
IA3: An Interference Aware Allocation Algorithm
for Multicore Hard Real-Time Systems

Marco Paolieri
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
e-mail: marco.paolieri@bsc.es

Eduardo Quiñones
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
e-mail: eduardo.quinones@bsc.es

Francisco J. Cazorla
CSIC-IIIA and BSC
Barcelona, Spain

e-mail: francisco.cazorla@bsc.es

Robert I. Davis
University of York

York, UK
e-mail: robdavis@cs.york.ac.uk

Mateo Valero
Universitat Politècnica de Catalunya and BSC

Barcelona, Spain
e-mail: mateo@ac.upc.edu

Abstract—In multicore processors, the execution environment
is defined as the environment in which tasks run and it is
determined by the hardware resources they get and the work-
load with which they are executed. Thus, different execution
environments lead to different inter-task interferences accessing
shared hardware resources due to conflicts with the other co-
running tasks, making the WCET estimation of a task dependent
on the execution environment in which it runs. Despite such
dependency, current partitioned scheduling approaches use a
single WCET estimation per task: typically the highest for all
execution environments in which a task runs.

In this paper we introduce IA3: an interference-aware allo-
cation algorithm that considers not a single WCET estimation
but a set of WCET estimations per task. IA3 is based on two
novel concepts: the WCET-matrix and the WCET-sensitivity. The
former associates every WCET estimation with its correspond-
ing execution environment. The latter measures the impact of
changing the execution environment on the WCET estimation.
This allows IA3 to reduce the number of resources required to
schedule a given taskset.

In particular, our results show that in a four-core processor
considering tasksets with a total utilization of 2.9, IA3 is able
to schedule 70% of the tasksets using 3-cores while a classical
partitioned approach with a First-Fit Decreasing heuristic is able
to schedule only 5% of the tasksets using 3-cores.

I. INTRODUCTION

The increasing demand for new functionality in current and
future hard real-time embedded systems is driving an incre-
ment in the performance requirements of embedded processors
[1]. Multicore processors are being considered as an effective
solution for embedded systems due to their low cost and good
performance-per-watt ratio, while maintaining a relatively sim-
ple design inside each core. In addition, multicore processors
allow scheduling of mixed criticality workloads, i.e. workloads
composed of safety and non-safety critical applications1, inside
the same processor, maximizing the hardware utilization and
so reducing cost, size, weight and power consumption.

1In this paper we use the terms application, thread and task interchangeably.

Unfortunately, the use of multicore processors in hard real-
time systems is limited by the fact that it is much harder to
perform Worst Case Execution Time (WCET) analysis than
for single-core processors even when using non-preemptive
scheduling as considered in this paper. This is due to inter-task
interferences2 generated by tasks running in different cores.
Inter-task interferences appear when two or more tasks that
share a hardware resource try to access it at the same time, so
arbitration is required to select which task is granted access to
such a shared resource, potentially delaying the execution time
of the others. This makes the WCET of a task dependent on
the set of inter-task interferences introduced by the co-running
tasks that have the highest impact on the execution time.

The set of inter-task interferences that affect the execution
of a task is determined by the execution environment in which
the task runs. The execution environment is defined as the
environment in which the task is executed; in a multicore
processor, it depends on both the workload and the hardware
configuration. Regarding workload, the scheduling/allocation
algorithm determines the tasks that will execute simultane-
ously, defining the patterns of access to shared resources. Re-
garding the hardware configuration, in some architectures [2],
[3], the hardware provides the software with some ‘levers’
to configure the arbitration policy of buses, the amount of
cache assigned to each task, etc. Hence, in such architectures
(like [2]), the execution environment of a task depends on
the workload with which the task runs and on the hardware
configuration. Therefore, the execution of a Hard Real-time
Task (HRT) under different execution environments leads to
different inter-task interference scenarios, and hence different
WCETs for the task.

This phenomenon is illustrated by Figure 1. This figure

2Note that inter-task interferences may also be generated by multiple tasks
running in the same core, e.g. in preemptive scheduling schemes when tasks
share the cache. This is not considered in this paper which assumes non-
preemptive scheduling. Inter-task interference is thus only caused by tasks
running on other cores.

