
Fixed Priority until Zero Laxity
(FPZL)

Schedulability Analysis

Robert Davis and Alan Burns

Real-Time Systems Research Group, University of York

Research scope
 Homogeneous Multiprocessor Real-Time Systems

 Global scheduling
 Single global run-queue
 Pre-emption and migration

 Based on fixed task-priority scheduling
 All jobs of a task have the same fixed priority

 Add minimally dynamic priorities
 Promote the priority of any job that would otherwise

inevitably miss its deadline (zero-laxity)

Motivation
 Improve upon the effectiveness of global FP scheduling

 Dynamic priority algorithms
 Potentially much more effective than fixed task-priority

algorithms in terms of the tasksets that can be scheduled
 But can have significantly larger overheads e.g. theoretically

optimal algorithms with n -1 context switches per job release
 Avoid significant increase in complexity or number of

context switches
 FPZL: Zero-Laxity rule applied to global FP scheduling

 When remaining execution time equals time to deadline, task
must run or the deadline will be missed - so priority promoted

 At most one change in priority per job release
 At most two pre-emptions per job release

Outline
 System model, terminology, and definitions
 Recap on schedulability tests for global FP scheduling
 Schedulability tests for FPZL
 Improving the tests by bounding execution time in

the zero-laxity state
 Empirical results

 Schedulability test performance
 Algorithm performance (simulation)

 Comparison with previous work on RMZL
 Summary and conclusions

System model
 Multiprocessor system

 m identical processors
 FPZL scheduling (global FP pre-emptive scheduling +

priority promotion at zero-laxity)
 Migration is permitted, but a job can only execute on one

processor at a time
 Sporadic task model

 Static set of n tasks τi with priorities 1..n
 Bounded worst-case execution time Ci

 Sporadic/periodic arrivals: minimum inter-arrival time Ti

 Relative deadline Di (Constrained deadlines ≤ Ti)
 Independent

Global FP: Sufficient
schedulability tests

 Fundamental approach
(Baker [2])
 Problem window in which

deadline is missed (e.g. Dk)
 Necessary condition for

deadline miss:
m processors all occupied for
more than Dk - Ck

 Derive upper bound on
interference IUB from other
tasks

 Negate the un-schedulability
condition to form a sufficient
schedulability test for task τk

Deadline analysis for global FP
 Worst-case scenario for task τk

(Davis & Burns [16], Guan et al. [20])
 At most (m -1) higher priority tasks contribute carry-in

interference

 Other tasks contribute no carry-in interference

Ci

Ti
Di

Dk

)1),(min(),(+−= k
NC

ik
NC
i CLLWCLI

))(,min()()(i
NC
iii

NC
i

NC
i TLNLCCLNLW −+=

)1),(min(),(+−= k
D

ik
D
i CLLWCLI

))(,min()()(i
D
iiiii

D
i

D
i TLNCDLCCLNLW −−++=

⎣ ⎦iii
D
i TCDLLN /)()(−+=

⎣ ⎦i
NC
i TLLN /) (=

Deadline analysis for global FP
 Polynomial time test: Deadline Analysis (“DA-LC test”)

(Davis & Burns [16] based on Bertogna et al. [9], Guan
et al [20])
 Difference between carry-in and no carry-in interference

 Include extra interference from (m – 1) tasks with largest
difference between carry-in and no carry-in interference

 Schedulability test for each task τk

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++≥ ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMDi
kk

DDIFF
i

khpi
kk

NC
ikk CDICDI

m
CD

),(),(),(k
NC
ik

D
ik

DDIFF
i CLICLICLI −=−

Response Time analysis
for global FP
 Worst-case scenario for task τk

(Guan et al. [20])
 At most (m -1) tasks contribute carry-in interference

 Others contribute no carry-in interference (as before)
)1),(min(),(+−= k

NC
ik

NC
i CLLWCLI

))(,min()()(i
NC
iii

NC
i

NC
i TLNLCCLNLW −+=

⎣ ⎦i
NC
i TLLN /) (=

)1),(min(),(+−= k
R

ik
R
i CLLWCLI

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++=

⎣ ⎦ii
UBR

i TCRLLN
i

/)()(−+=

Response Time analysis
for global FP
 Pseudo-polynomial time test: Response Time Analysis

