
FPSL, FPCL and FPZL Schedulability Analysis

Robert I. Davis
Real-Time Systems Research Group, Department of

Computer Science,
University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk

Shinpei Kato
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213 USA.
shinpei@ece.cmu.edu

Abstract
This paper presents the Fixed Priority until Static Laxity

(FPSL), Fixed Priority until Critical Laxity (FPCL) and
Fixed Priority until Zero Laxity (FPZL) scheduling
algorithms for multiprocessor real-time systems. FPZL is
similar to global fixed priority pre-emptive scheduling;
however, whenever a task reaches a state of zero laxity it is
given the highest priority. FPSL and FPCL are variants of
FPZL that introduce no additional scheduling points beyond
those present with fixed priority scheduling. FPSL, FPCL
and FPZL are minimally dynamic algorithms, in that the
priority of a job can change at most once during its
execution, bounding the number of pre-emptions.

Polynomial time and pseudo-polynomial time sufficient
schedulability tests are derived for these algorithms. The
tests are then improved by computing upper bounds on the
amount of execution that each task can perform at the
highest priority. An empirical evaluation shows that FPSL,
FPCL, and FPZL are highly effective, with a significantly
larger number of tasksets deemed schedulable by the tests
derived in this paper, than by state-of-the-art schedulability
tests for EDZL scheduling.

Keywords
Real-time; schedulability analysis; fixed priority; zero
laxity; critical laxity; FPSL; FPCL; FPZL; global
scheduling; multiprocessor.

Extended version
This paper builds on the paper �FPZL Schedulability

Analysis� by Davis and Burns (2011b) published in the
proceedings of RTAS 2011. This paper extends Davis and
Burns (2011b) analysis to cover the FPSL and FPCL
scheduling algorithms as well as FPZL. The analysis given
in this paper is a superset of that provided for FPZL and
reduces to it if the laxity threshold of each task is set to zero.
In this paper, the experimental evaluation has been extended
to include schedulability tests for FPSL (which also apply to
FPCL) and simulation of FPCL as well as FPZL. We also
report on a prototype implementation of FPCL and FPZL in
a Linux kernel, running on an Intel Core 2 Quad processor
(Q9650).

1. Introduction
Approaches to multiprocessor real-time scheduling, can

be categorised into two broad classes: partitioned and
global. Partitioned approaches allocate each task to a single

processor, dividing the multiprocessor scheduling problem
into one of task allocation (bin-packing) followed by
uniprocessor scheduling. In contrast, global approaches
allow tasks to migrate from one processor to another at run-
time. Each approach has its distinct advantages and
disadvantages. Partitioned scheduling typically has lower
overheads in accessing and manipulating run-queues
(Brandenburg et al., 2008), while global scheduling has
advantages in spare capacity sharing, and is more
appropriate for use in open systems, as there is no need to
run load balancing / task allocation algorithms when the set
of tasks changes. Recent work by Bastoni et al. (2010a)
suggests that global scheduling research should focus on a
small to medium number of processors (e.g. 2 to 12
processors) as global scheduling techniques may be most
appropriate for clusters of processing cores that share a
cache. In such cases, the cost of cache related migration
delays were found not to differ substantially from the cost of
cache related pre-emption delays Bastoni et al. (2010b).

In this paper, we focus on global scheduling techniques
with the aim of increasing their effectiveness, in terms of the
number of tasksets that can be guaranteed schedulable,
without compromising efficiency, in terms of the overheads
caused by pre-emption and migration. We present
minimally dynamic global scheduling algorithms for real-
time multiprocessor systems called Fixed Priority until
Static Laxity (FPSL), Fixed Priority until Critical Laxity
(FPCL) and FPZL (Fixed Priority until Zero Laxity). We
consider the use of these algorithms to schedule sporadic
tasks with constrained deadlines.

FPZL is based on global fixed priority pre-emptive
scheduling, which for brevity we refer to as global FP
scheduling. Under FPZL, jobs are scheduled according to
the fixed priority of their associated task, until a situation is
reached where the remaining execution time of a job is
equal to the time to its deadline, and that job would not be
scheduled to execute on the basis of its fixed priority. Such
a job has zero laxity and will miss its deadline unless it
executes continually until completion. FPZL gives such jobs
the highest priority. The schedules produced by FPZL and
global FP scheduling are identical until the latter fails to
execute a task with zero laxity. Such a task will
subsequently miss its deadline. Hence FPZL dominates
global FP scheduling, in the sense that all priority ordered
tasksets that are schedulable according to global FP
scheduling are also schedulable according to FPZL. FPZL is
closely related to EDZL (Lee, 1994; Cho et al., 2002; Park

mailto:shinpei@ece.cmu.edu�
mailto:rob.davis@cs.york.ac.uk�

et al., 2005; Baker and Cirinei, 2006; Piao et al., 2006;
Cirinei and Baker, 2007; Chao et al., 2008) which applies
the same priority promotion rule to global EDF scheduling.

FPSL and FPCL are variants of FPZL that reduce the
number of scheduling points with respect to FPZL. Like
global fixed priority pre-emptive scheduling, FPSL and
FPCL re-schedule only at job release and completion events.
FPCL is closely related to EDCL (Kato and Yamasaki,
2008), which is a similar variant of EDZL.
1.1. Related work

For a comprehensive survey of multiprocessor real-time
scheduling, including early work on utilisation-based
schedulability tests for global FP, and global EDF
scheduling of periodic tasksets with implicit deadlines, the
interested reader is referred to (Davis and Burns, 2011b).

During the last ten years, sophisticated schedulability
tests have been developed for global FP, and global EDF
scheduling of sporadic tasksets with constrained and
arbitrary deadlines. These tests rely on the analysis of
response times and processor load rather than utilisation.

Andersson and Jonsson (2000) provided a simple
response time test applicable to tasksets with constrained-
deadlines scheduled using global FP scheduling.

Baker (2003) developed a fundamental schedulability
test strategy, based on considering the minimum amount of
interference in a given interval that is necessary to cause a
deadline to be missed, and then taking the contra-positive of
this to form a sufficient schedulability test. This basic
strategy underpins an extensive thread of subsequent
research into schedulability tests for global EDF (Baker and
Baruah, 2009; Bertogna, 2007; Baruah and Baker, 2009;
Baruah et al., 2009), global FP (Baruah and Fisher, 2008;
Bertogna et al., 2009; Baker, 2006; Fisher and Baruah,
2006), and EDZL scheduling (Cirinei and Baker, 2007).

Baker�s work was subsequently built upon by Bertogna
et al. (2005, 2009). They developed sufficient schedulability
tests for: (i) any work conserving algorithm, (ii) global
EDF, and (iii) global FP scheduling based on bounding the
maximum workload in a given interval. Bertogna and
Cirinei (2007) adapted this approach to iteratively compute
an upper bound on the response time of each task, using the
upper bound response times of other tasks to limit the
amount of interference considered. Guan et al. (2009)
extended the response time analysis of Bertogna and Cirinei
(2007) for global FP scheduling, using ideas from Baruah
(2007).

Davis and Burns (2009, 2010a) showed that priority
assignment is fundamental to the effectiveness of global FP
scheduling. They proved that the optimal priority
assignment algorithm of Audsley (1991, 2001) is applicable
to some of the sufficient tests developed for global FP
scheduling, including the simple response time test of
Andersson and Jonsson (2000) and the deadline-based test
of Bertogna et al. (2009), but not to others such as the
response time tests of Bertogna and Cirinei (2007), and

Guan et al. (2009).
Leung (1989) considered global Least Laxity First

(LLF), referred to in that paper as the Slack Time algorithm.
Leung showed that global LLF dominates global EDF, and
that determining exact schedulability under LLF, global
EDF or global FP is a hard problem (co-NP-hard) for m > 1
(more than one processor).

The Earliest Deadline first until Zero Laxity (EDZL)
algorithm was introduced by Lee (1994), who showed that
EDZL dominates global EDF scheduling, and is sub-optimal
for two processors (see also (Cho et al., 2002; Park et al.,
2005). Here, sub-optimal is used to mean that EDZL can
�schedule any feasible set of ready tasks�. This weak form
of optimality is appropriate for online scheduling
algorithms, which cannot take account of future arrival
times. Piao et al. (2006) showed that EDZL is also
completion time predictable A simpler proof of
predictability was given by Cirinei and Baker (2007), who
also developed a sufficient schedulability test for EDZL
based on the fundamental strategy of Baker (2003).

Baker et al. (2008) gave an iterative sufficient test for
EDZL based on the approach taken by Bertogna (2007) and
Bertogna et al. (2009) for work conserving algorithms and
global EDF. This test reduces the over-estimation of carry-
in interference, a feature of the previous tests, by iteratively
calculating a lower bound on the slack for each task. The
empirical evaluation by Baker et al. (2008) shows that this
iterative test for EDZL outperforms other tests for EDZL
(Cirinei and Baker, 2007) and as expected, similar tests for
global EDF.

Kato and Yamasaki (2008), introduced EDCL; a variant
of EDZL, which increases job priority on the basis of laxity
at the release or completion time of a job. This has the effect
of reducing the maximum number of context switches to
two per job, the same as EDF, at the expense of slightly
inferior schedulability, when compared to EDZL. Kato and
Yamasaki (2008) also corrected a minor flaw in the
polynomial time schedulability test for EDZL in (Cirinei
and Baker, 2007).

Takeda et al. (2009) and Kato and Yamasaki (2009b)
presented research on RMZL (RMZL and FPZL are names
for essentially the same scheduling algorithm). These papers
were initially published in Japanese, with an English
language version of (Takeda et al., 2009) subsequently
made available in May 2010 as a technical report (Kato et
al., 2010). Independently, Davis and Burns (2011a)
developed schedulability analysis for FPZL, initially
published as a technical report in April 2010 (Davis and
Burns, 2010b). The analysis given for FPZL by Davis and
Burns (2011a) is applicable to constrained-deadline tasksets
with no restrictions on the priority ordering which may be
used; whereas the analysis given for RMZL by Kato et al.,
(2010) is limited to implicit-deadline tasksets with task
priorities assigned in Rate Monotonic priority order. As well
as being more generally applicable, the FPZL analysis
dominates, and significantly outperforms the RMZL

schedulability test; see (Davis and Burns, 2011a) for a
detailed discussion and empirical comparison.
1.2. Intuition and motivation

The research described in this paper is motivated by the
need to close the large gap that currently exists between the
best known approaches to global multiprocessor real-time
scheduling for sporadic tasksets with constrained deadlines
and what may be possible as indicated by feasibility /
infeasibility tests.

Dynamic priority scheduling has the potential to
schedule many more tasksets than fixed task or fixed job
priority algorithms. However, this theoretical advantage
must be balanced against the increased overheads that
dynamic changes in priority can bring via a significant
increase in the number of pre-emptions / migrations.

For example, the LLREF scheduling algorithm (Cho et
al., 2006), which is optimal for periodic tasksets with
implicit deadlines, and the LRE-TL scheduling algorithm
(Funk and Nadadur, 2009) which is optimal for sporadic
tasksets with implicit deadlines, divide the timeline into
intervals that start and end at task releases and deadlines
(referred to as TL-planes by Cho et al. (2006)). In each
interval, LLREF and LRE-TL ensure that each active task

iτ executes for at least tUi , where iU is the task�s
utilisation, and t is the length of the time interval. Hence
every task can in the worst-case execute in every interval
between task deadlines, resulting in n-1 pre-emptions per
job release, where n is the number of tasks. In systems with
a large number of tasks, this level of pre-emptions leads to
prohibitively high overheads.

