( )εε
ε

kk
d
dy

Ω−+Ω++Ω−= 21223 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω+Ω+−+−

Ω
−

Ω
−+ kkkkk 64322 2

2

(64) 
The turning points (minimum / maximum values) of 
)(εy  occur when 0/ =εddy , i.e. for the values of ε

given by the solutions to a quadratic equation, formed 
from the expression in Equation (64). 
 The solutions to a quadratic equation of the form 

02 =++ cba εε  are given by: 

a
acbb

2
42 −±−

=ε     (65) 

We are interested in the case where the turning 
points of )(εy  occur outside of the permitted range of 
values for ε  ( 10 <≤ ε ). From Equation (65), we can 
see that this is the case provided that 2/1)2/( >− ab  and 

04 ≥− ac , as the two solutions are then less than zero 
and greater than one respectively. Now as 

( )
Ω

Ω++Ω−
=

−
6

12)1(4
2

k
a
b      (66) 

2/1)2/( >− ab  provided that: 
( ) 827557.0

)1(4
123

−≈
Ω−
Ω+−Ω

>k    (67) 
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Further, 

⎟⎟
⎠
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⎜⎜
⎝

⎛
Ω+Ω+−+−

Ω
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Ω
−Ω=− kkkkkac 64322124 2
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 (68) 
So 04 ≥− ac  provided that: 

04321612 2 ≥Ω+−⎟
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Ω
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⎠
⎞

⎜
⎝
⎛

Ω
− kk   (69) 

Evaluating the coefficients in Equation (69), we have: 
0977885.4646811.7611439.1 2 ≥−− kk   (70) 

Solving for k, gives: 
952733.2372665.2 ±=k     (71) 

Therefore, 6≥∀k , the inequality in Equation (70) holds 
and the turning points of )(εy  occur outside of the 
permitted range of values of ε . Thus 6≥∀k  the 
maximum / minimum values of )(εy  must occur for the 
maximum and minimum permitted values of ε .  

From Equation (63), for 0=ε , we have: 

Ω−+⎟
⎠
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⎜
⎝
⎛ Ω−−
Ω

+⎟
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⎞
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⎝
⎛ −
Ω

= 4243331)0( 2
2 kky  (72) 

Evaluating the coefficients in Equation (72), gives: 
026857316.002109534.01089547.0 2 ≥−− kk

 (73) 
Hence, 2≥∀k , 0)0( ≥y . 
 From Equation (63), for 1=ε , we have: 

kky Ω−+Ω++Ω−= 212)1(

kkkkk
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(74) 
Simplifying Equation (74) gives: 
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Evaluating the coefficients in Equation (75), gives: 
kky 23677716.034573192.0)1( 2 −=   (76) 

Hence, 2≥∀k , 0)1( ≥y . (From Equation (76), )1(y  is 
positive provided that 1≥k ; however, our analysis is 
only valid for 2≥k ). 

To summarise,  
(i) In this case, the range of potential values 

for ε  is bounded by 10 <≤ ε . 
(ii) Equations (64) to (71) show that provided 

6≥k , )(εy  has no turning points in the 
range 10 <≤ ε , and so the maximum and 
minimum values of )(εy  must occur for 
the maximum and minimum values of ε . 

(iii) Equations (73) and (76) show that for 
2≥k , the values of )0(y  and )1(y  are 

both positive. 
We conclude that for 6≥k , )(εy  is always positive and 

hence for 6≥k  and ⎣ ⎦ ⎣ ⎦ 2//)1( +Ω=Ω+ kk , 
)()1( kHkH ≥+ . 

Combining the results for Case 1 and Case 2, shows that 
6≥∀k , )()1( kHkH ≥+

□

Lemma 13: 6≤∀k , 1)( ≤kH . 

Proof: Recall that )(kH  is defined by Equation (39) as 
the value of the processor load tth /)(  at discrete points 
in time given by )2( Xkt += , for ∞= ..1k , where )(th
is the processor demand bound function given by 
Equation (34). 

First we consider the case where 1=k . For 1=k , we 
have: 

1
)2(
)1()( =

+
+

=
X
XfkH       (77) 

Table 2 below gives the computed values of )(kH , for 
6..1=k . 