(“RTA-LC test”) (Guan et al [20], based on Bertogna &
Cirinei [8])
 Difference between carry-in and no carry-in interference

 Include extra interference from (m – 1) tasks with largest
difference between carry-in and no carry-in interference

Recall dependency on response time upper bounds of higher priority tasks –
need to evaluate schedulability in priority order – highest priority first

),(),(),(k
NC
ik

R
ik

RDIFF
i CLICLICLI −=−

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++← ∑∑

−∈

−

∈∀)1,()(
),(),(1

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
ik

UB
k CRICRI

m
CR

FPZL Schedulability analysis
 Differences w.r.t. analysis for global FP

 Up to m tasks may be deemed unschedulable but still
meet their deadlines due to the zero-laxity rule

 Tasks executing in the zero-laxity state have an impact on
the schedulability of other tasks (assume)

 Zero-laxity execution immediately proceeds the deadline
 Equations similar to “no carry-in” case
 Need only consider lower priority zero-laxity tasks

(no increase in interference from higher priority zero-laxity
tasks – already of higher priority)

)1),(min(),(+−= k
Z
jk

Z
j CLLWCLI

))(,min()()(j
Z
j

UB
j

UB
j

Z
j

Z
j TLNLZZLNLW −+=

⎣ ⎦j
Z
j TLLN /)(=

j
UB
j CZ =

FPZL Schedulability Analysis
 Deadline Analysis for FPZL (DA-LC test)

 If inequality holds, task is schedulable without priority
promotion, otherwise it is a zero-laxity task

 At most m zero-laxity tasks in a schedulable system
 Dominates equivalent test for global FP
 Schedulability needs to be checked lowest priority first to

identify which tasks are zero-laxity tasks
 Polynomial time test of taskset schedulability

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+≥

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpzlj
kk

Z
j

mkMDi
kk

DDIFF
i

khpi
kk

NC
i

kk

CDI

CDI

CDI

m
CD

)(2nO

 Response Time Analysis for FPZL (RTA-LC test)

 As before:
 If , task is schedulable without priority

promotion, otherwise it is a zero-laxity task
 At most m zero-laxity tasks in a schedulable system
 Dominates equivalent test for global FP

 Problem:
 Response time upper bound depends on response times of

higher priority tasks and the zero-laxity status of lower
priority tasks

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

+←

∑

∑

∑

∈∀

−∈

−

∈∀

)(

)1,(

)(

),(

),(

),(

1

klpzlj
k

UB
k

Z
j

mkMRi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
i

k
UB
k

CRI

CRI

CRI

m
CR

FPZL Schedulability Analysis

k
UB
k DR ≤

 RTA Solution
 Response time (and hence

zero-laxity status) is
monotonically non-
decreasing in the response
times of higher priority tasks
and the zero-laxity status /
zero-laxity execution times
of lower priority tasks

 Whenever a zero-laxity task
is found – must repeat
response time calculations

FPZL Schedulability Analysis

 DC-Sustainability
 A schedulability test is DC-Sustainable provided that

 Any task that is schedulable according to the test with
parameters (D,C) remains schedulable when D and C are
reduced by the same amount x to (D-x, C-x)

 Any task that is unschedulable according to the test with
parameters (D,C) remains unschedulable when D and C are
increased by the same amount to (D+x, C+x)

 Both FPZL schedulability tests (DA-LC and RTA-LC) are
DC-Sustainable
 Proofs in the paper

Bounding zero-laxity
execution time

 Execution time in the zero-laxity state
 DC-Sustainability of the schedulability tests means