Minimally dynamic scheduling algorithms, such as
FPSL, FPCL, and FPZL (and EDZL and EDCL) offer a
potential solution to this problem. Note, by minimally
dynamic, we mean that the priority of a job changes at most
once during its execution, hence bounding the number of
pre-emptions / migrations to at most two per job release. By
comparison, global FP and global EDF scheduling incur at
most one pre-emption / migration per job release.
1.3. Organisation

The remainder of the paper is organised as follows:
Section 2 describes the terminology, notation and system
model used. Section 3 describes sufficient tests for global
FP scheduling. These tests are used in Section 4 to derive
polynomial time and pseudo-polynomial time sufficient
schedulability tests for FPSL. These schedulability tests are
a generalisation of the tests given by Davis and Burns
(2011a) for FPZL, and also hold for FPCL. Section 4 also
shows how the schedulability tests for FPSL can be
improved by bounding the amount of execution that each
task can perform once its priority has been promoted to the
highest level. Section 5 discusses the implementation of
FPCL and FPZL, assuming as a starting point an event
driven global FP scheduler. Section 6 provides a brief
discussion on priority assignment. Section 7 presents an
empirical investigation into the effectiveness of FPSL and

FPZL and their associated schedulability tests. Section 8
describes a prototype implementation of FPCL and FPZL
and illustrates the effectiveness of the algorithms running on
a multicore processor. Finally, Section 9 concludes with a
summary and suggestions for future research.

2. System model, terminology and notation
In this paper, we are interested in global FP, FPSL,

FPCL and FPZL scheduling of an application on a
homogeneous multiprocessor system comprising m identical
processors. The application or taskset is assumed to
comprise a static set of n tasks (nττ ...1), where each task iτ
is assigned a unique priority i, from 1 to n (where n is the
lowest priority).

Tasks are assumed to comply with the sporadic task
model. In this model, tasks give rise to a potentially infinite
sequence of jobs. Each job of a task may arrive at any time
once a minimum inter-arrival time has elapsed since the
arrival of the previous job of the same task.

Each task iτ is characterised by its relative deadline
iD , worst-case execution time iC (ii DC ≤), and minimum

inter-arrival time or period iT . The utilisation iU of each
task is given by ii TC / . A task�s worst-case response time

iR is defined as the longest time from a job of the task
arriving to it completing execution.

It is assumed unless otherwise stated that all tasks have
constrained deadlines (ii TD ≤). The tasks are assumed to
be independent and so cannot be blocked from executing by
another task other than due to contention for the processors.
Further, it is assumed that once a task starts to execute it
will not voluntarily suspend itself.

Job parallelism, sometimes referred to as intra-task
parallelism, is not permitted; hence, at any given time, each
job may execute on at most one processor. As a result of
pre-emption and subsequent resumption, a job may migrate
from one processor to another. The cost of pre-emption,
migration, and the run-time operation of the scheduler is
assumed to be either negligible, or subsumed into the worst-
case execution time of each task.
2.1. Global FP, FPZL, FPCL and FPSL scheduling

algorithms
Under global FP scheduling, at any given time, the m

highest priority ready jobs are executed.
Under FPZL scheduling, if the laxity of a job reaches

zero then it is given the highest priority and will execute
until completion. The laxity of a job is given by the elapsed
time to its deadline less its remaining execution time.
FPCL scheduling uses the concept of critical laxity (Kato
and Yamasaki, 2008) which can be described as follows: at
each scheduling point, corresponding to job release or
completion, if there are more than m ready jobs, then the
laxity of each ready job is evaluated with respect to the
maximum time that could potentially elapse until the next
scheduling point. If at the next scheduling point, a jobs�s
laxity could be negative, then it is classified as being

critical-laxity and has its priority promoted to the highest
level immediately. The criterion used by FPCL to promote
the priority of a job therefore depends on the dynamic
properties of other jobs, for example their remaining
execution times.

FPSL scheduling is similar to FPCL; however, it uses a
static laxity threshold. If at a scheduling point,
corresponding to job release or completion, the laxity of a
job is less than the pre-computed laxity threshold for its task
then the priority of the job is promoted to the highest level.
Unlike FPCL, this criterion is independent of the dynamic
properties of other jobs. The laxity threshold iX for task iτ
is defined as the longest time that can elapse between one
scheduling point and the next, while a job of task iτ is
ready but not executing.

Certain tasks may have their priority promoted as a
result of the operation of the FPSL, FPCL or FPZL
scheduling algorithms. In the remainder of this paper, we
generically (i.e. independent of the algorithm used) refer to
these tasks as critical-laxity tasks, as they are promoted to
the highest priority level when the scheduling algorithm
deems that their laxity has become critical to ensuring that
deadlines are met. An upper bound on the maximum amount
of execution that a job of task iτ can perform in the
critical-laxity state, i.e. at the highest priority, is denoted by

UB
iK and referred to as the task�s critical-laxity execution

time.
Under FPSL, FPCL, or FPZL at any given time, at most

m tasks may be in the critical-laxity state without a deadline
being missed.

The following notation is used to refer to subsets of
tasks: hp(i) is the set of tasks with priorities higher than i,
and lpcl(i) is the set of critical-laxity tasks with initial
priorities lower than i.

Finally, when discussing the schedulability of a given
task kτ , we use the term interference to refer to the
execution of other tasks, at a priority higher than k, that can
potentially delay the completion of task kτ .

3. Schedulability tests for global FP
In this section, we recapitulate two sufficient

schedulability tests for global FP scheduling of sporadic
tasksets. These tests are described in more detail by Davis
and Burns (2010a).
3.1. Deadline Analysis for global FP

Bertogna et al. (2009) developed a polynomial time
sufficient schedulability test for global FP scheduling based
on the approach of Baker (2003). They showed that if task

kτ is schedulable in an interval of length L, then an upper
bound on the interference over the interval due to a higher
priority task iτ with a carry-in job is given by the following
equation1. In global FP scheduling, a carry-in job is defined

1 Note we adopt the approach to time representation used by Bertogna et al.
(2009). Time is represented by non-negative integer values, with each time

as a job that is released strictly prior to the start of the
interval, and causes interference within that interval.

)1),(min(),(+−= k
D

ik
D
i CLLWCLI (1)

where)(LW D
i is an upper bound on the workload of task

iτ in an interval of length L, given by:
))(,min()()(i

D
iiiii

D
i

D
i TLNCDLCCLNLW −−++= (2)

and)(LN D
i is the maximum number of jobs of task iτ that

contribute all of their execution time in the interval:

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

i

iiD
i T

CDL
LN)((3)

Bertogna et al. (2009) used (1), with kD as the length of
the interval, and strategy of Baker (2003) to form a
schedulability test for each task kτ :

DA test for global FP scheduling: A sporadic taskset is
schedulable, if for every task kτ in the taskset, the
inequality given by (4) holds:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+≥ ∑

∈∀)(
),(1

khpi
kk

D
ikk CDI

m
CD (4)

where hp(k) is the set of tasks with priorities higher than k.
Note we have re-written (4) in a different form from that
presented by Bertogna et al. (2009) for ease of comparison
with the response time schedulability test given by Bertogna
and Cirinei (2007).

Guan et al. (2009) showed that if task kτ is schedulable
in an interval of length L, then an upper bound on the
interference over the interval due to a higher priority task iτ
without a carry in job is given by:

)1),(min(),(+−= k
NC

ik
NC
i CLLWCLI (5)

where:
))(,min()()(i

NC
iii

NC
i

NC
i TLNLCCLNLW −+= (6)

and
⎣ ⎦i

NC
i TLLN /) (= (7)

The difference between the two interference terms given by
(1) and (5) is:

),(),(),(k
NC
ik

D
ik

DDIFF
i CLICLICLI −=− (8)

Davis and Burns (2010a) showed that the worst-case
scenario for global FP scheduling occurs when there are at
most m-1 carry-in jobs. Thus, the approach of Guan et al.
(2009) can be used to form an improved version of the DA
test as follows:

DA-LC test for global FP scheduling: A sporadic
taskset is schedulable, if for every task kτ in the taskset, the
inequality given by (9) holds:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++≥ ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMDi
kk

DDIFF
i

khpi
kk

NC
ikk CDICDI

m
CD

(9)

value t viewed as representing the whole of the interval [t, t+1). This
enables mathematical induction on clock ticks and avoids confusion with
respect to end points of execution.

where MD(k, m-1) is the subset of the min(k, m-1) tasks with
the largest values of),(kk

DDIFF
i CDI − from the set of tasks

hp(k).
We note that the DA-LC test reduces to the DA test if

the),(kk
DDIFF

i CDI − term is included for all of the higher
priority tasks, rather than just those with the m-1 largest
values, hence the DA-LC test dominates the DA test.
3.2. Response Time Analysis for global FP

Bertogna and Cirinei (2007) extended the basic approach
used in the DA test to iteratively compute an upper bound
response time UB

kR for each task, using the upper bound
response times of higher priority tasks to limit the amount of
interference considered. This approach applies the same
logic as Bertogna and Cirinei (2007), while recognising that
the latest time that a task can execute is when it completes
with its worst-case response time rather than at its deadline.

Bertogna and Cirinei (2007) showed that if task kτ is
schedulable in an interval of length L, then an upper bound
on the interference in that interval due to a higher priority
task iτ with a carry-in job is given by:

)1),(min(),(+−= k
R

ik
R
i CLLWCLI (10)

where,)(LW R
i is an upper bound on the workload of task

iτ in an interval of length L, taking into account the upper
bound response time of task iτ :

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++= (11)

and)(LN R
i is given by:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −+
=

i

i
UB

R
i T

CRL
LN i)((12)

The response time test of Bertogna and Cirinei (2007)
may be expressed as follows:

RTA test for global FP scheduling (Theorem 7 from
(Bertogna and Cirinei, 2007)): A sporadic taskset is
schedulable, if for every task kτ in the taskset, the upper
bound response time UB

kR computed via the fixed point
iteration given by (13) is less than or equal to the task�s
deadline:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+← ∑

∈∀)(
),(1

khpi
k

UB
k

R
ik

UB
k CRI

m
CR (13)

Iteration starts with k
UB
k CR = , and continues until the

value of UB
kR converges or until k

UB
k DR > , in which case

task kτ is unschedulable.
We note that using the RTA test, task schedulability

needs to be determined in priority order, highest priority
first, as upper bounds on the response times of higher
priority tasks are required for computation of the
interference term)(UB

k
R
i RI .

Guan et al. (2009) showed that at most m-1 higher
priority tasks with carry-in jobs may contribute interference
in the worst-case, and used this result to improve the RTA
test as follows:

Guan et al. (2009) showed that if task iτ does not have
a carry-in job, then the interference term is given by (5). The

difference between the two interference terms ((10) and (5))
is then given by:

),(),(),(k
NC
ik

R
ik

RDIFF
i CLICLICLI −=− (14)

Using this result, Guan et al. (2009) improved upon the
response time test of Bertogna and Cirinei (2007).

RTA-LC test for global FP scheduling: A sporadic
taskset is schedulable, if for every task kτ in the taskset, the
upper bound response time UB

kR computed via the fixed
point iteration given by (15) is less than or equal to the
task�s deadline:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++← ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
ik

UB
k CRICRI

m
CR

 (15)
where MR(k, m-1) is the subset of the min(k, m-1) tasks with
the largest values of),(k

UB
k

RDIFF
i CRI − , given by (14),

from the set of tasks hp(k). Iteration starts with k
UB
k CR = ,

and continues until the value of UB
kR converges or until

k
UB
k DR > , in which case task kτ is unschedulable.

We note that the RTA-LC test reduces to the RTA test if
the),(k

UB
k

RDIFF
i CRI − term is included for all of the higher

priority tasks, rather than just those with the m-1 largest
values, hence the RTA-LC test dominates the RTA test.
Both the RTA and RTA-LC tests for global FP scheduling
are pseudo-polynomial in complexity.

4. Schedulability tests for FPSL
In this section, we derive polynomial time and pseudo-

polynomial time sufficient schedulability tests for FPSL and
show that they apply directly to FPZL. (In section 5 we
show that these schedulability tests are also applicable to
FPCL).

The tests derived in this section are applicable to
sporadic tasksets with constrained deadlines, and are
independent of the priority assignment policy used. They are
based on the tests described in the previous section for
global FP scheduling. We also show how the schedulability
tests can be improved by computing a bound on the
maximum amount of execution in the laxity state.

With FPZL, each job of a critical-laxity task has its
priority promoted when its laxity reaches zero. In contrast,
under FPSL, a job of a critical-laxity task iτ has its priority
promoted when a scheduling point occurs and the laxity of
the job is less than or equal to the task�s laxity threshold

iX . For FPSL to operate correctly, the laxity threshold for
each critical-laxity task must be set to a value such that jobs
of the task are guaranteed to have their priority promoted
before their laxity)(txi becomes negative, despite the fact
that priority promotion can only take place at scheduling
points corresponding to the release or completion of some
job. Note that only jobs of tasks classified by the
schedulability analysis as critical-laxity tasks can have their
priority promoted in this way by FPSL.