Table 2 
k H(k) 
1 1 
2 0.969352362 
3 0.968932165 
4 0.970821141 
5 0.976740571 
6 0.980546791 

□

Lemma 11 showed that as ∞→k , 1)( →kH , Lemma 
12 showed that 6≥∀k , )(kH  is a monotonic non-
decreasing function of k, and Lemma 13 showed that 

6≤∀k , 1)( ≤kH . It follows that 1)(1 ≤≥∀ kHk . 
As the maximum points of the function tth /)(  are 

given by the values of )(kH , we conclude that: 

1)(
≤∀

t
tht        (78)  

and hence that the taskset in Theorem 2, with the value 
of X defined by Equation (31), is schedulable under EDF 
with all execution times scaled by a factor of Ω/1 . 
Given the constraints expressed in Equations (24) and 
(25), the maximum EDF scaling factor, for any value of 
X, is therefore Ω/1 . 

For a constrained-deadline taskset of arbitrary 
cardinality, the processor speedup factor for fixed 
priority pre-emptive scheduling is equal to the maximum 
EDF scaling factor (for any value of X) for the speedup-
optimal taskset described in Theorem 2 
□

Corollary 6: The maximum EDF scaling factor and 
hence the processor speedup factor for a constrained-
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deadline taskset of any cardinality is achieved for the 
speedup-optimal taskset described in Theorem 2, with an 
execution time for the lowest priority task of 

312333.0)1/()12( ≈Ω−−Ω=X . 

5. Processor speedup factor for implicit-
deadline tasksets

In this section, we extend the results of Sections 3 and 4 
to implicit-deadline tasksets ( ii TDi =∀ ). 

Before considering tasksets of arbitrary cardinality, 
we first present results for tasksets comprising just two 
tasks. The derivation of this result again provides the 
intuition for the general case. 

Theorem 5: For the class of tasksets with implicit 
deadlines and cardinality two, there is a speedup-optimal 
taskset V, which has the following parameters:  
 Taskset V is identical to the taskset described in 
Theorem 1 with the exception that the period of task nτ , 
rather than being infinite, is equal to its deadline. 

Proof: As the class of implicit-deadline tasksets is a 
subset of the class of constrained-deadline tasksets, 
proof follows directly from the proof of Theorem 1, 
noting that Lemma 2 does not apply and instead we have 
the constraint that nn DT =
□

Theorem 6: For an implicit-deadline taskset of 
cardinality two, the processor speedup factor for fixed 
priority pre-emptive scheduling is 

207107.1)12(2/1 ≈− . 

Proof: We prove the theorem by determining the 
maximum EDF scaling factor for the taskset V described 
in Theorem 5, for any value of X. 

As taskset V is an implicit-deadline taskset, a 
sufficient and necessary condition for schedulability 
under EDF, is that the total utilisation of the taskset must 
be less than or equal to 1, after the task execution times 
are scaled by a factor of f.  
 The total utilisation of the tasks is given by: 

X
X

X
U

i
i +

+
+

=∑
= 21

12

1
     (79) 

Therefore, assuming total utilisation U = 1, we have the 
following equation for the maximum EDF scaling factor 
as a function of X. 
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Figure 7 plots the maximum EDF scaling factor 

)(Xf , against values of X. 
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Figure 7: Speedup factor for 2 tasks with D=T 
Equation (80), is a continuous function of X, with 
maximum / minimum values where the first derivative 
with respect to X is zero. 
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Hence the maximum value occurs for 2=X , 
resulting in a maximum EDF scaling factor of: 

207107.1
)12(2

1
224
234)2( ≈

−
=

+

+
=f  (82) 

For an implicit-deadline taskset of cardinality two, 
the processor speedup factor for fixed priority pre-
emptive scheduling is equal to the maximum EDF 
scaling factor (for any value of X) for the speedup-
optimal taskset described in Theorem 5 
□

Corollary 7: As EDF is known to schedule any implicit-
deadline taskset, provided that 1≤U , Theorem 6 shows 
that fixed priority pre-emptive scheduling can schedule 
any implicit-deadline taskset of cardinality two, 
provided that 828427.0)12(2 ≈−≤U , in agreement 
with, and providing a diverse proof of, the result of 
Fineberg and Serlin (1967). 

