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Abstract 
This paper presents the Fixed Priority until Static Laxity 

(FPSL), Fixed Priority until Critical Laxity (FPCL) and 
Fixed Priority until Zero Laxity (FPZL) scheduling 
algorithms for multiprocessor real-time systems. FPZL is 
similar to global fixed priority pre-emptive scheduling; 
however, whenever a task reaches a state of zero laxity it is 
given the highest priority. FPSL and FPCL are variants of 
FPZL that introduce no additional scheduling points beyond 
those present with fixed priority scheduling. FPSL, FPCL 
and FPZL are minimally dynamic algorithms, in that the 
priority of a job can change at most once during its 
execution, bounding the number of pre-emptions. 

Polynomial time and pseudo-polynomial time sufficient 
schedulability tests are derived for these algorithms. The 
tests are then improved by computing upper bounds on the 
amount of execution that each task can perform at the 
highest priority. An empirical evaluation shows that FPSL, 
FPCL, and FPZL are highly effective, with a significantly 
larger number of tasksets deemed schedulable by the tests 
derived in this paper, than by state-of-the-art schedulability 
tests for EDZL scheduling. 
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Extended version 
This paper builds on the paper �FPZL Schedulability 

Analysis� by Davis and Burns (2011b) published in the 
proceedings of RTAS 2011. This paper extends Davis and 
Burns (2011b) analysis to cover the FPSL and FPCL 
scheduling algorithms as well as FPZL. The analysis given 
in this paper is a superset of that provided for FPZL and 
reduces to it if the laxity threshold of each task is set to zero. 
In this paper, the experimental evaluation has been extended 
to include schedulability tests for FPSL (which also apply to 
FPCL) and simulation of FPCL as well as FPZL. We also 
report on a prototype implementation of FPCL and FPZL in 
a Linux kernel, running on an Intel Core 2 Quad processor 
(Q9650). 

1. Introduction 
Approaches to multiprocessor real-time scheduling, can 

be categorised into two broad classes: partitioned and 
global. Partitioned approaches allocate each task to a single 

processor, dividing the multiprocessor scheduling problem 
into one of task allocation (bin-packing) followed by 
uniprocessor scheduling. In contrast, global approaches 
allow tasks to migrate from one processor to another at run-
time. Each approach has its distinct advantages and 
disadvantages. Partitioned scheduling typically has lower 
overheads in accessing and manipulating run-queues 
(Brandenburg et al., 2008), while global scheduling has 
advantages in spare capacity sharing, and is more 
appropriate for use in open systems, as there is no need to 
run load balancing / task allocation algorithms when the set 
of tasks changes. Recent work by Bastoni et al. (2010a) 
suggests that global scheduling research should focus on a 
small to medium number of processors (e.g. 2 to 12 
processors) as global scheduling techniques may be most 
appropriate for clusters of processing cores that share a 
cache. In such cases, the cost of cache related migration 
delays were found not to differ substantially from the cost of 
cache related pre-emption delays Bastoni et al. (2010b). 

In this paper, we focus on global scheduling techniques 
with the aim of increasing their effectiveness, in terms of the 
number of tasksets that can be guaranteed schedulable, 
without compromising efficiency, in terms of the overheads 
caused by pre-emption and migration. We present 
minimally dynamic global scheduling algorithms for real-
time multiprocessor systems called Fixed Priority until 
Static Laxity (FPSL), Fixed Priority until Critical Laxity 
(FPCL) and FPZL (Fixed Priority until Zero Laxity). We 
consider the use of these algorithms to schedule sporadic 
tasks with constrained deadlines. 

FPZL is based on global fixed priority pre-emptive 
scheduling, which for brevity we refer to as global FP 
scheduling. Under FPZL, jobs are scheduled according to 
the fixed priority of their associated task, until a situation is 
reached where the remaining execution time of a job is 
equal to the time to its deadline, and that job would not be 
scheduled to execute on the basis of its fixed priority. Such 
a job has zero laxity and will miss its deadline unless it 
executes continually until completion. FPZL gives such jobs 
the highest priority. The schedules produced by FPZL and 
global FP scheduling are identical until the latter fails to 
execute a task with zero laxity. Such a task will 
subsequently miss its deadline. Hence FPZL dominates 
global FP scheduling, in the sense that all priority ordered 
tasksets that are schedulable according to global FP 
scheduling are also schedulable according to FPZL. FPZL is 
closely related to EDZL (Lee, 1994; Cho et al., 2002; Park 
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et al., 2005; Baker and Cirinei, 2006; Piao et al., 2006; 
Cirinei and Baker, 2007; Chao et al., 2008) which applies 
the same priority promotion rule to global EDF scheduling. 

FPSL and FPCL are variants of FPZL that reduce the 
number of scheduling points with respect to FPZL. Like 
global fixed priority pre-emptive scheduling, FPSL and 
FPCL re-schedule only at job release and completion events. 
FPCL is closely related to EDCL (Kato and Yamasaki, 
2008), which is a similar variant of EDZL. 
1.1. Related work 

For a comprehensive survey of multiprocessor real-time 
scheduling, including early work on utilisation-based 
schedulability tests for global FP, and global EDF 
scheduling of periodic tasksets with implicit deadlines, the 
interested reader is referred to (Davis and Burns, 2011b). 

During the last ten years, sophisticated schedulability 
tests have been developed for global FP, and global EDF 
scheduling of sporadic tasksets with constrained and 
arbitrary deadlines. These tests rely on the analysis of 
response times and processor load rather than utilisation. 

Andersson and Jonsson (2000) provided a simple 
response time test applicable to tasksets with constrained-
deadlines scheduled using global FP scheduling. 

Baker (2003) developed a fundamental schedulability 
test strategy, based on considering the minimum amount of 
interference in a given interval that is necessary to cause a 
deadline to be missed, and then taking the contra-positive of 
this to form a sufficient schedulability test. This basic 
strategy underpins an extensive thread of subsequent 
research into schedulability tests for global EDF (Baker and 
Baruah, 2009; Bertogna, 2007; Baruah and Baker, 2009;  
Baruah et al., 2009), global FP (Baruah and Fisher, 2008; 
Bertogna et al., 2009; Baker, 2006; Fisher and Baruah, 
2006), and EDZL scheduling (Cirinei and Baker, 2007). 

Baker�s work was subsequently built upon by Bertogna 
et al. (2005, 2009). They developed sufficient schedulability 
tests for: (i) any work conserving algorithm, (ii) global 
EDF, and (iii) global FP scheduling based on bounding the 
maximum workload in a given interval. Bertogna and 
Cirinei (2007) adapted this approach to iteratively compute 
an upper bound on the response time of each task, using the 
upper bound response times of other tasks to limit the 
amount of interference considered. Guan et al. (2009) 
extended the response time analysis of Bertogna and Cirinei 
(2007) for global FP scheduling, using ideas from Baruah 
(2007). 

Davis and Burns (2009, 2010a) showed that priority 
assignment is fundamental to the effectiveness of global FP 
scheduling. They proved that the optimal priority 
assignment algorithm of Audsley (1991, 2001) is applicable 
to some of the sufficient tests developed for global FP 
scheduling, including the simple response time test of 
Andersson and Jonsson (2000) and the deadline-based test 
of Bertogna et al. (2009), but not to others such as the 
response time tests of Bertogna and Cirinei (2007), and 

Guan et al. (2009). 
Leung (1989) considered global Least Laxity First 

(LLF), referred to in that paper as the Slack Time algorithm. 
Leung showed that global LLF dominates global EDF, and 
that determining exact schedulability under LLF, global 
EDF or global FP is a hard problem (co-NP-hard) for m > 1 
(more than one processor). 

The Earliest Deadline first until Zero Laxity (EDZL) 
algorithm was introduced by Lee (1994), who showed that 
EDZL dominates global EDF scheduling, and is sub-optimal 
for two processors (see also (Cho et al., 2002; Park et al., 
2005). Here, sub-optimal is used to mean that EDZL can 
�schedule any feasible set of ready tasks�. This weak form 
of optimality is appropriate for online scheduling 
algorithms, which cannot take account of future arrival 
times. Piao et al. (2006) showed that EDZL is also 
completion time predictable A simpler proof of 
predictability was given by Cirinei and Baker (2007), who 
also developed a sufficient schedulability test for EDZL 
based on the fundamental strategy of Baker (2003). 

Baker et al. (2008) gave an iterative sufficient test for 
EDZL based on the approach taken by Bertogna (2007) and 
Bertogna et al. (2009) for work conserving algorithms and 
global EDF. This test reduces the over-estimation of carry-
in interference, a feature of the previous tests, by iteratively 
calculating a lower bound on the slack for each task. The 
empirical evaluation by Baker et al. (2008) shows that this 
iterative test for EDZL outperforms other tests for EDZL 
(Cirinei and Baker, 2007) and as expected, similar tests for 
global EDF. 

Kato and Yamasaki (2008), introduced EDCL; a variant 
of EDZL, which increases job priority on the basis of laxity 
at the release or completion time of a job. This has the effect 
of reducing the maximum number of context switches to 
two per job, the same as EDF, at the expense of slightly 
inferior schedulability, when compared to EDZL. Kato and 
Yamasaki (2008) also corrected a minor flaw in the 
polynomial time schedulability test for EDZL in (Cirinei 
and Baker, 2007). 

Takeda et al. (2009) and Kato and Yamasaki (2009b) 
presented research on RMZL (RMZL and FPZL are names 
for essentially the same scheduling algorithm). These papers 
were initially published in Japanese, with an English 
language version of (Takeda et al., 2009) subsequently 
made available in May 2010 as a technical report (Kato et 
al., 2010). Independently, Davis and Burns (2011a) 
developed schedulability analysis for FPZL, initially 
published as a technical report in April 2010 (Davis and 
Burns, 2010b). The analysis given for FPZL by Davis and 
Burns (2011a) is applicable to constrained-deadline tasksets 
with no restrictions on the priority ordering which may be 
used; whereas the analysis given for RMZL by Kato et al., 
(2010) is limited to implicit-deadline tasksets with task 
priorities assigned in Rate Monotonic priority order. As well 
as being more generally applicable, the FPZL analysis 
dominates, and significantly outperforms the RMZL 



schedulability test; see (Davis and Burns, 2011a) for a 
detailed discussion and empirical comparison. 
1.2. Intuition and motivation 

The research described in this paper is motivated by the 
need to close the large gap that currently exists between the 
best known approaches to global multiprocessor real-time 
scheduling for sporadic tasksets with constrained deadlines 
and what may be possible as indicated by feasibility / 
infeasibility tests. 

Dynamic priority scheduling has the potential to 
schedule many more tasksets than fixed task or fixed job 
priority algorithms. However, this theoretical advantage 
must be balanced against the increased overheads that 
dynamic changes in priority can bring via a significant 
increase in the number of pre-emptions / migrations. 