Smaller values for the laxity threshold of a task are
beneficial in terms of the impact that task has on the

schedulability of other tasks. This is because a smaller laxity
threshold implies that jobs of the task will spend less time
executing in the critical-laxity state (i.e. at the highest
priority). We therefore aim to set the laxity threshold iX of
each critical-laxity task iτ to the smallest possible value
such that all jobs of the task are guaranteed to have their
priority promoted before their laxity becomes negative,
despite the fact that priority promotion can only take place
at scheduling points given by the release or completion of
some job.

As a job of a critical-laxity task iτ can have its priority
promoted on its own release, then an upper bound on the
laxity threshold of the task is given by:

ii CD − (16)
If iii CDX −≥ , then each job of the task enters the critical-
laxity state as soon as it is released.

Further, the maximum time that can occur between
scheduling points while a job of task iτ is ready but not
executing, and therefore its laxity is reducing, is bounded by
the maximum time for which other tasks can execute in
preference to task iτ before one of them completes. This is
given by))(),(,(ilpclihpmMC where))(),(,(ilpclihpmMC
returns the mth longest time that any job of a higher priority
task can execute, or any job of a critical-laxity lower priority
task can execute in the critical-laxity state. Hence a further
upper bound on the laxity threshold of task iτ is given by:

))(),(,(ilpclihpmMC (17)
Combining (16) and (17), we have:

)))(),(,(,min(ilpclihpmMCCDX iii −= (18)
This value for the laxity threshold ensures that jobs of task

iτ are guaranteed to have their priority promoted before
their laxity)(txi becomes negative.

Note that the value of iX depends on which lower
priority tasks are critical-laxity tasks, and on their execution
times jK in the critical-laxity state. The set of critical-
laxity tasks can be determined by schedulability analysis.
For now, we assume that jj CK = for all critical-laxity
tasks. We return to this point in Section 4.3.

We now derive polynomial time and pseudo-polynomial
time sufficient schedulability tests for FPSL. These
schedulability tests are a generalization of the tests given for
FPZL by Davis and Burns (2011a). With FPZL, there are
additional scheduling points whenever the laxity of a task
reaches zero. Hence with FPZL, the laxity threshold iX of
each task iτ is effectively set to zero. Setting the laxity
threshold of all tasks to zero in a schedulability test for
FPSL provides an equivalent schedulability test for FPZL.
4.1. Deadline Analysis for FPSL

Schedulability under FPSL is similar to that under
FPZL:
1. Up to m tasks may be deemed unschedulable without

priority promotion according to analysis of their
response times; and yet, due to priority promotion no
jobs will miss their deadlines.

2. Critical-laxity tasks have an additional impact on the
schedulability of other tasks.

We now derive the maximum interference on a higher
priority task kτ , in an interval of length L, that could
potentially be caused by a lower priority task jτ executing
for at most jK in the critical-laxity state.

Figure 1: Interference in an interval
Figure 1 illustrates the worst-case scenario. This occurs

when the last job of jτ in the interval starts executing in the
critical-laxity state as early as possible, and completes at the
end of the interval, at a time jX prior to its deadline.
Further, each previous job of task jτ is assumed to be
released jT prior to the subsequent job, and to execute in
the critical-laxity state as late as possible, thus completing at
its deadline. We return to the precise behaviour of the first
job of jτ in the interval later.

An upper bound on the amount of workload due to task
jτ in the critical-laxity state, in an interval of length L is

given by:

⎪
⎪
⎩

⎪⎪
⎨

⎧

−>
−+−

++

−≤

=
jj

j
CL
jjj

UB
j

UB
j

CL
j

UB
j

jj
UB
j

CL
j XTL

TLNXTLK

KLNK
XTLKL

LW

))(,min(

)(
),min(

)(

 (19)
where)(LN CL

j is the number of jobs of task jτ that
contribute all of their critical-laxity execution in the interval,

⎣ ⎦jjj
CL
j TXTLLN /)()(+−= (20)

and UB
jK (jC≤) is an upper bound on the amount of

execution that any job of task jτ can perform in the critical-
laxity state.

If task kτ is schedulable in an interval of length L, then
an upper bound on the interference in that interval due to a
lower priority task jτ executing in the critical-laxity state is
given by:

)1),(min(),(+−= k
CL
jk

CL
j CLLWCLI (21)

With FPZL, FPCL and FPSL, critical-laxity tasks may
have the priority of their jobs promoted to the highest
priority level, because of this we need to refine the
definition of a carry-in job previously used in global FP
scheduling.

In the context of FPZL, FPCL, and FPSL scheduling, a
carry-in job is defined as a job that is released prior to the
start of the interval and starts to execute at a higher priority
than the task of interest kτ , strictly before the start of the
interval. (Note this definition also holds for global FP
scheduling where jobs do not change priority).

Now if we pessimistically assume that jobs of lower

priority critical-laxity tasks can have their priority promoted
as early as possible, with as much execution time remaining
as possible, independent of the execution pattern of other
tasks, then their execution at the highest priority can be
modelled as if it were simply the execution of a high priority
task under global FP scheduling. Hence, with these
pessimistic assumptions, the proof that the worst-case
scenario occurs when there are at most m-1 carry-in jobs
given by Davis and Burns (2010a) also holds for FPZL,
FPCL, and FPSL.

We now show that the interference from task jτ
executing in the critical-laxity state can be maximised
without it being necessary to consider jτ as having a carry-
in job. The scenario that maximises interference within an
interval is shown in Figure 1. In this scenario, task jτ has a
job that is released prior to the start of the interval; however,
without any reduction in interference in the interval, the first
job of task jτ can be assumed to have had its priority
promoted at the earliest at the start of the interval, but not
before. Hence the first job of jτ need not be in the critical-
laxity state prior to the release of the problem job at the start
of the interval. Task jτ does not therefore need to be
considered when determining the m-1 tasks that contribute
the largest amounts of additional carry-in interference (i.e.
the DDIFF

iI − terms � see (8)). (Effectively, the first job of
jτ is only released at a priority higher than k at or after the

release of the problem job, thus it does not qualify as
causing �carry-in� interference).

We now consider the interference from a higher priority
critical-laxity task iτ . In this case, the maximum
interference with a carry-in job occurs when the first job of

iτ in the interval starts executing at the start of the interval,
and completes at its deadline, with all subsequent jobs
executing as early as possible, see Figure 2 below.

Figure 2
We observe that this is effectively the same scenario that

leads to the worst-case interference from a higher priority
task which does not enter the critical-laxity state but
completes at its deadline, and is given by (1). Similarly,
execution in the critical-laxity state cannot increase the
amount of interference from a higher priority task with no
carry-in job, given by (5). This is an important observation.
It means that when calculating interference from higher
priority tasks, we do not need to know if they are critical-
laxity tasks.

Under FPSL, each task kτ is therefore schedulable
without requiring priority promotion if the following
inequality holds.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+≥

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpclj
kk

CL
j

mkMDi
kk

DDIFF
i

khpi
kk

NC
i

kk

CDI

CDI

CDI

m
CD (22)

where),(kk
NC
i CDI is given by (5),),(kk

DDIFF
i CDI − is

given by (8),),(kk
CL
j CDI is given by (21), and lpcl(k) is

the set of critical-laxity tasks with lower priorities than k.
If the inequality in (22) does not hold, then the task is a

critical-laxity task. Under FPSL, at most m tasks can be
critical-laxity tasks without a deadline being missed.

We note that the critical-laxity status of each task is
unknown until its schedulability is checked via (22), hence
task schedulability needs to be checked in priority order,
lowest priority first.

Algorithm 1 presents the DA-LC schedulability test for
FPCL. Note, for now we make the pessimistic assumption
that a critical-laxity task completes all of its execution in the
critical laxity state, hence line 9, �Compute UB

kK � can be
assumed to set k

UB
k CK = .

The DA-LC schedulability test for FPSL is a
polynomial time test requiring)(2nO operations, assuming
that �Compute UB

kK � takes linear time.
1 countCL = 0
2 for (each priority level k, lowest first) {
3 Determine schedulability of kτ according to (22)
4 if (kτ is not schedulable without priority promotion) {
5 mark kτ as a �critical laxity� task
6 countCL = countCL + 1
7 Calc kX according to (18)
8 Compute UB

kK
9 }
10 }
11 if (countCL > m)
12 return unschedulable
13 else
14 return schedulable

Algorithm 1: DA-LC schedulability test for FPSL
The schedulability test for FPSL given in Algorithm 1

reduces to the equivalent DA-LC schedulability test for
FPZL by setting the laxity threshold jX for every task
equal to zero in (18), (19) and (20).

As (19) is monotonically non-decreasing in jX , then,
for any interval length L, (21) yields interference

),(k
CL
j CLI that is no greater when all 0=jX , than it does

for positive jX . Thus the DA-LC test for FPZL dominates
the DA-LC test for FPSL, which in turn dominates the DA-
LC test for global FP scheduling.
4.2. Response Time Analysis for FPSL

In this section, we provide a response time test for
FPSL. This sufficient schedulability test is a generalization
of the equivalent test for FPZL given by Davis and Burns

(2011a). It reduces to that test for FPZL by setting the laxity
threshold iX for each task iτ to zero.

The response time test for FPSL builds on the work of
Bertogna and Cirinei (2007) and Guan et al. (2009) (i.e.
(14)). It computes an upper bound UB

kR on the response
time of each task kτ . If task kτ is schedulable under FPSL
with a response time bounded by UB

kR , then an upper bound
on the interference in an interval of length UB

kR due to a
lower priority task jτ executing in the critical-laxity state
can be obtained by substituting UB

kR for the length of the
interval in (21).

An upper bound on the worst-case response time of a
task kτ , that is schedulable under FPSL without requiring
priority promotion, can therefore be found using the fixed
point iteration given by (23).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+←

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpclj
k

UB
k

CL
j

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
i

k
UB
k

CRI

CRI

CRI

m
CR (23)

where),(k
UB
k

NC
i CRI is given by (5),),(k

UB
k

RDIFF
i CRI − is

given by (14),),(kk
CL
j CDI is given by (21), and lpcl(k) is

the set of critical-laxity tasks with lower priorities than k.
Iteration starts with k

UB
k CR = , and continues until the

value of UB
kR converges in which case kτ is schedulable, or

until k
UB
k DR > . If k

UB
k DR > , then the task is a critical-

laxity task. Recall that under FPSL at most m tasks may be
critical-laxity tasks without a deadline being missed.

Using (23), we can construct a sufficient schedulability
test for FPSL based on upper bound response times;
however, this requires an iterative approach that computes
the upper bound response times of tasks in priority order,
highest priority first, but then backtracks (re-starts)
whenever a critical-laxity task is identified. This
backtracking approach is necessary due to the dependency
of higher priority task response times on which lower
priority tasks are critical-laxity tasks and the dependency of
lower priority task schedulability (critical-laxity status) on
the response times of higher priority tasks.

Under FPSL, the interference term (21) due to each
lower priority critical-laxity task jτ depends via the
parameter jX (see (18)) on the tasks with priorities lower
than j that are also critical-laxity tasks. The interference
term due to each task jτ is monotonically non-decreasing in

jX , and jX is monotonically non-decreasing as additional
critical-laxity tasks are added to the set lpcl(j), hence
interference can only increase as further critical-laxity tasks
are identified. This dependency implies that once a task is
identified as a critical laxity task, the critical-laxity
thresholds and upper bound response times of all higher
priority tasks must be re-calculated.

Algorithm 2 presents the RTA-LC schedulability test
for FPSL. Algorithm 2 initially assumes that there are no

critical-laxity tasks and starts computing task response times
in priority order, highest priority first (lines 6 and 7). Then,
whenever a task kτ is encountered where (23) results in a
value of k

UB
k DR > , the task is marked as a critical-laxity

task and its upper bound response time is set to its deadline
(lines 8 and 9). We note that provided that the taskset is
schedulable under FPSL, then this is the correct upper
bound response time, as priority promotion will prevent the
task from actually missing its deadline.