We note that this speedup-optimal taskset for the 
implicit-deadline case and cardinality two, is the one 
used as an illustrative example in Section 2.6. 

Theorem 7: For the class of implicit-deadline tasksets 
with arbitrary cardinality, there is a speedup-optimal 
taskset V, which has the following parameters:  
 Taskset V is identical to the taskset described in 
Theorem 2 with the exception that the period of task nτ , 
rather than being infinite, is equal to its deadline. 
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Proof: As the class of implicit-deadline tasksets is a 
subset of the class of constrained-deadline tasksets, 
proof follows directly from the proof of Theorem 2, 
noting that Lemma 2 does not apply and instead we have 
the constraint that nn DT =
□

Theorem 8: For an implicit-deadline taskset of arbitrary 
cardinality, the processor speedup factor for fixed 
priority pre-emptive scheduling is 44270.1)2ln(/1 ≈ . 

Proof: We prove the theorem by determining the 
maximum EDF scaling factor for the taskset V described 
in Theorem 7, for any value of X. 

As taskset V is an implicit-deadline taskset, a 
sufficient and necessary condition for schedulability 
under EDF, is that the total utilisation of the taskset must 
be less than or equal to 1, after the task execution times 
are scaled by a factor of f.  

From Lemma 10, the total utilisation of the tasks 
11.. −nττ  is given by: 

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=∑
−

= X
XU

n

i
i 1

2ln
1

1
     (83) 

Further, the utilisation of task nτ  is: 

X
XU n +

=
2

      (84) 

Therefore, assuming total utilisation U = 1, we have the 
following equation for the maximum EDF scaling factor 
as a function of X. 
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Figure 8 plots the maximum EDF scaling factor, 
against values of X. 

Equation (85), is a continuous non-increasing 
function of X, with a maximum value )2ln(/1)0( =f . 
The maximum EDF scaling factor is therefore 

44270.1)2ln(/1 ≈ , which occurs as the execution time X
of the lowest priority task tends to zero. 

For an implicit-deadline taskset of arbitrary 
cardinality, the processor speedup factor for fixed 
priority pre-emptive scheduling is equal to the maximum 
EDF scaling factor (for any value of X) for the speedup-
optimal taskset described in Theorem 7 
□
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Figure 8: Speedup factor for n tasks with D=T 
Corollary 8: As EDF is known to schedule any implicit-
deadline taskset, provided that 1≤U , Theorem 7 shows 
that fixed priority pre-emptive scheduling can schedule 
any implicit-deadline taskset, provided that 

693147.0)2ln( ≈≤U , in agreement with, and providing 
a diverse proof of, the well known result of Liu and 
Layland (1973). 

6. Summary and Conclusions 
In this paper, we have examined the relative 

effectiveness of fixed priority pre-emptive scheduling 
for sporadic / periodic tasks with constrained deadlines 
( ii TD ≤ ). Our metric for measuring the effectiveness of 
this scheduling policy is a resource augmentation factor 
known as the processor speedup factor. 

The processor speedup factor is defined as the 
maximum amount by which the execution time of all 
tasks in a taskset that is only just schedulable under 
fixed priority pre-emptive scheduling can be scaled up 
and the taskset remain feasible (i.e. schedulable under an 
optimal algorithm such as EDF). 

An alternate and equivalent definition of the 
processor speedup factor is the maximum amount by 
which the processor needs to be speeded up so that any 
taskset that is feasible (i.e. schedulable by an optimal 
algorithm such as EDF) can be guaranteed to be 
schedulable under fixed priority pre-emptive scheduling. 