For example, the LLREF scheduling algorithm (Cho et 
al., 2006), which is optimal for periodic tasksets with 
implicit deadlines, and the LRE-TL scheduling algorithm 
(Funk and Nadadur, 2009) which is optimal for sporadic 
tasksets with implicit deadlines, divide the timeline into 
intervals that start and end at task releases and deadlines 
(referred to as TL-planes by Cho et al. (2006)). In each 
interval, LLREF and LRE-TL ensure that each active task 

iτ  executes for at least tUi , where iU  is the task�s 
utilisation, and t is the length of the time interval. Hence 
every task can in the worst-case execute in every interval 
between task deadlines, resulting in n-1 pre-emptions per 
job release, where n is the number of tasks. In systems with 
a large number of tasks, this level of pre-emptions leads to 
prohibitively high overheads. 

Minimally dynamic scheduling algorithms, such as 
FPSL, FPCL, and FPZL (and EDZL and EDCL) offer a 
potential solution to this problem. Note, by minimally 
dynamic, we mean that the priority of a job changes at most 
once during its execution, hence bounding the number of 
pre-emptions / migrations to at most two per job release. By 
comparison, global FP and global EDF scheduling incur at 
most one pre-emption / migration per job release. 
1.3. Organisation 

The remainder of the paper is organised as follows: 
Section 2 describes the terminology, notation and system 
model used. Section 3 describes sufficient tests for global 
FP scheduling. These tests are used in Section 4 to derive 
polynomial time and pseudo-polynomial time sufficient 
schedulability tests for FPSL. These schedulability tests are 
a generalisation of the tests given by Davis and Burns 
(2011a) for FPZL, and also hold for FPCL. Section 4 also 
shows how the schedulability tests for FPSL can be 
improved by bounding the amount of execution that each 
task can perform once its priority has been promoted to the 
highest level. Section 5 discusses the implementation of 
FPCL and FPZL, assuming as a starting point an event 
driven global FP scheduler. Section 6 provides a brief 
discussion on priority assignment. Section 7 presents an 
empirical investigation into the effectiveness of FPSL and 

FPZL and their associated schedulability tests. Section 8 
describes a prototype implementation of FPCL and FPZL 
and illustrates the effectiveness of the algorithms running on 
a multicore processor. Finally, Section 9 concludes with a 
summary and suggestions for future research. 

2. System model, terminology and notation 
In this paper, we are interested in global FP, FPSL, 

FPCL and FPZL scheduling of an application on a 
homogeneous multiprocessor system comprising m identical 
processors. The application or taskset is assumed to 
comprise a static set of n tasks ( nττ ...1 ), where each task iτ
is assigned a unique priority i, from 1 to n (where n is the 
lowest priority). 

Tasks are assumed to comply with the sporadic task 
model. In this model, tasks give rise to a potentially infinite 
sequence of jobs. Each job of a task may arrive at any time 
once a minimum inter-arrival time has elapsed since the 
arrival of the previous job of the same task. 

Each task iτ  is characterised by its relative deadline 
iD , worst-case execution time iC  ( ii DC ≤ ), and minimum 

inter-arrival time or period iT . The utilisation iU  of each 
task is given by ii TC / . A task�s worst-case response time

iR  is defined as the longest time from a job of the task 
arriving to it completing execution. 

It is assumed unless otherwise stated that all tasks have 
constrained deadlines ( ii TD ≤ ). The tasks are assumed to 
be independent and so cannot be blocked from executing by 
another task other than due to contention for the processors. 
Further, it is assumed that once a task starts to execute it 
will not voluntarily suspend itself. 

Job parallelism, sometimes referred to as intra-task 
parallelism, is not permitted; hence, at any given time, each 
job may execute on at most one processor. As a result of 
pre-emption and subsequent resumption, a job may migrate 
from one processor to another. The cost of pre-emption, 
migration, and the run-time operation of the scheduler is 
assumed to be either negligible, or subsumed into the worst-
case execution time of each task. 
2.1. Global FP, FPZL, FPCL and FPSL scheduling 

algorithms 
Under global FP scheduling, at any given time, the m

highest priority ready jobs are executed. 
Under FPZL scheduling, if the laxity of a job reaches 

zero then it is given the highest priority and will execute 
until completion. The laxity of a job is given by the elapsed 
time to its deadline less its remaining execution time. 
FPCL scheduling uses the concept of critical laxity (Kato 
and Yamasaki, 2008) which can be described as follows: at 
each scheduling point, corresponding to job release or 
completion, if there are more than m ready jobs, then the 
laxity of each ready job is evaluated with respect to the 
maximum time that could potentially elapse until the next 
scheduling point. If at the next scheduling point, a jobs�s 
laxity could be negative, then it is classified as being 



critical-laxity and has its priority promoted to the highest 
level immediately. The criterion used by FPCL to promote 
the priority of a job therefore depends on the dynamic 
properties of other jobs, for example their remaining 
execution times. 

FPSL scheduling is similar to FPCL; however, it uses a 
static laxity threshold. If at a scheduling point, 
corresponding to job release or completion, the laxity of a 
job is less than the pre-computed laxity threshold for its task 
then the priority of the job is promoted to the highest level. 
Unlike FPCL, this criterion is independent of the dynamic 
properties of other jobs. The laxity threshold iX  for task iτ
is defined as the longest time that can elapse between one 
scheduling point and the next, while a job of task iτ  is 
ready but not executing. 

Certain tasks may have their priority promoted as a 
result of the operation of the FPSL, FPCL or FPZL 
scheduling algorithms. In the remainder of this paper, we 
generically (i.e. independent of the algorithm used) refer to 
these tasks as critical-laxity tasks, as they are promoted to 
the highest priority level when the scheduling algorithm 
deems that their laxity has become critical to ensuring that 
deadlines are met. An upper bound on the maximum amount 
of execution that a job of task iτ  can perform in the 
critical-laxity state, i.e. at the highest priority, is denoted by 

UB
iK  and referred to as the task�s critical-laxity execution

time. 
Under FPSL, FPCL, or FPZL at any given time, at most 

m tasks may be in the critical-laxity state without a deadline 
being missed.  

The following notation is used to refer to subsets of 
tasks: hp(i) is the set of tasks with priorities higher than i, 
and lpcl(i) is the set of critical-laxity tasks with initial 
priorities lower than i. 

Finally, when discussing the schedulability of a given 
task kτ , we use the term interference to refer to the 
execution of other tasks, at a priority higher than k, that can 
potentially delay the completion of task kτ . 

3. Schedulability tests for global FP 
In this section, we recapitulate two sufficient 

schedulability tests for global FP scheduling of sporadic 
tasksets. These tests are described in more detail by Davis 
and Burns (2010a). 
3.1. Deadline Analysis for global FP 

Bertogna et al. (2009) developed a polynomial time 
sufficient schedulability test for global FP scheduling based 
on the approach of Baker (2003). They showed that if task 

kτ  is schedulable in an interval of length L, then an upper 
bound on the interference over the interval due to a higher 
priority task iτ  with a carry-in job is given by the following 
equation1. In global FP scheduling, a carry-in job is defined 

1 Note we adopt the approach to time representation used by Bertogna et al. 
(2009). Time is represented by non-negative integer values, with each time 

as a job that is released strictly prior to the start of the 
interval, and causes interference within that interval. 
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Bertogna et al. (2009) used (1), with kD  as the length of 
the interval, and strategy of Baker (2003) to form a 
schedulability test for each task kτ : 

DA test for global FP scheduling: A sporadic taskset is 
schedulable, if for every task kτ  in the taskset, the 
inequality given by (4) holds: 
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where hp(k) is the set of tasks with priorities higher than k. 
Note we have re-written (4) in a different form from that 
presented by Bertogna et al. (2009) for ease of comparison 
with the response time schedulability test given by Bertogna 
and Cirinei (2007). 

Guan et al. (2009) showed that if task kτ  is schedulable 
in an interval of length L, then an upper bound on the 
interference over the interval due to a higher priority task iτ
without a carry in job is given by: 
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The difference between the two interference terms given by 
(1) and (5) is: 
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Davis and Burns (2010a) showed that the worst-case 
scenario for global FP scheduling occurs when there are at 
most m-1 carry-in jobs. Thus, the approach of Guan et al. 
(2009) can be used to form an improved version of the DA 
test as follows: 

DA-LC test for global FP scheduling: A sporadic 
taskset is schedulable, if for every task kτ  in the taskset, the 
inequality given by (9) holds: 
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value t viewed as representing the whole of the interval [t, t+1). This 
enables mathematical induction on clock ticks and avoids confusion with 
respect to end points of execution. 



where MD(k, m-1) is the subset of the min(k, m-1) tasks with 
the largest values of ),( kk

DDIFF
i CDI −  from the set of tasks 

hp(k). 
We note that the DA-LC test reduces to the DA test if 

the ),( kk
DDIFF

i CDI −  term is included for all of the higher 
priority tasks, rather than just those with the m-1 largest 
values, hence the DA-LC test dominates the DA test. 
3.2. Response Time Analysis for global FP 

Bertogna and Cirinei (2007) extended the basic approach 
used in the DA test to iteratively compute an upper bound 
response time UB

kR  for each task, using the upper bound 
response times of higher priority tasks to limit the amount of 
interference considered. This approach applies the same 
logic as Bertogna and Cirinei (2007), while recognising that 
the latest time that a task can execute is when it completes 
with its worst-case response time rather than at its deadline. 

Bertogna and Cirinei (2007) showed that if task kτ  is 
schedulable in an interval of length L, then an upper bound 
on the interference in that interval due to a higher priority 
task iτ  with a carry-in job is given by: 
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where, )(LW R
i  is an upper bound on the workload of task 

iτ  in an interval of length L, taking into account the upper 
bound response time of task iτ : 
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The response time test of Bertogna and Cirinei (2007) 
may be expressed as follows: 

RTA test for global FP scheduling (Theorem 7 from 
(Bertogna and Cirinei, 2007)): A sporadic taskset is 
schedulable, if for every task kτ  in the taskset, the upper 
bound response time UB

kR  computed via the fixed point 
iteration given by (13) is less than or equal to the task�s 
deadline: 
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Iteration starts with k
UB
k CR = , and continues until the 

value of UB
kR  converges or until k

UB
k DR > , in which case 

task kτ  is unschedulable. 
We note that using the RTA test, task schedulability 

needs to be determined in priority order, highest priority 
first, as upper bounds on the response times of higher 
priority tasks are required for computation of the 
interference term )( UB

k
R
i RI . 

Guan et al. (2009) showed that at most m-1 higher 
priority tasks with carry-in jobs may contribute interference 
in the worst-case, and used this result to improve the RTA 
test as follows: 

Guan et al. (2009) showed that if task iτ  does not have 
a carry-in job, then the interference term is given by (5). The 

difference between the two interference terms ((10) and (5)) 
is then given by: 
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Using this result, Guan et al. (2009) improved upon the 
response time test of Bertogna and Cirinei (2007). 

