
1

Exact Quantification of the Sub-optimality of Uniprocessor Fixed Priority
Pre-emptive Scheduling.

Robert I. Davis, Thomas Rothvoß, Sanjoy K. Baruah, and Alan Burns

Robert I. Davis ()
Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK.
Email: rob.davis@cs.york.ac.uk

Thomas Rothvoß
Ecole Polytechnique Federale de Lausanne, Institute of Mathematics, Station 8 - Bâtiment MA, CH-1015 Lausanne,
Switzerland.
Email: thomas.rothvoss@efpl.ch

Sanjoy K. Baruah
Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-317, Carolina, USA.
Email: baruah@cs.unc.edu

Alan Burns
Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK.
Email: alan.burns@cs.york.ac.uk

Keywords: Real-time Uniprocessor Fixed priority pre-emptive scheduling Earliest Deadline First (EDF) Sub-
optimality Processor speedup factor Constrained deadline Implicit deadline Omega constant

Abstract
This paper examines the relative effectiveness of

fixed priority pre-emptive scheduling in a uniprocessor
system, compared to an optimal algorithm such as
Earliest Deadline First (EDF).

The quantitative metric used in this comparison is
the processor speedup factor, equivalent to the factor by
which processor speed needs to increase to ensure that
any taskset that is schedulable according to an optimal
scheduling algorithm can be scheduled using fixed
priority pre-emptive scheduling, assuming an optimal
priority assignment policy.

For constrained-deadline tasksets where all task
deadlines are less than or equal to their periods, the
maximum value for the processor speedup factor is
shown to be 76322.1/1 ≈Ω , (where Ω is the
mathematical constant defined by the transcendental
equation Ω=Ω)/1ln(, hence, 0.567143 ≈Ω). Further,
for implicit-deadline tasksets where all task deadlines
are equal to their periods, the maximum value for the
processor speedup factor is shown to be

1.44270 1/ln(2) ≈ . The derivation of this latter result
provides an alternative proof of the well-known Liu and
Layland result.

1. Introduction
In this paper, we are interested in determining the

largest factor by which the processing speed of a
uniprocessor would need to be increased, such that any
taskset, that was previously schedulable according to an
optimal scheduling algorithm, could be guaranteed to be
schedulable according to fixed priority pre-emptive
scheduling, assuming an optimal priority assignment
policy. We refer to this resource augmentation factor as
the processor speedup factor (Kalyanasundaram and
Pruhs, 1995).

Analysis of fixed priority pre-emptive scheduling
effectively began with Fineberg and Serlin (1967) who
considered priority assignment for two independent
periodic tasks with deadlines equal to their periods and
bounded execution times. They noted that if the task
with the shorter period is assigned the higher priority,
then the taskset is guaranteed to be schedulable provided
that its total utilisation1 %8.82)12(2 ≈−≤U .

The above result was generalised by Liu and Layland

1 The utilisation of a task is defined as its execution time divided by its
period. The utilisation of a taskset is the sum of the utilisations of its
tasks.

mailto:alan.burns@cs.york.ac.uk�
mailto:baruah@cs.unc.edu�
mailto:thomas.rothvoss@efpl.ch�
mailto:rob.davis@cs.york.ac.uk�

2

(1973) who considered the pre-emptive scheduling of
synchronous2 tasksets comprising independent periodic
tasks, with bounded execution times, and deadlines
equal to their periods. We refer to such tasksets as
implicit-deadline tasksets. Liu and Layland (1973)
showed that rate monotonic (RM) priority ordering is
the optimal fixed priority assignment policy for implicit-
deadline tasksets, and that using rate monotonic priority
ordering, fixed priority pre-emptive scheduling can
schedule any implicit-deadline taskset with a total
utilisation %3.69)2ln(≈≤U .

Liu and Layland (1973) also showed that Earliest
Deadline First (EDF) is an optimal dynamic priority
scheduling algorithm for implicit-deadline tasksets, and
that EDF can schedule any such taskset with a total
utilisation 1≤U .

Dertouzos (1974) showed that EDF is in fact an
optimal pre-emptive uniprocessor scheduling algorithm,
in the sense that if a schedule exists for a taskset, then
the schedule produced by EDF will also be feasible.

Combining the result of Dertouzos (1974) with the
results of Liu and Layland (1973) for both EDF and
fixed priority pre-emptive scheduling, we can see that
the processor speedup factor required to guarantee that
fixed priority pre-emptive scheduling can schedule any
feasible implicit-deadline taskset is 44270.1)2ln(/1 ≈ .

In the 1980�s, and early 1990�s research into real-
time scheduling focused on constrained-deadline
tasksets; synchronous tasksets comprising independent
sporadic tasks with bounded execution times, known
minimal inter-arrival times or periods, and deadlines
constrained to be less than or equal to their periods.

Leung and Whitehead (1982) showed that deadline
monotonic3 (DM) priority ordering is the optimal fixed
priority ordering for constrained-deadline tasksets. Exact
fixed priority schedulability tests for constrained-
deadline tasksets were introduced by Joseph and Pandya
(1986), Lehoczky et al. (1989), and Audsley et al.
(1993). Exact EDF schedulability tests for constrained-
deadline tasksets were introduced by Baruah et al.
(1990a, 1990b).

Recently, Baruah and Burns (2008) showed that the
processor speedup factor required for fixed priority pre-
emptive scheduling of constrained-deadline tasksets is
upper-bounded by 2 and lower-bounded by 1.5.

In this paper, we prove that the exact processor
speedup factor required for fixed priority pre-emptive
scheduling of constrained-deadline tasksets is

76322.1/1 ≈Ω (where Ω is the mathematical constant

2 A taskset is synchronous if all of its tasks share a common release
time.
3 Deadline monotonic priority ordering assigns priorities in order of
task deadlines, such that the task with the shortest deadline is given the
highest priority.

defined by the transcendental equation Ω=Ω)/1ln(,
hence, 0.567143 ≈Ω).

The significance of our main result is to provide a
bound, analogous to the seminal schedulability result of
Liu and Layland (1973) (%3.69)2ln(≈≤U), that
applies to constrained-deadline rather than implicit-
deadline tasksets.

An exact condition for the schedulability of a
constrained-deadline taskset under an optimal pre-
emptive uniprocessor scheduling algorithm, such as
EDF (Dertouzos, 1974), is that a quantity referred to as
the processor LOAD (see Section 2.4) does not exceed
the capacity of the processor (i.e. LOAD 1≤) (Baruah et
al. 1990a, 1990b).

The processor speedup factor derived in this paper
shows that every constrained-deadline taskset with
LOAD 567143.0≈Ω≤ is guaranteed to be schedulable
according to fixed priority pre-emptive scheduling using
deadline-monotonic priority assignment.

While the results presented in this paper are mainly
theoretical, they also have practical utility in enabling
system designers to quantify the maximum penalty for
using fixed priority pre-emptive scheduling in terms of
the additional processing capacity required. This
performance penalty can then be weighed against other
factors such as implementation overheads when
considering which scheduling algorithm to use.

1.1. Related work on average case sub-
optimality

This paper examines the sub-optimality of fixed
priority pre-emptive scheduling in the worst-case, other
research has examined its behaviour in the average-case.

Lehoczky et al. (1989) introduced the breakdown
utilisation metric: A taskset is randomly generated, and
then all task execution times are scaled until a deadline
is just missed. The utilisation of the scaled taskset gives
the breakdown utilisation. Lehoczky et al. (1989)
showed that the average breakdown utilisation, for
implicit-deadline tasksets of large cardinality under
fixed priority pre-emptive scheduling is approximately
88%, corresponding to a penalty of approximately 12%
of processing capacity with respect to an optimal
algorithm such as EDF.

Bini and Buttazzo (2005) showed that breakdown
utilisation suffers from a bias which tends to penalise
fixed priority scheduling by favouring tasksets where the
utilisation of individual tasks is similar. Bini and
Buttazzo (2005) introduced the optimality degree metric,
defined as the number of tasksets in a given domain that
are schedulable according to some algorithm A divided
by the number that are schedulable according to an
optimal algorithm. Using this metric, they showed that
the penalty for using fixed priority-pre-emptive
scheduling for implicit-deadline tasksets is typically

3

significantly lower than that assumed by determining the
average breakdown utilisation.

1.2. Organisation
The remainder of this paper is organised as follows.

Section 2 describes the system model and notation used,
recapitulates exact schedulability analysis for both fixed
priority and EDF scheduling, and provides a number of
key definitions. Section 3 derives the structure and
parameters of a speedup-optimal taskset (defined in
Section 2) for the class of tasksets with constrained
deadlines. Section 4 derives the exact processor speedup
factor required for constrained-deadline tasksets of
arbitrary cardinality, under fixed priority pre-emptive
scheduling. Appendix A complements Section 4 by
providing an upper bound on the processor speedup
factor for tasksets of cardinality n which improves upon
the general result for arbitrary n. Section 5 extends the
results of Sections 3 and 4 to implicit-deadline tasksets,
providing an alternative proof of the seminal results of
Fineberg and Serlin (1967) and Liu and Layland (1973).
Finally, Section 6 concludes with a summary of the
results.

2. Scheduling model and schedulability
analysis

In this section, we outline the scheduling model,
notation and terminology used in the rest of the paper.
We then recapitulate the exact schedulability analysis
for both fixed priority pre-emptive scheduling and EDF
scheduling. Finally, we provide a number of definitions
that are used in subsequent analysis and illustrate the
fundamental concepts with an example.

2.1. Scheduling model, terminology and notation
In this paper, we consider the pre-emptive

scheduling of a set of tasks (or taskset) on a
uniprocessor.

Each taskset comprises a static set of n tasks (nττ ..1),
where n is a positive integer. We assume that the index i
of task iτ also represents the task priority used in fixed
priority pre-emptive scheduling, hence 1τ has the
highest fixed-priority, and nτ the lowest.

Each task iτ is characterised by its bounded worst-
case execution time iC , minimum inter-arrival time or
period iT , and relative deadline iD . Each task iτ
therefore gives rise to a potentially infinite sequence of
invocations, each of which has an execution time upper
bounded by iC , an arrival time at least iT after the
arrival of its previous invocation, and an absolute
deadline iD time units after its arrival.

In a constrained-deadline taskset, all tasks
have ii TD ≤ , while in an implicit-deadline taskset, all
tasks have ii TD = .

The utilisation iU , of a task is given by its execution

time divided by its period (iU = iC / iT). The total
utilisation U, of a taskset is the sum of the utilisation of
all of its tasks.

The following assumptions are made about the
behaviour of the tasks:

o The arrival times of the tasks are independent
and hence the tasks may share a common
release time.

o Each task is released (i.e. becomes ready to
execute) as soon as it arrives.

o The tasks are independent and so cannot block
each other from executing by accessing
mutually exclusive shared resources, with the
exception of the processor.

o The tasks do not voluntarily suspend
themselves.

A task is said to be ready if it has outstanding
computation and so is awaiting execution by the
processor.

A taskset is said to be schedulable with respect to
some scheduling algorithm and some system, if any
sequence of invocations generated by the taskset can be
scheduled on the system by the scheduling algorithm
without any deadlines being missed.

Under Earliest Deadline First (EDF) scheduling, at
any given time, the ready task (invocation) with the
earliest absolute deadline is executed by the processor.
In contrast, under fixed priority pre-emptive scheduling,
at any given time, the highest priority ready task is
executed by the processor.

We assume that when a taskset is scheduled
according to fixed priorities, these priorities are assigned
according to deadline-monotonic priority ordering, as
deadline-monotonic is known to be the optimal priority
ordering for both constrained-deadline (Leung and
Whitehead, 1982) and implicit-deadline tasksets (Liu
and Layland, 1973).

We note that deadline-monotonic is the optimal
priority ordering in the sense that there are no
constrained-deadline tasksets that are schedulable
according to fixed priority pre-emptive scheduling using
any other priority ordering that are not also schedulable
using deadline-monotonic priority ordering. This does
not however mean that deadline-monotonic fixed
priority pre-emptive scheduling is an optimal scheduling
algorithm for such tasksets. (The definition of
scheduling algorithm optimality is given below).

2.2. Feasibility and optimality
A taskset is said to be feasible with respect to a

given system model if there exists some scheduling
algorithm that can schedule the taskset on that system
without missing any deadlines. Note, in this paper, we
are primarily interested in a reference system model that
consists of a pre-emptive uniprocessor with unit

4

processing speed.
A scheduling algorithm is said to be optimal with

respect to a system model and a tasking model if it can
schedule all of the tasksets that comply with the tasking
model and are feasible on the system.

We note that EDF is known to be an optimal pre-
emptive uniprocessor scheduling algorithm for
constrained-deadline tasksets compliant with the tasking
model described in Section 2.1 (Dertouzos, 1974). Least
Laxity First is another such optimal algorithm (Mok,
1983).

2.3. Exact schedulability analysis for FPPS
In this section, we give a brief summary of Response

Time Analysis (Audsley et al., 1993) used to provide an
exact schedulability test for fixed priority pre-emptive
scheduling on a uniprocessor. First, we introduce the
concepts of worst-case response time, critical instant,
and busy periods, which are fundamental to this form of
analysis.

For a given taskset scheduled under fixed priority
pre-emptive scheduling, the worst-case response time

iR of task iτ is given by the longest possible time from
release of the task until it completes execution. Thus
task iτ is schedulable if and only if ii DR ≤ , and the
taskset is schedulable if and only if ii DRi ≤∀ .