1 countCL = 0
2 Initialize all UB

kR = kC , kX = 0, and UB
kK = 0

3 repeat = true
4 while (repeat) {
5 repeat = false
6 for (each priority level k, highest first) {
7 Determine UB

kR according to (23)
8 if (UB

kR > kD) {
9 UB

kR = kD
10 Calc kX according to (18)
11 Compute UB

kK
12 if (kτ not marked as a CL task) {
13 mark kτ as a CL task
14 repeat = true
15 countCL = countCL + 1
16 if(countCL > m) {
17 repeat = false
18 break (exit for loop)
19 }
20 }
21 }
22 [if (UB

kR or UB
kK differ from prev. values)

23 repeat = true]
24 }
25 }
26 if (countCL > m)
27 return unschedulable
28 else
29 return schedulable

Algorithm 2: RTA-LC schedulability test for FPSL
The discovery of a critical-laxity task effectively

invalidates the upper bound response times calculated for all
higher priority tasks, and also the laxity thresholds (jX) for
all higher priority critical-laxity tasks. These values could be
too small, and therefore need to be re-calculated (line 14).
However, if more than m critical-laxity tasks have been
found, then priority promotion cannot prevent all deadline
misses and the taskset is deemed unschedulable. In this case,
the algorithm can exit immediately (lines 16-18).

We note that lines 22-23 are not required when a simple
fixed value of k

UB
k CK = is used for the critical-laxity

execution time of task kτ . However, when the computed
value of UB

kK depends on the response times of higher
priority tasks then this additional convergence check is
required. We return to this point in Section 4.3.

We note that the upper bound response time for a task
iτ is monotonically non-decreasing in the amount of

critical-laxity execution time of each of the tasks with lower
priority than i. Hence, the calculation of UB

iR can be made
more efficient on subsequent iterations of the �while� loop

(line 4) by using as an initial value, the value of UB
iR

computed on the previous iteration.
The �while� loop (lines 4-25) continues to iterate until

either m+1 critical-laxity tasks are found, in which case the
taskset is deemed unschedulable, or there are m or fewer
critical-laxity tasks and the upper bound response times and
laxity thresholds (jX) have been re-calculated since the
final critical-laxity task was found. In this case, the taskset
is schedulable.

Under the assumption that �Compute UB
kK � sets

k
UB
k CK = , the RTA-LC schedulability test for FPSL

requires)(mnO response time calculations (i.e. (23)), each
of which is pseudo-polynomial in complexity. This can be
seen by noting that when �Compute UB

kK � sets k
UB
k CK = ,

lines 22-23 are not required, and so the �while� loop (line 4
to 25) only repeats when �repeat� is set to true on line 14.
This can only happen at most m times, as a result of finding
a critical-laxity task, before the taskset is declared
unschedulable. Hence the maximum number of times that a
response time can be computed (line 7) is)(mnO . By
comparison, the RTA-LC test for global FP scheduling
requires)(nO such response time calculations.

The schedulability test for FPSL given in Algorithm 2
reduces to the equivalent RTA-LC schedulability test for
FPZL by simply setting the laxity threshold jX for every
task equal to zero in (18), (19) and (20).

As (19) is monotonically non-decreasing in jX , then,
for any interval length L, (21) yields interference

),(k
CL
j CLI that is no greater when all 0=jX , than it does

for positive jX . Thus the RTA-LC test for FPZL dominates
the RTA-LC test for FPSL, which in turn dominates the
RTA-LC test for global FP scheduling.
4.3. Bounding critical-laxity execution time

So far, we have made the potentially pessimistic
assumption that a task that can reach the critical-laxity state
does so without having started to execute. Hence, we used
an upper bound on the critical-laxity execution time of

k
UB
k CK = . In this section, we derive a more effective upper

bound and use this bound to improve the schedulability tests
for FPSL. This analysis also applies to FPZL when all jX
are set to zero.

First, we introduce the concept of DC-Sustainability and
prove that the schedulability tests for task kτ given by (22)
and (23) are DC-Sustainable. A schedulability test for task

kτ is referred to as DC-Sustainable if it is sustainable
(Baruah and Burns, 2006) with respect to simultaneous and
equal changes in both the execution time and the deadline of
the task. Below we give a formal definition of DC-
Sustainability.
Definition: A schedulability test S for a task kτ is DC-
Sustainable if the following two conditions hold:
Condition 1: If task kτ is deemed schedulable by test S
with some paired deadline and execution time values

vDD kk −=′ , vCC kk −=′ where kCv ≤≤0 then test S is
guaranteed to deem task kτ schedulable for all deadline and

execution time pairs wDD kk −=′ , wCC kk −=′ where
kCwv ≤≤ .

Condition 2: If task kτ is deemed unschedulable by test S
with some paired deadline and execution time values

vDD kk −=′ , vCC kk −=′ where kCv ≤≤0 then test S is
guaranteed to deem task kτ unschedulable for all deadline
and execution time pairs wDD kk −=′ , wCC kk −=′ where

vw ≤≤0 .
Theorem 1: Given a fixed set of laxity thresholds (jX) and
a fixed set of critical-laxity tasks, (22) is a DC-Sustainable
schedulability test for task kτ .
Proof: We can re-write (22) as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′

+′′

+′′

+≥′−′

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpclj
kk

CL
j

mkMDi
kk

DDIFF
i

khpi
kk

NC
i

kk

CDI

CDI

CDI

m
CD (24)

Consider the behaviour of (24) for paired deadline and
execution time values wDD kk −=′ , wCC kk −=′ as w
takes different values in the range kCw ≤≤0 . The RHS of
(24) gives an upper bound on the interference from higher
priority tasks and lower priority tasks executing in the
critical-laxity state in an interval of length wDD kk −=′ .
By inspecting the component equations (1), (2), (3), (5), (6),
(7), (8), (19), (20), and (21) it can be seen that this
interference is monotonically non-decreasing with respect to
the length of the interval kD′ . We must however also
consider the dependence of component equations (5) and
(21) on kC ′ , which also varies with w. kC ′ appears in the
second term in the min() function of each of these equations
in the expression 1+′−′ kk CD . This expression is
unchanged by varying w. The RHS of (24) is therefore
monotonically non-increasing with respect to increasing
values of w.
 In the case of Condition 1, as the LHS of (24) is
unchanged and the RHS is monotonically non-increasing for
increasing values of w: kCw ≤≤0 then it follows that,
given that (24) holds for w=v, it must also hold for all values
of w: kCwv ≤≤ .

In the case of Condition 2 as the LHS of (24) is
unchanged and the RHS is monotonically non-decreasing
for decreasing values of w: kCw ≤≤0 then it follows that,
given that (24) does not hold for w=v, then it cannot hold for
any value of w: vw ≤≤0 □

We now prove that (23) is also a DC-Sustainable
schedulability test for task kτ , given a fixed set of laxity
thresholds (jX) and a fixed set of critical-laxity tasks.
Below, we re-write (23), using the variable q to indicate the
fixed point iteration.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′

+′

+′

+′←

∑

∑

∑

∈∀

−∈

−

∈∀

+

)(

)1,(

)(

1

),(

),(

),(

1

klpclj
k

q
k

CL
j

mkMRi
k

q
k

RDIFF
i

khpi
k

q
k

NC
i

k
q
k

CRI

CRI

CRI

m
CR (25)

Recall that iteration begins with kk CR ′=0 (the execution
time of task kτ), and ends when either q

k
q
k RR =+1 or when

k
q
k DR ′>+1 , in which case task kτ is unschedulable.

Let),(CDRUB
k be the response time upper bound given

by (25) for task kτ (D, C) with deadline D and execution
time C. Similarly, let),(xCxDRUB

k ++ be the response
time upper bound given by (25) for task kτ (xD + , xC +)
with deadline xD + and execution time xC + .
Lemma 1: Given a fixed set of laxity thresholds (jX) and a
fixed set of critical-laxity tasks, if kτ (D, C) is schedulable
according to (25) then xCRxCR UB

k
UB
k +≥+)()(. Further,

if kτ (D, C) is not schedulable according to (25) then neither
is kτ (xD + , xC +).
Proof: Let)(CRq

k be the value computed by the qth
iteration of (25) for task kτ (D, C). Similarly, let)(xCRq

k +
be the value computed by the qth iteration of (25) for task

kτ (xD + , xC +).
 We prove the Lemma by induction, showing that on
every iteration q until convergence or the deadline of kτ (D,
C) is exceeded, xCRxCR q

k
q
k +≥+)()(.

Initial condition: in each case iteration starts with an
initial value corresponding to the execution time of kτ ,
hence CCRk =)(0 and xCxCRk +=+)(0 , so

xCRxCR kk +≥+)()(00 .
Inductive step: assume that xCRxCR q

k
q
k +≥+)()(, and

consider the values computed for)(1 xCRq
k ++ and

)(1 CRq
k
+ on iteration q+1. The floor function (second term

on the RHS of (25)) contains three summation terms;
together, these terms give an upper bound on the
interference from higher priority tasks and lower priority
tasks executing in the critical-laxity state in an interval of
length q

kR . Inspection of the component equations ((5), (6),
(7), (10), (11), (12), (14), (19), (20), and (21)) shows that
this interference term is no smaller for input values

xCRxCR q
k

q
k +≥+)()(, and xCCk +=′ (the latter is used

in (10) and (21)) than it is for input values)(CRq
k and

CCk =′ , hence once the value of kC ′ is added (first term on
the RHS of (25)), we have xCRxCR q

k
q
k +≥+ ++)()(11 .

We note that if the fixed point iteration for kτ (D, C)
converges on)(),(1 CRCDR q

k
UB
k

+= , then the smallest
possible value of),(xCxDRUB

k ++ is xCRq
k ++)(1 .

Further, if kτ (D, C) is unschedulable, then it follows that
DCRq

k >+)(1 which implies that xDxCRq
k +>++)(1 and

therefore kτ (xD + , xC +) must also be unschedulable □
Theorem 2: Given a fixed set of laxity thresholds (jX) and
a fixed set of critical-laxity tasks, (25) and hence (23) is a
DC-Sustainable schedulability test.

Proof: We can choose an execution time of 0=′kC and a
deadline of kkk CDD −=′ for task kτ . With these
parameters, kτ is deemed schedulable by (25). We then
consider all possible deadline and execution time pairs

wDD kk −=′ , wCC kk −=′ for w from 1 to kC (recall that
execution times are represented by non-negative integers).
Let v be the smallest value of w, if any, for which kτ is
unschedulable. Lemma 1 tells us that for all larger values of
w, kτ will also be unschedulable. Proof that Conditions 1
and 2 in the definition of DC-Sustainability hold follow
directly from the observation that task schedulability is
monotonically decreasing with respect to increasing values
of w □

We now show how a bound on the critical-laxity
execution time of each critical-laxity task can be derived.
Let us assume that we are using the DA-LC schedulability
test (Algorithm 1) or the RTA-LC schedulability test
(Algorithm 2) for FPSL, and that task kτ has been
identified as a critical-laxity task by (22) or (23). We know
that task kτ cannot be guaranteed to complete all of its
execution within its deadline, without entering the critical-
laxity state. However, if we can show that kτ is guaranteed
to complete vCC kk −=′ units of execution time by an
effective deadline of 1−−−=′ vXDD kkk , then that proves
that the task�s laxity is at least 1+kX at kD′ , and so it can
execute for at most v units of time in the critical-laxity state.

Due to the DC-Sustainability of the single task
schedulability tests given by (22) and (23), each of these
equations can be used as the basis of a binary search to
determine the smallest value of v)0(kCv ≤≤ such that
task kτ is guaranteed to complete vCC kk −=′ units of
execution time by a deadline 1−−−=′ vXDD kkk , thus
computing an upper bound vK UB

k = on the amount of time
that a job of task kτ can spend executing in the critical-
laxity state. The initial minimum value of v for the search is

0=v , while the initial maximum value is kCv = which is
deemed to result in schedulability, as it is equivalent to kτ
having zero execution time.

In the DA-LC test, a binary search based on (22) can be
used to �Compute UB

kK � (line 9 of Algorithm 1), for each
critical-laxity task, improving the effectiveness of the test.
As task schedulability is determined lowest priority first, no
further iteration is required. At each priority level, task
schedulability depends on static parameters of higher
priority tasks, and on the critical-laxity status, laxity
thresholds (jX), and critical-laxity execution times (UB

jK)
of lower priority tasks which have already been computed.