RTA-LC test for global FP scheduling: A sporadic 
taskset is schedulable, if for every task kτ  in the taskset, the 
upper bound response time UB

kR  computed via the fixed 
point iteration given by (15) is less than or equal to the 
task�s deadline: 
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where MR(k, m-1) is the subset of the min(k, m-1) tasks with 
the largest values of ),( k

UB
k

RDIFF
i CRI − , given by (14), 

from the set of tasks hp(k). Iteration starts with k
UB
k CR = , 

and continues until the value of UB
kR  converges or until 

k
UB
k DR > , in which case task kτ  is unschedulable. 

We note that the RTA-LC test reduces to the RTA test if 
the ),( k

UB
k

RDIFF
i CRI −  term is included for all of the higher 

priority tasks, rather than just those with the m-1 largest 
values, hence the RTA-LC test dominates the RTA test. 
Both the RTA and RTA-LC tests for global FP scheduling 
are pseudo-polynomial in complexity. 

4. Schedulability tests for FPSL 
In this section, we derive polynomial time and pseudo-

polynomial time sufficient schedulability tests for FPSL and 
show that they apply directly to FPZL. (In section 5 we 
show that these schedulability tests are also applicable to 
FPCL). 

The tests derived in this section are applicable to 
sporadic tasksets with constrained deadlines, and are 
independent of the priority assignment policy used. They are 
based on the tests described in the previous section for 
global FP scheduling. We also show how the schedulability 
tests can be improved by computing a bound on the 
maximum amount of execution in the laxity state. 

With FPZL, each job of a critical-laxity task has its 
priority promoted when its laxity reaches zero. In contrast, 
under FPSL, a job of a critical-laxity task iτ  has its priority 
promoted when a scheduling point occurs and the laxity of 
the job is less than or equal to the task�s laxity threshold 

iX . For FPSL to operate correctly, the laxity threshold for 
each critical-laxity task must be set to a value such that jobs 
of the task are guaranteed to have their priority promoted 
before their laxity )(txi  becomes negative, despite the fact 
that priority promotion can only take place at scheduling 
points corresponding to the release or completion of some 
job. Note that only jobs of tasks classified by the 
schedulability analysis as critical-laxity tasks can have their 
priority promoted in this way by FPSL.  

Smaller values for the laxity threshold of a task are 
beneficial in terms of the impact that task has on the 



schedulability of other tasks. This is because a smaller laxity 
threshold implies that jobs of the task will spend less time 
executing in the critical-laxity state (i.e. at the highest 
priority). We therefore aim to set the laxity threshold iX  of 
each critical-laxity task iτ  to the smallest possible value 
such that all jobs of the task are guaranteed to have their 
priority promoted before their laxity becomes negative, 
despite the fact that priority promotion can only take place 
at scheduling points given by the release or completion of 
some job. 

As a job of a critical-laxity task iτ  can have its priority 
promoted on its own release, then an upper bound on the 
laxity threshold of the task is given by: 

ii CD −         (16) 
If iii CDX −≥ , then each job of the task enters the critical-
laxity state as soon as it is released. 

Further, the maximum time that can occur between 
scheduling points while a job of task iτ  is ready but not 
executing, and therefore its laxity is reducing, is bounded by 
the maximum time for which other tasks can execute in 
preference to task iτ  before one of them completes. This is 
given by ))(),(,( ilpclihpmMC  where ))(),(,( ilpclihpmMC
returns the mth longest time that any job of a higher priority 
task can execute, or any job of a critical-laxity lower priority 
task can execute in the critical-laxity state. Hence a further 
upper bound on the laxity threshold of task iτ  is given by: 

))(),(,( ilpclihpmMC      (17) 
Combining (16) and (17), we have: 

)))(),(,(,min( ilpclihpmMCCDX iii −=   (18) 
This value for the laxity threshold ensures that jobs of task 

iτ  are guaranteed to have their priority promoted before 
their laxity )(txi  becomes negative. 

Note that the value of iX  depends on which lower 
priority tasks are critical-laxity tasks, and on their execution 
times jK  in the critical-laxity state. The set of critical-
laxity tasks can be determined by schedulability analysis. 
For now, we assume that jj CK =  for all critical-laxity 
tasks. We return to this point in Section 4.3. 

We now derive polynomial time and pseudo-polynomial 
time sufficient schedulability tests for FPSL. These 
schedulability tests are a generalization of the tests given for 
FPZL by Davis and Burns (2011a). With FPZL, there are 
additional scheduling points whenever the laxity of a task 
reaches zero. Hence with FPZL, the laxity threshold iX  of 
each task iτ  is effectively set to zero. Setting the laxity 
threshold of all tasks to zero in a schedulability test for 
FPSL provides an equivalent schedulability test for FPZL. 
4.1. Deadline Analysis for FPSL 

Schedulability under FPSL is similar to that under 
FPZL:  
1. Up to m tasks may be deemed unschedulable without 

priority promotion according to analysis of their 
response times; and yet, due to priority promotion no 
jobs will miss their deadlines. 

2. Critical-laxity tasks have an additional impact on the 
schedulability of other tasks. 

We now derive the maximum interference on a higher 
priority task kτ , in an interval of length L, that could 
potentially be caused by a lower priority task jτ  executing 
for at most jK  in the critical-laxity state.  

Figure 1: Interference in an interval 
Figure 1 illustrates the worst-case scenario. This occurs 

when the last job of jτ  in the interval starts executing in the 
critical-laxity state as early as possible, and completes at the 
end of the interval, at a time jX  prior to its deadline. 
Further, each previous job of task jτ  is assumed to be 
released jT  prior to the subsequent job, and to execute in 
the critical-laxity state as late as possible, thus completing at 
its deadline. We return to the precise behaviour of the first 
job of jτ  in the interval later. 

An upper bound on the amount of workload due to task 
jτ in the critical-laxity state, in an interval of length L is 

given by: 
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where )(LN CL

j  is the number of jobs of task jτ  that 
contribute all of their critical-laxity execution in the interval, 

⎣ ⎦jjj
CL
j TXTLLN /)()( +−=     (20) 

and UB
jK  ( jC≤ ) is an upper bound on the amount of 

execution that any job of task jτ  can perform in the critical-
laxity state. 

If task kτ  is schedulable in an interval of length L, then 
an upper bound on the interference in that interval due to a 
lower priority task jτ  executing in the critical-laxity state is 
given by: 

)1),(min(),( +−= k
CL
jk

CL
j CLLWCLI    (21) 

With FPZL, FPCL and FPSL, critical-laxity tasks may 
have the priority of their jobs promoted to the highest 
priority level, because of this we need to refine the 
definition of a carry-in job previously used in global FP 
scheduling. 

In the context of FPZL, FPCL, and FPSL scheduling, a 
carry-in job is defined as a job that is released prior to the 
start of the interval and starts to execute at a higher priority 
than the task of interest kτ , strictly before the start of the 
interval. (Note this definition also holds for global FP 
scheduling where jobs do not change priority). 

Now if we pessimistically assume that jobs of lower 



priority critical-laxity tasks can have their priority promoted 
as early as possible, with as much execution time remaining 
as possible, independent of the execution pattern of other 
tasks, then their execution at the highest priority can be 
modelled as if it were simply the execution of a high priority 
task under global FP scheduling. Hence, with these 
pessimistic assumptions, the proof that the worst-case 
scenario occurs when there are at most m-1 carry-in jobs 
given by Davis and Burns (2010a) also holds for FPZL, 
FPCL, and FPSL. 

We now show that the interference from task jτ
executing in the critical-laxity state can be maximised 
without it being necessary to consider jτ  as having a carry-
in job. The scenario that maximises interference within an 
interval is shown in Figure 1. In this scenario, task jτ  has a 
job that is released prior to the start of the interval; however, 
without any reduction in interference in the interval, the first 
job of task jτ  can be assumed to have had its priority 
promoted at the earliest at the start of the interval, but not 
before. Hence the first job of jτ  need not be in the critical-
laxity state prior to the release of the problem job at the start 
of the interval. Task jτ  does not therefore need to be 
considered when determining the m-1 tasks that contribute 
the largest amounts of additional carry-in interference (i.e. 
the DDIFF

iI −  terms � see (8)). (Effectively, the first job of 
jτ  is only released at a priority higher than k at or after the 

release of the problem job, thus it does not qualify as 
causing �carry-in� interference).  

We now consider the interference from a higher priority 
critical-laxity task iτ . In this case, the maximum 
interference with a carry-in job occurs when the first job of 

iτ  in the interval starts executing at the start of the interval, 
and completes at its deadline, with all subsequent jobs 
executing as early as possible, see Figure 2 below. 

Figure 2 
We observe that this is effectively the same scenario that 

leads to the worst-case interference from a higher priority 
task which does not enter the critical-laxity state but 
completes at its deadline, and is given by (1). Similarly, 
execution in the critical-laxity state cannot increase the 
amount of interference from a higher priority task with no 
carry-in job, given by (5). This is an important observation. 
It means that when calculating interference from higher 
priority tasks, we do not need to know if they are critical-
laxity tasks. 

Under FPSL, each task kτ  is therefore schedulable 
without requiring priority promotion if the following 
inequality holds. 
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where ),( kk
NC
i CDI  is given by (5), ),( kk

DDIFF
i CDI −  is 

given by (8), ),( kk
CL
j CDI  is given by (21), and lpcl(k) is 

the set of critical-laxity tasks with lower priorities than k. 
If the inequality in (22) does not hold, then the task is a 

critical-laxity task. Under FPSL, at most m tasks can be 
critical-laxity tasks without a deadline being missed. 

We note that the critical-laxity status of each task is 
unknown until its schedulability is checked via (22), hence 
task schedulability needs to be checked in priority order, 
lowest priority first. 

Algorithm 1 presents the DA-LC schedulability test for 
FPCL. Note, for now we make the pessimistic assumption 
that a critical-laxity task completes all of its execution in the 
critical laxity state, hence line 9, �Compute UB

kK � can be 
assumed to set k

UB
k CK = . 

The DA-LC schedulability test for FPSL is a 
polynomial time test requiring )( 2nO  operations, assuming 
that �Compute UB

kK � takes linear time. 
1 countCL = 0 
2 for (each priority level k, lowest first) { 
3  Determine schedulability of kτ  according to (22) 
4  if ( kτ  is not schedulable without priority promotion) { 
5   mark kτ  as a �critical laxity� task 
6   countCL = countCL + 1 
7   Calc kX  according to (18) 
8   Compute UB

kK
9  } 
10 } 
11 if (countCL > m) 
12  return unschedulable 
13 else 
14  return schedulable

Algorithm 1: DA-LC schedulability test for FPSL 
The schedulability test for FPSL given in Algorithm 1 

reduces to the equivalent DA-LC schedulability test for 
FPZL by setting the laxity threshold jX  for every task 
equal to zero in (18), (19) and (20). 