The major contributions of this paper are as follows: 
o Deriving the structure and parameters of a 

speedup-optimal taskset that provides a tight 
bound on the processor speedup factor for 
constrained-deadline tasksets. 

o Proving that the processor speedup factor for 
constrained-deadline tasksets of cardinality two, 
is 414214.12 ≈ . 

o Proving that the processor speedup factor for 
constrained-deadline tasksets of arbitrary 
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cardinality, is 1.76323/1 ≈Ω . 
o Deriving, in Appendix A, an upper bound on 

the processor speedup factor for small n which 
improves upon the general result for 
constrained-deadline tasksets of arbitrary 
cardinality. 

o Proving that the processor speedup factor for 
implicit-deadline tasksets of cardinality two is 

207107.1)12(2/1 ≈− . A result that provides 
a diverse proof of one of the earliest published 
results on fixed priority schedulability analysis, 
the sufficient schedulability test )12(2 −≤U
for two tasks by Fineberg and Serlin (1967). 

o Proving that the processor speedup factor for 
implicit-deadline tasksets of arbitrary 
cardinality is 44270.1)2ln(/1 ≈ . A result that is 
in agreement with, and provides a diverse proof 
of, the well known sufficient schedulability test 

)2ln(≤U  of Liu and Layland (1973). 
The seminal work of Liu and Layland (1973) 

characterises the maximum performance penalty 
incurred when an implicit-deadline taskset is scheduled 
using rate-monotonic, fixed priority pre-emptive 
scheduling instead of an optimal algorithm such as EDF. 

The research in this paper provides an analogous 
characterisation of the maximum performance penalty 
incurred when constrained-deadline tasksets are 
scheduled using deadline-monotonic, fixed priority pre-
emptive scheduling instead of an optimal algorithm such 
as EDF. Table 3 summarises the extent of these 
performance penalties. 

Table 3 
Optimal 

(e.g. EDF) 
Fixed 

Priority 
Speedup 

factor 
Implicit-
deadline 

1≤U )2ln(≤U
693147.0≈

)2ln(/1
44270.1≈

Constrained
-deadline 

LOAD 1≤ LOAD Ω≤
567143.0≈

Ω/1
76323.1≈

Note that although in this paper, we have made 
numerous references to EDF as an example of an 
optimal pre-emptive uniprocessor scheduling algorithm, 
and made use of results about EDF in our proofs, our 
results are valid with respect to any optimal pre-emptive 
uniprocessor scheduling algorithm, for example Least 
Laxity First (Mok, 1983). This is because all such 
optimal algorithms can by definition schedule exactly 
the same set of tasksets: all those that are feasible. 

In conclusion, this paper provides for the first time, 
a tight bound on the sub-optimality of fixed priority pre-
emptive scheduling for uniprocessor systems with 
constrained-deadlines. 

6.1. Future work 
In future, we intend to investigate the sub-optimality 

of fixed priority pre-emptive scheduling with respect to 
arbitrary-deadline tasksets, where task deadlines may be 
less than, equal to, or greater than their periods. 

To the best of our knowledge, no research has yet 
been done to characterise the average-case sub-
optimality of fixed priority pre-emptive scheduling for 
constrained-deadline tasksets. This is also an interesting 
area for future research. 

6.2. Acknowledgements 
This work was funded in part by the EU Frescor, 

eMuCo and Jeopard projects. 

Appendix A: Processor speedup factor for 
constrained-deadline tasksets with 
cardinality n

In this appendix, we provide an upper bound on the 
processor speedup factor for fixed priority pre-emptive 
scheduling of constrained-deadline tasksets comprising a 
small number of tasks. 

Theorem A.1: For the class of tasksets with constrained 
deadlines and cardinality n, there is a speedup-optimal 
taskset V, with Vα  = 1, which has the following 
parameters:  

∑∑
∈∀∈∀

++==≠∀
)()( ihpj

jn
nhpj

jii CCCTDni

1=nD , ∞=nT        (A.1) 
Note that in Theorem A.1, the deadline of task nτ

has been normalised to 1 and the other task periods and 
deadlines adjusted accordingly. Further, the task 
execution times are free variables, subject to the 
constraint: 

12
)(

=+∑
∈∀

n
nhpj

j CC       (A.2) 

Proof: Proof follows directly from Lemmas 1 to 8, 
specifically: 

o nτ  must be a constraining task, with the longest 
deadline and the lowest priority (Lemma 1). 

o nτ  must have an infinite period (Lemma 2). 
o nDt =  must be the start of an idle period 

(Lemma 3). 
o ni DTni <≠∀  (Lemma 4) 
o ii TDni =≠∀  (Lemma 5). 
o 2/ni DTni >≠∀  (Lemma 6). 
o Following a critical instant, nτ  must execute 

continuously from when it first starts execution 
until it completes (Lemma 7). 