In the RTA-LC test, a binary search based on (23) can
also be used to �Compute UB

kK � (line 11 of Algorithm 2) for
each critical-laxity task. However, in this case, a further
convergence check (lines 22-23) is required as the critical-
laxity execution times computed by the binary searches are
dependent on the response times of higher priority tasks,
and vice-versa. We note that Algorithm 2 will either find
more than m critical-laxity tasks or converge on unchanging
values for the response times, laxity thresholds, and critical-

laxity execution times. Such convergence is guaranteed
because:
(i) the response times of higher priority tasks are

monotonically non-decreasing with respect to
increases in the critical-laxity execution time of
lower priority tasks, and similarly, the critical-
laxity execution times of lower priority tasks
computed by binary search are monotonically non-
decreasing with respect to increases in the response
times of higher priority tasks.

(ii) the laxity threshold jX of a task jτ is
monotonically non-decreasing in the critical-laxity
execution times, and critical-laxity status of lower
priority tasks.

(iii) the critical-laxity execution time UB
jK is

monotonically non-decreasing with respect to the
laxity threshold jX .

4.4. Applicability of the FPSL schedulability tests
to FPCL

In this section, we show that the schedulability tests derived
for FPSL also hold FPCL.
Theorem 3: Any taskset that is deemed schedulable
according to the sufficient schedulability tests given in
sections 4.1 or 4.2, (i.e. the DA-LC or RTA-LC tests for
FPSL given by Algorithm 1 or Algorithm 2) assuming that
all of a critical-laxity task�s execution is in the critical laxity
state, is also schedulable under FPCL.
Proof: To prove the theorem, we need only consider those
tasks that are not identified as critical-laxity tasks by the
schedulability test for FPSL. We refer to such tasks as
ordinary tasks. We show that the jobs of ordinary tasks
never become critical-laxity jobs under FPCL and so remain
schedulable. The remaining tasks, which have been
identified as critical-laxity tasks by the schedulability test
for FPSL, must then be trivially schedulable under FPCL as
it is able to guarantee the schedulability of up to m tasks via
priority promotion.

The proof is by contradiction. We assume that τ is a
taskset that is schedulable according to the sufficient test for
FPSL but is not schedulable under FPCL. Further, let J be
the first job of an ordinary task kτ from τ that becomes a
critical-laxity job under FPCL. We note that if there is no
such job, then all of the jobs of all of the ordinary tasks must
always meet their deadlines under FPCL which suffices to
prove the theorem.

As J is the first job of an ordinary task to be selected by
the FPCL algorithm for priority promotion, then prior to the
time at which FPCL promotes the priority of job J, no jobs
of any ordinary task can be in the critical-laxity state. For
FPCL to promote the priority of job J, it must therefore be
the case that the total interference that J is subject to from
jobs of higher priority ordinary tasks executing at their
normal priorities and from jobs of critical-laxity tasks
exceeds that considered by the FPSL schedulability test. If
this were not the case, then J would be schedulable without

priority promotion, and so the FPCL algorithm would not
increase its priority.

Interference from ordinary tasks: The interference that J
is subject to from jobs of any other ordinary task executing
at their normal priority cannot exceed that considered by the
schedulability test for FPSL, as the test uses an upper bound
on such interference.

Interference from critical-laxity tasks: Let iτ be a
critical-laxity task identified by the FPSL schedulability
test. Recall that prior to J being selected by FPCL for
priority promotion, no jobs of any ordinary task can be in
the critical-laxity state. From the definition of the laxity
threshold iX , given by (18), this means that under FPCL,
prior to J being selected fro priority promotion, no job of iτ
can enter the critical-laxity state with more laxity than
assumed by the schedulability test for FPSL. Hence, the
interference that J is subject to due to jobs of iτ cannot
exceed that assumed by the FPSL schedulability test.

The total interference that J is subject to therefore
cannot exceed that considered by the schedulability test for
FPSL. As J is a job of an ordinary task, it must therefore be
schedulable under FPCL without priority promotion, and so
will not be selected for priority promotion by the FPCL
scheduler. This contradicts the original assumption. As there
is no such first job J of an ordinary task that becomes a
critical-laxity job under FPCL, then taskset τ must also be
schedulable under FPCL □

We now extend Theorem 3 to the refined schedulability
tests which make use of upper bounds on the amount of
execution that can occur in the critical-laxity state. First, we
prove the following Lemma.
Lemma 2: Let τ be any taskset that is deemed schedulable
according to the sufficient schedulability tests given in
sections 4.1 or 4.2, (i.e. the DA-LC or RTA-LC tests for
FPSL given by Algorithm 1 or Algorithm 2) using the upper
bounds on the execution time in the critical-laxity state
given in section 4.3.

Under the assumption that jobs of ordinary tasks do not
enter the critical-laxity state, then no job of a critical-laxity
task, belong to a taskset τ , enters the critical-laxity state
under FPCL with more laxity or more remaining execution
time than computed by the FPSL schedulability test.
Proof: The proof is by contradiction. We assume that J is
the first job of a critical-laxity task (iτ) that enters the
critical-laxity state under FPCL with more laxity (iX>) or
more remaining execution time (UB

jK>) than computed by
the schedulability test for FPSL.

As J is the first such job of a critical-laxity task, then
from the assumption that jobs of ordinary tasks cannot
become critical-laxity jobs under FPCL, and the definition
of the laxity threshold iX , given by (18), then priority
promotion of job J by FPCL cannot take place when job J
has more laxity than iX .

The maximum possible execution time in the critical-
laxity state is monotonically non-decreasing with respect to

the laxity a job has when its priority is promoted. In the case
of job J, a valid upper bound on its critical-laxity execution
time is given by UB

jK , the upper bound on the maximum
critical-laxity execution time for a laxity of iX computed
by the FPSL schedulability test using the techniques
described in section 4.3. This is the case because; by the
assumption in the Lemma none of the ordinary tasks
become critical-laxity tasks under FPCL, and the definition
of job J ensures that prior to it entering the critical-laxity
state all jobs of all other critical-laxity tasks comply with the
assumptions of the FPSL schedulability test.

It follows that job J can only enter the critical-laxity
state under FPCL with laxity and remaining execution time
no greater than the values computed by the FPSL
schedulability test. This contradicts the original assumption
about job J, and so there can be no job of a critical-laxity
task that enters the critical-laxity state under FPCL with
more laxity or more remaining execution time than
computed by the FPSL schedulability test □
Theorem 4: Any taskset τ that is deemed schedulable
according to the sufficient schedulability tests given in
section 4.1 or 4.2, (i.e. the DA-LC or RTA-LC tests for
FPSL), using the upper bounds on execution time in the
critical-laxity state given in section 4.3, is also schedulable
under FPCL.
Proof: Proof follows the logic used in the proof of Theorem
3 to show that jobs of ordinary tasks cannot enter the
critical-laxity state under FPCL. The only difference is that
further consideration is needed regarding the interference
from critical-laxity tasks (5th paragraph of the proof) which
is adapted as follows:

Interference from critical-laxity tasks: Let iτ be a
critical-laxity task identified by the FPSL schedulability
test. By definition of job J, there can be no job of any
ordinary task which has its priority promoted by FPCL
before job J. Hence Lemma 2 applies, and there can also be
no job of a critical-laxity task iτ that enters the critical-
laxity state with more laxity or more remaining execution
time than computed by the FPSL schedulability test, prior to
FPCL promoting the priority of job J. Hence, the
interference that J is subject to due to jobs of iτ cannot
exceed that assumed by the FPSL schedulability test.

It then follows (6th paragraph in the proof of Theorem
3), that there is no such first job J of an ordinary task that
becomes a critical-laxity job under FPCL, and so taskset τ
must also be schedulable under FPCL □

Note, Theorems 3 and 4 do not claim that any taskset
that is schedulable (i.e. according to some exact test) using
FPSL with laxity thresholds iX is also schedulable
according to FPCL. Only that tasksets which are
schedulable according to the sufficient schedulability tests
for FPSL presented in this paper are also schedulable using
FPCL.

5. Event-driven scheduling, FPZL, FPCL, and

FPSL
In this section, we discuss the implementation of the

FPZL, FPSL, and FPCL scheduling algorithms. We assume
that the operating system already implements an event-
driven global FP scheduler, we therefore discuss only the
modifications required to support the new algorithms.

FPZL requires that when the laxity of a job reaches zero
its priority is promoted to the highest level. The laxity of a
job can reach zero at some intermediate point between job
releases, and the completion of the currently running jobs.
FPZL therefore requires support for additional zero-laxity
timer events, typically handled via a timer interrupt from a
fine-grained hardware timer-counter, with re-scheduling
performed on those events, as well as at job release and
completion. FPZL also requires the maintenance of a laxity
queue of ready, but non-running jobs, ordered by increasing
laxity. The laxity of the job at the head of this queue
corresponds to the time to the next zero-laxity timer event.
In a schedulable hard real-time system using FPZL, there
are at most m critical-laxity tasks, hence the laxity queue
need only track the laxity of at most m jobs. On expiry of a
zero-laxity event, the scheduler runs and promotes the
priority of the job at the head of the laxity queue to the
highest level.

In contrast to FPZL, FPSL requires no additional timer
events / scheduling points, other than those provided by a
standard global FP scheduler, i.e. at job release and
completion. However, at each scheduling point, the
scheduler must first promote the priority of the jobs of
critical-laxity tasks that have a laxity less than or equal to
their laxity threshold jX , before choosing the m highest
priority tasks to run. As there are at most m critical-laxity
tasks, this represents an additional overhead that is)(mO .
FPSL reduces the number of scheduling points compared to
FPZL. With FPSL, there are at most two context switches
per task release (at release and completion), whereas with
FPZL, there are at most three (at release, zero-laxity, and
completion). The implementation of FPSL is highly
efficient; however, it requires that the set of critical-laxity
tasks and their laxity thresholds are known off-line. This is
only possible for tasksets that are deemed schedulable by
one of the schedulability tests given in Section 4.

By comparison with FPSL the implementation of FPCL
is less efficient; however, it does not require prior
knowledge of which tasks are critical-laxity tasks. Like
FPZL, the performance of FPCL can therefore be explored
via simulations and experimental implementations, without
the constraint that all of the tasksets examined must to be
deemed schedulable by a schedulability test.

The implementation of FPCL is as follows: At each
scheduling point (i.e. job release or completion) a set of at
most m jobs are selected to run (the RUN set). The selection
of the RUN set takes place according to the following steps:
1. As with a FP scheduler, the m highest priority ready

jobs are initially selected as the RUN set. If there are no

further ready jobs, then selection ends, otherwise it
continues to step 2.

2. The maximum time Y to the next scheduling point is
computed as the minimum remaining execution time of
any job in the RUN set. The laxity of each ready job
that is not in the RUN set is then computed on the basis
that it will not start to run for a time Y. If this laxity is
negative, (i.e. the remaining execution time of the job +
Y exceeds the time to the job�s deadline) then the job is
marked as having critical laxity and is given the highest
priority. If no critical-laxity jobs are found, then
selection ends, otherwise it continues to step 3.

3. As a critical-laxity job has been found in step 2, the
RUN set is re-evaluated such that it again contains the
m highest priority jobs (at least one of which is now a
critical-laxity job). If there are m or more2 critical-laxity
jobs, then selection ends, otherwise it continues from
step 2.

We note that the above implementation of FPCL may in the
worst-case take up to m iterations of steps 2 and 3 to
identify the critical-laxity jobs and so select which jobs to
run. For relatively small numbers of processors (e.g. 2, 4, or
8), this approach results in a viable level of scheduling
overheads as indicated by measurements of the prototype
implementation described in Section 8.

6. Priority assignment
In this section, we briefly discuss priority assignment

for FPSL, FPCL and FPZL. Davis and Burns (2009, 2010a)
showed that priority assignment is a key factor in global FP
scheduling. As FPSL, FPCL and FPZL are hybrids of global
FP scheduling, we expect priority assignment to also be
important for these scheduling algorithms.