A critical instant for task iτ , refers to a time at
which task iτ is released, and the pattern of releases of
other tasks in the taskset is such that task iτ exhibits its
worst-case response time (Liu and Layland, 1973).
Under fixed priority pre-emptive scheduling, for
independent tasks with constrained-deadlines, a critical
instant occurs when all of the tasks are released
simultaneously, and then subsequent task releases occur
as early as possible.

The term priority level-i busy period refers to a
period of time),[21 tt during which the processor is
busy executing computation at priority i or higher, that
was released at the start of the busy period at 1t , or
during the busy period but strictly before its end at 2t .

Under fixed priority pre-emptive scheduling, the
worst-case response time iR of a constrained-deadline
task iτ corresponds to the length of the longest priority
level-i busy period, which starts at a critical instant.

The busy period comprises two components, the
execution time iC of the task itself, and so called
interference, equal to the time for which task iτ is
prevented from executing by higher priority tasks. The
length of the busy period iw , can be computed using the
following fixed point iteration (Audsley et al., 1993),
with the summation term giving the interference due to
the set of higher priority tasks hp(i).

j
ihpj j

m
i

i
m
i C

T
w

Cw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

)(

1 (1)

Iteration starts with an initial value 0
iw , typically

ii Cw =0 , and ends when either m
i

m
i ww =+1 in which

case the worst-case response time iR , is given by 1+m
iw ,

or when i
m
i Dw >+1 in which case the task is

unschedulable.
Note, the values of m

iw are monotonically non-
decreasing with respect to the iteration count m (Tindell,
1994), and so the fixed point iteration is guaranteed to
converge to the worst-case response time iR , provided
that the overall taskset utilisation is less than or equal to
1, and the initial value 0

iw is a lower bound on iR
(Sjodin and Hansson, 1998).

Response Time Analysis, as embodied in Equation
(1), thus provides an exact schedulability test for
constrained-deadline tasksets scheduled under fixed
priority pre-emptive scheduling.

In subsequent analysis, we also make use of the
concept of a priority level-i idle period. This is defined
as an interval of time),[43 tt of length greater than zero,
during which no tasks are ready to execute at priority i
or higher strictly before the end of the idle period at 4t .

2.4. Exact schedulability analysis for EDF
The schedulability of a constrained-deadline taskset

under EDF can be determined via the processor demand
bound function h(t) given below:

i

n

i i

i C
T

Dtth ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
=

1
1)((2)

Baruah et al (1990a, 1990b) showed that a taskset is
schedulable under EDF if and only if a quantity referred
to as the processor LOAD is 1≤ where the processor
LOAD is defined as follows:

LOAD ⎟
⎠
⎞

⎜
⎝
⎛=

∀ t
th

t

)(max (3)

Further, they showed that the maximum value of
tth /)(occurs for some value of t in the interval),0(L ,

where L is defined as follows, thus limiting the number
of values of t that need to be checked to determine
schedulability.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
−=

∀ U
UDTDDDL iiin 1

)(max,...,max ,21

Significant developments have been made, extending
the scope of the schedulability tests given in Equations
(1) and (2); however, these basic forms are sufficient for
the purposes of this paper.

2.5. Definitions
Our analysis uses the concept of uniform processors.

We refer to two processors as uniform (or similar) if the
rate of execution of any task on each of the two
processors depends only on the difference in clock speed
of the processors. Thus a processor of speed 1 takes
exactly twice the time to execute any given task as a

5

similar processor of speed 2.

Definition 1: Let Ψ be a taskset that is feasible (i.e.
schedulable according to an optimal scheduling
algorithm) on a processor of speed 1. Now assume that

)(Ψf is the lowest speed of any similar processor that
will schedule taskset Ψ using scheduling algorithm A.
The processor speedup factor Af for scheduling
algorithm A is given by the maximum processor speed
required to schedule any such taskset Ψ .

())(max Ψ=
Ψ∀

ff A

For any scheduling algorithm A, we have4 1≥Af , with
smaller values of Af indicative of a more effective
scheduling algorithm, and 1=Af implying that A is an
optimal algorithm.

In the remainder of the paper, unless otherwise
stated, when we refer to the processor speedup factor,
we mean the processor speedup factor for fixed priority
pre-emptive scheduling using an optimal priority
assignment policy. The problem of determining this
processor speedup factor can be addressed from two
different perspectives:

1. Speeding up a processor to guarantee that a
taskset that is already schedulable under an
optimal algorithm becomes schedulable under
fixed priority pre-emptive scheduling.

2. Slowing down a processor and hence scaling up
the execution times of a set of tasks that are only
just schedulable according to fixed priority pre-
emptive scheduling, until they are only just
schedulable according to an optimal algorithm.

Our analysis addresses the problem from the latter
perspective.

For a taskset S to be schedulable according to fixed
priorities, let Sα (1≥Sα) be the largest factor by which
all of the execution times of the tasks in S can be scaled
and the taskset remain schedulable under fixed priority
pre-emptive scheduling. We refer to Sα as the fixed
priority scaling factor. Similarly, let Sf (1≥Sf) be the
largest factor by which all of the execution times of the
tasks in S can be scaled and the taskset remain
schedulable under EDF scheduling. We refer to Sf as
the EDF scaling factor.

We now give an alternative but equivalent definition
of the processor speedup factor. (In Appendix B, we
prove that Definition 2 is equivalent to Definition 1).

Definition 2: The processor speedup factor for fixed
priority pre-emptive scheduling is the maximum scaling

4 The set of all tasksets that are feasible on a processor of speed 1
contains tasksets that fully utilise the processor. For example Ci = Di =
Ti = 1. Given such a taskset, the processor speedup factor for any
scheduling algorithm cannot be less than 1.

factor by which the execution times of a set of tasks, that
are only just schedulable according to fixed priority pre-
emptive scheduling (i.e. with 1=Sα), can be increased,
and yet the taskset remain schedulable according to an
optimal scheduling algorithm (e.g. EDF).

Corollary 1: The processor speedup factor for fixed
priority pre-emptive scheduling is equal to the largest
EDF scaling factor Sf of any taskset with a fixed
priority scaling factor 1=Sα .

Definition 3: A taskset is said to be speedup-optimal if
it has the largest EDF scaling factor Sf of any taskset
that is only just schedulable according to fixed priority
pre-emptive scheduling (1=Sα).

Corollary 2: The processor speedup factor is equal to
the EDF scaling factor Sf of a speedup-optimal taskset.

We note that the value of the processor speedup factor
and the parameters of speedup-optimal tasksets depend
on the class of tasksets considered. For example the
class of implicit-deadline tasksets of cardinality two has
a smaller processor speedup factor than the class of
constrained-deadline tasksets with arbitrary cardinality,
and different speedup-optimal tasksets. In the remainder
of the paper, when the terms processor speedup factor
and speedup-optimal taskset are used, the class of
tasksets considered is explicitly stated only when this is
not readily apparent from the context.

Definition 4: A constraining task is defined as a task
that cannot have its execution time increased without
missing its deadline, and hence the taskset becoming
unschedulable.

Corollary 3: Under fixed priority pre-emptive
scheduling, for a constraining task iτ , the interval

),0[iD , starting with a critical instant at t=0, where all
tasks are released simultaneously and then subsequently
released as early as possible, contains no priority level-i
idle time.

Corollary 4: Any taskset S with Sα = 1, has at least one
constraining task.

2.6. Example
The concepts introduced in this section can be

illustrated by means of an example. Consider an
implicit-deadline taskset S comprising the two tasks
defined in Table 1. The parameters of these tasks appear
to have some rather unusual values; however, this is
because they have been chosen so that the taskset is
speedup-optimal with respect to the class of implicit-

6

deadline tasksets with cardinality two. The total
utilisation of the taskset is 0.8284271)-22(≈ .

Table 1
Task iC ii TD = iU iR

1τ 1 21+ 1-2 1
2τ 2 22 + 1-2 21+

1 √2

T2T1

D2D1

1

Figure 1
Figure 1 illustrates the execution of the tasks under

fixed priority pre-emptive scheduling, starting at a
critical instant. Note that although the worst-case
response time of task 2τ is significantly less than its
deadline 2D , 2τ is a constraining task; since any
increase in its execution time will cause its deadline to
be missed.

Taskset S has a fixed priority scaling factor 1=Sα ,
as increasing the execution times of the tasks by any
factor greater than 1 would result in the taskset
becoming unschedulable.

As EDF can schedule any implicit deadline taskset
with utilisation no greater than 100%, we can scale the
execution times of tasks 1τ and 2τ by a factor of

1))-21/(2(, and the resulting taskset, with 100%
utilisation, will be just schedulable under EDF. The EDF
scaling factor Sf for taskset S is therefore

1.207107 1))-21/(2(≈ .
We note that the parameters of the tasks in taskset S

have been carefully selected so that the utilisation of this
taskset matches the Fineberg and Serlin (1967)
utilisation bound of 1)-22(for implicit-deadline
tasksets of cardinality two. As all tasksets with
cardinality two and utilisation less than or equal to this
bound are known to be schedulable, any taskset with
utilisation strictly less than the bound must have a fixed
priority scaling factor that is strictly greater than 1.
Hence taskset S has the minimum utilisation of any
taskset that is only just schedulable according to fixed
priority pre-emptive scheduling (1=Sα). Taskset S
therefore exhibits the largest EDF scaling factor Sf of
any taskset that has 1=Sα , and hence is a speedup-
optimal taskset.

The processor speedup factor is equal to the EDF
scaling factor Sf of a speedup-optimal taskset, hence
the processor speedup factor for fixed priority pre-
emptive scheduling of implicit deadline tasksets of

cardinality two is 1.207107 1))-21/(2(≈ .
Note, in Section 5 we prove this result

independently without using the utilisation bound of
Fineberg and Serlin (1967).

3. Speedup-optimal tasksets
In this section, we derive the structure and

parameters of speedup-optimal tasksets for the class of
tasksets with constrained deadlines (ii TD ≤).

Before considering tasksets of arbitrary cardinality,
we first present results for tasksets comprising just two
tasks. The derivation of this result provides the intuition
for the general case.

Theorem 1 describes the parameters of a taskset that
is speedup-optimal with respect to all constrained-
deadline tasksets of cardinality two.

Theorem 2 describes the parameters of a taskset that
is speedup-optimal with respect to all constrained-
deadline tasksets.

The proofs of Theorems 1 and 2 rely on Lemmas 1-
8. The basic method and intuition behind the proofs of
Lemmas 1-8 is given after the Theorems, this followed
by the Lemmas and their specific proofs.

Note that in the various discussions, theorems,
lemmas, and proofs in this and subsequent sections,
fixed priority pre-emptive scheduling should be assumed
unless otherwise stated.

Theorem 1: For constrained-deadline tasksets of
cardinality two, there is a speedup-optimal taskset V,
with Vα = 1, which has the following parameters:

1τ : 11 =C , XTD +== 111

2τ : XC =2 , XD += 22 , ∞=2T
Where 0≥X is some as yet unknown value for the

execution time of 2τ .
Note that the execution time of 1τ in Theorem 1 has

been normalised to 1 and the task periods and deadlines
adjusted accordingly5. There is one free variable in the
taskset parameters, that is X, the execution time of task

2τ . This taskset is illustrated in Figure 2.

Figure 2
Proof: Proof follows directly from Lemmas 1 to 8,
specifically:

5 All of the task parameters can be scaled linearly without changing
the fundamental properties of the taskset.

7

o 2τ must be a constraining task, with the longest
deadline and the lowest priority (Lemma 1).

o 2τ must have an infinite period (Lemma 2).
o 2Dt = must be the start of an idle period

(Lemma 3).
o 21 DT < (Lemma 4)
o 11 TD = (Lemma 5).
o 2/21 DT > (Lemma 6).
o Following a critical instant, 2τ must execute

continuously from when it first starts execution
until it completes (Lemma 7).

o The parameters of task 1τ must comply with
XCCTD +=+== 12111 (Lemma 8).

□

Theorem 2: For constrained-deadline tasksets with
arbitrary cardinality, there is a speedup-optimal taskset
V, with Vα = 1, which has the following parameters:

Taskset V has an infinite number of tasks and is
expressed as the limit of the following taskset as

∞→n .
)1/()1(1 −−++==≠∀ niXTDni ii

)1/(1 −= nCi

XCn = , XDn += 2 , ∞=nT (12)
Where 0≥X is some as yet unknown value for the
execution time of nτ .

Note that in Theorem 2, the total higher priority task
execution time has again been normalised to 1 and the
task periods and deadlines adjusted accordingly. There is
one free variable in the taskset parameters, that is X, the
execution time of task nτ . This taskset is illustrated in
Figure 3.

Figure 3
Proof: Proof follows directly from Lemmas 1 to 9,
specifically:

o nτ must be a constraining task, with the longest
deadline and the lowest priority (Lemma 1).

o nτ must have an infinite period (Lemma 2).
o nDt = must be the start of an idle period

(Lemma 3).
o ni DTni <≠∀ (Lemma 4)
o ii TDni =≠∀ (Lemma 5).
o 2/ni DTni >≠∀ (Lemma 6).
o Following a critical instant, nτ must execute

continuously from when it first starts execution
until it completes (Lemma 7).

o The task parameters must comply with the
following equation (Lemma 8):

∑∑
∈∀∀

+==≠∀
)(ihpj

j
j

jii CCTDni

Finally, applying Lemma 9 repeatedly shows that
slicing the total amount of higher priority task execution
time into an infinite number of tasks each with an
infinitesimal execution time leads to a speedup-optimal
taskset6

□

3.1. Method and intuition
The problem of determining the parameters of a

speedup-optimal taskset for the class of tasksets with
constrained-deadlines is solved by breaking it down into
a series of basic steps corresponding to Lemmas 1 to 8.