As (19) is monotonically non-decreasing in jX , then, 
for any interval length L, (21) yields interference 

),( k
CL
j CLI  that is no greater when all 0=jX , than it does 

for positive jX . Thus the DA-LC test for FPZL dominates 
the DA-LC test for FPSL, which in turn dominates the DA-
LC test for global FP scheduling.  
4.2. Response Time Analysis for FPSL 

In this section, we provide a response time test for 
FPSL. This sufficient schedulability test is a generalization 
of the equivalent test for FPZL given by Davis and Burns 



(2011a). It reduces to that test for FPZL by setting the laxity 
threshold iX  for each task iτ  to zero. 

The response time test for FPSL builds on the work of 
Bertogna and Cirinei (2007) and Guan et al. (2009) (i.e. 
(14)). It computes an upper bound UB

kR  on the response 
time of each task kτ . If task kτ  is schedulable under FPSL 
with a response time bounded by UB

kR , then an upper bound 
on the interference in an interval of length UB

kR  due to a 
lower priority task jτ  executing in the critical-laxity state 
can be obtained by substituting UB

kR  for the length of the 
interval in (21). 

An upper bound on the worst-case response time of a 
task kτ , that is schedulable under FPSL without requiring 
priority promotion, can therefore be found using the fixed 
point iteration given by (23). 
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where ),( k
UB
k

NC
i CRI  is given by (5), ),( k

UB
k

RDIFF
i CRI −  is 

given by (14), ),( kk
CL
j CDI  is given by (21), and lpcl(k) is 

the set of critical-laxity tasks with lower priorities than k. 
Iteration starts with k

UB
k CR = , and continues until the 

value of UB
kR  converges in which case kτ  is schedulable, or 

until k
UB
k DR > . If k

UB
k DR > , then the task is a critical-

laxity task. Recall that under FPSL at most m tasks may be 
critical-laxity tasks without a deadline being missed. 

Using (23), we can construct a sufficient schedulability 
test for FPSL based on upper bound response times; 
however, this requires an iterative approach that computes 
the upper bound response times of tasks in priority order, 
highest priority first, but then backtracks (re-starts) 
whenever a critical-laxity task is identified. This 
backtracking approach is necessary due to the dependency 
of higher priority task response times on which lower 
priority tasks are critical-laxity tasks and the dependency of 
lower priority task schedulability (critical-laxity status) on 
the response times of higher priority tasks. 

Under FPSL, the interference term (21) due to each 
lower priority critical-laxity task jτ  depends via the 
parameter jX  (see (18)) on the tasks with priorities lower 
than j that are also critical-laxity tasks. The interference 
term due to each task jτ  is monotonically non-decreasing in 

jX , and jX  is monotonically non-decreasing as additional 
critical-laxity tasks are added to the set lpcl(j), hence 
interference can only increase as further critical-laxity tasks 
are identified. This dependency implies that once a task is 
identified as a critical laxity task, the critical-laxity 
thresholds and upper bound response times of all higher 
priority tasks must be re-calculated. 

Algorithm 2 presents the RTA-LC schedulability test 
for FPSL. Algorithm 2 initially assumes that there are no 

critical-laxity tasks and starts computing task response times 
in priority order, highest priority first (lines 6 and 7). Then, 
whenever a task kτ  is encountered where (23) results in a 
value of k

UB
k DR > , the task is marked as a critical-laxity 

task and its upper bound response time is set to its deadline 
(lines 8 and 9). We note that provided that the taskset is 
schedulable under FPSL, then this is the correct upper 
bound response time, as priority promotion will prevent the 
task from actually missing its deadline. 

1 countCL = 0 
2 Initialize all UB

kR = kC , kX  = 0, and UB
kK  = 0 

3 repeat = true 
4 while (repeat) { 
5  repeat = false 
6  for (each priority level k, highest first) { 
7   Determine UB

kR  according to (23) 
8   if ( UB

kR  > kD ) { 
9    UB

kR  = kD
10    Calc kX  according to (18) 
11    Compute UB

kK
12    if ( kτ  not marked as a CL task) { 
13     mark kτ  as a CL task 
14     repeat = true 
15     countCL = countCL + 1 
16     if(countCL > m) { 
17      repeat = false 
18      break (exit for loop) 
19     } 
20    } 
21   } 
22   [if ( UB

kR  or UB
kK  differ from prev. values) 

23    repeat = true] 
24  } 
25 } 
26 if (countCL > m) 
27  return unschedulable 
28 else 
29  return schedulable

Algorithm 2: RTA-LC schedulability test for FPSL 
The discovery of a critical-laxity task effectively 

invalidates the upper bound response times calculated for all 
higher priority tasks, and also the laxity thresholds ( jX ) for 
all higher priority critical-laxity tasks. These values could be 
too small, and therefore need to be re-calculated (line 14). 
However, if more than m critical-laxity tasks have been 
found, then priority promotion cannot prevent all deadline 
misses and the taskset is deemed unschedulable. In this case, 
the algorithm can exit immediately (lines 16-18). 

We note that lines 22-23 are not required when a simple 
fixed value of k

UB
k CK =  is used for the critical-laxity 

execution time of task kτ . However, when the computed 
value of UB

kK  depends on the response times of higher 
priority tasks then this additional convergence check is 
required. We return to this point in Section 4.3. 

We note that the upper bound response time for a task 
iτ  is monotonically non-decreasing in the amount of 

critical-laxity execution time of each of the tasks with lower 
priority than i. Hence, the calculation of UB

iR  can be made 
more efficient on subsequent iterations of the �while� loop 



(line 4) by using as an initial value, the value of UB
iR

computed on the previous iteration. 
The �while� loop (lines 4-25) continues to iterate until 

either m+1 critical-laxity tasks are found, in which case the 
taskset is deemed unschedulable, or there are m or fewer 
critical-laxity tasks and the upper bound response times and 
laxity thresholds ( jX ) have been re-calculated since the 
final critical-laxity task was found. In this case, the taskset 
is schedulable. 

Under the assumption that �Compute UB
kK � sets 

k
UB
k CK = , the RTA-LC schedulability test for FPSL 

requires )(mnO  response time calculations (i.e. (23)), each 
of which is pseudo-polynomial in complexity. This can be 
seen by noting that when �Compute UB

kK � sets k
UB
k CK = , 

lines 22-23 are not required, and so the �while� loop (line 4 
to 25) only repeats when �repeat� is set to true on line 14. 
This can only happen at most m times, as a result of finding 
a critical-laxity task, before the taskset is declared 
unschedulable. Hence the maximum number of times that a 
response time can be computed (line 7) is )(mnO . By 
comparison, the RTA-LC test for global FP scheduling 
requires )(nO  such response time calculations. 

The schedulability test for FPSL given in Algorithm 2 
reduces to the equivalent RTA-LC schedulability test for 
FPZL by simply setting the laxity threshold jX  for every 
task equal to zero in (18), (19) and (20). 

As (19) is monotonically non-decreasing in jX , then, 
for any interval length L, (21) yields interference 

),( k
CL
j CLI  that is no greater when all 0=jX , than it does 

for positive jX . Thus the RTA-LC test for FPZL dominates 
the RTA-LC test for FPSL, which in turn dominates the 
RTA-LC test for global FP scheduling.  
4.3. Bounding critical-laxity execution time 

So far, we have made the potentially pessimistic 
assumption that a task that can reach the critical-laxity state 
does so without having started to execute. Hence, we used 
an upper bound on the critical-laxity execution time of 

k
UB
k CK = . In this section, we derive a more effective upper 

bound and use this bound to improve the schedulability tests 
for FPSL. This analysis also applies to FPZL when all jX
are set to zero. 

First, we introduce the concept of DC-Sustainability and 
prove that the schedulability tests for task kτ  given by (22) 
and (23) are DC-Sustainable. A schedulability test for task 

kτ  is referred to as DC-Sustainable if it is sustainable 
(Baruah and Burns, 2006) with respect to simultaneous and 
equal changes in both the execution time and the deadline of 
the task. Below we give a formal definition of DC-
Sustainability. 
Definition: A schedulability test S for a task kτ  is DC-
Sustainable if the following two conditions hold: 
Condition 1: If task kτ  is deemed schedulable by test S
with some paired deadline and execution time values 

vDD kk −=′ , vCC kk −=′  where kCv ≤≤0  then test S is 
guaranteed to deem task kτ  schedulable for all deadline and 

execution time pairs wDD kk −=′ , wCC kk −=′  where 
kCwv ≤≤ . 

Condition 2: If task kτ  is deemed unschedulable by test S
with some paired deadline and execution time values 

vDD kk −=′ , vCC kk −=′  where kCv ≤≤0  then test S is 
guaranteed to deem task kτ  unschedulable for all deadline 
and execution time pairs wDD kk −=′ , wCC kk −=′  where 

vw ≤≤0 . 
Theorem 1: Given a fixed set of laxity thresholds ( jX ) and 
a fixed set of critical-laxity tasks, (22) is a DC-Sustainable 
schedulability test for task kτ . 
Proof: We can re-write (22) as follows: 
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Consider the behaviour of (24) for paired deadline and 
execution time values wDD kk −=′ , wCC kk −=′  as w
takes different values in the range kCw ≤≤0 . The RHS of 
(24) gives an upper bound on the interference from higher 
priority tasks and lower priority tasks executing in the 
critical-laxity state in an interval of length wDD kk −=′ . 
By inspecting the component equations (1), (2), (3), (5), (6), 
(7), (8), (19), (20), and (21) it can be seen that this 
interference is monotonically non-decreasing with respect to 
the length of the interval kD′ . We must however also 
consider the dependence of component equations (5) and 
(21) on kC ′ , which also varies with w. kC ′  appears in the 
second term in the min( ) function of each of these equations 
in the expression 1+′−′ kk CD . This expression is 
unchanged by varying w. The RHS of (24) is therefore 
monotonically non-increasing with respect to increasing 
values of w.  
 In the case of Condition 1, as the LHS of (24) is 
unchanged and the RHS is monotonically non-increasing for 
increasing values of w: kCw ≤≤0  then it follows that, 
given that (24) holds for w=v, it must also hold for all values 
of w: kCwv ≤≤ . 

In the case of Condition 2 as the LHS of (24) is 
unchanged and the RHS is monotonically non-decreasing 
for decreasing values of w: kCw ≤≤0  then it follows that, 
given that (24) does not hold for w=v, then it cannot hold for 
any value of w: vw ≤≤0 □

We now prove that (23) is also a DC-Sustainable 
schedulability test for task kτ , given a fixed set of laxity 
thresholds ( jX ) and a fixed set of critical-laxity tasks. 
Below, we re-write (23), using the variable q to indicate the 
fixed point iteration. 
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Recall that iteration begins with kk CR ′=0  (the execution 
time of task kτ ), and ends when either q

k
q
k RR =+1  or when 

k
q
k DR ′>+1 , in which case task kτ  is unschedulable. 