o The task parameters must comply with the 
following equation (Lemma 8): 
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∑∑
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+==≠∀
)(ihpj

j
j

jii CCTDni

□

Lemma A.1: The following inequality holds for any 
implicit-deadline taskset W, with cardinality 2>n  that 
is not schedulable according to fixed priority pre-
emptive scheduling: 
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Proof: As taskset W is unschedulable, it cannot be 
schedulable according the Hyperbolic bound (Bini et al., 
2003). Hence: 

( ) 21 >+∏
∀j

jU        (A.4) 

Consider the arithmetic and geometric means of the 
series of values )1( jU+ , )(nhpj∈∀ . By the inequality 
of arithmetic and geometric means, we have: 
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Substituting for the Hyperbolic bound divided by 
nU+1 , into Equation (A.5) gives: 
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As: 
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it follows that: 
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□

Theorem A.2: For a constrained-deadline taskset, of 
cardinality 2≥n , an upper bound on the processor 
speedup factor for fixed priority pre-emptive scheduling 
is given by )(nf UB , where )(nf UB  is defined as 
follows: 

)(/1)( nLnf UB =
Where )(nL  forms the solution to the following 
equality, where nC  may take any non-negative real 
value: 
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Proof: Let taskset V ′  be formed from taskset V in 
Theorem A.1 by an infinitesimal increase in the 
execution time of task nτ , with no changes to any of the 

other task parameters. Note that taskset V ′  is 
unschedulable according to fixed priority pre-emptive 
scheduling as nτ  misses its deadline. From Equation 
(A.2) which holds for taskset V, for taskset V ′  we have: 
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n
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We now consider the total utilisation U of taskset 
V ′ . Observe that if we set the period of task nτ  equal to 
its deadline ( 1== nn DT ), then this transforms V ′  into 
an implicit deadline taskset W, which is unschedulable 
according to fixed priority pre-emptive scheduling, as 
taskset V ′  is already unschedulable with ∞=nτ . 
 From Lemma A.1, as 1=nT  for the implicit-
deadline taskset W, we have: 
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As ∞=nT  in taskset V ′ , 0=nU , and so the LHS 
of Equation (A.11) corresponds to the total utilisation U
of taskset V ′ . Hence we have: 
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Now consider taskset V ′  scheduled according to 
EDF. Taskset V ′  is schedulable according to EDF if and 
only if: 
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where )(th  is the processor demand bound function 
defined by Equation (2). 
Now, 
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From Equation (2): 
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Substituting for the summation term from Equation 
(A.10) gives: 
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Substituting the total utilisation U from Equation 
(A.12) and the processor demand bound function )1(h
from Equation (A.16) into Equation (A.14) gives:  
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For any given value of 2≥n , the left hand term within 
the max expression, is a monotonically increasing 
function of nC , whilst the right hand term is a 
monotonically decreasing function of nC . Hence the 
minimum value )(nL , of the max expression is achieved 
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when these two terms are equal. 
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Let us assume that taskset V ′ , which we know is 
unschedulable according to fixed priority pre-emptive 
scheduling, was obtained from a taskset S ′  by applying 
a processor speedup factor )(/1)( nLnff UB =≥ , such 
that the execution times of the tasks in taskset S ′  are f
times those of the corresponding tasks in taskset V ′ . 
Equation (A.19) shows that taskset S ′  cannot be 
schedulable according to EDF, as: 
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Hence using a processor speedup factor )(nff UB≥ , it 
is not possible to obtain a taskset V ′  that is 
unschedulable according to fixed priority pre-emptive 
scheduling, from a taskset S ′  that is schedulable 
according to EDF. 

Recall that taskset V ′  is related to the speedup-
optimal taskset V of Theorem A.1 via an infinitesimal 
increase in the execution time of task nτ . We conclude 
that there can be no tasksets, that are schedulable 
according to EDF that are unschedulable according to 
fixed priorities, when a processor speedup factor of 

)(nff UB≥  is applied. )(nf UB  is therefore an upper 
bound on the processor speedup factor for constrained-
deadline tasksets of cardinality n, which is sufficient to 
ensure that any such taskset that is schedulable 
according to an optimal scheduling policy (e.g. EDF) 
remains schedulable according to fixed priority pre-
emptive scheduling 
□

We observe that )(nf UB  is an upper bound, as 
opposed to an exact value, due to the fact that the 
Hyperbolic bound used in its derivation is a sufficient 
but not necessary schedulability test, and also due to the 
inequality in Equation (A.14).  