At each step, we start with a set Z of tasksets, where
Z is known to contain at least one speedup-optimal
taskset. We then place a condition on the task
parameters which selects a subset Y of the tasksets in Z
(ZY ⊆). We then prove that for every taskset S that is
in Z but is not a member of Y (cYZS ∩∈ , where cY is
the complement of Y), there is a taskset YV ∈ that has
an EDF scaling factor Vf at least as large as that of
taskset S (SV ff ≥). Hence we show that the reduced set
Y also contains at least one speedup-optimal taskset.

Lemmas 1-8 are proved by contradiction. They
work in the following way: First we assume (for
contradiction) that there is a taskset cYZS ∩∈ with an
EDF scaling factor strictly larger than that of any taskset
in Y. We then show that this cannot be the case, by
transforming taskset S into another taskset YV ∈ which
we show has an EDF scaling factor at least as large as
that of S (SV ff ≥). This contradicts the original
assumption. It follows that there are no tasksets in

cYZ ∩ that have an EDF scaling factor strictly greater
than the maximum EDF scaling factor of any task in Y.
As Z was known to contain at least one speedup-optimal
taskset (with the maximum EDF scaling factor), then it
follows that there must be at least one taskset in Y that
has the maximum EDF scaling factor, and so is a
speedup-optimal taskset, which proves the Lemma.

Lemma 1 starts with Z representing the set of all
tasksets that are just schedulable according to fixed
priority pre-emptive scheduling. By definition, this set
contains at least one speedup-optimal taskset. Once

6 Strictly speaking, a speedup optimal taskset does not exist for the
case of tasksets with arbitrary cardinality, in the same way that a
largest integer does not exist for the infinite set of all integers. The
concept of a speedup optimal taskset is however extremely useful in
understanding processor speedup factors. In Theorem 2 we therefore
express the speedup optimal taskset in terms of the limit of a taskset as
its cardinality approaches infinity, and refer to it in subsequent text as
if it does exist. We note that in practice, all real-time systems have a
finite number of tasks, and speedup optimal tasksets exist for any class
of tasksets with cardinality limited by a finite value.

8

Lemma 1 is proven, we know that the subset ZY ⊆
contains at least one speedup-optimal taskset.

Each subsequent lemma starts by setting Z equal to
the subset Y defined by the previous lemma; hence
multiple conditions are applied resulting in a constrained
subset that is known to contain at least one speedup-
optimal taskset. At the end of Lemmas 1-8, this allows
for just one free variable X among the taskset
parameters, aside from the number of tasks which is
addressed by Lemma 9. By virtue of Lemmas 1-9,
Theorems 1 and 2 define speedup-optimal tasksets
sufficiently well for subsequent analysis of the exact
processor speedup factor in Section 4.

In a number of the lemmas, we make use of the
concept of a sustainable change. A change to the
parameters of the tasks in a schedulable taskset is said to
be sustainable (Baruah and Burns, 2006) if following
that change the taskset is guaranteed to remain
schedulable. Baruah and Burns (2006) showed that
under both EDF and fixed priority pre-emptive
scheduling, increases in task periods, increases in task
deadlines, and decreases in task execution times are all
sustainable changes.

3.2. Lemmas 1-9
The following lemmas are applicable to the class of

tasksets with constrained deadlines.

Lemma 1: Let Z be the set of all (constrained-deadline)
tasksets that are just schedulable according to fixed
priority pre-emptive scheduling (1=Sα for all the
tasksets in Z). By definition, this set contains at least one
taskset that is speedup-optimal with respect to the class
of tasksets with constrained deadlines. Let ZY ⊆ such
that every taskset in Y has a single constraining task, and
that task has the lowest priority, and hence the longest
deadline. The set Y contains at least one speedup-
optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

By Corollary 4, taskset S contains at least one
constraining task. Let task iτ ()ni ≠ be the highest
priority constraining task in S . (Note, nτ cannot be the
highest priority constraining task in S, otherwise S
would be a member of Y). We now create a new taskset
V by removing all tasks of lower priority than i from S.
As the lowest priority task in V is a constraining task,

Vα = 1, and hence YV ∈ . Further, the tasks in V are a
subset of the tasks in S. Removing a task is equivalent to
decreasing its execution time to zero, and decreasing the
execution time of any task is a sustainable change under
both fixed priority and EDF scheduling. Taskset V,
scaled by a factor of Sf is therefore schedulable under

EDF, hence SV ff ≥ . This contradicts our original
assumption, hence there are no tasksets in cYZ ∩ that
have an EDF scaling factor strictly greater than the
maximum EDF scaling factor of any taskset in Y, and so
there must be at least one speedup-optimal taskset in Y
□

Lemma 2: Let Z be the set Y defined by Lemma 1, and
Y be redefined as follows: ZY ⊆ such that every taskset
in Y has a lowest priority task nτ with an infinite period.
The set Y contains at least one speedup-optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

We now create a new taskset V from taskset S, by
increasing the period of task nτ to infinity. Taskset V
has Vα = 1, as schedulability of nτ under fixed priority
pre-emptive scheduling is independent of its period nT
provided that nn TD ≤ (see Equation (1)), hence YV ∈ .

Increasing the period of any task is a sustainable
change under fixed priority and EDF scheduling and so
taskset V, scaled by a factor of Sf is schedulable under
EDF, hence SV ff ≥ . This contradicts our original
assumption, hence there are no tasksets in cYZ ∩ that
have an EDF scaling factor strictly greater than the
maximum EDF scaling factor of any taskset in Y, and so
there must be at least one speedup-optimal taskset in Y
□

Lemma 3: Let Z be the set Y defined by Lemma 2, and Y
be redefined as follows: ZY ⊆ such that every taskset
in Y has a priority level-(n-1) idle period starting at time

nDt = , following a critical instant at time t = 0, when
all of the tasks are released simultaneously, and are then
released again as early as possible. Stated otherwise, all
of the task execution released in the interval),0[nD is
completed by nD , and no task of priority higher than n
is released at time nD . The set Y contains at least one
speedup-optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

For taskset S, with a critical instant at time t = 0,
time nDt = is not the start of a priority level-(n-1) idle
period, otherwise S would be a member of Y. Let the
next such idle period start at some later time

nn DDt >′= . We now create a new taskset V from
taskset S by increasing the deadline of nτ to nD′ . We
refer to the modified task as nτ ′ . As nτ ′ is a constraining
task, taskset V has Vα = 1 and hence YV ∈ .

Increasing the deadline of any task is a sustainable
change under fixed priority and EDF scheduling and so
taskset V, scaled by a factor of Sf is schedulable under

9

EDF, hence SV ff ≥ . This contradicts our original
assumption, hence there are no tasksets in cYZ ∩ that
have an EDF scaling factor strictly greater than the
maximum EDF scaling factor of any taskset in Y, and so
there must be at least one speedup-optimal taskset in Y
□

Lemma 4: Let Z be the set Y defined by Lemma 3, and
Y be redefined as follows: ZY ⊆ such that every taskset
in Y has task periods such that ni DTni <≠∀ . The set
Y contains at least one speedup-optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

Let iτ be a task in taskset S that has ni DT ≥ . We
now create a new taskset V from taskset S by removing
each such task iτ with ni DT ≥ , and increasing the
execution time of nτ by iC (to form task nτ ′). As there
was only one invocation of each such task iτ in the
interval),0[nD , the same amount of computation
remains in this interval, hence nτ ′ is a constraining task
and Vα = 1, hence YV ∈ .

As nτ ′ has an infinite period (due to the constraints
placed on the tasksets in set Z by Lemma 2) and a
deadline not less than that of iτ (due to the constraints
placed on the tasksets in the set Z by Lemma 1), then the
processor demand function)(th for taskset V is never
larger than that for taskset S. Taskset V scaled by a
factor of Sf is therefore schedulable under EDF, hence

SV ff ≥ . This contradicts our original assumption,
hence there are no tasksets in cYZ ∩ that have an EDF
scaling factor strictly greater than the maximum EDF
scaling factor of any taskset in Y, and so there must be at
least one speedup-optimal taskset in Y
□

Lemma 5: Let Z be the set Y defined by Lemma 4, and
Y be redefined as follows: ZY ⊆ such that every taskset
in Y has task periods and deadlines such that

ii TDni =≠∀ . The set Y contains at least one
speedup-optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

Let iτ be a task in taskset S that has ii TD < . We
now create a new taskset V from taskset S by increasing
the deadline of each such task iτ , to form task iτ ′ with

ii TD =′ . The total execution time in),0[nD remains the
same, and so nτ remains a constraining task and so Vα
= 1, hence YV ∈ .

Increasing the deadline of any task is a sustainable
change under fixed priority and EDF scheduling and so
taskset V, scaled by a factor of Sf is schedulable under

EDF, hence SV ff ≥ . This contradicts our original
assumption, hence there are no tasksets in cYZ ∩ that
have an EDF scaling factor strictly greater than the
maximum EDF scaling factor of any taskset in Y, and so
there must be at least one speedup-optimal taskset in Y
□

We note that the transformation detailed in the proof
of Lemma 5 may result in changes to the order of task
deadlines with respect to task priority. We assume that if
this is the case, then the task priorities are altered so that
they are once again in deadline monotonic priority order.
We note that this does not affect taskset schedulability
as deadline monotonic priority ordering is known to be
optimal (Leung and Whitehead, 1982), and the taskset
remains schedulable with its original priority ordering.
Further, Lemma 4, shows that ni DTni <≠∀ , hence
after the above transformation, ni DDni <≠∀ , so
task nτ remains the lowest priority and constraining
task.

Lemma 6: Let Z be the set Y defined by Lemma 5, and
Y be redefined as follows: ZY ⊆ such that every taskset
in Y has task periods such that 2/ni DTni >≠∀ . The
set Y contains at least one speedup-optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

Let iτ be a task in S that has 2/ni DT ≤ . We now
create a new taskset V from taskset S by transforming
the parameters of each such task iτ (to form task iτ ′) as
follows. ii mCC =′ , iii mTTD =′=′ where ⎣ ⎦in TDm /= .
As 2/ni DT ≤ we have 2/nin DTD ≥′≥ .

We note that this transformation may result in
changes to the order of task deadlines with respect to
task priority. We assume that if this is the case, then the
task priorities are altered so that the tasks are once again
in deadline monotonic priority order. Note that nτ
remains the lowest priority task.

Following the above transformation, the amount of
execution time released by iτ ′ in the interval),0[nD
cannot be less than that released by iτ , hence taskset V
has 1≤Vα . (We consider the fact that taskset V may
now be unschedulable according to fixed priority
scheduling (i.e. 1<Vα) later in the proof).
 Considering EDF scheduling, the contribution to the
processor demand function from each original task iτ
(with ii TD =) is given by:

i
i

i C
T
tth ⎥
⎦

⎥
⎢
⎣

⎢
=)((4)

Similarly, the contribution to the processor demand
function from each transformed task iτ ′ is given by:

10

i
i

i mC
mT

tth ⎥
⎦

⎥
⎢
⎣

⎢
=′)((5)

Equations (4) and (5) are both monotonically non-
decreasing functions of t.

)(thi is zero for iTt < , and only increases in value
at times igTt = , for integer values of g. At these
times, ii gCth =)(.

)(thi′ is zero for imTt < , and only increases in
value at times ikmTt = , for integer values of k. At
these times, ii kmCth =′)(.

Now substituting the times at which Equation (5)
increases into Equation (4), we find that at these times,

ii kmCth =)(, hence)()(ththt ii ′≥∀ .
As the processor demand function)(th for taskset V

is never larger than that for taskset S, taskset V, scaled
by a factor of Sf is schedulable under EDF, hence

SV ff ≥ .
We now further transform taskset V ensuring that it

is just schedulable according to fixed priority pre-
emptive scheduling, and a member of the set Y. We
achieve this by applying the following steps 1-6
repeatedly until the parameters of the taskset cease to
change on step 6:

1. Reduce all task execution times by the same
scaling factor until taskset V is just schedulable
according to fixed priority pre-emptive
scheduling. We now have 1=Vα . Reducing
task execution times is a sustainable change,
and so cannot decrease the taskset�s EDF
scaling factor Vf .

2. Remove all tasks of lower priority than the
highest priority constraining task (Lemma 1).

3. Give the lowest priority task nτ , the longest
possible (e.g. infinite) period (Lemma 2).

4. Increase the deadline of task nτ until there is a
priority level-(n-1) idle period starting at nD
(Lemma 3).

5. Remove any task iτ with ni DT ≥ , and add its
execution time to that of the lowest priority task
(Lemma 4).

6. Transform the parameters of any task iτ with
2/ni DT ≤ , as described in the 2nd paragraph of

this proof, and re-assign task priorities in
deadline monotonic priority order.

Note that step 6 can only change the taskset
parameters if a task was removed in step 2, and so the
number of times that the sequence of six steps can repeat
is limited by the cardinality of the original taskset.