Let ),( CDRUB
k  be the response time upper bound given 

by (25) for task kτ (D, C) with deadline D and execution 
time C. Similarly, let ),( xCxDRUB

k ++  be the response 
time upper bound given by (25) for task kτ ( xD + , xC + ) 
with deadline xD +  and execution time xC + . 
Lemma 1: Given a fixed set of laxity thresholds ( jX ) and a 
fixed set of critical-laxity tasks, if kτ (D, C) is schedulable 
according to (25) then xCRxCR UB

k
UB
k +≥+ )()( . Further, 

if kτ (D, C) is not schedulable according to (25) then neither 
is kτ ( xD + , xC + ). 
Proof: Let )(CRq

k  be the value computed by the qth 
iteration of (25) for task kτ (D, C). Similarly, let )( xCRq

k +
be the value computed by the qth iteration of (25) for task 

kτ ( xD + , xC + ). 
 We prove the Lemma by induction, showing that on 
every iteration q until convergence or the deadline of kτ (D, 
C) is exceeded, xCRxCR q

k
q
k +≥+ )()( . 

Initial condition: in each case iteration starts with an 
initial value corresponding to the execution time of kτ , 
hence CCRk =)(0  and xCxCRk +=+ )(0 , so 

xCRxCR kk +≥+ )()( 00 . 
Inductive step: assume that xCRxCR q

k
q
k +≥+ )()( , and 

consider the values computed for )(1 xCRq
k ++  and 

)(1 CRq
k
+ on iteration q+1. The floor function (second term 

on the RHS of (25)) contains three summation terms; 
together, these terms give an upper bound on the 
interference from higher priority tasks and lower priority 
tasks executing in the critical-laxity state in an interval of 
length q

kR . Inspection of the component equations ((5), (6), 
(7), (10), (11), (12), (14), (19), (20), and (21)) shows that 
this interference term is no smaller for input values 

xCRxCR q
k

q
k +≥+ )()( , and xCCk +=′  (the latter is used 

in (10) and (21)) than it is for input values )(CRq
k  and 

CCk =′ , hence once the value of kC ′  is added (first term on 
the RHS of (25)), we have xCRxCR q

k
q
k +≥+ ++ )()( 11 . 

We note that if the fixed point iteration for kτ (D, C) 
converges on )(),( 1 CRCDR q

k
UB
k

+= , then the smallest 
possible value of ),( xCxDRUB

k ++  is xCRq
k ++ )(1 . 

Further, if kτ (D, C) is unschedulable, then it follows that 
DCRq

k >+ )(1  which implies that xDxCRq
k +>++ )(1  and 

therefore kτ ( xD + , xC + ) must also be unschedulable □
Theorem 2: Given a fixed set of laxity thresholds ( jX ) and 
a fixed set of critical-laxity tasks, (25) and hence (23) is a 
DC-Sustainable schedulability test. 

Proof: We can choose an execution time of 0=′kC  and a 
deadline of kkk CDD −=′  for task kτ . With these 
parameters, kτ  is deemed schedulable by (25). We then 
consider all possible deadline and execution time pairs 

wDD kk −=′ , wCC kk −=′  for w from 1 to kC  (recall that 
execution times are represented by non-negative integers). 
Let v be the smallest value of w, if any, for which kτ  is 
unschedulable. Lemma 1 tells us that for all larger values of 
w, kτ  will also be unschedulable. Proof that Conditions 1 
and 2 in the definition of DC-Sustainability hold follow 
directly from the observation that task schedulability is 
monotonically decreasing with respect to increasing values 
of w □

We now show how a bound on the critical-laxity 
execution time of each critical-laxity task can be derived. 
Let us assume that we are using the DA-LC schedulability 
test (Algorithm 1) or the RTA-LC schedulability test 
(Algorithm 2) for FPSL, and that task kτ  has been 
identified as a critical-laxity task by (22) or (23). We know 
that task kτ  cannot be guaranteed to complete all of its 
execution within its deadline, without entering the critical-
laxity state. However, if we can show that kτ  is guaranteed 
to complete vCC kk −=′  units of execution time by an 
effective deadline of 1−−−=′ vXDD kkk , then that proves 
that the task�s laxity is at least 1+kX  at kD′ , and so it can 
execute for at most v units of time in the critical-laxity state. 

Due to the DC-Sustainability of the single task 
schedulability tests given by (22) and (23), each of these 
equations can be used as the basis of a binary search to 
determine the smallest value of v )0( kCv ≤≤  such that 
task kτ  is guaranteed to complete vCC kk −=′  units of 
execution time by a deadline 1−−−=′ vXDD kkk , thus 
computing an upper bound vK UB

k =  on the amount of time 
that a job of task kτ  can spend executing in the critical-
laxity state. The initial minimum value of v for the search is 

0=v , while the initial maximum value is kCv =  which is 
deemed to result in schedulability, as it is equivalent to kτ
having zero execution time. 

In the DA-LC test, a binary search based on (22) can be 
used to �Compute UB

kK � (line 9 of Algorithm 1), for each 
critical-laxity task, improving the effectiveness of the test. 
As task schedulability is determined lowest priority first, no 
further iteration is required. At each priority level, task 
schedulability depends on static parameters of higher 
priority tasks, and on the critical-laxity status, laxity 
thresholds ( jX ), and critical-laxity execution times ( UB

jK ) 
of lower priority tasks which have already been computed. 

In the RTA-LC test, a binary search based on (23) can 
also be used to �Compute UB

kK � (line 11 of Algorithm 2) for 
each critical-laxity task. However, in this case, a further 
convergence check (lines 22-23) is required as the critical-
laxity execution times computed by the binary searches are 
dependent on the response times of higher priority tasks, 
and vice-versa. We note that Algorithm 2 will either find 
more than m critical-laxity tasks or converge on unchanging 
values for the response times, laxity thresholds, and critical-



laxity execution times. Such convergence is guaranteed 
because: 
(i) the response times of higher priority tasks are 

monotonically non-decreasing with respect to 
increases in the critical-laxity execution time of 
lower priority tasks, and similarly, the critical-
laxity execution times of lower priority tasks 
computed by binary search are monotonically non-
decreasing with respect to increases in the response 
times of higher priority tasks. 

(ii) the laxity threshold jX  of a task jτ  is 
monotonically non-decreasing in the critical-laxity 
execution times, and critical-laxity status of lower 
priority tasks. 

(iii) the critical-laxity execution time UB
jK  is 

monotonically non-decreasing with respect to the 
laxity threshold jX . 

4.4. Applicability of the FPSL schedulability tests 
to FPCL 

In this section, we show that the schedulability tests derived 
for FPSL also hold FPCL. 
Theorem 3: Any taskset that is deemed schedulable 
according to the sufficient schedulability tests given in 
sections 4.1 or 4.2, (i.e. the DA-LC or RTA-LC tests for 
FPSL given by Algorithm 1 or Algorithm 2) assuming that 
all of a critical-laxity task�s execution is in the critical laxity 
state, is also schedulable under FPCL. 
Proof: To prove the theorem, we need only consider those 
tasks that are not identified as critical-laxity tasks by the 
schedulability test for FPSL. We refer to such tasks as 
ordinary tasks. We show that the jobs of ordinary tasks 
never become critical-laxity jobs under FPCL and so remain 
schedulable. The remaining tasks, which have been 
identified as critical-laxity tasks by the schedulability test 
for FPSL, must then be trivially schedulable under FPCL as 
it is able to guarantee the schedulability of up to m tasks via 
priority promotion. 

The proof is by contradiction. We assume that τ  is a 
taskset that is schedulable according to the sufficient test for 
FPSL but is not schedulable under FPCL. Further, let J be 
the first job of an ordinary task kτ  from τ  that becomes a 
critical-laxity job under FPCL. We note that if there is no 
such job, then all of the jobs of all of the ordinary tasks must 
always meet their deadlines under FPCL which suffices to 
prove the theorem. 

As J is the first job of an ordinary task to be selected by 
the FPCL algorithm for priority promotion, then prior to the 
time at which FPCL promotes the priority of job J, no jobs 
of any ordinary task can be in the critical-laxity state. For 
FPCL to promote the priority of job J, it must therefore be 
the case that the total interference that J is subject to from 
jobs of higher priority ordinary tasks executing at their 
normal priorities and from jobs of critical-laxity tasks 
exceeds that considered by the FPSL schedulability test. If 
this were not the case, then J would be schedulable without 

priority promotion, and so the FPCL algorithm would not 
increase its priority.  

Interference from ordinary tasks: The interference that J
is subject to from jobs of any other ordinary task executing 
at their normal priority cannot exceed that considered by the 
schedulability test for FPSL, as the test uses an upper bound 
on such interference. 

Interference from critical-laxity tasks: Let iτ  be a 
critical-laxity task identified by the FPSL schedulability 
test. Recall that prior to J being selected by FPCL for 
priority promotion, no jobs of any ordinary task can be in 
the critical-laxity state. From the definition of the laxity 
threshold iX , given by (18), this means that under FPCL, 
prior to J being selected fro priority promotion, no job of iτ
can enter the critical-laxity state with more laxity than 
assumed by the schedulability test for FPSL. Hence, the 
interference that J is subject to due to jobs of iτ  cannot 
exceed that assumed by the FPSL schedulability test. 

The total interference that J is subject to therefore 
cannot exceed that considered by the schedulability test for 
FPSL. As J is a job of an ordinary task, it must therefore be 
schedulable under FPCL without priority promotion, and so 
will not be selected for priority promotion by the FPCL 
scheduler. This contradicts the original assumption. As there 
is no such first job J of an ordinary task that becomes a 
critical-laxity job under FPCL, then taskset τ  must also be 
schedulable under FPCL □

We now extend Theorem 3 to the refined schedulability 
tests which make use of upper bounds on the amount of 
execution that can occur in the critical-laxity state. First, we 
prove the following Lemma. 
Lemma 2: Let τ  be any taskset that is deemed schedulable 
according to the sufficient schedulability tests given in 
sections 4.1 or 4.2, (i.e. the DA-LC or RTA-LC tests for 
FPSL given by Algorithm 1 or Algorithm 2) using the upper 
bounds on the execution time in the critical-laxity state 
given in section 4.3. 

Under the assumption that jobs of ordinary tasks do not 
enter the critical-laxity state, then no job of a critical-laxity 
task, belong to a taskset τ , enters the critical-laxity state 
under FPCL with more laxity or more remaining execution 
time than computed by the FPSL schedulability test. 
Proof: The proof is by contradiction. We assume that J is 
the first job of a critical-laxity task ( iτ ) that enters the 
critical-laxity state under FPCL with more laxity ( iX> ) or 
more remaining execution time ( UB

jK> ) than computed by 
the schedulability test for FPSL. 

As J is the first such job of a critical-laxity task, then 
from the assumption that jobs of ordinary tasks cannot 
become critical-laxity jobs under FPCL, and the definition 
of the laxity threshold iX , given by (18), then priority 
promotion of job J by FPCL cannot take place when job J
has more laxity than iX . 