Table 4 and Table 5 give the values of )(nL  and 
)(nf UB  as a function of n, computed by numerical 

approximation. Note the values of )(nf UB  have been 
rounded up, to ensure sufficiency. 

Table 4 
n )(nL )(nf UB )(nf LB

2 0.618034 1.619 1.414 
3 0.594313 1.683 1.587 
4 0.585670 1.708 1.656 
5 0.581198 1.721 1.684 
6 0.578464 1.729 1.704 
7 0.576621 1.735 1.718 
8 0.575294 1.739 1.723 
9 0.574293 1.742 1.730 

Table 5 
n )(nL )(nf UB )(nf LB

2 0.618034 1.619 1.414 
4 0.585670 1.708 1.656 
8 0.575294 1.739 1.723 

16 0.570987 1.752 1.749 
32 0.569012 1.758 1.757 
64 0.568065 1.761 1.759 

128 0.567601 1.762 1.761 
256 0.567371 1.763 1.762 
∞ Ω Ω/1 Ω/1

To complement the upper bounds given by Theorem 
A.2, Table 4 and Table 5 also give lower bounds 

)(nf LB  on the processor speedup factor. These lower 
bounds are necessary to schedule tasksets whose 
parameters comply with Theorem A.1. 

The lower bounds were found by searching for 
tasksets of the desired cardinality that comply with 
Theorem A.1 and remain schedulable according to EDF 
when their execution times are scaled up by the 
maximum possible scaling factor f. The search for these 
tasksets, and hence the lower bounds, involved iterating 
over: 

(i) A range of possible values for the EDF 
scaling factor f from 1.4 to 1.77 in steps of 
0.001. 

(ii) A range of possible values for nC  as a 
proportion of the total execution time of the 
higher priority tasks 1τ  to 1−nτ , from 0.001 
to 2.0. 

(iii) (a) Arithmetic progressions in the values of 
1C  to 1−nC , with a range of increments 

from 0.0 to 1.0 times 1C  in steps of 0.001 
times 1C . 
(b) Geometric progressions in the values of 

1C  to 1−nC , with multiplying factors from 
1.0 to 1.5 in steps of 0.001. 

The lower bounds in Table 4 and Table 5 are 
effectively rounded down to ensure necessity. Note that 
the types of taskset used to determine these lower 
bounds are only known to be speedup-optimal for 2=n
and ∞=n . 

Figure 9 plots the upper and lower bounds for small 
values of n, from Table 4. The difference between the 
upper and lower bounds is less than 1% for tasksets of 
cardinality of 7 or more.  
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Figure 9: Upper and lower bounds on the 
Speedup factor for n tasks with D≤≤T 

Similarly, Figure 10 plots the upper and lower 
bounds from Table 5, for values of n from 2 to 256. The 
difference between the upper and lower bounds is less 
than 0.1% for tasksets of cardinality of 32 or more. 

1.619

1.708

1.739
1.752 1.758 1.761 1.762 1.763

1.414

1.656

1.723
1.749 1.757 1.759 1.761 1.762

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

2 4 8 16 32 64 128 256

Number of tasks

Pr
oc

es
so

r S
pe

ed
up

 F
ac

to
r

Upper Bound
Lower Bound

Figure 10: Upper and lower bounds on the 
Speedup factor for n tasks with D≤≤T 

Theorem A.3: For a constrained-deadline taskset, of 
cardinality n, the upper bound )(nf UB  on the processor 
speedup factor for fixed priority pre-emptive scheduling 
tends to Ω/1  as n tends to infinity. 