Once the repeated transformation is complete, then
taskset V complies with the constraints imposed by
Lemmas 1-6 and has 1=Vα , hence YV ∈ .

As none of the above six steps can decrease the EDF
scaling factor of taskset V, we have SV ff ≥ . This
contradicts our original assumption, hence there are no
tasksets in cYZ ∩ that have an EDF scaling factor
strictly greater than the maximum EDF scaling factor of
any taskset in Y, and so there must be at least one
speedup-optimal taskset in Y
□

Corollary 3: There is a speedup-optimal taskset where,
following a critical instant, all tasks with priorities
greater than n execute exactly twice in the interval

),0[nD . This follows directly from the fact that all
tasksets in the set Y defined by Lemma 6 have this
property.

Lemma 7: Let Z be the set Y defined by Lemma 6, and
Y be redefined as follows: ZY ⊆ such that every taskset
in Y, has task nτ executing continuously from when it
first starts execution until it completes, without pre-
emption by any higher priority task iτ (assuming the
tasks are released at a critical instant). The set Y contains
at least one speedup-optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

Corollary 3 shows that any task iτ (ni ≠) in taskset
S executes exactly twice in the interval),0[nD .

We now construct a new taskset V from taskset S,
initially, we make V a copy of S, then we apply the
following transformation repeatedly until there are no
tasks in V whose second invocation is released prior to
the completion of nτ .

Transformation: Let iτ (ni ≠) be a task in V that
initially pre-empts nτ at time iT , and that an amount of
execution time 0≠nc , of task nτ remains at this time.
We increase both the period and deadline of iτ by nc
(to form task iτ ′), hence niii cTTD +=′=′ . We note that
there is no idle time in the interval),0[iT ′ as any time in
this interval that is not now taken up processing iτ ′ will
instead be used to execute nτ (or another task of higher
priority than n).

Each time the transformation is applied, the total
execution time in),0[nD remains the same, it is just re-
ordered, hence nτ remains a constraining task and Vα =
1.

Repeated application of the above transformation
until there are no tasks whose second invocation is
released prior to the completion of nτ results in a taskset
V where nτ is not pre-empted following a critical
instant, and Vα = 1, hence YV ∈ .

Increasing the deadline or period of any task is a
sustainable change under fixed priority and EDF
scheduling and so taskset V, scaled by a factor of Sf is

11

schedulable under EDF, hence SV ff ≥ . This
contradicts our original assumption, hence there are no
tasksets in cYZ ∩ that have an EDF scaling factor
strictly greater than the maximum EDF scaling factor of
any taskset in Y, and so there must be at least one
speedup-optimal taskset in Y
□

We note that the transformation detailed in the proof
of Lemma 7 may also result in changes to the order of
task deadlines with respect to task priority. Again, we
assume that if this is the case, then the task priorities are
altered so that they are once again in deadline monotonic
priority order. We note again that this does not affect
taskset schedulability as deadline monotonic priority
ordering is optimal, and the taskset remains schedulable
with its original priority ordering. Further, Lemma 4,
shows that ni DTni <≠∀ , hence after the above
transformation, ni DDni <≠∀ , so task nτ remains
the lowest priority and constraining task.

We further note that the transformation detailed in
the proof of Lemma 7 may, in some cases, need to be
applied more than once per higher priority task, before
the final state with no second invocations prior to the
completion of nτ is reached.

Lemma 8: Let Z be the set Y defined by Lemma 7, and
Y be redefined as follows: ZY ⊆ such that every taskset
in Y, has task parameters related according to Equation
(6).

∑∑
∈∀∀

+==≠∀
)(ihpj

j
j

jii CCTDni (6)

The set Y contains at least one speedup-optimal taskset.

Proof: We assume (for contradiction) that there is a
taskset cYZS ∩∈ that has an EDF scaling factor Sf
strictly greater than that of any taskset in Y.

By Lemma 1, as nτ is a constraining task, taskset S
has no idle time in the interval),0[nD . By Lemma 7,
assuming priorities in deadline monotonic order, the
period and deadline of 1τ are equal to the completion
time of task nτ .

∑
∀

=
j

jCD1 (7)

For i = 2..(n-1), as there is no idle time in the
interval, then task iτ must have a period (and deadline)
less than or equal to the completion time of the second
invocation of 1−iτ . This completion time is given by:

∑∑
∈∀∀

+
)(ihpj

j
j

j CC (8)

Let iτ be a task in taskset S where the period and
deadline of iτ are less than this completion time.

We now create a new taskset V from taskset S by
increasing the period and deadline of each such task iτ ,
to the completion time of task 1−iτ . Following this

transformation, the total execution time in),0[nD
remains the same, hence nτ remains a constraining task
and Vα = 1, hence YV ∈ .

Increasing the deadline or period of any task is a
sustainable change under fixed priority and EDF
scheduling and so taskset V, scaled by a factor of Sf is
schedulable under EDF, hence SV ff ≥ . This
contradicts our original assumption, hence there are no
tasksets in cYZ ∩ that have an EDF scaling factor
strictly greater than the maximum EDF scaling factor of
any taskset in Y, and so there must be at least one
speedup-optimal taskset in Y
□

Lemma 9: Let the set Y be as defined by Lemma 8. For
a taskset YS ∈ , splitting a task iτ (ni ≠) with
parameters iC , ii TD = , into two new tasks, iτ ′ and iτ ′′
with parameters iC ′ (where iC ′ is any arbitrary non-zero
value that is less than iC), iii DTD =′=′ and

iii CCC ′−=′′ , iiii CDTD ′+=′′=′′ results in a new taskset
YV ∈ with a speedup factor at least as large as that for

taskset S (i.e. SV ff ≥).

Proof: The execution of tasks iτ ′ and iτ ′′ (from taskset
V) exactly replaces that of task iτ (from taskset S) in the
interval),0[nD starting from a critical instant, hence nτ
remains a constraining task and Vα = 1.

We prove the Lemma by showing that at any
arbitrary time t, the processor demand bound function
for taskset V is no greater than that for taskset S. The
demand bound functions are identical save for the
contributions from tasks iτ , iτ ′ and iτ ′′ . We therefore
only consider the contributions from these tasks.
The contribution from tasks iτ ′ and iτ ′′ is given by:

+′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢ −
+=′′+′ i

i

i
ii C

T
Tt

thth 1)()(

)(
)(

1 CC
CT

CTt
i

ii

ii ′−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
′+
′+−

+ (9)

The contribution from task iτ is given by:

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢ −
+= i

i

i
i C

T
Tt

th 1)(

+′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢ −
+ i

i

i C
T

Tt
1

)(1 CC
T

Tt
i

i

i ′−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢ −
+ (10)

For positive values of iC ′ , then:

⎥
⎦

⎥
⎢
⎣

⎢
′+
′+−

≥⎥
⎦

⎥
⎢
⎣

⎢ −
∀

ii

ii

i

i

CT
CTt

T
Tt

t
)(

 (11)

12

Hence)()()(ththth iii ≤′′+′ and so taskset V is
schedulable with an EDF scaling factor at least as large
as that for taskset S (i.e. SV ff ≥)
□

4. Processor speedup factor for constrained-
deadline tasksets

In this section, we derive the processor speedup
factor for constrained-deadline tasksets under fixed
priority pre-emptive scheduling. We do this first for
tasksets of cardinality two and then for the general case
of cardinality n.

In each case, the basic approach we use is as follows:
o First, we derive an upper bound on the

maximum EDF scaling factor of the appropriate
speedup-optimal taskset (defined in either
Theorem 1 or Theorem 2), assuming any
arbitrary value for the execution time X, of the
lowest priority task. As part of this derivation,
we determine the value of X that results in this
upper bound.

o Second, we prove that the maximum EDF
scaling factor is in fact equal to the upper
bound. We do this by showing that the speedup-
optimal taskset, characterised by the previously
obtained value of X, is schedulable according to
EDF when all task execution times are scaled
by the upper bound. This shows that the bound
is tight.

o Finally, the processor speedup factor for fixed
priority pre-emptive scheduling is equal to the
maximum EDF scaling factor (for any value of
X) for the speedup-optimal taskset. So the
processor speedup factor is equal to our tight
upper bound.

Theorem 3: For a constrained-deadline taskset of
cardinality two, the processor speedup factor for fixed
priority pre-emptive scheduling is 414214.12 ≈ .

Proof: We prove the theorem by determining the
maximum EDF scaling factor for the taskset V described
in Theorem 1, for any value of X.

Three constraints on the EDF scheduling of the
taskset described in Theorem 1, after it is scaled by a
factor f are:

(i) Task 2τ with execution time fX must
complete by its deadline at 2+X (subject to
interference of f from task 1τ).

(ii) The second invocation of task 1τ must
complete by its deadline at 2X+2.

(iii) The total utilisation of task 1τ must be less
than or equal to 1 (The utilisation of task

2τ is effectively zero as it has an infinite
period).

Constraint (i), leads to the following equation
bounding the EDF scaling factor as a function of X:

X
XXf

+
+

=
1
2)(1 (13)

Constraint (ii), leads to the following equation, also
bounding the EDF scaling factor as a function of X:

X
XXf
+
+

=
2

22)(2 (14)

Constraint (iii), again leads to an equation bounding the
EDF scaling factor:

XXf +=1)(3 (15)
As)(2)(3 XfXf ≥ for all values of X, we may
disregard)(3 Xf as)(2 Xf provides a tighter bound.

Figure 4 illustrates the three functions bounding the
EDF scaling factor for two tasks.

Equation (13) is a continuous non-increasing
function of X with a maximum value of f1(0) = 2.
Equation (14) is a continuous non-decreasing function of
X with a minimum value of f2(0) =1. Hence, the
intersection of these two functions determines an upper
bound on the maximum EDF scaling factor f. We have:

X
X

X
X

+
+

=
+
+

2
22

1
2

)1)(22()2(2 XXX ++=+

24244 22 ++=++ XXXX
22 =X
2=X

2
222

)222(2
22
222)2(2 =

+

+
=

+

+
=f (16)

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
X

Sp
ee

du
p

fa
ct

or
 f

f1(X)
f2(X)
f3(X)

Figure 4: Constraints on the speedup factor for
two tasks

To show that the maximum EDF scaling factor is
equal to this upper bound, we must show that the taskset
is schedulable, with scaled parameters, under EDF.

13

 The scaled taskset parameters are as follows:
21 =C , 211 +=D , 211 +=T

22 =C , 222 +=D , ∞=2T
The taskset is schedulable provided that 1/)(≤∀ ttht
(See Equation (2)). From Equation (2), we note that the
maximum value of tth /)(occurs at the deadline of
some invocation of a task. It is therefore sufficient to
check that 1/)(≤tth at the deadlines of all task
invocations.

For task 2τ , there is only one deadline to consider,
222 +=D , and:

1
22
22

2222
)22(12 =

+

+
=

+

+
=

+

+ CCh (17)

For task 1τ , there are deadlines to consider at times
)21(1 +== kkDt , where k is a positive integer. For

1=k , we have:

1
21

2
2121

)21(1 <
+

=
+

=
+

+ Ch (18)

Further, for 2≥k , we have:

1
)21(

)21(

)21(
22

)21()21(
))21((2

21 =
+

+
≤

+

+
=

+

+
=

+

+ ≥

k
k

k
k

k
CkC

k
kh k

 (19)
Hence the taskset is schedulable. The maximum EDF
scaling factor, for any value of X, is therefore 2 .

For a constrained-deadline taskset of cardinality
two, the processor speedup factor for fixed priority pre-
emptive scheduling is equal to the maximum EDF
scaling factor (for any value of X) for the speedup-
optimal taskset described Theorem 1
□

Corollary 5: The maximum EDF scaling factor and
hence the processor speedup factor for a constrained-
deadline taskset of cardinality two is achieved for the
taskset described in Theorem 1, with a value of

2=X .

Next we derive the processor speedup factor for the
general case of n tasks. We do this by reference to the
speedup-optimal taskset described in Theorem 2;
however, first we prove the following Lemma.

Lemma 10: The total utilisation of the higher priority
tasks 1τ to 1−nτ in taskset V described in Theorem 2 is
given by:

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
X
XU V

1
2ln (20)

Proof: Given that the execution time of each higher
priority task is 1/(n-1) and the period of task iτ is

))1/()1(1(−−++ niX , the total utilisation of tasks 1τ

to 1−nτ described in Theorem 2, is given by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++−

= ∑
−

=
∞→−

1

11))1/()1(1(
1

)1(
1lim

n

in

V

niXn
U (21)

Substituting k = n-1 gives:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

= ∑
=

∞→

k

ik

V

kiXk
U

1)/)1(1(
11lim (22)

Equation (22) is recognisable as the Riemann sum7 of
the function y =1/z over the partition [(1+X), (1+X)+1].
The start of each of the k intervals in the Riemann sum is
at kiX /)1(1 −++ (for i = 1 to k), and the width of each
interval is 1/k.
 The limit as ∞→k of the Riemann sum is simply
the integral over the partition so:

∫
+

+

⎟
⎠
⎞

⎜
⎝
⎛

+
+

==
X

X

V

X
Xdz

z
U

2

1 1
2ln1 (23)

□

Theorem 4: For a constrained-deadline taskset of
arbitrary cardinality, the processor speedup factor for
fixed priority pre-emptive scheduling is 1.76322/1 ≈Ω
(Where Ω is the mathematical constant defined by the
transcendental equation Ω=Ω)/1ln(. Hence,

0.567143≈Ω).