The maximum possible execution time in the critical-
laxity state is monotonically non-decreasing with respect to 



the laxity a job has when its priority is promoted. In the case 
of job J, a valid upper bound on its critical-laxity execution 
time is given by UB

jK , the upper bound on the maximum 
critical-laxity execution time for a laxity of iX  computed 
by the FPSL schedulability test using the techniques 
described in section 4.3. This is the case because; by the 
assumption in the Lemma none of the ordinary tasks 
become critical-laxity tasks under FPCL, and the definition 
of job J ensures that prior to it entering the critical-laxity 
state all jobs of all other critical-laxity tasks comply with the 
assumptions of the FPSL schedulability test. 

It follows that job J can only enter the critical-laxity 
state under FPCL with laxity and remaining execution time 
no greater than the values computed by the FPSL 
schedulability test. This contradicts the original assumption 
about job J, and so there can be no job of a critical-laxity 
task that enters the critical-laxity state under FPCL with 
more laxity or more remaining execution time than 
computed by the FPSL schedulability test □
Theorem 4: Any taskset τ  that is deemed schedulable 
according to the sufficient schedulability tests given in 
section 4.1 or 4.2, (i.e. the DA-LC or RTA-LC tests for 
FPSL), using the upper bounds on execution time in the 
critical-laxity state given in section 4.3, is also schedulable 
under FPCL. 
Proof: Proof follows the logic used in the proof of Theorem 
3 to show that jobs of ordinary tasks cannot enter the 
critical-laxity state under FPCL. The only difference is that 
further consideration is needed regarding the interference 
from critical-laxity tasks (5th paragraph of the proof) which 
is adapted as follows: 

Interference from critical-laxity tasks: Let iτ  be a 
critical-laxity task identified by the FPSL schedulability 
test. By definition of job J, there can be no job of any 
ordinary task which has its priority promoted by FPCL 
before job J. Hence Lemma 2 applies, and there can also be 
no job of a critical-laxity task iτ  that enters the critical-
laxity state with more laxity or more remaining execution 
time than computed by the FPSL schedulability test, prior to 
FPCL promoting the priority of job J. Hence, the 
interference that J is subject to due to jobs of iτ  cannot 
exceed that assumed by the FPSL schedulability test. 

It then follows (6th paragraph in the proof of Theorem 
3), that there is no such first job J of an ordinary task that 
becomes a critical-laxity job under FPCL, and so taskset τ
must also be schedulable under FPCL □

Note, Theorems 3 and 4 do not claim that any taskset 
that is schedulable (i.e. according to some exact test) using 
FPSL with laxity thresholds iX  is also schedulable 
according to FPCL. Only that tasksets which are 
schedulable according to the sufficient schedulability tests 
for FPSL presented in this paper are also schedulable using 
FPCL. 

5. Event-driven scheduling, FPZL, FPCL, and 

FPSL 
In this section, we discuss the implementation of the 

FPZL, FPSL, and FPCL scheduling algorithms. We assume 
that the operating system already implements an event-
driven global FP scheduler, we therefore discuss only the 
modifications required to support the new algorithms. 

FPZL requires that when the laxity of a job reaches zero 
its priority is promoted to the highest level. The laxity of a 
job can reach zero at some intermediate point between job 
releases, and the completion of the currently running jobs. 
FPZL therefore requires support for additional zero-laxity 
timer events, typically handled via a timer interrupt from a 
fine-grained hardware timer-counter, with re-scheduling 
performed on those events, as well as at job release and 
completion. FPZL also requires the maintenance of a laxity
queue of ready, but non-running jobs, ordered by increasing 
laxity. The laxity of the job at the head of this queue 
corresponds to the time to the next zero-laxity timer event. 
In a schedulable hard real-time system using FPZL, there 
are at most m critical-laxity tasks, hence the laxity queue 
need only track the laxity of at most m jobs. On expiry of a 
zero-laxity event, the scheduler runs and promotes the 
priority of the job at the head of the laxity queue to the 
highest level. 

In contrast to FPZL, FPSL requires no additional timer 
events / scheduling points, other than those provided by a 
standard global FP scheduler, i.e. at job release and 
completion. However, at each scheduling point, the 
scheduler must first promote the priority of the jobs of 
critical-laxity tasks that have a laxity less than or equal to 
their laxity threshold jX , before choosing the m highest 
priority tasks to run. As there are at most m critical-laxity 
tasks, this represents an additional overhead that is )(mO . 
FPSL reduces the number of scheduling points compared to 
FPZL. With FPSL, there are at most two context switches 
per task release (at release and completion), whereas with 
FPZL, there are at most three (at release, zero-laxity, and 
completion). The implementation of FPSL is highly 
efficient; however, it requires that the set of critical-laxity 
tasks and their laxity thresholds are known off-line. This is 
only possible for tasksets that are deemed schedulable by 
one of the schedulability tests given in Section 4.  

By comparison with FPSL the implementation of FPCL 
is less efficient; however, it does not require prior 
knowledge of which tasks are critical-laxity tasks. Like 
FPZL, the performance of FPCL can therefore be explored 
via simulations and experimental implementations, without 
the constraint that all of the tasksets examined must to be 
deemed schedulable by a schedulability test. 

The implementation of FPCL is as follows: At each 
scheduling point (i.e. job release or completion) a set of at 
most m jobs are selected to run (the RUN set). The selection 
of the RUN set takes place according to the following steps: 
1. As with a FP scheduler, the m highest priority ready 

jobs are initially selected as the RUN set. If there are no 



further ready jobs, then selection ends, otherwise it 
continues to step 2. 

2. The maximum time Y to the next scheduling point is 
computed as the minimum remaining execution time of 
any job in the RUN set. The laxity of each ready job 
that is not in the RUN set is then computed on the basis 
that it will not start to run for a time Y. If this laxity is 
negative, (i.e. the remaining execution time of the job + 
Y exceeds the time to the job�s deadline) then the job is 
marked as having critical laxity and is given the highest 
priority. If no critical-laxity jobs are found, then 
selection ends, otherwise it continues to step 3. 

3. As a critical-laxity job has been found in step 2, the 
RUN set is re-evaluated such that it again contains the 
m highest priority jobs (at least one of which is now a 
critical-laxity job). If there are m or more2 critical-laxity 
jobs, then selection ends, otherwise it continues from 
step 2. 

We note that the above implementation of FPCL may in the 
worst-case take up to m iterations of steps 2 and 3 to 
identify the critical-laxity jobs and so select which jobs to 
run. For relatively small numbers of processors (e.g. 2, 4, or 
8), this approach results in a viable level of scheduling 
overheads as indicated by measurements of the prototype 
implementation described in Section 8. 

6. Priority assignment 
In this section, we briefly discuss priority assignment 

for FPSL, FPCL and FPZL. Davis and Burns (2009, 2010a) 
showed that priority assignment is a key factor in global FP 
scheduling. As FPSL, FPCL and FPZL are hybrids of global 
FP scheduling, we expect priority assignment to also be 
important for these scheduling algorithms. 

The DA-LC and RTA-LC schedulability tests for FPSL 
are independent of the priority ordering used. Hence they 
are compatible with heuristic priority assignment policies 
such as Deadline Monotonic Priority Ordering (DMPO) or 
DkC (Davis and Burns, 2009, 2010a). When there are no 
critical-laxity tasks, FPSL reduces to global FP scheduling. 
In this case, the Optimal Priority Assignment (OPA) 
algorithm (Audsley, 1991, 2001) provides the optimal 
priority assignment to use in conjunction with the DA-LC 
tests. However, when the OPA algorithm finds that there are 
no tasks that are schedulable at a particular priority level 
without recourse to priority promotion, then the following 
question arises: Which task should be assigned to that 
priority level? For the purposes of the empirical evaluation 
in Section 7, we answered this question via a simple 
heuristic. We computed the critical-laxity execution time for 
each unassigned task using a binary search, and assigned the 
task with the smallest proportion of its execution time in 

2 In the case of an unschedulable taskset, more than m jobs could become 
critical-laxity jobs, in which case the RUN set arbitrarily contains the first 
m of them found. In this case some job is inevitably going to miss its 
deadline assuming that all jobs take their worst-case execution times.

that state. The idea being that this is the task that would 
require the smallest percentage reduction in its execution 
time to be schedulable at that priority without recourse to 
priority promotion. 

7. Empirical investigation 
In this section, we present the results of an empirical 

investigation, examining the effectiveness of the 
schedulability tests for FPSL and FPZL. We also conducted 
scheduling simulations of FPCL and FPZL which form 
necessary but not sufficient schedulability tests, thus 
providing upper bounds on the potential performance of the 
scheduling algorithms. 
7.1. Taskset parameter generation 

The taskset parameters used in our experiments were 
randomly generated as follows: 
o Task utilisations were generated using the UUnifast-

Discard algorithm (Davis and Burns, 2009), giving an 
unbiased distribution of task utilisations. A discard limit 
of 1000 was used, but not needed. 

o Task periods were generated according to a log-uniform 
distribution with a factor of 1000 difference between 
the minimum and maximum possible task period. This 
represents a spread of task periods from 1ms to 1 
second, as found in most hard real-time applications. 
The log-uniform distribution was used as it generates an 
equal number of tasks in each time band (e.g. 1-10ms, 
10-100ms etc.), thus providing reasonable 
correspondence with real systems. 

o Task execution times were set based on the utilisation 
and period selected: iii TUC = . 

o To generate constrained-deadline tasksets, task 
deadlines were assigned according to a uniform random 
distribution, in the range ],[ ii TC . For implicit-deadline 
tasksets, deadlines were set equal to periods. 

In each experiment, the taskset utilisation (x-axis value) was 
varied from 0.025 to 0.975 times the number of processors 
in steps of 0.025. For each utilisation value, 1000 valid 
tasksets were generated and the schedulability of those 
tasksets determined using the various schedulability tests for 
different scheduling algorithms. The graphs plot the 
percentage of tasksets generated that were deemed 
schedulable in each case. Note the lines on all of the graphs 
appear in the order given in the legend. (The graphs are best 
viewed online in colour). 
7.2. Scheduling simulation 

We used a simulation of global FP, FPCL, FPZL, global 
EDF and EDZL scheduling to provide an upper bound on 
the potential performance of each scheduling algorithm, and 
hence to evaluate the quality of the schedulability tests. 
(Note FPSL uses pre-computed laxity thresholds and relies 
on the identification of critical-laxity tasks at the 
schedulability analysis stage, because of this, it was not 
possible to simulate the behaviour of FPSL for tasksets that 
were not deemed schedulable by the analysis). 