 For each zero-laxity task, we can use a binary search to
find the min value of x such that the task is schedulable
with parameters (D-x, C-x) without priority promotion

 x is then an upper bound on the execution time in the
zero-laxity state

 Response Time Analysis
 Iterative calculation - also need to re-start calculations

whenever the response times or execution times in the
zero-laxity state change

Bounding zero-laxity
execution time

Empirical Investigation
 Taskset parameters

 Task utilisations generated via UUnifast-Discard
 Task periods chosen from a log-uniform distribution with a

range from min to max period of 1000 (e.g. 1ms to 1 sec)
 Execution times set from task utilisation and period values
 Task deadlines chosen from a uniform distribution between

execution time and period
 Total utilisation varied from 0.025m to 0.975m in steps of

0.025m
 1000 tasksets generated for each total utilisation level
 Graphs plot the percentage of tasksets that are schedulable

according to each schedulability test against total utilisation

Empirical Investigation
 Sufficient schedulability tests

 Global FP: (DA-LC test and DMPO)
 Global FP: (DA-LC test and OPA)
 Global EDF: (EDF-RTA test)
 EDZL: (EDZL-I test)
 FPZL: (DA-LC test and OPA)

 LOAD* necessary infeasibility test
 Simulations

 Global FP (DMPO, DCMPO)
 FPZL (DCMPO)
 EDF
 EDZL

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
EDF Sim
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
EDF Sim
FP Sim (DMPO)
FP DA-LC (DMPO)
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FP DA-LC (OPA)
FP DA-LC (DMPO)
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
FP DA-LC (DMPO)
EDF (RTA)

Empirical results: 8 Processors
40 tasks D≤≤T

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

Empirical results: 4 Processors
20 tasks D≤≤T

Empirical results: 2 Processors
10 tasks D≤≤T

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

LOAD* infeasible
FPZL Sim (DCMPO)
EDZL Sim
FP Sim (DCMPO)
EDF Sim
FP Sim (DMPO)
FPZL-LZ DA-LC (OPA)
FP DA-LC (OPA)
EDZL (I)
FP DA-LC (DMPO)
EDF (RTA)

RMZL and FPZL
 Related research on RMZL

 Originally published in Japanese by Shinpei Kato
 Now available as a technical report in English
 RMZL is the same zero-laxity rule applied to global FP

scheduling for the “Rate Monotonic” case (D=T)
 Algorithm is the same as FPZL
 Analysis is simpler but only applicable to the implicit deadline

case with RM priority order
 RMZL analysis assumes every lower priority task can be a

zero-laxity task
 Unfortunately this leads to declining schedulability test

performance with an increasing number of tasks
 FPZL schedulability test dominates the equivalent RMZL

test

Summary and conclusions
 Motivation

 To improve on current state-of-the-art in terms of
techniques that enable the efficient use of processing
capacity in hard real-time systems based on
multiprocessors.

 Aimed to improve upon the effectiveness of global FP
scheduling without introducing significant additional
overheads (e.g. large numbers of context switches)

 Therefore investigated a minimally dynamic priority
algorithm FPZL

Summary and conclusions
 Contribution

 Introduced polynomial and pseudo-polynomial time
schedulability tests (Deadline Analysis and Response Time
Analysis) for FPZL

 Improved these tests via calculation of the maximum
execution time in the zero-laxity state

 Test dominate the equivalent tests for global FP
 Empirical results show that FPZL schedulability tests make

a useful improvement on those for global FP particularly
in the implicit deadline case

 Simulation results show that FPZL (and EDZL) are highly
effective – still a large gap between simulation and
schedulability analysis potentially due to pessimism in the
analysis

	 Fixed Priority until Zero Laxity (FPZL)�Schedulability Analysis
	Research scope
	Motivation
	Outline
	System model
	Global FP: Sufficient schedulability tests
	Deadline analysis for global FP
	Deadline analysis for global FP
	Response Time analysis �for global FP
	Response Time analysis�for global FP
	FPZL Schedulability analysis
	FPZL Schedulability Analysis
	FPZL Schedulability Analysis
	FPZL Schedulability Analysis
	Bounding zero-laxity �execution time
	Bounding zero-laxity �execution time
	Empirical Investigation
	Empirical Investigation
	Empirical results:
	Empirical results:
	Empirical results:
	RMZL and FPZL
	Summary and conclusions
	Summary and conclusions