The DA-LC and RTA-LC schedulability tests for FPSL
are independent of the priority ordering used. Hence they
are compatible with heuristic priority assignment policies
such as Deadline Monotonic Priority Ordering (DMPO) or
DkC (Davis and Burns, 2009, 2010a). When there are no
critical-laxity tasks, FPSL reduces to global FP scheduling.
In this case, the Optimal Priority Assignment (OPA)
algorithm (Audsley, 1991, 2001) provides the optimal
priority assignment to use in conjunction with the DA-LC
tests. However, when the OPA algorithm finds that there are
no tasks that are schedulable at a particular priority level
without recourse to priority promotion, then the following
question arises: Which task should be assigned to that
priority level? For the purposes of the empirical evaluation
in Section 7, we answered this question via a simple
heuristic. We computed the critical-laxity execution time for
each unassigned task using a binary search, and assigned the
task with the smallest proportion of its execution time in

2 In the case of an unschedulable taskset, more than m jobs could become
critical-laxity jobs, in which case the RUN set arbitrarily contains the first
m of them found. In this case some job is inevitably going to miss its
deadline assuming that all jobs take their worst-case execution times.

that state. The idea being that this is the task that would
require the smallest percentage reduction in its execution
time to be schedulable at that priority without recourse to
priority promotion.

7. Empirical investigation
In this section, we present the results of an empirical

investigation, examining the effectiveness of the
schedulability tests for FPSL and FPZL. We also conducted
scheduling simulations of FPCL and FPZL which form
necessary but not sufficient schedulability tests, thus
providing upper bounds on the potential performance of the
scheduling algorithms.
7.1. Taskset parameter generation

The taskset parameters used in our experiments were
randomly generated as follows:
o Task utilisations were generated using the UUnifast-

Discard algorithm (Davis and Burns, 2009), giving an
unbiased distribution of task utilisations. A discard limit
of 1000 was used, but not needed.

o Task periods were generated according to a log-uniform
distribution with a factor of 1000 difference between
the minimum and maximum possible task period. This
represents a spread of task periods from 1ms to 1
second, as found in most hard real-time applications.
The log-uniform distribution was used as it generates an
equal number of tasks in each time band (e.g. 1-10ms,
10-100ms etc.), thus providing reasonable
correspondence with real systems.

o Task execution times were set based on the utilisation
and period selected: iii TUC = .

o To generate constrained-deadline tasksets, task
deadlines were assigned according to a uniform random
distribution, in the range],[ii TC . For implicit-deadline
tasksets, deadlines were set equal to periods.

In each experiment, the taskset utilisation (x-axis value) was
varied from 0.025 to 0.975 times the number of processors
in steps of 0.025. For each utilisation value, 1000 valid
tasksets were generated and the schedulability of those
tasksets determined using the various schedulability tests for
different scheduling algorithms. The graphs plot the
percentage of tasksets generated that were deemed
schedulable in each case. Note the lines on all of the graphs
appear in the order given in the legend. (The graphs are best
viewed online in colour).
7.2. Scheduling simulation

We used a simulation of global FP, FPCL, FPZL, global
EDF and EDZL scheduling to provide an upper bound on
the potential performance of each scheduling algorithm, and
hence to evaluate the quality of the schedulability tests.
(Note FPSL uses pre-computed laxity thresholds and relies
on the identification of critical-laxity tasks at the
schedulability analysis stage, because of this, it was not
possible to simulate the behaviour of FPSL for tasksets that
were not deemed schedulable by the analysis).

Our simulations ran for an interval of time equal to ten
times the longest period of any task in the taskset. Each
simulation started with synchronous release of the first job
of each task, with subsequent jobs released as early as
possible. Each job executed for its worst-case execution
time. The simulation deemed a taskset schedulable by a
given algorithm if it did not find a deadline miss during the
time interval simulated, or any unavoidable deadline miss
for any job that had execution time remaining at the end of
the interval. Thus the simulation provides a necessary but
not sufficient schedulability test. Any taskset failing the
simulation, with a deadline miss, is guaranteed to be
unschedulable, while tasksets that pass the simulation may
or may not be schedulable. We note that in the case of
constrained-deadline sporadic tasksets, to the best of our
knowledge, no tractable exact tests exist for any of the
algorithms studied. Thus upper bounds on performance
derived via simulation are one of the few ways in which the
performance potential of each algorithm can be explored.
7.3. Schedulability test effectiveness

We investigated the performance of the FPSL and
FPZL DA-LC, schedulability tests using the OPA algorithm
(Audsley, 1991, 2001) to assign priorities, and compared
their performance to that of the equivalent test for global FP
scheduling, and to schedulability tests for global EDF by
Bertogna et al. (2009) (the �EDF-RTA� test) and EDZL
scheduling Baker et al. (2008) (the �EDZL-I test�). Also
shown on the graphs are results for the necessary
infeasibility test of Baker and Cirinei (2006) (labelled
�LOAD*�). This line gives the total number of tasksets at
each utilisation level that we cannot be certain are infeasible
(i.e. unschedulable by any algorithm). Further, the narrow
lines on the graphs indicate an upper bound on the
performance of each algorithm found via simulation. In the
case of global FP, FPCL, and FPZL scheduling, these upper
bounds assume Deadline minus Computation time
Monotonic Priority Ordering (DCMPO) (Davis and Burns,
2009, 2010a), which was found in the simulation studies to
be significantly more effective than Deadline Monotonic
Priority Ordering (DMPO). It was not possible to simulate
optimal priority assignment as simulation of all possible
priority orderings is intractable.

Figures 3 to 5 below are for constrained-deadline
tasksets. From these graphs, we can see that the EDF-RTA
test for global EDF scheduling and the DA-LC test for
global FP scheduling using DMPO have the lowest
performance, with approximately 50% of the generated
tasksets schedulable at a utilisation of 2.7 (=0.34m) and 2.8
(=0.35m) respectively, in the 8 processor case. The EDZL-I
test performs significantly better with 50% of the tasksets
schedulable at a utilisation of approx. 3.4 (=0.43m). Using
optimal priority assignment significantly improves the
performance of global FP scheduling, with 50% of the
tasksets schedulable at a utilisation of approximately 4.7
(=0.59m) according to the DA-LC test. The DA-LC test for

FPZL, using Audsley�s OPA algorithm and a binary search
to bound zero-laxity execution time (marked FPZL-LZ on
the graph) has the highest performance, with 50% of
tasksets deemed schedulable at a utilisation of approx. 4.9
(=0.61m). As expected, this is slightly better than the DA-
LC test for FPSL, again using Audsley�s OPA algorithm
and a binary search to bound critical-laxity execution time
(marked FPSL-LC on the graph), with 50% of tasksets
deemed schedulable at a utilisation of approx. 4.8 (=0.60m).
Both FPSL and FPZL algorithms provide a modest
improvement over global FP scheduling.

Our simulation results show that both global EDF and
global FP scheduling with DMPO have relatively poor
performance potential. This is because these algorithms
typically favour executing tasks with short deadlines first.
This has the effect of reducing the amount of available
concurrency, in terms of the number of ready tasks, which
makes the remaining tasks more difficult to schedule. By
contrast, using DCMPO greatly improves the performance
potential of global FP scheduling, particularly when there
are a large number of processors and tasks. The simulation
results show that EDZL, FPZL and FPCL (both with
DCMPO priority ordering) have similar performance
potential, which as the number of processors and tasks
increases becomes close to the upper bound given by the
LOAD* infeasibility test. As expected the performance of
FPCL was marginally inferior to that of FPZL.

Figures 6 to 8 show the results of the same experiments,
repeated for implicit-deadline tasksets. These graphs show
that the performance of the schedulability tests for FPSL
and FPZL significantly exceed that of the best known tests
for global FP, global EDF and EDZL, with an increased gap
between both FPSL and FPZL, and global FP scheduling
using OPA, compared to the constrained deadline case. For
example, in the 8 processor case, approximately 50% of the
generated tasksets were schedulable at a utilisation of 6.1
(=0.76m) using FPSL (OPA) or FPZL (OPA), compared to
5.8 (=0.725m) for global FP scheduling using OPA, and 5
(=0.63) for EDZL-I. This increase in the relative
performance of FPSL (and FPZL) is mainly due to the
calculation of a less pessimistic bound on the amount of
critical-laxity execution time having an increased effect
compared to the constrained-deadline case. Further, the
simulation results show that the performance potential of
EDZL, FPZL and FPCL (with DCMPO) is very similar,
with all three algorithms potentially able to schedule nearly
all of the tasksets generated.

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FPCL Sim (DCMPO)
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FPSL-LC DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

 Figure 3: (2 processors, 10 tasks, D≤≤T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
FPCL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FPSL-LC DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 4: (4 processors, 20 tasks, D≤≤T)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
FPCL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FPSL-LC DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 5: (8 processors, 40 tasks, D≤≤T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL Sim (DCMPO)
FPCL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FPSL-LC DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 6: (2 processors, 10 tasks, D=T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL Sim (DCMPO)
FPCL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FPSL-LC DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 7: (4 processors, 20 tasks, D=T)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL Sim (DCMPO)
FPCL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FPSL-LC DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Figure 8: (8 processors, 40 tasks, D=T)
For implicit-deadline tasksets, we used our

experimental results to obtain approximate values for the
Optimality Degree (OD) (Bini and Buttazzo, 2005) of each

scheduling algorithm / schedulability test examined, over a
domain corresponding to the tasksets generated in our
experiments.

The Optimality Degree of a scheduling algorithm A
combined with a schedulability test S is defined with respect
to a domain of tasksets. It is given by the number of tasksets
in the domain that are schedulable using algorithm A
according to schedulability test S, divided by the number of
feasible tasksets in the domain. Hence an optimal algorithm
supported by an exact schedulability test has OD = 1 for any
domain.

For sporadic tasksets with implicit-deadlines, the
utilisation bound for LRE-TL (Funk and Nadadur, 2009) is
100%, hence all of the implicit-deadline tasksets generated
in our experiments are feasible (as their utilisation does not
exceed m). For each of the algorithms / schedulability tests
examined, an approximate value for the Optimality Degree
can therefore be obtained by simply counting the total
number of schedulable tasksets over the full range of
utilisation values, and dividing this number by the total
number of tasksets generated. The Optimality Degree of
each algorithm / schedulability test is given in Table 1
below, expressed as a percentage.

Table 1: Approximate Optimality Degree
 #Processors
Algorithm / test 2 4 8
FPZL LZ DA-LC (OPA) 84.7% 79.4% 77.4%
FPSL CL DA-LC (OPA) 83.7% 78.5% 76.7%
FP DA-LC (OPA) 81.4% 75.7% 73.6%
FP DA-LC (DMPO) 80.1% 70.0% 62.8%
EDZL(I) 71.7% 66.2% 63.5%
EDF (RTA) 74.2% 67.4% 62.5%

Table 1 shows that the Optimality Degree for FPZL
scheduling using the polynomial time DA-LC schedulability
test derived in this paper, (with OPA priority assignment
and zero-laxity execution time calculation) is 3-4% better
than for global FP scheduling using OPA and an equivalent
schedulability test, and 13% better than for EDZL, assuming
the iterative schedulability test given by Baker et al. (2008).
By comparison, FPSL scheduling has an Optimality Degree
that is approx. 1% worse than FPZL and thus 2-3% better
than global FP scheduling.

We repeated our experiments for smaller numbers (2)
and larger numbers (20) of tasks per processor and for a
smaller range of task periods (with a factor of ten difference
between the minimum and maximum possible period). In
each case, although the data points changed, the
relationships between the effectiveness of the different
methods and the conclusions that can be drawn from them
remained essentially the same. As the number of tasks per
processor increased, we observed the following minor
changes:
o The effectiveness of the schedulability tests for FPSL,

FPZL and global FP scheduling increased, while the
effectiveness of the schedulability tests for global EDF

and EDZL declined.
o The potential performance of EDZL exceeded that of

FPZL (DCMPO) by a small margin.
Further, as the range of task periods reduced, the
performance potential of FPCL declined by a small margin
compared to that of FPZL.
 We note that it is possible to form more effective tests
for EDZL, FPZL, global FP and global EDF by combining a
number of existing sufficient tests, as was done by Bertogna
(2009) for global EDF. In particular, we note that due to the
dominance of EDZL over global EDF, any taskset deemed
schedulable by a test for global EDF (such as EDF-RTA) is
also guaranteed to be schedulable using EDZL. Similarly, a
number of different sufficient tests for global FP scheduling
could be used to show schedulability under FPZL or FPSL.
In this paper, we have chosen to compare representative
state-of-the-art tests for each specific scheduling algorithm
rather than combinations of tests, which could potentially
achieve yet higher performance.