Our simulations ran for an interval of time equal to ten 
times the longest period of any task in the taskset. Each 
simulation started with synchronous release of the first job 
of each task, with subsequent jobs released as early as 
possible. Each job executed for its worst-case execution 
time. The simulation deemed a taskset schedulable by a 
given algorithm if it did not find a deadline miss during the 
time interval simulated, or any unavoidable deadline miss 
for any job that had execution time remaining at the end of 
the interval. Thus the simulation provides a necessary but 
not sufficient schedulability test. Any taskset failing the 
simulation, with a deadline miss, is guaranteed to be 
unschedulable, while tasksets that pass the simulation may 
or may not be schedulable. We note that in the case of 
constrained-deadline sporadic tasksets, to the best of our 
knowledge, no tractable exact tests exist for any of the 
algorithms studied. Thus upper bounds on performance 
derived via simulation are one of the few ways in which the 
performance potential of each algorithm can be explored. 
7.3. Schedulability test effectiveness 

We investigated the performance of the FPSL and 
FPZL DA-LC, schedulability tests using the OPA algorithm 
(Audsley, 1991, 2001) to assign priorities, and compared 
their performance to that of the equivalent test for global FP 
scheduling, and to schedulability tests for global EDF by 
Bertogna et al. (2009) (the �EDF-RTA� test) and EDZL 
scheduling Baker et al. (2008) (the �EDZL-I test�). Also 
shown on the graphs are results for the necessary 
infeasibility test of Baker and Cirinei (2006) (labelled 
�LOAD*�). This line gives the total number of tasksets at 
each utilisation level that we cannot be certain are infeasible 
(i.e. unschedulable by any algorithm). Further, the narrow 
lines on the graphs indicate an upper bound on the 
performance of each algorithm found via simulation. In the 
case of global FP, FPCL, and FPZL scheduling, these upper 
bounds assume Deadline minus Computation time 
Monotonic Priority Ordering (DCMPO) (Davis and Burns, 
2009, 2010a), which was found in the simulation studies to 
be significantly more effective than Deadline Monotonic 
Priority Ordering (DMPO). It was not possible to simulate 
optimal priority assignment as simulation of all possible 
priority orderings is intractable. 

Figures 3 to 5 below are for constrained-deadline 
tasksets. From these graphs, we can see that the EDF-RTA 
test for global EDF scheduling and the DA-LC test for 
global FP scheduling using DMPO have the lowest 
performance, with approximately 50% of the generated 
tasksets schedulable at a utilisation of 2.7 (=0.34m) and 2.8 
(=0.35m) respectively, in the 8 processor case. The EDZL-I 
test performs significantly better with 50% of the tasksets 
schedulable at a utilisation of approx. 3.4 (=0.43m). Using 
optimal priority assignment significantly improves the 
performance of global FP scheduling, with 50% of the 
tasksets schedulable at a utilisation of approximately 4.7 
(=0.59m) according to the DA-LC test. The DA-LC test for 

FPZL, using Audsley�s OPA algorithm and a binary search 
to bound zero-laxity execution time (marked FPZL-LZ on 
the graph) has the highest performance, with 50% of 
tasksets deemed schedulable at a utilisation of approx. 4.9 
(=0.61m). As expected, this is slightly better than the DA-
LC test for FPSL, again using Audsley�s OPA algorithm 
and a binary search to bound critical-laxity execution time 
(marked FPSL-LC on the graph), with 50% of tasksets 
deemed schedulable at a utilisation of approx. 4.8 (=0.60m). 
Both FPSL and FPZL algorithms provide a modest 
improvement over global FP scheduling. 

Our simulation results show that both global EDF and 
global FP scheduling with DMPO have relatively poor 
performance potential. This is because these algorithms 
typically favour executing tasks with short deadlines first. 
This has the effect of reducing the amount of available 
concurrency, in terms of the number of ready tasks, which 
makes the remaining tasks more difficult to schedule. By 
contrast, using DCMPO greatly improves the performance 
potential of global FP scheduling, particularly when there 
are a large number of processors and tasks. The simulation 
results show that EDZL, FPZL and FPCL (both with 
DCMPO priority ordering) have similar performance 
potential, which as the number of processors and tasks 
increases becomes close to the upper bound given by the 
LOAD* infeasibility test. As expected the performance of 
FPCL was marginally inferior to that of FPZL. 

Figures 6 to 8 show the results of the same experiments, 
repeated for implicit-deadline tasksets. These graphs show 
that the performance of the schedulability tests for FPSL 
and FPZL significantly exceed that of the best known tests 
for global FP, global EDF and EDZL, with an increased gap 
between both FPSL and FPZL, and global FP scheduling 
using OPA, compared to the constrained deadline case. For 
example, in the 8 processor case, approximately 50% of the 
generated tasksets were schedulable at a utilisation of 6.1 
(=0.76m) using FPSL (OPA) or FPZL (OPA), compared to 
5.8 (=0.725m) for global FP scheduling using OPA, and 5 
(=0.63) for EDZL-I. This increase in the relative 
performance of FPSL (and FPZL) is mainly due to the 
calculation of a less pessimistic bound on the amount of 
critical-laxity execution time having an increased effect 
compared to the constrained-deadline case. Further, the 
simulation results show that the performance potential of 
EDZL, FPZL and FPCL (with DCMPO) is very similar, 
with all three algorithms potentially able to schedule nearly 
all of the tasksets generated. 
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 Figure 3: (2 processors, 10 tasks, D≤≤T) 
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Figure 4: (4 processors, 20 tasks, D≤≤T) 
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Figure 5: (8 processors, 40 tasks, D≤≤T) 
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Figure 6: (2 processors, 10 tasks, D=T) 
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Figure 7: (4 processors, 20 tasks, D=T) 
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Figure 8: (8 processors, 40 tasks, D=T) 
For implicit-deadline tasksets, we used our 

experimental results to obtain approximate values for the 
Optimality Degree (OD) (Bini and Buttazzo, 2005) of each 



scheduling algorithm / schedulability test examined, over a 
domain corresponding to the tasksets generated in our 
experiments. 

The Optimality Degree of a scheduling algorithm A
combined with a schedulability test S is defined with respect 
to a domain of tasksets. It is given by the number of tasksets 
in the domain that are schedulable using algorithm A
according to schedulability test S, divided by the number of 
feasible tasksets in the domain. Hence an optimal algorithm 
supported by an exact schedulability test has OD = 1 for any 
domain. 

For sporadic tasksets with implicit-deadlines, the 
utilisation bound for LRE-TL (Funk and Nadadur, 2009) is 
100%, hence all of the implicit-deadline tasksets generated 
in our experiments are feasible (as their utilisation does not 
exceed m). For each of the algorithms / schedulability tests 
examined, an approximate value for the Optimality Degree 
can therefore be obtained by simply counting the total 
number of schedulable tasksets over the full range of 
utilisation values, and dividing this number by the total 
number of tasksets generated. The Optimality Degree of 
each algorithm / schedulability test is given in Table 1 
below, expressed as a percentage. 

Table 1: Approximate Optimality Degree 
 #Processors 
Algorithm / test 2 4 8 
FPZL LZ DA-LC (OPA) 84.7% 79.4% 77.4% 
FPSL CL DA-LC (OPA) 83.7% 78.5% 76.7% 
FP DA-LC (OPA) 81.4% 75.7% 73.6% 
FP DA-LC (DMPO) 80.1% 70.0% 62.8% 
EDZL(I) 71.7% 66.2% 63.5% 
EDF (RTA) 74.2% 67.4% 62.5% 

Table 1 shows that the Optimality Degree for FPZL 
scheduling using the polynomial time DA-LC schedulability 
test derived in this paper, (with OPA priority assignment 
and zero-laxity execution time calculation) is 3-4% better 
than for global FP scheduling using OPA and an equivalent 
schedulability test, and 13% better than for EDZL, assuming 
the iterative schedulability test given by Baker et al. (2008). 
By comparison, FPSL scheduling has an Optimality Degree 
that is approx. 1% worse than FPZL and thus 2-3% better 
than global FP scheduling. 

We repeated our experiments for smaller numbers (2) 
and larger numbers (20) of tasks per processor and for a 
smaller range of task periods (with a factor of ten difference 
between the minimum and maximum possible period). In 
each case, although the data points changed, the 
relationships between the effectiveness of the different 
methods and the conclusions that can be drawn from them 
remained essentially the same. As the number of tasks per 
processor increased, we observed the following minor 
changes: 
o The effectiveness of the schedulability tests for FPSL, 

FPZL and global FP scheduling increased, while the 
effectiveness of the schedulability tests for global EDF 

and EDZL declined. 
o The potential performance of EDZL exceeded that of 

FPZL (DCMPO) by a small margin. 
Further, as the range of task periods reduced, the 
performance potential of FPCL declined by a small margin 
compared to that of FPZL. 
 We note that it is possible to form more effective tests 
for EDZL, FPZL, global FP and global EDF by combining a 
number of existing sufficient tests, as was done by Bertogna 
(2009) for global EDF. In particular, we note that due to the 
dominance of EDZL over global EDF, any taskset deemed 
schedulable by a test for global EDF (such as EDF-RTA) is 
also guaranteed to be schedulable using EDZL. Similarly, a 
number of different sufficient tests for global FP scheduling 
could be used to show schedulability under FPZL or FPSL. 
In this paper, we have chosen to compare representative 
state-of-the-art tests for each specific scheduling algorithm 
rather than combinations of tests, which could potentially 
achieve yet higher performance. 

8. Prototype implementation and experimental 
results 

In this section, we present our implementation of the 
FPCL, FPZL, and global FP scheduling algorithms in the 
Linux kernel 2.6.35, comparing practical implementation 
overheads of those algorithms in a real-world environment. 
Given our primary goal is to evaluate the effectiveness of 
priority promotion with different rules; we focused only on 
fixed-priority scheduling algorithms. 
8.1. Prototype implementation 

We used the Linux kernel 2.6.35 as the underlying 
operating system for our implementation. The Linux kernel 
provides fixed-priority scheduling policies, also known as 
SCHED_FIFO and SCHED_RR. The SCHED_FIFO policy does 
not pre-empt tasks executing at the same priority level, 
whereas the SCHED_RR policy defines a time-slice such that 
tasks at the same-priority are scheduled in a round-robin 
fashion. Since the tiebreaking rule among tasks at the same 
priority level does not affect schedulability for global FP-
based scheduling algorithms, we implemented FPCL, FPZL, 
and global FP based on the SCHED_FIFO policy. 

In our experience, even the tasks scheduled under the 
SCHED_FIFO policy may still be migrated on to different 
processors due to load balancing. To avoid such unexpected 
migrations, we force the cpus_allowed flag for each task 
to identify only the current processor so that the task is 
never migrated unless specifically required to do so by the 
CPU scheduler. We also modified the CPU scheduler to 
ensure that the tasks scheduled under the SCHED_FIFO
policy are never pre-empted for any reason by background 
tasks assigned other scheduling policies. 