Proof: We prove the theorem by determining the
maximum EDF scaling factor for the taskset V described
in Theorem 2, for any value of X.
 Two constraints on the EDF scheduling of taskset V,
after it is scaled by a factor f are:

(i) nτ with execution time fX must complete
by 2+X (subject also to interference in total
of f from tasks 1τ to 1−nτ).

(ii) The total utilisation of tasks 1τ to 1−nτ
must be less than or equal to 1. (The
utilisation of task nτ is effectively zero as
it has an infinite period).

Constraint (i), leads to the following equation
bounding the EDF scaling factor as a function of X.

X
XXf

+
+

=
1
2)(1 (24)

Constraint (ii), leads via Lemma 10, to the following
equation which bounds the EDF scaling factor as a
function of X (assuming U = 1):

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=

X
X

Xf

1
2ln

1)(2 (25)

7 Technically it is the �left Riemann sum� as the function is
approximated by its value at the left end point of each interval.

14

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

Sp
ee

du
p

fa
ct

or
 f

f1(X)
f2(X)

Figure 5: Constraints on the speedup factor for
n tasks with D≤≤T

Equation (24) is a continuous non-increasing function of
X with a maximum value of f1(0) = 2. Equation (25) is a
continuous non-decreasing function of X with a
minimum value of f2(0) = 44270.1)2ln(/1 ≈ . Hence, the
intersection of the two functions determines an upper
bound on the EDF scaling factor f.

Figure 5 illustrates the two functions bounding the
EDF scaling factor, plotted against values of X.

The intersection of the two functions is given by:

)(1
1
2

1
2ln

1)(2 Xf
X
X

X
X

Xf =
+
+

=
⎟
⎠
⎞

⎜
⎝
⎛

+
+

= (26)

Hence we need to find the value of X such that:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
+

X
XX

X

1
2

1
1
2ln (27)

Which can be re-written as:

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

+
+ X

X

X
X 2

1

2
1

1ln (28)

Noticing the similarity between Equation (28) and
that defining the mathematical constant
Ω (Ω=Ω)/1ln(), we have:

Ω=
+
+

X
X

2
1 (29)

Ω
=

+
+ 1

1
2

X
X (30)

and hence

Ω−
−Ω

=
1

12X (31)

Therefore

Ω
=⎟

⎠
⎞

⎜
⎝
⎛

Ω−
−Ω

=⎟
⎠
⎞

⎜
⎝
⎛

Ω−
−Ω 1

1
121

1
122 ff (32)

To show that the maximum EDF scaling factor is
equal to this upper bound, we must show that the taskset
given in Theorem 2 is schedulable under EDF, for the
value of X given by Equation (31) and with execution
times scaled by a factor of Ω= /1f .

To prove that this taskset is schedulable, we show
that its processor demand bound function)(th , is such
that 1/)(≤∀ ttht . Our proof proceeds as follows:

o First, we represent)(th by an infinite series of
piecewise linear functions, the kth of which
corresponds to the processor demand from the
kth invocations of all the higher priority tasks
(ni ≠).

o Next, using these piecewise linear functions,
we show that the maximum value of tth /)(
must occur for some value of)2(Xkt += ,
where k is an integer. We use the discrete
function H(k) to denote the values of tth /)(at
these maxima.

o Finally, we show that 1)(1 ≤≥∀ kHk , hence
proving that 1/)(≤∀ ttht .

We first consider the contribution)(th′ , to the
processor demand bound function)(th , from all the
higher priority tasks (ni ≠∀):

∑
−

=∞→− ⎥
⎦

⎥
⎢
⎣

⎢
−−++−

=′
1

11)1/()1(11
lim)(

n

in niX
t

n
fth (33)

In the limit as ∞→−1n , we can represent this
contribution as the sum of an infinite series of piecewise
linear functions),(tkg ′ for ∞= ..1k , where the kth
function represents the contribution from the kth
invocations of all the higher priority tasks (ni ≠).

∑
∞

=

′=′
1

),()(
k

tkgth (34)

where:

⎪
⎩

⎪
⎨

⎧

+≥
+<≤+

+<≤
+−=′

)2(
)2()1(

)1(0
))1((

0
),(

Xkt
XktXk

Xkt

f

Xkt
k
ftkg

 (35)
The contribution from task nτ is similarly represented
by a piecewise linear function:

)2(
)2(00

)(
Xt

Xt
fX

tg
+≥
+<≤

⎩
⎨
⎧

=′′ (36)

The processor demand bound function)(th , is therefore:

∑
∞

=

′+′′=
1

),()()(
k

tkgtgth (37)

Figure 6 illustrates tth /)(plotted against)2/(Xt + .

15

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10

t/(2+X)

h(t)/t

h(t)/t
k(2+X)
 j(1+X)

Figure 6: h(t)/t for the speedup-optimal taskset
As)(th is composed from the piecewise linear functions

),(tkg ′ and)(tg ′′ , tthty /)()(= is itself a piecewise
continuous function, which is differentiable at all values
of t, with the exception of the start and end points of the
pieces, given by)1(Xj + , and)2(Xk + , where j and k
are integers.
 Within each piece,)(ty is differentiable with
respect to t. From Equations (35), (36) and (37):

2t
c

dt
dy p= (38)

where pc is a constant for the particular piece. Note that
pc can be computed from Equation (37), and could take

positive, zero or negative values for a given piece;
however, the actual values for different pieces are
irrelevant, what is important is the form of the first
derivative.
 Equation (38) indicates that there are no turning
points (maxima or minima where 0/ =dtdy) within
each piece, unless 0=pc , in which case all points
within the piece and its end points are potentially
maxima or minima that have the same value. Thus, to
find the maximum value of the function tth /)(, we need
only consider the end points of the pieces.
 Further, from Equation (35), we observe that at
points)1(Xj + , the slope of tth /)(increases, as the jth
invocations begin to contribute to)(th , whilst at points

)2(Xk + , the slope of tth /)(decreases, as the kth
invocations cease to contribute to)(th . Thus for tth /)(,
maxima (but not minima) can occur at)2(Xkt += .
Similarly, minima (but not maxima) can occur at

)1(Xjt += . These maxima and minima are depicted in
Figure 6.

As the maximum value of tth /)(must occur for
some value of)2(Xkt += , we need only consider

tth /)(at these specific values of t. We use the discrete

function H(k) to denote the value of)(th at
)2(Xkt += , for ∞= ..1k .

)2(
))2(()(

Xk
XkhkH

+
+

= (39)

 We now use this function to prove that the taskset is
schedulable, by showing that:

1)(1 ≤≥∀ kHk (40)
Proof of the inequality in equation (40) is in three
Lemmas:

1. Lemma 11 shows that as ∞→k , 1)(→kH .
2. Lemma 12 shows that 6≥∀k ,)(kH is a

monotonic non-decreasing function of k, with
)()1(kHkH ≥+ .

3. Lemma 13 shows that 6≤∀k , 1)(≤kH

Lemma 11: As ∞→k , 1)(→kH .

Proof: For 2≥k , and by reference to Equations (35)
and (36), we can separate the processor demand in the
interval [0,)2(Xk +) into 3 components:

(i) fXXkg =+′′))2((
(ii)))2(,(Xkjg +′ for invocations j=1 to k of

all the higher priority tasks iτ (ni ≠).

fkXkjg
k

j
=+′∑

=1
))2(,(

(iii)))2(,(Xkjg +′ for invocations j = k+1 to
∞ of the higher priority tasks iτ (ni ≠).
The index of the final invocations that can
contribute to the processor demand in the
interval [0,)2(Xk +), is given
by ⎣ ⎦)1/()2(XXk ++ , hence:

∑∑
⎥
⎦

⎥
⎢
⎣

⎢
+
+

+=

∞

+=

+−+
=+′

)1(
)2(

11

)1()2())2(,(
X
Xk

kjkj j
XjXkfXkjg

We can therefore write H(k) as follows:

∑
⎥
⎦

⎥
⎢
⎣

⎢
+
+

+=

+−+
+

+
+
+

=
)1(
)2(

1

)1()2(
)2()2(

)()(
X
Xk

kj j
XjXk

Xk
f

Xk
XkfkH

(41)
Noting that fXX =++)1/()2(, we have:

⎣ ⎦

∑
+=

−
+

+
+

=
fk

kj j
jfk

kXk
XkkH

1

)(1
)1(
)()(

⎣ ⎦ ⎣ ⎦

∑
+=

+
++−

−
+
+

=
fk

kj j
f

k
kfk

Xk
Xk

1

11)1(
)1(
)(

⎣ ⎦ ⎣ ⎦

∑
+=

++−
+
+

=
fk

kj j
f

k
fk

Xk
Xk

1

11
)1(
)(

16

⎣ ⎦ ⎣ ⎦

∑
+=

+−
+

++
=

fk

kj j
f

k
fk

Xk
XXk

1

1
)1(

)2((42)

Substituting,)1/()12(Ω−−Ω=X ,)1/(1 Ω−Ω=+ X ,
)1/(12 Ω−=+ X , and Ω= /1f in Equation (42) gives:

⎣ ⎦ ⎣ ⎦

∑
Ω

+=Ω
+

Ω
−

Ω
−Ω+

=
/

1

11/12)(
k

kj jk
k

k
kkH

⎣ ⎦ ⎣ ⎦

∑
Ω

+=Ω
+

Ω
−

Ω
−+

Ω
=

/

1

11/121 k

kj jk
k

kk
 (43)

Note that Equation (43) is only valid for 2≥k , as for
1=k , ⎣ ⎦Ω>+ /1 kk .
As 1/z is a positive decreasing function, the

summation term in Equation (43) is bounded by the
following integral, (given that ⎣ ⎦ Ω≤Ω // kk).

⎣ ⎦
11ln1)/(ln11111 //

1
=⎟

⎠
⎞

⎜
⎝
⎛
ΩΩ

=⎟
⎠
⎞

⎜
⎝
⎛ Ω

Ω
=

Ω
≤

Ω ∫∑
Ω

=

Ω

+= k
kdz

zj

k

kj

k

kj

 (44)
As ∞→k , ⎣ ⎦ Ω→Ω // kk hence we have:

111121)(=+
Ω

−
Ω

−+
Ω

=
∞→

kk
kH

k
 (45)

□

Lemma 12: 6≥∀k ,)(kH is a monotonic non-
decreasing function, with)()1(kHkH ≥+ .

Proof: As 76322.1/1 ≈Ω , there are two distinct cases
to consider:

Case 1: ⎣ ⎦ ⎣ ⎦ 1//)1(+Ω=Ω+ kk
Case 2: ⎣ ⎦ ⎣ ⎦ 2//)1(+Ω=Ω+ kk

Case 1: ⎣ ⎦ ⎣ ⎦ 1//)1(+Ω=Ω+ kk :
From Equation (43) we have:

⎣ ⎦
)1(

1/
)1(

1
)1(

2)()1(
+
+Ω

−
Ω+

−
+

=−+
k

k
kk

kHkH

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑∑
Ω

+=

+Ω

+= Ω
−

Ω
+

Ω
+−

Ω
+

/

1

1/

2

11/1211 k

kj

k

kj jk
k

kkj

⎣ ⎦
)1(

/
)1(

1
)1(

2
+
−Ω

+
Ω+

+
+

−=
kk

kk
kkkk

⎣ ⎦)1(
1

)1/(
1

+Ω
−

+ΩΩ
+

kk
(46)

As we are interested only in showing that
0)()1(≥−+ kHkH , we are free to multiply the

expression in Equation (46) by any positive quantity.
Multiplying by ⎣ ⎦)1/)(1(+Ω+Ω kkk gives:

⎣ ⎦ ⎣ ⎦)1()/)1(21)(1/(++ΩΩ+Ω+−Ω−+Ω kkkkk
 (47)

Substituting ⎣ ⎦ ε−Ω=Ω)/(/ kk , where ε is a value in
the range 10 <≤ ε , gives:

)1()21)(1)/((++Ω−Ω−Ω−+−Ω kkkk εε (48)
For ease of reference, we refer to the expression in
Equation (48) as)(εy . Expanding, simplifying and re-
arranging, we have:

22 22/)(εεεεεε Ω+Ω+Ω+−−−−Ω= kkkkky

kkk ++Ω−Ω−Ω−+ 221 ε
Ω−+Ω−−Ω+−Ω+−Ω+Ω= 21)1/1()1(2 kkk εε

 (49)
To find the minimum / maximum value of)(εy for

any possible value of ε , we differentiate with respect to
ε :

)1)(1(2 −Ω++Ω= k
d
dy ε
ε

 (50)

The turning point (minimum / maximum value) of)(εy
occurs when 0/ =εddy , i.e. for a value of ε given by:

Ω
Ω−+

=
2

)1)(1(kε (51)

For 2≥k , it follows that the turning point occurs for
1>ε , which is outside the permitted range of values for

ε . Hence the maximum / minimum values of)(εy
must occur for the maximum and minimum permitted
values of ε .
 We now show that the range of values that ε can
take is constrained by the fact that
⎣ ⎦ ⎣ ⎦ 1//)1(+Ω=Ω+ kk .
 Assuming that)/1(2 Ω−≥ε , then:

Ω
−+⎥⎦

⎥
⎢⎣
⎢
Ω

≥+⎥⎦
⎥

⎢⎣
⎢
Ω

=
Ω

12kkk ε (52)

and so

21
+⎥⎦

⎥
⎢⎣
⎢
Ω

≥
Ω
+ kk (53)

which implies that ⎣ ⎦ ⎣ ⎦ 2//)1(+Ω=Ω+ kk . This
contradicts the assumption that ⎣ ⎦ ⎣ ⎦ 1//)1(+Ω=Ω+ kk ,
and so ε is constrained (for this, Case 1) to be in the
range)/1(20 Ω−<≤ ε .
 We now evaluate)(εy for the minimum and
maximum possible values of ε .
For 0=ε , we have:

Ω−+Ω−−Ω= 21)1/1()0(ky (54)
So 0)0(≥y provided that:

684876.0
)1(/1

12
≈

Ω+−Ω
−Ω

≥k (55)

Hence 2≥∀k , 0)0(≥y .
For)/1(2 Ω−=ε , from Equation (49), we have:

() ⎟
⎠
⎞

⎜
⎝
⎛

Ω
+−−Ω+

Ω
+−−Ω=Ω−

122212)/1(2 kkkky

⎟
⎠
⎞

⎜
⎝
⎛ Ω−+Ω−−
Ω

+⎟
⎠
⎞

⎜
⎝
⎛

Ω
−Ω+ 2112

2

kkk (56)

Simplifying:

17

() ⎟
⎠
⎞

⎜
⎝
⎛

Ω
−−⎟

⎠
⎞

⎜
⎝
⎛ Ω+−
Ω

+⎟
⎠
⎞

⎜
⎝
⎛

Ω
−Ω=Ω−

124212)/1(2
2

ky

 (57)
So () 0)/1(2 ≥Ω−y provided that:

190228.2
42

1212
2

≈
⎟
⎠
⎞

⎜
⎝
⎛ Ω+−
Ω

⎟
⎠
⎞

⎜
⎝
⎛

Ω
−Ω−⎟

⎠
⎞

⎜
⎝
⎛

Ω
−

≥k (58)

Hence 3≥∀k , () 0)/1(2 ≥Ω−y .

To summarise,
(i) In this case, the range of potential values

for ε is limited to
236778.0)/1(20 ≈Ω−<≤ ε .

(ii) Equation (51) shows that provided 2≥k ,
)(εy has no turning points in the range

10 <≤ ε , and so the maximum and
minimum values of)(εy must occur for
the maximum and minimum permitted
values of ε .

(iii) Equations (55) and (58) show that for
3≥k , the maximum and minimum values

of)(εy are both positive.
We conclude that for 3≥k ,)(εy is always positive and
hence for 3≥k and ⎣ ⎦ ⎣ ⎦ 1//)1(+Ω=Ω+ kk ,

)()1(kHkH ≥+ .

Case 2: ⎣ ⎦ ⎣ ⎦ 2//)1(+Ω=Ω+ kk :
From Equation (43) we have:

⎣ ⎦
)1(

2/
)1(

1
)1(

2)()1(
+
+Ω

−
Ω+

−
+

=−+
k

k
kk

kHkH

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑∑
Ω

+=

+Ω

+= Ω
−

Ω
+

Ω
+−

Ω
+

/

1

2/

2

11/1211 k

kj

k

kj jk
k

kkj

⎣ ⎦
)1(
2/

)1(
1

)1(
2

+
−Ω

+
Ω+

+
+

−=
kk

kk
kkkk

⎣ ⎦ ⎣ ⎦)1(
1

)1/(
1

)2/(
1

+Ω
−

+ΩΩ
+

+ΩΩ
+

kkk
(59)

As we are interested only in showing that
0)()1(≥−+ kHkH , we are free to multiply the

expression in Equation (59) by any positive quantity.
Multiplying by ⎣ ⎦ ⎣ ⎦)2/)(1/)(1(+Ω+Ω+Ω kkkk gives:

⎣ ⎦ ⎣ ⎦ ⎣ ⎦)/)21(21)(1/)(2/(ΩΩ+Ω+−Ω−+Ω+Ω kkkk

⎣ ⎦ ⎣ ⎦)2/)(1()1/)(1(+Ω+++Ω++ kkkkkk (60)
Substituting ⎣ ⎦ ε−Ω=Ω)/(/ kk , where ε is a value in
the range 10 <≤ ε , gives:

()εεε Ω−Ω−Ω−⎟
⎠
⎞

⎜
⎝
⎛ +−
Ω

⎟
⎠
⎞

⎜
⎝
⎛ +−
Ω

kkk 22112

⎟
⎠
⎞

⎜
⎝
⎛ +−
Ω

++⎟
⎠
⎞

⎜
⎝
⎛ +−
Ω

++ 2)1(1)1(εε kkkkkk (61)

Expanding we have:

kkkkkkkk 22
232

2

2

244222 εεεεε
+++

Ω
−

Ω
−

Ω
−

Ω
−

Ω
22 36633663 εεεεε Ω+Ω+Ω+−−−−

Ω
+ kkkkk

εεεεε Ω−Ω−Ω−+Ω−Ω−Ω−+ 244222 3222 kk

kkkkkk 332222 22
23

++−−
Ω

+
Ω

+ εε

 (62)
For ease of reference, we refer to the expression in
Equation (62) as the function)(εy . Simplifying and re-
arranging, we have:

() 3)(εε Ω−=y

() 2212 εkk Ω−+Ω++

ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω+Ω+−+−

Ω
−

Ω
−+ kkkkk 64322 2

2

kkkkk
Ω−Ω−+−−

Ω
+

Ω
+ 442333 2

2

2

(63)
To find the minimum / maximum value of)(εy for

any possible value of ε , we differentiate with respect to
ε :

()εε
ε

kk
d
dy

Ω−+Ω++Ω−= 21223 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω+Ω+−+−

Ω
−

Ω
−+ kkkkk 64322 2

2

(64)
The turning points (minimum / maximum values) of
)(εy occur when 0/ =εddy , i.e. for the values of ε

given by the solutions to a quadratic equation, formed
from the expression in Equation (64).
 The solutions to a quadratic equation of the form

02 =++ cba εε are given by:

a
acbb

2
42 −±−

=ε (65)

We are interested in the case where the turning
points of)(εy occur outside of the permitted range of
values for ε (10 <≤ ε). From Equation (65), we can
see that this is the case provided that 2/1)2/(>− ab and

04 ≥− ac , as the two solutions are then less than zero
and greater than one respectively. Now as

()
Ω

Ω++Ω−
=

−
6

12)1(4
2

k
a
b (66)

2/1)2/(>− ab provided that:
() 827557.0

)1(4
123

−≈
Ω−
Ω+−Ω

>k (67)

18

Further,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω+Ω+−+−

Ω
−

Ω
−Ω=− kkkkkac 64322124 2

2

 (68)
So 04 ≥− ac provided that:

04321612 2 ≥Ω+−⎟
⎠
⎞

⎜
⎝
⎛

Ω
−−Ω+⎟

⎠
⎞

⎜
⎝
⎛

Ω
− kk (69)

Evaluating the coefficients in Equation (69), we have:
0977885.4646811.7611439.1 2 ≥−− kk (70)

Solving for k, gives:
952733.2372665.2 ±=k (71)

Therefore, 6≥∀k , the inequality in Equation (70) holds
and the turning points of)(εy occur outside of the
permitted range of values of ε . Thus 6≥∀k the
maximum / minimum values of)(εy must occur for the
maximum and minimum permitted values of ε .

From Equation (63), for 0=ε , we have:

Ω−+⎟
⎠
⎞

⎜
⎝
⎛ Ω−−
Ω

+⎟
⎠
⎞

⎜
⎝
⎛ −
Ω

= 4243331)0(2
2 kky (72)

Evaluating the coefficients in Equation (72), gives:
026857316.002109534.01089547.0 2 ≥−− kk

 (73)
Hence, 2≥∀k , 0)0(≥y .
 From Equation (63), for 1=ε , we have:

kky Ω−+Ω++Ω−= 212)1(

kkkkk
Ω+Ω+−+−

Ω
−

Ω
− 64322 2

2

kkkkk
Ω−Ω−+−−

Ω
+

Ω
+ 442333 2

2

2

(74)
Simplifying Equation (74) gives:

kky ⎟
⎠
⎞

⎜
⎝
⎛ −
Ω

+⎟
⎠
⎞

⎜
⎝
⎛ −

Ω
−

Ω
= 21111)1(2

2 (75)

Evaluating the coefficients in Equation (75), gives:
kky 23677716.034573192.0)1(2 −= (76)

Hence, 2≥∀k , 0)1(≥y . (From Equation (76),)1(y is
positive provided that 1≥k ; however, our analysis is
only valid for 2≥k).

To summarise,
(i) In this case, the range of potential values

for ε is bounded by 10 <≤ ε .
(ii) Equations (64) to (71) show that provided

6≥k ,)(εy has no turning points in the
range 10 <≤ ε , and so the maximum and
minimum values of)(εy must occur for
the maximum and minimum values of ε .

(iii) Equations (73) and (76) show that for
2≥k , the values of)0(y and)1(y are

both positive.
We conclude that for 6≥k ,)(εy is always positive and

hence for 6≥k and ⎣ ⎦ ⎣ ⎦ 2//)1(+Ω=Ω+ kk ,
)()1(kHkH ≥+ .

Combining the results for Case 1 and Case 2, shows that
6≥∀k ,)()1(kHkH ≥+

□

Lemma 13: 6≤∀k , 1)(≤kH .

Proof: Recall that)(kH is defined by Equation (39) as
the value of the processor load tth /)(at discrete points
in time given by)2(Xkt += , for ∞= ..1k , where)(th
is the processor demand bound function given by
Equation (34).

First we consider the case where 1=k . For 1=k , we
have:

1
)2(
)1()(=

+
+

=
X
XfkH (77)

Table 2 below gives the computed values of)(kH , for
6..1=k .

Table 2
k H(k)
1 1
2 0.969352362
3 0.968932165
4 0.970821141
5 0.976740571
6 0.980546791

□

Lemma 11 showed that as ∞→k , 1)(→kH , Lemma
12 showed that 6≥∀k ,)(kH is a monotonic non-
decreasing function of k, and Lemma 13 showed that

6≤∀k , 1)(≤kH . It follows that 1)(1 ≤≥∀ kHk .
As the maximum points of the function tth /)(are

given by the values of)(kH , we conclude that:

1)(
≤∀

t
tht (78)

and hence that the taskset in Theorem 2, with the value
of X defined by Equation (31), is schedulable under EDF
with all execution times scaled by a factor of Ω/1 .
Given the constraints expressed in Equations (24) and
(25), the maximum EDF scaling factor, for any value of
X, is therefore Ω/1 .

For a constrained-deadline taskset of arbitrary
cardinality, the processor speedup factor for fixed
priority pre-emptive scheduling is equal to the maximum
EDF scaling factor (for any value of X) for the speedup-
optimal taskset described in Theorem 2
□

Corollary 6: The maximum EDF scaling factor and
hence the processor speedup factor for a constrained-

19

deadline taskset of any cardinality is achieved for the
speedup-optimal taskset described in Theorem 2, with an
execution time for the lowest priority task of

312333.0)1/()12(≈Ω−−Ω=X .

5. Processor speedup factor for implicit-
deadline tasksets

In this section, we extend the results of Sections 3 and 4
to implicit-deadline tasksets (ii TDi =∀).

Before considering tasksets of arbitrary cardinality,
we first present results for tasksets comprising just two
tasks. The derivation of this result again provides the
intuition for the general case.

Theorem 5: For the class of tasksets with implicit
deadlines and cardinality two, there is a speedup-optimal
taskset V, which has the following parameters:
 Taskset V is identical to the taskset described in
Theorem 1 with the exception that the period of task nτ ,
rather than being infinite, is equal to its deadline.

Proof: As the class of implicit-deadline tasksets is a
subset of the class of constrained-deadline tasksets,
proof follows directly from the proof of Theorem 1,
noting that Lemma 2 does not apply and instead we have
the constraint that nn DT =
□

Theorem 6: For an implicit-deadline taskset of
cardinality two, the processor speedup factor for fixed
priority pre-emptive scheduling is

207107.1)12(2/1 ≈− .

Proof: We prove the theorem by determining the
maximum EDF scaling factor for the taskset V described
in Theorem 5, for any value of X.

As taskset V is an implicit-deadline taskset, a
sufficient and necessary condition for schedulability
under EDF, is that the total utilisation of the taskset must
be less than or equal to 1, after the task execution times
are scaled by a factor of f.
 The total utilisation of the tasks is given by:

X
X

X
U

i
i +

+
+

=∑
= 21

12

1
 (79)

Therefore, assuming total utilisation U = 1, we have the
following equation for the maximum EDF scaling factor
as a function of X.

⎟
⎠
⎞

⎜
⎝
⎛

+
+

+

=

X
X

X

Xf

21
1

1)(

22
23

)1()2(
)2)(1(

2

2

++
++

=
+++
++

=
XX
XX

XXX
XX (80)

Figure 7 plots the maximum EDF scaling factor

)(Xf , against values of X.

f(X)

1

1.025

1.05

1.075

1.1

1.125

1.15

1.175

1.2

1.225

1.25

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6
X

Sp
ee

du
p

fa
ct

or
 f

f(X)

Figure 7: Speedup factor for 2 tasks with D=T
Equation (80), is a continuous function of X, with
maximum / minimum values where the first derivative
with respect to X is zero.