8. Prototype implementation and experimental
results

In this section, we present our implementation of the
FPCL, FPZL, and global FP scheduling algorithms in the
Linux kernel 2.6.35, comparing practical implementation
overheads of those algorithms in a real-world environment.
Given our primary goal is to evaluate the effectiveness of
priority promotion with different rules; we focused only on
fixed-priority scheduling algorithms.
8.1. Prototype implementation

We used the Linux kernel 2.6.35 as the underlying
operating system for our implementation. The Linux kernel
provides fixed-priority scheduling policies, also known as
SCHED_FIFO and SCHED_RR. The SCHED_FIFO policy does
not pre-empt tasks executing at the same priority level,
whereas the SCHED_RR policy defines a time-slice such that
tasks at the same-priority are scheduled in a round-robin
fashion. Since the tiebreaking rule among tasks at the same
priority level does not affect schedulability for global FP-
based scheduling algorithms, we implemented FPCL, FPZL,
and global FP based on the SCHED_FIFO policy.

In our experience, even the tasks scheduled under the
SCHED_FIFO policy may still be migrated on to different
processors due to load balancing. To avoid such unexpected
migrations, we force the cpus_allowed flag for each task
to identify only the current processor so that the task is
never migrated unless specifically required to do so by the
CPU scheduler. We also modified the CPU scheduler to
ensure that the tasks scheduled under the SCHED_FIFO
policy are never pre-empted for any reason by background
tasks assigned other scheduling policies.

We provide six system calls in our implementation.
Figure 9 shows sample code for userspace tasks, where the
syscall_* interfaces correspond to those system calls. A
set of WCET, period, relative deadline, and priority

parameters need to be set explicitly via the system calls.
syscall_run() releases the first job of the task, and
syscall_wait_for_period()generates a scheduling
point for the Linux kernel. There is another interface,
syscall_wait_for_interval(), to wait for a specific
time interval if the task is not periodic. In fact, most Linux-
based real-time operating systems (Beal et al., 2000;
Calandrino et al., 2006; Faggioli et al., 2009; Oikawa and
Rajkumar, 1999; Srinivasan et al., 1998) provide a similar
set of programming interfaces.
main(timeval C, timeval T, timeval D)
 int prio, int nr_jobs,
{
 syscall_set_wcet(C);
 syscall_set_period(T);
 syscall_set_deadline(D);
 syscall_set_priority(prio);
 syscall_run();
 for (i = 0; i < nr_jobs; i++) {
 /* User’s code. */
 ...
 syscall_wait_for_period();
 }
}

Figure 9: Sample code for user space tasks
Our implementations of FPCL and global FP only

dispatch new tasks in syscall_run() and
syscall_wait_for_period(), since all context switches
are aligned with the releases and completions of jobs.
Hence, the CPU scheduler only needs to set a new value for
the cpus_allowed mask for the dispatched task, and call
the migration thread supported by the Linux kernel, to
migrate the task on to an appropriate processor. FPZL, on
the other hand, is implemented in a somewhat more
complex way. Under FPZL a task needs to be assigned the
highest priority when the laxity of its job becomes zero. At
every scheduling point we therefore first determine if such a
situation can occur before the next scheduling point. If so,
we look ahead in the schedule to see when this will happen,
and set up a high-resolution timer to invoke the scheduler at
that time. The task dispatching procedure is the same as for
FPCL and global FP.
8.2. Experimental results

We now compare our implementations of FPCL, FPZL,
and global FP scheduling, using a 2.0 GHz Intel Core 2
Quad processor (Q9650) with 2 GBytes of main memory.
Since our goal is to evaluate implementation overheads in
scheduling, rather than evaluating basic performance (such
as kernel response times and cache effects) we executed
busy-loop tasks with the same timing parameters as used in
the simulations presented in Section 7. Each task uses the
system calls presented in Section 8.1, and has the same
structure of code illustrated in Figure 9.

We repeatedly measured the number of busy loops
needed to correspond to the execution time of each task
given by its WCET parameter, and used the minimum value
obtained as the number of busy loops in the experiment, so

as to minimize execution time overruns. We also measured
the maximum execution time of a single scheduler
invocation, and this execution time is included in the
calculation of the laxity of a job.

The implementation of the FPCL algorithm described in
Section 5 was used. With a four core processor, this
implementation required a maximum of 4 iterations. The
maximum observed execution time of the scheduler was as
follows (figures for a taskset of size 20): Linux scheduler
only: 19.95uS, Linux scheduler + FPCL algorithm 26.12uS.
This equates to an increase in the scheduler execution time
of approx. 31%. This represents a moderate increase given
that the baseline scheduler overheads are small.

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL (DCMPO)

FPCL (DCMPO)
FP (DCMPO)

Figure 10: (2 processors, 10 tasks, D≤≤T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL (DCMPO)

FPCL (DCMPO)
FP (DCMPO)

Figure 11: (4 processors, 20 tasks, D≤≤T)
Figure 10 and Figure 11 show the results of our

experiments for constrained-deadline tasks, using the same
basic taskset parameters as the simulations (Figure 3 and
Figure 4 in Section 7.3). As the experiments with real
hardware took considerably longer to run, we examined 100
tasksets at each utilization level, rather than 1000 as used in
the simulations.

We note that the experimental results do not match the

simulation results at high utilisation levels. In the
experiments on the Q9650 processor, there are a larger
percentage of tasksets that do not exhibit deadline misses at
high utilisation levels compared to the scheduling
simulations. This is due to the way in which the task
execution times are approximated by the busy-wait loop
variable. Using the minimum number of busy-wait loops
that was found experimentally to produce the required
WCET avoids execution time overruns; however, variability
in the execution time of the loop, for example due to cache
effects, then manifests itself in what are effectively
execution time under-runs. This means that high priority,
short period tasks typically do not generate their full
utilisation over a long time period, and so lower priority,
longer deadline tasks are less likely to miss their deadlines
than would otherwise be the case. To characterise these
differences, we measured the average-case utilisation of the
tasksets. Excerpts from this data are shown in Table 2 for
the experiments using 4 processors and 20 constrained-
deadline tasks.

On the Q9650 processor used for the experiments, there
is variability in execution times, even for simple busy-wait
loops, due to hardware effects (e.g. cache, bus conflicts
etc.). An alternative approach to implementing the synthetic
workload for each task would have been to monitor the
amount of execution time actually used and continue to loop
until close to the prescribed WCET. This approach would
result in more consistent execution times; however, this
would also be artificial, forcing the implementation to
behave more like a simulation. We preferred instead to use a
more realistic approach where synthetic workloads are
represented by simple busy-wait loops with their inherent
execution time variability on this platform.

Despite these difficulties, the experimental results given
in Figure 10 and Figure 11 provide a means of comparing
the three algorithms.

Table 2: Average-case utilisation
Utilisation Expt.

worst-case average-case
m = 4, n = 20, D≤T 1.4

1.5
1.6
1.7
1.8
1.9

1.32
1.41
1.51
1.55
1.61
1.69

FPCL and FPZL successfully scheduled more task sets
than global FP, as expected from the simulation results.
While FPCL and FPZL were similarly competitive, FPZL
was very sensitive to the maximum cost estimation of a
single scheduler invocation. If this estimation is optimistic,
then FPZL causes many more deadline misses than FPCL.
This happens because FPZL attempts to complete a critical-
laxity job at its precise deadline; hence if execution times or
scheduler invocation costs are under-estimated, the
schedulability of FPZL is affected significantly. FPCL, on

the other hand, is a more robust algorithm in this regard,
because it typically tries to complete a critical-laxity job
somewhat before the deadline.

86%

88%

90%

92%

94%

96%

98%

100%

102%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL (DCMPO)

FPCL (DCMPO)
FP (DCMPO)

Figure 12: (2 processors, 10 tasks, D=T)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

FPZL (DCMPO)

FPCL (DCMPO)
FP (DCMPO)

Figure 13: (4 processors, 20 tasks, D=T)
Figure 12 and Figure 13 show the results for implicit-

deadline tasks using the same basic taskset parameters as the
simulations (Figure 6 and Figure 7 in Section 7.3). As
mentioned previously, it is not straightforward to complete a
critical-laxity job exactly at its deadline (as considered in
theory) due to variations in execution times and scheduler
invocation costs. This is, we believe, the main reason why
FPCL outperformed FPZL in these experiments. While
FPZL would be expected to perform better under a precise
timing analysis, FPCL is an easier to implement and more
robust scheduling algorithm.

9. Conclusions and future work
The motivation for our work was the desire to improve

upon current state-of-the-art global scheduling methods for
hard real-time systems in terms of practical techniques that
enable the efficient use of processing capacity.

The intuition behind our work was that dynamic priority

scheduling has the potential to schedule many more tasksets
than fixed task or fixed job priority algorithms, and yet this
theoretical advantage has to be tempered by the need to
avoid prohibitively large overheads due to a high number of
pre-emptions. This led us to consider minimally dynamic
scheduling algorithms which permit each job to change
priority at most once during its execution. We introduced
three such algorithms, based on global FP scheduling, called
FPSL, FPCL and FPZL. The number of context switches
with FPZL is at most three per job for each critical-laxity
task, and at most two per job for ordinary tasks. As there are
at most m critical-laxity tasks, the increase in overheads
compared to global FP scheduling is tightly bounded. With
FPSL and FPCL task priorities only change at task release
and completion events, thus the number of context switches
is at most two per job.

The key contributions of this paper are as follows:
o The introduction of the FPSL, FPCL and FPZL

scheduling algorithms.
o The derivation of effective polynomial time and

pseudo-polynomial time sufficient schedulability tests
for FPSL and FPZL based on similar tests for global FP
scheduling. These tests are also applicable to FPCL.

o Improvements to these tests, bounding the amount of
execution that may take place in the critical-laxity state.

The main conclusions that can be drawn from our empirical
investigations are as follows:
o The priority promotion employed by FPZL appears to

have a large impact on taskset schedulability, compared
to the performance of global FP scheduling, as shown
by the simulation results. The performance potential of
FPZL using DCMPO was found to be broadly similar
to that of EDZL, and significantly better than that of
global FP or global EDF scheduling.

o Using Audsley�s OPA algorithm to assign task
priorities, the polynomial time schedulability tests for
FPSL and FPZL result in a modest improvement over
the equivalent test for global FP scheduling in the case
of constrained-deadline tasksets, with an increased
improvement for implicit-deadline tasksets.

o The schedulability tests for FPSL and FPZL derived in
this paper, and the best known schedulability tests for
global FP scheduling, appear to significantly
outperform tests for global EDF and EDZL. Even so,
there remains a large gap between the sufficient
schedulability tests for FPZL and what might be
possible as shown by the simulation results.

Given the similarities between FPZL and EDZL, it is
interesting to consider why the schedulability tests for FPZL
significantly outperform those for EDZL. All of these
schedulability tests are sufficient, and so suffer from a
degree of pessimism in terms of the computed interference.
The advantage that the schedulability tests for FPZL have
over those for EDZL is that this pessimism is restricted to
tasks with higher priorities and lower priority critical-laxity
tasks. With the schedulability tests for EDZL (and EDF),

there is pessimism attributable to the calculation of
interference from all other tasks. Further, the techniques
derived in this paper, reduce the amount of interference
considered due to tasks executing in the critical-laxity state,
by bounding the amount of execution that takes place in that
state. Nevertheless, the tests for FPZL have an additional
element of pessimism compared to similar tests for global
FP scheduling due to the inclusion of critical-laxity tasks in
the interference term. This may account for the fact that the
difference in performance between the schedulability tests
for FPZL and global FP scheduling is not as large as the
difference in the potential performance of the two
algorithms as shown by simulation.

We implemented global FP, FPCL, and FPZL
scheduling using the Linux kernel 2.6.35 as the underlying
operating system. Our experimental implementation showed
that both FPCL and FPZL can improve significantly upon
the performance of global FP scheduling; however, FPCL is
easier to implement and more robust that FPZL, when task
execution times and scheduling overheads are subject to a
small amount of uncertainty.