We provide six system calls in our implementation. 
Figure 9 shows sample code for userspace tasks, where the 
syscall_* interfaces correspond to those system calls. A 
set of WCET, period, relative deadline, and priority 



parameters need to be set explicitly via the system calls. 
syscall_run() releases the first job of the task, and 
syscall_wait_for_period()generates a scheduling 
point for the Linux kernel. There is another interface, 
syscall_wait_for_interval(), to wait for a specific 
time interval if the task is not periodic. In fact, most Linux-
based real-time operating systems (Beal et al., 2000; 
Calandrino et al., 2006; Faggioli et al., 2009; Oikawa and 
Rajkumar, 1999; Srinivasan et al., 1998) provide a similar 
set of programming interfaces. 
main(timeval C, timeval T, timeval D) 
  int prio, int nr_jobs, 
{ 
 syscall_set_wcet(C); 
 syscall_set_period(T); 
 syscall_set_deadline(D); 
 syscall_set_priority(prio); 
 syscall_run(); 
 for (i = 0; i < nr_jobs; i++) { 
  /* User’s code. */ 
  ... 
  syscall_wait_for_period(); 
 } 
}

Figure 9: Sample code for user space tasks 
Our implementations of FPCL and global FP only 

dispatch new tasks in syscall_run() and 
syscall_wait_for_period(), since all context switches 
are aligned with the releases and completions of jobs. 
Hence, the CPU scheduler only needs to set a new value for 
the cpus_allowed mask for the dispatched task, and call 
the migration thread supported by the Linux kernel, to 
migrate the task on to an appropriate processor. FPZL, on 
the other hand, is implemented in a somewhat more 
complex way. Under FPZL a task needs to be assigned the 
highest priority when the laxity of its job becomes zero. At 
every scheduling point we therefore first determine if such a 
situation can occur before the next scheduling point. If so, 
we look ahead in the schedule to see when this will happen, 
and set up a high-resolution timer to invoke the scheduler at 
that time. The task dispatching procedure is the same as for 
FPCL and global FP. 
8.2. Experimental results 

We now compare our implementations of FPCL, FPZL, 
and global FP scheduling, using a 2.0 GHz Intel Core 2 
Quad processor (Q9650) with 2 GBytes of main memory. 
Since our goal is to evaluate implementation overheads in 
scheduling, rather than evaluating basic performance (such 
as kernel response times and cache effects) we executed 
busy-loop tasks with the same timing parameters as used in 
the simulations presented in Section 7. Each task uses the 
system calls presented in Section 8.1, and has the same 
structure of code illustrated in Figure 9. 

We repeatedly measured the number of busy loops 
needed to correspond to the execution time of each task 
given by its WCET parameter, and used the minimum value 
obtained as the number of busy loops in the experiment, so 

as to minimize execution time overruns. We also measured 
the maximum execution time of a single scheduler 
invocation, and this execution time is included in the 
calculation of the laxity of a job. 

The implementation of the FPCL algorithm described in 
Section 5 was used. With a four core processor, this 
implementation required a maximum of 4 iterations. The 
maximum observed execution time of the scheduler was as 
follows (figures for a taskset of size 20): Linux scheduler 
only: 19.95uS, Linux scheduler + FPCL algorithm 26.12uS. 
This equates to an increase in the scheduler execution time 
of approx. 31%. This represents a moderate increase given 
that the baseline scheduler overheads are small. 
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Figure 10: (2 processors, 10 tasks, D≤≤T) 
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Figure 11: (4 processors, 20 tasks, D≤≤T) 
Figure 10 and Figure 11 show the results of our 

experiments for constrained-deadline tasks, using the same 
basic taskset parameters as the simulations (Figure 3 and 
Figure 4 in Section 7.3). As the experiments with real 
hardware took considerably longer to run, we examined 100 
tasksets at each utilization level, rather than 1000 as used in 
the simulations. 

We note that the experimental results do not match the 



simulation results at high utilisation levels. In the 
experiments on the Q9650 processor, there are a larger 
percentage of tasksets that do not exhibit deadline misses at 
high utilisation levels compared to the scheduling 
simulations. This is due to the way in which the task 
execution times are approximated by the busy-wait loop 
variable. Using the minimum number of busy-wait loops 
that was found experimentally to produce the required 
WCET avoids execution time overruns; however, variability 
in the execution time of the loop, for example due to cache 
effects, then manifests itself in what are effectively 
execution time under-runs. This means that high priority, 
short period tasks typically do not generate their full 
utilisation over a long time period, and so lower priority, 
longer deadline tasks are less likely to miss their deadlines 
than would otherwise be the case. To characterise these 
differences, we measured the average-case utilisation of the 
tasksets. Excerpts from this data are shown in Table 2 for 
the experiments using 4 processors and 20 constrained-
deadline tasks. 

On the Q9650 processor used for the experiments, there 
is variability in execution times, even for simple busy-wait 
loops, due to hardware effects (e.g. cache, bus conflicts 
etc.). An alternative approach to implementing the synthetic 
workload for each task would have been to monitor the 
amount of execution time actually used and continue to loop 
until close to the prescribed WCET. This approach would 
result in more consistent execution times; however, this 
would also be artificial, forcing the implementation to 
behave more like a simulation. We preferred instead to use a 
more realistic approach where synthetic workloads are 
represented by simple busy-wait loops with their inherent 
execution time variability on this platform. 

Despite these difficulties, the experimental results given 
in Figure 10 and Figure 11 provide a means of comparing 
the three algorithms. 

Table 2: Average-case utilisation 
Utilisation Expt. 

worst-case average-case 
m = 4, n = 20, D≤T 1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

1.32 
1.41 
1.51 
1.55 
1.61 
1.69 

FPCL and FPZL successfully scheduled more task sets 
than global FP, as expected from the simulation results. 
While FPCL and FPZL were similarly competitive, FPZL 
was very sensitive to the maximum cost estimation of a 
single scheduler invocation. If this estimation is optimistic, 
then FPZL causes many more deadline misses than FPCL. 
This happens because FPZL attempts to complete a critical-
laxity job at its precise deadline; hence if execution times or 
scheduler invocation costs are under-estimated, the 
schedulability of FPZL is affected significantly. FPCL, on 

the other hand, is a more robust algorithm in this regard, 
because it typically tries to complete a critical-laxity job 
somewhat before the deadline. 
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Figure 12: (2 processors, 10 tasks, D=T) 
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Figure 13: (4 processors, 20 tasks, D=T) 
Figure 12 and Figure 13 show the results for implicit-

deadline tasks using the same basic taskset parameters as the 
simulations (Figure 6 and Figure 7 in Section 7.3). As 
mentioned previously, it is not straightforward to complete a 
critical-laxity job exactly at its deadline (as considered in 
theory) due to variations in execution times and scheduler 
invocation costs. This is, we believe, the main reason why 
FPCL outperformed FPZL in these experiments. While 
FPZL would be expected to perform better under a precise 
timing analysis, FPCL is an easier to implement and more 
robust scheduling algorithm. 

9. Conclusions and future work 
The motivation for our work was the desire to improve 

upon current state-of-the-art global scheduling methods for 
hard real-time systems in terms of practical techniques that 
enable the efficient use of processing capacity. 

The intuition behind our work was that dynamic priority 



scheduling has the potential to schedule many more tasksets 
than fixed task or fixed job priority algorithms, and yet this 
theoretical advantage has to be tempered by the need to 
avoid prohibitively large overheads due to a high number of 
pre-emptions. This led us to consider minimally dynamic 
scheduling algorithms which permit each job to change 
priority at most once during its execution. We introduced 
three such algorithms, based on global FP scheduling, called 
FPSL, FPCL and FPZL. The number of context switches 
with FPZL is at most three per job for each critical-laxity 
task, and at most two per job for ordinary tasks. As there are 
at most m critical-laxity tasks, the increase in overheads 
compared to global FP scheduling is tightly bounded. With 
FPSL and FPCL task priorities only change at task release 
and completion events, thus the number of context switches 
is at most two per job. 

The key contributions of this paper are as follows: 
o The introduction of the FPSL, FPCL and FPZL 

scheduling algorithms. 
o The derivation of effective polynomial time and 

pseudo-polynomial time sufficient schedulability tests 
for FPSL and FPZL based on similar tests for global FP 
scheduling. These tests are also applicable to FPCL. 

o Improvements to these tests, bounding the amount of 
execution that may take place in the critical-laxity state. 

The main conclusions that can be drawn from our empirical 
investigations are as follows: 
o The priority promotion employed by FPZL appears to 

have a large impact on taskset schedulability, compared 
to the performance of global FP scheduling, as shown 
by the simulation results. The performance potential of 
FPZL using DCMPO was found to be broadly similar 
to that of EDZL, and significantly better than that of 
global FP or global EDF scheduling. 

o Using Audsley�s OPA algorithm to assign task 
priorities, the polynomial time schedulability tests for 
FPSL and FPZL result in a modest improvement over 
the equivalent test for global FP scheduling in the case 
of constrained-deadline tasksets, with an increased 
improvement for implicit-deadline tasksets. 

o The schedulability tests for FPSL and FPZL derived in 
this paper, and the best known schedulability tests for 
global FP scheduling, appear to significantly 
outperform tests for global EDF and EDZL. Even so, 
there remains a large gap between the sufficient 
schedulability tests for FPZL and what might be 
possible as shown by the simulation results. 

Given the similarities between FPZL and EDZL, it is 
interesting to consider why the schedulability tests for FPZL 
significantly outperform those for EDZL. All of these 
schedulability tests are sufficient, and so suffer from a 
degree of pessimism in terms of the computed interference. 
The advantage that the schedulability tests for FPZL have 
over those for EDZL is that this pessimism is restricted to 
tasks with higher priorities and lower priority critical-laxity 
tasks. With the schedulability tests for EDZL (and EDF), 

there is pessimism attributable to the calculation of 
interference from all other tasks. Further, the techniques 
derived in this paper, reduce the amount of interference 
considered due to tasks executing in the critical-laxity state, 
by bounding the amount of execution that takes place in that 
state. Nevertheless, the tests for FPZL have an additional 
element of pessimism compared to similar tests for global 
FP scheduling due to the inclusion of critical-laxity tasks in 
the interference term. This may account for the fact that the 
difference in performance between the schedulability tests 
for FPZL and global FP scheduling is not as large as the 
difference in the potential performance of the two 
algorithms as shown by simulation.  

We implemented global FP, FPCL, and FPZL 
scheduling using the Linux kernel 2.6.35 as the underlying 
operating system. Our experimental implementation showed 
that both FPCL and FPZL can improve significantly upon 
the performance of global FP scheduling; however, FPCL is 
easier to implement and more robust that FPZL, when task 
execution times and scheduling overheads are subject to a 
small amount of uncertainty. 

Finally, we note that semi-partitioned scheduling 
algorithms (Andersson et al., 2008; Burns et al., 2011; Guan 
et al., 2010; Kato and Yamasaki., 2009a), where a small 
number of tasks are permitted to migrate from one processor 
to another, offer an alternative approach to achieving 
enhanced schedulability without excessive overheads, based 
on partitioned rather than global scheduling. Comparisons 
of such methods with laxity-based global scheduling 
techniques, such as FPZL and EDZL, could potential 
improve our understanding of multiprocessor scheduling. 
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