Proof: Follows the same logic as the proof of Theorem 
A.2. From Equation (A.12), we have: 
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Hence: 
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From the Maclaurin expansion of )1ln( x+ , as 0→x , 
xx →+ )1ln( , hence as ∞→n , we have: 
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We observe that Equation (A.22) holds for any value of 
2≥n  and 10 ≤<U , as )1ln( xx +>  for 10 ≤< x . 
Substituting for U from Equation (A.22) into 

Equation (A.14) yields the following, in place of 
Equation (A.17): 
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As in Equation (A.17), the left hand term within the 
max expression of Equation (A.23), is a monotonically 
increasing function of nC , whilst the right hand term is 
a monotonically decreasing function of nC . Hence the 
minimum value )(∞L , of the max expression is 
achieved when these two terms are equal. 
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This occurs for a value of Ω=∞)(L . (Where Ω  is the 
mathematical constant defined by Ω=Ω)/1ln( . Hence, 

0.567143≈Ω ). Finally, Ω=∞=∞ /1)(/1)( Lf UB

□

In summary, to guarantee schedulability of any 
constrained-deadline taskset of cardinality n under fixed 
priority pre-emptive scheduling it is sufficient to use a 
speedup factor equal to the upper bound values )(nf LB

given in Table 4 and Table 5. For small n, this represents 
an improvement over using the exact value for arbitrary 
n ( 763223.1/1 ≈Ω ). 

Appendix B: 
In this appendix, we prove that the two alternate 
definitions for the processor speedup factor given in 
Section 2.5 are equivalent. 

Theorem B.1: Definition 2 is equivalent to Definition 1 
with fixed priority pre-emptive scheduling as scheduling 
algorithm A. 

According to Definition 1, let )(Ψf  be the minimum 
speedup factor required to make a feasible taskset Ψ
schedulable according to fixed priority pre-emptive 
scheduling. 
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Lemma B.1: Let Z be the set of all feasible tasksets. 
Note, by Definition 1, Z contains at least one taskset that 
requires the (maximum) processor speedup-factor Af  to 
be schedulable under fixed priority pre-emptive 
scheduling. Let ZY ⊆  be the set of all feasible tasksets 
that will become infeasible when their execution times 
are scaled by any factor >1. The set Y contains at least 
one taskset that requires the (maximum) processor 
speedup-factor Af . 

Proof: We assume (for contradiction) that there is a 
taskset Ψ  that is a member of Z, but not a member of Y
( cYZ ∩∈Ψ ) that has a speedup factor )(Ψf  strictly 
greater than that of any taskset which is only just 
feasible, (and therefore a member of Y). We note that Ψ
can have its execution times scaled by a factor >1 and 
remain feasible, otherwise it would be a member of Y. 
We now construct a new taskset Φ  from taskset Ψ  by 
scaling all of the execution times of the tasks in Ψ  by a 
factor >1, such that the resulting taskset is only just 
feasible, hence Y∈Φ . From Equation (1), increasing 
the execution time of tasks cannot make a taskset 
schedulable under fixed priority pre-emptive scheduling. 
Hence the speedup factor required by tasksetΦ  must be 
at least as large as that required by taskset Ψ  (i.e. 

)()( Ψ≥Φ ff ) which contradicts the original 
assumption. Hence there are no tasksets in cYZ ∩  that 
require a speedup factor exceeding the maximum 
speedup factor required by any taskset in Y. As there 
was, by definition, at least one taskset in Z that required 
the maximum processor speedup factor, then there must 
also be at least one such taskset in Y 
□

Proof (of Theorem B.1): Lemma B.1 shows that there 
is at least one taskset that is only just schedulable 
according to an optimal algorithm such as EDF and 
requires the maximum processor speedup factor, 
according to Definition 1 to be schedulable under fixed 
priority pre-emptive scheduling. Let Φ  be such a 
taskset. 
 Increasing processor speed by a factor f is 
equivalent to reducing task execution times by the same 
factor. By definition of the speedup factor )(Θf , 
reducing the execution times of the tasks in each feasible 
taskset Θ  by )(Θf , transforms that taskset into one that 
is only just schedulable according to fixed priority pre-
emptive scheduling. It follows that to find the maximum 
processor speedup factor, it suffices to determine the 
maximum scaling factor by which the execution times of 
tasks in any taskset S, that is only just schedulable 
according to fixed priority pre-emptive scheduling (i.e. 
with 1=Sα ), can be increased, and the taskset remain 
schedulable according to an optimal scheduling 

algorithm (e.g. EDF). This is Definition 2 
□
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