Finally, we note that semi-partitioned scheduling
algorithms (Andersson et al., 2008; Burns et al., 2011; Guan
et al., 2010; Kato and Yamasaki., 2009a), where a small
number of tasks are permitted to migrate from one processor
to another, offer an alternative approach to achieving
enhanced schedulability without excessive overheads, based
on partitioned rather than global scheduling. Comparisons
of such methods with laxity-based global scheduling
techniques, such as FPZL and EDZL, could potential
improve our understanding of multiprocessor scheduling.
9.1. Acknowledgements

This work was funded by the EPSRC Tempo project
(EP/G055548/1) and the EU funded ArtistDesign Network
of Excellence. The authors would like to thank Alan Burns
for his comments on an earlier draft of this paper.

References
Andersson B., Jonsson J., (2000)�Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling�. In proceedings
Real-Time Systems Symposium (RTSS) � Work-in-Progress Session.
Andersson B., Bletsas K., Baruah S.K., (2008) "Scheduling Arbitrary-
Deadline Sporadic Tasks on Multiprocessors," In proceedings Real-
Time Systems Symposium (RTSS).
Audsley N.C., (1991) "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report YCS
164, Dept. Computer Science, University of York, UK, Dec. 1991.
Audsley N.C., (2001) �On priority assignment in fixed priority
scheduling�, Information Processing Letters, 79(1): 39-44, May 2001.
Baker T.P., (2003) �Multiprocessor EDF and deadline monotonic
schedulability analysis�. In proceedings Real-Time Systems
Symposium (RTSS), pp. 120�129.
Baker T.P., (2006) �An analysis of fixed-priority scheduling on a
multiprocessor�. Real Time Systems, 32(1-2), 49-71.
Baker T.P., Cirinei M., (2006) �A necessary and sometimes sufficient
condition for the feasibility of sets of sporadic hard-deadline tasks�, In

proceedings Real-Time Systems Symposium (RTSS) - Work-In-
Progress (WIP) session.
Baker T.P., Cirinei M., Bertogna M., (2008) �EDZL scheduling
analysis�. Real-Time Systems. 40:3, 264-289
Baker T.P., Baruah S.K., (2009) �Sustainable multiprocessor
scheduling of sporadic task systems�. In proceedings Euromicro
Conference on Real-Time Systems (ECRTS), pp. 141-150.
Baruah S.K., Burns A., (2006) �Sustainable Scheduling Analysis�. In
proceedings Real-Time Systems Symposium (RTSS), pp. 159-168.
Baruah S.K., (2007) �Techniques for Multiprocessor Global
Schedulability Analysis�. In proceedings Real-Time Systems
Symposium (RTSS), pp. 119-128.
Baruah S.K., Fisher N., (2008) �Global Fixed-Priority Scheduling of
Arbitrary-Deadline Sporadic ...� In Proc. of the 9th Int�l Conference on
Distributed Computing and Networking, pp. 215-226.
Baruah S.K., Bonifaci V., Marchetti-Spaccamela A., Stiller S., (2009)
�Implementation of a speedup-optimal global EDF schedulability test�,
In proceedings Euromicro Conference on Real-Time Systems
(ECRTS), pp. 259-268.
Baruah S.K., Baker T.P., (2009) �An analysis of global EDF
schedulability for arbitrary sporadic task systems. Real-Time Systems
ECRTS special issue, 43(1): 3-24.
Bastoni A., Brandenburg B.B., Anderson J.H., (2010a) �An Empirical
Comparison of Global, Partitioned, and Clustered Multiprocessor Real-
Time Schedulers� In proceedings Real-Time Systems Symposium
(RTSS).
Bastoni A., Brandenburg B., Anderson J., (2010b) �Cache-Related
Preemption and Migration Delays: Empirical Approximation and
Impact on Schedulability�, Proceedings of the Sixth International
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT 2010), pp. 33-44, July 2010.
Beal D., Bianchi E., Dozio L., Hughes S., Mantegazza P.,
Papacharalambous S., (2000) �RTAI: Real Time Application
Interface�. Linux Journal, 29:10.
Bertogna M., Cirinei M., Lipari G., (2005) �New schedulability tests
for real-time task sets scheduled by deadline monotonic on
multiprocessors�. In Proc. 9th International Conf. on Principles of
Distributed Systems, pp. 306-321.
Bertogna M., Cirinei M., (2007) �Response Time Analysis for global
scheduled symmetric multiprocessor platforms�. In proceedings Real-
Time Systems Symposium (RTSS), pp. 149-158.
Bertogna M., (2007) �Real-Time Scheduling Analysis for
Multiprocessor Platforms�. PhD Thesis, Scuola Superiore Sant�Anna,
Pisa.
Bertogna M., Cirinei M., Lipari G., (2009) �Schedulability analysis of
global scheduling algorithms on multiprocessor platforms�. IEEE
Transactions on parallel and distributed systems, 20(4): 553-566.
Bertogna M., (2009) �Evaluation of existing schedulability tests for
global EDF�. In: Proceedings of the first international workshop on
real-time systems on multicore platforms: theory and practice.
Bini E., Buttazzo G.C., (2005) �Measuring the Performance of
Schedulability tests�. Real-Time Systems, 30(1�2):129�154.
Brandenburg B.B., Calandrino J.M., Anderson J.H., (2008) �On the
Scalability of Real-Time Scheduling Algorithms on Multicore
Platforms: A Case Study�. In proceedings Real-Time Systems
Symposium (RTSS), pp. 157-169.
Burns A., Davis R.I., Wang P., Zhang F. (2011) �Partitioned EDF
Scheduling for Multiprocessors using a C=D Scheme�. Real-Time
Systems, Vol. 48, No. 1 pp. 3-33.
Calandrino J., Leontyev H., Block A., Devi U., Anderson J., (2006)
LITMUSRT: A testbed for empirically comparing real-time

multiprocessor schedulers. In proceedings Real-Time Systems
Symposium (RTSS), pp. 111�123.
Chao Y-H, Lin S-S, Lin K-J, (2008) �Schedulability issues for EDZL
scheduling on real-time multiprocessor systems�, Information
Processing Letters, Volume 107, Issue 5, pp. 158-164, 16 August 2008
Cirinei M., Baker T.P., (2007) �EDZL scheduling analysis�. In
proceedings Euromicro Conference on Real-Time Systems (ECRTS),
pp. 9�18.
Cho S., Lee S-K., Han A., Lin K-J, (2002) �Efficient real-time
scheduling algorithms for multiprocessor systems�. IEICE
Transactions on Communications Vol. E85-B No. 12, pp.2859�2867.
Cho H., Ravindran B., Jensen E.D., (2006) �An Optimal Real-Time
Scheduling Algorithm for Multiprocessors�. In proceedings Real-Time
Systems Symposium (RTSS) pp. 101-110.
Davis R.I., A. Burns, (2009) �Priority Assignment for Global Fixed
Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems�. In proceedings Real-Time Systems Symposium (RTSS), pp.
398-409.
Davis R.I., Burns A., (2010a) �Improved Priority Assignment for
Global Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-
Time Systems�. Real-Time Systems Vol. 47, No. 1, pp. 1-40. DOI
10.1007/s11241-010-9106-5.
Davis R.I., Burns A., (2010b) �FPZL Schedulability Analysis�,
Technical Report YCS-2010-452, Dept. of Computer Science,
University of York, April 2010.
Davis R.I., Burns A., (2011a) �FPZL Schedulability Analysis�, In
proceedings Real-Time and embedded technology and Applications
Symposium (RTAS), pp. 245-256.
Davis R.I., Burns A., (2011b) �A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems�, ACM Computing Surveys,
43, 4, Article 35 (October 2011), 44 pages. DOI
10.1145/1978802.1978814.
Faggioli D., Trimarchi M., Checconi F., (2009) �An implementation of
the Earliest Deadline First algorithm in Linux�. In Proceedings ACM
symposium on Applied Computing, pp. 1984�1989.
Fisher N., Baruah S.K., (2006) �Global Static-Priority Scheduling of
Sporadic Task Systems on Multiprocessor Platforms.� In proceedings
IASTED International Conference on Parallel and Distributed
Computing and Systems.
Funk S., Nadadur V., (2009) �LRE-TL: An Optimal Multiprocessor
Algorithm for Sporadic Task Sets�. In proceedings Real-Time and
Network Systems (RTNS), pp. 159-168.
Guan N., Stigge M., Yi W., Yu G., (2009) �New Response Time
Bounds for Fixed Priority Multiprocessor Scheduling�. In proceedings
Real-Time Systems Symposium (RTSS), pp 387-397.
Guan N., Stigge M., Yi W., Yu G., (2010) "Fixed-Priority
Multiprocessor Scheduling with Liu & Layland's Utilization Bound" In
proceedings Real-Time and embedded technology and Applications
Symposium (RTAS).
Kato S., Yamasaki N., (2008), �Global EDF-based scheduling with
efficient priority promotion�. In proceedings of Real-Time Computing
Systems and Applications (RTCSA), pp. 197�206.
Kato S., Yamasaki N., (2009a) "Semi-Partitioned Fixed-Priority
Scheduling on Multiprocessors", In proceedings Real-Time and
embedded technology and Applications Symposium (RTAS), pp. 23-
32.
Kato S., Yamasaki, (2009b) "Real-Time Scheduling Module for Linux
Kernel", IPSJ Transactions on Advanced Computing Systems, Vol. 2,
No. 1 (ACS25), pp. 75-86. (in Japanese).
Kato S., Takeda A., Yamasaki N., (2010) "Global Rate-Monotonic
Scheduling with Priority Promotion", Technical Report CMU-ECE-
TR10-05, May, 2010.

http://www.springerlink.com/content/ex234300p928748m/�
http://www.springerlink.com/content/ex234300p928748m/�
http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf�
http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf�

Lee S.K., (1994), �On-line multiprocessor scheduling algorithms for
real-time tasks�, In Proc. IEEE Region 10�s Ninth Annual International
Conference, pp. 607�611.
Leung J. Y-T., (1989) �A New Algorithm for Scheduling Periodic
Real-Time Tasks�. Algorithmica 4: 209-219.
Oikawa S., Rajkumar R., (1999) �Portable RT: A portable resource
kernel for guaranteed and enforced timing behaviour�. In proceedings
Real-Time and embedded technology and Applications Symposium
(RTAS), pp. 111�120.
Park M., Han S., Kim H., Cho S., Cho Y., (2005) �Comparison of
deadline-based scheduling algorithms for periodic real-time tasks on
multiprocessor�. IEICE Transactions on Information Systems Vol.
E88-D No. 3, pp. 658�661.
Piao X., Han S., Kim H., Park M., Cho Y., Cho S., (2006),
�Predictability of earliest deadline zero laxity algorithm for
multiprocessor real time systems�. In: Proc. of the 9th IEEE
international symposium on object and component-oriented real-time
distributed computing, Gjeongju, Korea.
Srinivasan B., Pather S., Hill R., Ansari F., Niehaus D., (1998) �A firm
real-time system implementation using commercial off-the shelf
hardware and free software�. In proceedings Real-Time and embedded
technology and Applications Symposium (RTAS), pp. 112�119.
Takeda A., Kato S., Yamasaki N., (2009) "Real-Time Scheduling
based on Rate Monotonic for Multiprocessors", IPSJ Transactions on
Advanced Computing Systems, Vol. 2, No. 1 (ACS25), pp. 64-74. (in
Japanese)

Biographies

Robert I. Davis is a Senior Research Fellow in
the Real-Time Systems Research Group at the
University of York, and a Director of Rapita
Systems Ltd. He received his DPhil in
Computer Science from the University of York
in 1995. Since then he has founded three start-
up companies, all of which have succeeded in
transferring real-time systems research into
commercial products. Robert�s research
interests include scheduling algorithms and

schedulability analysis for real-time systems and networks.

Shinpei Kato is a Visiting Assistant
Research Computer Scientist in the
Department of Computer Science at
University of California, Santa Cruz. He
received his B.S., M.S., and Ph.D. degrees
from Keio University in 2004, 2006, and
2008 respectively. He has also worked at
The University of Tokyo and Carnegie
Mellon University from 2009 to 2011 as a
postdoctoral scientist. His research interests
include real-time systems, operating

systems, and parallel and distributed systems.