22

2

)22(
2
++
+−

=
XX

X
dX
df (81)

Hence the maximum value occurs for 2=X ,
resulting in a maximum EDF scaling factor of:

207107.1
)12(2

1
224
234)2(≈

−
=

+

+
=f (82)

For an implicit-deadline taskset of cardinality two,
the processor speedup factor for fixed priority pre-
emptive scheduling is equal to the maximum EDF
scaling factor (for any value of X) for the speedup-
optimal taskset described in Theorem 5
□

Corollary 7: As EDF is known to schedule any implicit-
deadline taskset, provided that 1≤U , Theorem 6 shows
that fixed priority pre-emptive scheduling can schedule
any implicit-deadline taskset of cardinality two,
provided that 828427.0)12(2 ≈−≤U , in agreement
with, and providing a diverse proof of, the result of
Fineberg and Serlin (1967).

We note that this speedup-optimal taskset for the
implicit-deadline case and cardinality two, is the one
used as an illustrative example in Section 2.6.

Theorem 7: For the class of implicit-deadline tasksets
with arbitrary cardinality, there is a speedup-optimal
taskset V, which has the following parameters:
 Taskset V is identical to the taskset described in
Theorem 2 with the exception that the period of task nτ ,
rather than being infinite, is equal to its deadline.

20

Proof: As the class of implicit-deadline tasksets is a
subset of the class of constrained-deadline tasksets,
proof follows directly from the proof of Theorem 2,
noting that Lemma 2 does not apply and instead we have
the constraint that nn DT =
□

Theorem 8: For an implicit-deadline taskset of arbitrary
cardinality, the processor speedup factor for fixed
priority pre-emptive scheduling is 44270.1)2ln(/1 ≈ .

Proof: We prove the theorem by determining the
maximum EDF scaling factor for the taskset V described
in Theorem 7, for any value of X.

As taskset V is an implicit-deadline taskset, a
sufficient and necessary condition for schedulability
under EDF, is that the total utilisation of the taskset must
be less than or equal to 1, after the task execution times
are scaled by a factor of f.

From Lemma 10, the total utilisation of the tasks
11.. −nττ is given by:

⎟
⎠
⎞

⎜
⎝
⎛

+
+

=∑
−

= X
XU

n

i
i 1

2ln
1

1
 (83)

Further, the utilisation of task nτ is:

X
XU n +

=
2

 (84)

Therefore, assuming total utilisation U = 1, we have the
following equation for the maximum EDF scaling factor
as a function of X.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟
⎠
⎞

⎜
⎝
⎛

+
+

=

X
X

X
X

Xf

21
2ln

1)((85)

Figure 8 plots the maximum EDF scaling factor,
against values of X.

Equation (85), is a continuous non-increasing
function of X, with a maximum value)2ln(/1)0(=f .
The maximum EDF scaling factor is therefore

44270.1)2ln(/1 ≈ , which occurs as the execution time X
of the lowest priority task tends to zero.

For an implicit-deadline taskset of arbitrary
cardinality, the processor speedup factor for fixed
priority pre-emptive scheduling is equal to the maximum
EDF scaling factor (for any value of X) for the speedup-
optimal taskset described in Theorem 7
□

f(X)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 1 2 3 4 5 6 7 8 9
X

Sp
ee

du
p

fa
ct

or
 f

f(X)

Figure 8: Speedup factor for n tasks with D=T
Corollary 8: As EDF is known to schedule any implicit-
deadline taskset, provided that 1≤U , Theorem 7 shows
that fixed priority pre-emptive scheduling can schedule
any implicit-deadline taskset, provided that

693147.0)2ln(≈≤U , in agreement with, and providing
a diverse proof of, the well known result of Liu and
Layland (1973).

6. Summary and Conclusions
In this paper, we have examined the relative

effectiveness of fixed priority pre-emptive scheduling
for sporadic / periodic tasks with constrained deadlines
(ii TD ≤). Our metric for measuring the effectiveness of
this scheduling policy is a resource augmentation factor
known as the processor speedup factor.

The processor speedup factor is defined as the
maximum amount by which the execution time of all
tasks in a taskset that is only just schedulable under
fixed priority pre-emptive scheduling can be scaled up
and the taskset remain feasible (i.e. schedulable under an
optimal algorithm such as EDF).

An alternate and equivalent definition of the
processor speedup factor is the maximum amount by
which the processor needs to be speeded up so that any
taskset that is feasible (i.e. schedulable by an optimal
algorithm such as EDF) can be guaranteed to be
schedulable under fixed priority pre-emptive scheduling.

The major contributions of this paper are as follows:
o Deriving the structure and parameters of a

speedup-optimal taskset that provides a tight
bound on the processor speedup factor for
constrained-deadline tasksets.

o Proving that the processor speedup factor for
constrained-deadline tasksets of cardinality two,
is 414214.12 ≈ .

o Proving that the processor speedup factor for
constrained-deadline tasksets of arbitrary

21

cardinality, is 1.76323/1 ≈Ω .
o Deriving, in Appendix A, an upper bound on

the processor speedup factor for small n which
improves upon the general result for
constrained-deadline tasksets of arbitrary
cardinality.

o Proving that the processor speedup factor for
implicit-deadline tasksets of cardinality two is

207107.1)12(2/1 ≈− . A result that provides
a diverse proof of one of the earliest published
results on fixed priority schedulability analysis,
the sufficient schedulability test)12(2 −≤U
for two tasks by Fineberg and Serlin (1967).

o Proving that the processor speedup factor for
implicit-deadline tasksets of arbitrary
cardinality is 44270.1)2ln(/1 ≈ . A result that is
in agreement with, and provides a diverse proof
of, the well known sufficient schedulability test

)2ln(≤U of Liu and Layland (1973).
The seminal work of Liu and Layland (1973)

characterises the maximum performance penalty
incurred when an implicit-deadline taskset is scheduled
using rate-monotonic, fixed priority pre-emptive
scheduling instead of an optimal algorithm such as EDF.

The research in this paper provides an analogous
characterisation of the maximum performance penalty
incurred when constrained-deadline tasksets are
scheduled using deadline-monotonic, fixed priority pre-
emptive scheduling instead of an optimal algorithm such
as EDF. Table 3 summarises the extent of these
performance penalties.

Table 3
Optimal

(e.g. EDF)
Fixed

Priority
Speedup

factor
Implicit-
deadline

1≤U)2ln(≤U
693147.0≈

)2ln(/1
44270.1≈

Constrained
-deadline

LOAD 1≤ LOAD Ω≤
567143.0≈

Ω/1
76323.1≈

Note that although in this paper, we have made
numerous references to EDF as an example of an
optimal pre-emptive uniprocessor scheduling algorithm,
and made use of results about EDF in our proofs, our
results are valid with respect to any optimal pre-emptive
uniprocessor scheduling algorithm, for example Least
Laxity First (Mok, 1983). This is because all such
optimal algorithms can by definition schedule exactly
the same set of tasksets: all those that are feasible.

In conclusion, this paper provides for the first time,
a tight bound on the sub-optimality of fixed priority pre-
emptive scheduling for uniprocessor systems with
constrained-deadlines.

6.1. Future work
In future, we intend to investigate the sub-optimality

of fixed priority pre-emptive scheduling with respect to
arbitrary-deadline tasksets, where task deadlines may be
less than, equal to, or greater than their periods.

To the best of our knowledge, no research has yet
been done to characterise the average-case sub-
optimality of fixed priority pre-emptive scheduling for
constrained-deadline tasksets. This is also an interesting
area for future research.

6.2. Acknowledgements
This work was funded in part by the EU Frescor,

eMuCo and Jeopard projects.

Appendix A: Processor speedup factor for
constrained-deadline tasksets with
cardinality n

In this appendix, we provide an upper bound on the
processor speedup factor for fixed priority pre-emptive
scheduling of constrained-deadline tasksets comprising a
small number of tasks.

Theorem A.1: For the class of tasksets with constrained
deadlines and cardinality n, there is a speedup-optimal
taskset V, with Vα = 1, which has the following
parameters:

∑∑
∈∀∈∀

++==≠∀
)()(ihpj

jn
nhpj

jii CCCTDni

1=nD , ∞=nT (A.1)
Note that in Theorem A.1, the deadline of task nτ

has been normalised to 1 and the other task periods and
deadlines adjusted accordingly. Further, the task
execution times are free variables, subject to the
constraint:

12
)(

=+∑
∈∀

n
nhpj

j CC (A.2)

Proof: Proof follows directly from Lemmas 1 to 8,
specifically:

o nτ must be a constraining task, with the longest
deadline and the lowest priority (Lemma 1).

o nτ must have an infinite period (Lemma 2).
o nDt = must be the start of an idle period

(Lemma 3).
o ni DTni <≠∀ (Lemma 4)
o ii TDni =≠∀ (Lemma 5).
o 2/ni DTni >≠∀ (Lemma 6).
o Following a critical instant, nτ must execute

continuously from when it first starts execution
until it completes (Lemma 7).

o The task parameters must comply with the
following equation (Lemma 8):

22

∑∑
∈∀∀

+==≠∀
)(ihpj

j
j

jii CCTDni

□

Lemma A.1: The following inequality holds for any
implicit-deadline taskset W, with cardinality 2>n that
is not schedulable according to fixed priority pre-
emptive scheduling:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
−> −

∈∀
∑ 1

1
2)1()1(

)(

n

nnhpj
j U

nU (A.3)

Proof: As taskset W is unschedulable, it cannot be
schedulable according the Hyperbolic bound (Bini et al.,
2003). Hence:

() 21 >+∏
∀j

jU (A.4)

Consider the arithmetic and geometric means of the
series of values)1(jU+ ,)(nhpj∈∀ . By the inequality
of arithmetic and geometric means, we have:

())1(
)()(

1
1

1
−

∈∀∈∀
∏∑ +≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

+
n

nhpj
j

nhpj

j U
n

U
 (A.5)

Substituting for the Hyperbolic bound divided by
nU+1 , into Equation (A.5) gives:

)1(

)(1
2

1
1

−

∈∀ +
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

+
∑ n

nnhpj

j

Un
U

 (A.6)

As:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

+
−= ∑∑

∈∀∈∀)()(
1

)1(
1

)1(
nhpj

j

nhpj
j n

U
nU (A.7)

it follows that:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
−> −

∈∀
∑ 1

1
2)1()1(

)(

n

nnhpj
j U

nU (A.8)

□

Theorem A.2: For a constrained-deadline taskset, of
cardinality 2≥n , an upper bound on the processor
speedup factor for fixed priority pre-emptive scheduling
is given by)(nf UB , where)(nf UB is defined as
follows:

)(/1)(nLnf UB =
Where)(nL forms the solution to the following
equality, where nC may take any non-negative real
value:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
−=⎟

⎠

⎞
⎜
⎝

⎛ +
= − 1

1
2)1(

2
1

)()1(n

n

n

C
n

C
nL (A.9)

Proof: Let taskset V ′ be formed from taskset V in
Theorem A.1 by an infinitesimal increase in the
execution time of task nτ , with no changes to any of the

other task parameters. Note that taskset V ′ is
unschedulable according to fixed priority pre-emptive
scheduling as nτ misses its deadline. From Equation
(A.2) which holds for taskset V, for taskset V ′ we have:

12
)(

>+∑
∈∀

n
nhpj

j CC (A.10)

We now consider the total utilisation U of taskset
V ′ . Observe that if we set the period of task nτ equal to
its deadline (1== nn DT), then this transforms V ′ into
an implicit deadline taskset W, which is unschedulable
according to fixed priority pre-emptive scheduling, as
taskset V ′ is already unschedulable with ∞=nτ .
 From Lemma A.1, as 1=nT for the implicit-
deadline taskset W, we have:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
−> −

∈∀
∑ 1

1
2)1()1(

)(

n

nnhpj
j C

nU (A.11)

As ∞=nT in taskset V ′ , 0=nU , and so the LHS
of Equation (A.11) corresponds to the total utilisation U
of taskset V ′ . Hence we have:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
−> − 1

1
2)1()1(n

nC
nU (A.12)

Now consider taskset V ′ scheduled according to
EDF. Taskset V ′ is schedulable according to EDF if and
only if:

1)(max ≤⎟
⎠
⎞

⎜
⎝
⎛

∀ t
th

t
 (A.13)

where)(th is the processor demand bound function
defined by Equation (2).
Now,

⎟
⎠
⎞

⎜
⎝
⎛

∞
∞

≥⎟
⎠
⎞

⎜
⎝
⎛

∀

)(,
1

)1(max)(max hh
t
th

t
()Uh),1(max=

(A.14)
From Equation (2):

n
nhpj

j CCh += ∑
∈∀)(

)1((A.15)

Substituting for the summation term from Equation
(A.10) gives:

2
1

)1(nC
h

+
> (A.16)

Substituting the total utilisation U from Equation
(A.12) and the processor demand bound function)1(h
from Equation (A.16) into Equation (A.14) gives:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
−⎟

⎠

⎞
⎜
⎝

⎛ +
>⎟

⎠
⎞

⎜
⎝
⎛ −

∀
1

1
2)1(,

2
1

max)(max)1(n

n

n
t C

nC
t
th

 (A.17)
For any given value of 2≥n , the left hand term within
the max expression, is a monotonically increasing
function of nC , whilst the right hand term is a
monotonically decreasing function of nC . Hence the
minimum value)(nL , of the max expression is achieved

23

when these two terms are equal.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
−=⎟

⎠

⎞
⎜
⎝

⎛ +
= − 1

1
2)1(

2
1

)()1(n

n

n

C
n

C
nL (A.18)

Let us assume that taskset V ′ , which we know is
unschedulable according to fixed priority pre-emptive
scheduling, was obtained from a taskset S ′ by applying
a processor speedup factor)(/1)(nLnff UB =≥ , such
that the execution times of the tasks in taskset S ′ are f
times those of the corresponding tasks in taskset V ′ .
Equation (A.19) shows that taskset S ′ cannot be
schedulable according to EDF, as:

1
)(

)(max ≥>⎟
⎠
⎞

⎜
⎝
⎛

∀ nL
f

t
th

t
 (A.19)

Hence using a processor speedup factor)(nff UB≥ , it
is not possible to obtain a taskset V ′ that is
unschedulable according to fixed priority pre-emptive
scheduling, from a taskset S ′ that is schedulable
according to EDF.

Recall that taskset V ′ is related to the speedup-
optimal taskset V of Theorem A.1 via an infinitesimal
increase in the execution time of task nτ . We conclude
that there can be no tasksets, that are schedulable
according to EDF that are unschedulable according to
fixed priorities, when a processor speedup factor of

)(nff UB≥ is applied.)(nf UB is therefore an upper
bound on the processor speedup factor for constrained-
deadline tasksets of cardinality n, which is sufficient to
ensure that any such taskset that is schedulable
according to an optimal scheduling policy (e.g. EDF)
remains schedulable according to fixed priority pre-
emptive scheduling
□

We observe that)(nf UB is an upper bound, as
opposed to an exact value, due to the fact that the
Hyperbolic bound used in its derivation is a sufficient
but not necessary schedulability test, and also due to the
inequality in Equation (A.14).

Table 4 and Table 5 give the values of)(nL and
)(nf UB as a function of n, computed by numerical

approximation. Note the values of)(nf UB have been
rounded up, to ensure sufficiency.

Table 4
n)(nL)(nf UB)(nf LB

2 0.618034 1.619 1.414
3 0.594313 1.683 1.587
4 0.585670 1.708 1.656
5 0.581198 1.721 1.684
6 0.578464 1.729 1.704
7 0.576621 1.735 1.718
8 0.575294 1.739 1.723
9 0.574293 1.742 1.730

Table 5
n)(nL)(nf UB)(nf LB

2 0.618034 1.619 1.414
4 0.585670 1.708 1.656
8 0.575294 1.739 1.723

16 0.570987 1.752 1.749
32 0.569012 1.758 1.757
64 0.568065 1.761 1.759

128 0.567601 1.762 1.761
256 0.567371 1.763 1.762
∞ Ω Ω/1 Ω/1

To complement the upper bounds given by Theorem
A.2, Table 4 and Table 5 also give lower bounds

)(nf LB on the processor speedup factor. These lower
bounds are necessary to schedule tasksets whose
parameters comply with Theorem A.1.

The lower bounds were found by searching for
tasksets of the desired cardinality that comply with
Theorem A.1 and remain schedulable according to EDF
when their execution times are scaled up by the
maximum possible scaling factor f. The search for these
tasksets, and hence the lower bounds, involved iterating
over:

(i) A range of possible values for the EDF
scaling factor f from 1.4 to 1.77 in steps of
0.001.

(ii) A range of possible values for nC as a
proportion of the total execution time of the
higher priority tasks 1τ to 1−nτ , from 0.001
to 2.0.

(iii) (a) Arithmetic progressions in the values of
1C to 1−nC , with a range of increments

from 0.0 to 1.0 times 1C in steps of 0.001
times 1C .
(b) Geometric progressions in the values of

1C to 1−nC , with multiplying factors from
1.0 to 1.5 in steps of 0.001.

The lower bounds in Table 4 and Table 5 are
effectively rounded down to ensure necessity. Note that
the types of taskset used to determine these lower
bounds are only known to be speedup-optimal for 2=n
and ∞=n .

Figure 9 plots the upper and lower bounds for small
values of n, from Table 4. The difference between the
upper and lower bounds is less than 1% for tasksets of
cardinality of 7 or more.

24

1.619

1.683
1.708

1.721 1.729 1.735 1.739 1.742

1.414

1.587

1.656
1.684

1.704
1.718 1.723 1.730

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

2 3 4 5 6 7 8 9

Number of Tasks

Pr
oc

es
so

r S
pe

ed
up

 F
ac

to
r

Upper Bound
Lower Bound

Figure 9: Upper and lower bounds on the
Speedup factor for n tasks with D≤≤T

Similarly, Figure 10 plots the upper and lower
bounds from Table 5, for values of n from 2 to 256. The
difference between the upper and lower bounds is less
than 0.1% for tasksets of cardinality of 32 or more.

1.619

1.708

1.739
1.752 1.758 1.761 1.762 1.763

1.414

1.656

1.723
1.749 1.757 1.759 1.761 1.762

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

2 4 8 16 32 64 128 256

Number of tasks

Pr
oc

es
so

r S
pe

ed
up

 F
ac

to
r

Upper Bound
Lower Bound

Figure 10: Upper and lower bounds on the
Speedup factor for n tasks with D≤≤T

Theorem A.3: For a constrained-deadline taskset, of
cardinality n, the upper bound)(nf UB on the processor
speedup factor for fixed priority pre-emptive scheduling
tends to Ω/1 as n tends to infinity.

Proof: Follows the same logic as the proof of Theorem
A.2. From Equation (A.12), we have:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−− =
+

>
−

+ nCnn

n
e

Cn
U 1

2ln
)1(

1

)1(
1

2
)1(

1 (A.20)

Hence:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
nCnn

U
1

2ln
)1(

1
)1(

1ln (A.21)

From the Maclaurin expansion of)1ln(x+ , as 0→x ,
xx →+)1ln(, hence as ∞→n , we have:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

>
nC

U
1

2ln (A.22)

We observe that Equation (A.22) holds for any value of
2≥n and 10 ≤<U , as)1ln(xx +> for 10 ≤< x .
Substituting for U from Equation (A.22) into

Equation (A.14) yields the following, in place of
Equation (A.17):

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟
⎠

⎞
⎜
⎝

⎛ +
>⎟

⎠
⎞

⎜
⎝
⎛

∀ n

n
t C

C
t
th

1
2ln,

2
1

max)(max (A.23)

As in Equation (A.17), the left hand term within the
max expression of Equation (A.23), is a monotonically
increasing function of nC , whilst the right hand term is
a monotonically decreasing function of nC . Hence the
minimum value)(∞L , of the max expression is
achieved when these two terms are equal.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=⎟
⎠

⎞
⎜
⎝

⎛ +
=∞

n

n

C
C

L
1

2ln
2

1
)((A.24)

This occurs for a value of Ω=∞)(L . (Where Ω is the
mathematical constant defined by Ω=Ω)/1ln(. Hence,

0.567143≈Ω). Finally, Ω=∞=∞ /1)(/1)(Lf UB

□

In summary, to guarantee schedulability of any
constrained-deadline taskset of cardinality n under fixed
priority pre-emptive scheduling it is sufficient to use a
speedup factor equal to the upper bound values)(nf LB

given in Table 4 and Table 5. For small n, this represents
an improvement over using the exact value for arbitrary
n (763223.1/1 ≈Ω).

Appendix B:
In this appendix, we prove that the two alternate
definitions for the processor speedup factor given in
Section 2.5 are equivalent.

Theorem B.1: Definition 2 is equivalent to Definition 1
with fixed priority pre-emptive scheduling as scheduling
algorithm A.

According to Definition 1, let)(Ψf be the minimum
speedup factor required to make a feasible taskset Ψ
schedulable according to fixed priority pre-emptive
scheduling.

25

Lemma B.1: Let Z be the set of all feasible tasksets.
Note, by Definition 1, Z contains at least one taskset that
requires the (maximum) processor speedup-factor Af to
be schedulable under fixed priority pre-emptive
scheduling. Let ZY ⊆ be the set of all feasible tasksets
that will become infeasible when their execution times
are scaled by any factor >1. The set Y contains at least
one taskset that requires the (maximum) processor
speedup-factor Af .

Proof: We assume (for contradiction) that there is a
taskset Ψ that is a member of Z, but not a member of Y
(cYZ ∩∈Ψ) that has a speedup factor)(Ψf strictly
greater than that of any taskset which is only just
feasible, (and therefore a member of Y). We note that Ψ
can have its execution times scaled by a factor >1 and
remain feasible, otherwise it would be a member of Y.
We now construct a new taskset Φ from taskset Ψ by
scaling all of the execution times of the tasks in Ψ by a
factor >1, such that the resulting taskset is only just
feasible, hence Y∈Φ . From Equation (1), increasing
the execution time of tasks cannot make a taskset
schedulable under fixed priority pre-emptive scheduling.
Hence the speedup factor required by tasksetΦ must be
at least as large as that required by taskset Ψ (i.e.

)()(Ψ≥Φ ff) which contradicts the original
assumption. Hence there are no tasksets in cYZ ∩ that
require a speedup factor exceeding the maximum
speedup factor required by any taskset in Y. As there
was, by definition, at least one taskset in Z that required
the maximum processor speedup factor, then there must
also be at least one such taskset in Y
□

Proof (of Theorem B.1): Lemma B.1 shows that there
is at least one taskset that is only just schedulable
according to an optimal algorithm such as EDF and
requires the maximum processor speedup factor,
according to Definition 1 to be schedulable under fixed
priority pre-emptive scheduling. Let Φ be such a
taskset.
 Increasing processor speed by a factor f is
equivalent to reducing task execution times by the same
factor. By definition of the speedup factor)(Θf ,
reducing the execution times of the tasks in each feasible
taskset Θ by)(Θf , transforms that taskset into one that
is only just schedulable according to fixed priority pre-
emptive scheduling. It follows that to find the maximum
processor speedup factor, it suffices to determine the
maximum scaling factor by which the execution times of
tasks in any taskset S, that is only just schedulable
according to fixed priority pre-emptive scheduling (i.e.
with 1=Sα), can be increased, and the taskset remain
schedulable according to an optimal scheduling

algorithm (e.g. EDF). This is Definition 2
□

References
Audsley N.C., Burns A., Richardson M., Wellings A.J. (1993)
�Applying new Scheduling Theory to Static Priority Pre-
emptive Scheduling�. Software Engineering Journal, 8(5) pp.
284-292.
Baruah S., Burns A. (2006) �Sustainable Scheduling
Analysis�. In Proceedings of the IEEE Real-Time Systems
Symposium, pp. 159-168.
Baruah S., Burns A. (2008) �Quantifying the sub-optimality of
uniprocessor fixed priority scheduling.� In Proceedings of the
IEEE International conference on Real-Time and Network
Systems pp. 89-95.
Baruah S.K., Mok A.K., Rosier L.E. (1990b) �Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One
Processor�. In Proceedings of the IEEE Real-Time System
Symposium, pp.182-190.
Baruah S.K., Rosier L.E., Howell R.R. (1990a) �Algorithms
and Complexity Concerning the Preemptive Scheduling of
Periodic Real-Time Tasks on one Processor�. Real-Time
Systems, 2(4):301-324.
E. Bini, G.C. Buttazzo (2005), Measuring the Performance of
Schedulability Tests, Real-Time Systems 30 (1-2), pp. 129-
154.
Bini E., Buttazzo G.C., Buttazzo G.M. (2003) �Rate
Monotonic Scheduling: The Hyperbolic Bound�. IEEE
Transactions on Computers, 52(7):933�942.
Dertouzos M.L. (1974) �Control Robotics: The Procedural
Control of Physical Processes�. In Proceedings of the IFIP
congress, pp.807-813.
Fineberg M.S., Serlin O., �Multiprogramming for hybrid
computation�, In proceedings AFIPS Fall Joint Computing
Conference, pp 1-13, 1967
Joseph M., Pandya P.K. (1986) �Finding Response Times in a
Real-time System�. The Computer Journal, 29(5):390�395.
Kalyanasundaram B., Pruhs K. (1995), �Speed is as powerful as
clairvoyance�. In Proceedings of the 36th Symposium on
Foundations of Computer Science, pp. 214--221.
Leung J.Y.-T., Whitehead J. (1982) "On the complexity of
fixed-priority scheduling of periodic real-time tasks,"
Performance Evaluation, 2(4): 237-250.
Lehoczky J.P., Sha L., Ding Y. (1989) �The rate monotonic
scheduling algorithm: Exact characterization and average case
behaviour�. In Proceedings of the IEEE Real-Time Systems
Symposium, pp. 166�171.
Liu C.L., Layland J.W. (1973) "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal
of the ACM, 20(1): 46-61.
Mok A.K., (1983) �Fundamental Design Problems of
Distributed Systems for the Hard-Real-Time Environment,�
Ph.D. Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts.
Sjodin M., Hansson H. (1998) �Improved Response Time
Analysis Calculations�. In Proceedings of the 19th IEEE Real-
Time Systems Symposium, pp. 399�408.

26

Tindell, K.W., (1994) �Fixed Priority Scheduling of Hard
Real-Time Systems�. PhD thesis, Department of Computer
Science, University of York.