Fig. 1. Normalized WCET estimations of aifftr under fifteen execution
environments, defined by the number of simultaneous HRTs and the cache
partition size assigned to each task, taking as a baseline the WCET estimation
computed assuming no inter-task interferences, i.e. running in isolation.

shows the WCET estimation of a memory-intensive EEMBC
Automotive benchmark (aiifft) when it runs in a 4-core archi-
tecture with a private cache partition assigned to each core
and a shared memory controller. Thus, inter-task interferences
will appear when multiple tasks simultaneously access the
memory controller. All WCETs are normalized to the WCET
estimation of aiifft computed in isolation (i.e. assuming no
inter-task interferences). In this architecture we execute aiifft
under 15 execution environments: we run it simultaneously
with 1, 2 and 3 instances of an HRT benchmark called
opponent, assigning to aiifft 5 different cache partitions(from
128 KB to 8 KB). The opponent is a synthetic benchmark that
continuously accesses the memory, generating a lot of inter-
task interference. For each execution environment we compute
a WCET estimation of aifft using RapiTime, a measurement-
based worst-case execution time analysis tool[4]. We observe
that the WCET estimation is affected by both the hardware
configuration (the cache partition assigned), and the workload
with which aifft runs (the number of opponents running
simultaneously): It increases as the number of simultaneous
opponents (and so inter-tasks interferences) increases and as
the cache partition size is reduced because cache misses then
occur more frequently.

Despite the impact that the execution environment has on
the WCET estimation, most approaches to hard real-time task
scheduling consider only a single WCET value for each HRT:
the highest among all execution environments in which the
HRT can run. Two notable exceptions to this are the works of
Kato et al. [5] and Jain et.al. [6], which consider multi-case
execution times. The research presented in this paper differs
in that our approach focuses on the WCET estimations of
each HRT considering only the parameters that determine the
execution environment in which a task runs, rather than on
estimations of the execution time variations due to details of
the various tasks when scheduling them in a simultaneous
multi-threading environment. Hence our approach enables
system composition based on information about individual
components (i.e. applications or tasks) whereas previous work
does not.

In this paper we propose IA3: an off-line Interference-Aware

Allocation Algorithm that uses a set of WCET estimations
corresponding to all the execution environments in which this
task may run. IA3, which is based on the first fit decreasing
heuristic [7], introduces two novel concepts: the WCET matrix
and the WCET-sensitivity.

The WCET-matrix is an n-dimensional vector space per
HRT, where each dimension represents the parameters that
determine different execution environments that may affect the
WCET of the HRT. Thus, each execution environment has a
WCET estimation associated with it. For example, in Figure
1, the WCET-matrix of the aiifft task is a 2-dimensional vector
space that considers the cache partition size and the number
of HRTs in the workload in which aifft runs. The WCET-
sensitivity complements the WCET-matrix by making the IA3

algorithm aware of the impact of changing the execution
environment on the WCET estimation. The WCET-sensitivity
is derived from, and represents the variation across, the WCET-
matrix.

The abstraction provided by the WCET-matrix and the
WCET-sensitivity allows IA3 to generate a very efficient
partition that reduces the amount of resources (e.g. number of
cores, cache partition size assigned to each core, etc.) required
to schedule a given taskset. Reducing the number of processors
and hence the weight of the system is of significant benefit
in many embedded systems, particularly those in avionics
and space systems. Moreover, in mixed-criticality workloads,
reducing the resources assigned to HRTs, allows the Non
Hard Real-time Tasks (NRTs) to use more hardware resources
and hence increase their quality of service (Note that the
architecture is such that NRTs cannot affect the WCET of
HRTs).

We illustrate the concept of the IA3 by using the multicore
architecture proposed in [2], [8], which has two main features:
(1) the hardware allows the software to configure the size of
cache partition assigned to each running task; (2) the inter-
task interferences that a HRT may suffer depend only on
the number of HRTs running simultaneously and not on the
particular HRTs (see Section II-B for further details).

The rest of the paper is organized as follows: Section II
lists some definitions and notational conventions we use in this
paper. Section III describes our proposal. In Section IV and
V, the test methodology and the results of our experiments are
covered. In Section VI additional considerations are exposed.
Finally, Section VII lists the related work and conclusions are
addressed into Section VIII.

II. BACKGROUND

A. Definitions

This paper focuses on the allocation problem in homoge-
neous multicore processors, considering a partitioned schedul-
ing approach in which once a task has been assigned to one
core it is not allowed to migrate. Moreover, we consider a
sporadic task model, in which the arrival times of jobs of
the same task are separated by a minimum inter-arrival time,
referred to as the task’s period. The arrival times of jobs of
different tasks are assumed to be independent. At any point in

time a job can execute on at most one core and, at most m
HRTs can run simultaneously in an m-core processor.

In general, an allocation algorithm assigns a taskset τ
composed of n independent tasks (τ0, ...τn) to a set of m
identical cores (s1, .., sm). Each task, τi, is characterized by
a WCET estimation Ci, a period Pi, and a hard deadline Di,
assuming implicit deadlines, i.e. Di = Pi. The utilization of a
task, ui, is defined as Ci

Pi
and it ranges between 0 ≤ ui ≤ 1.

The utilization of a taskset, usum, is defined as
∑
τi∈τ ui.

The static partition generated by the allocator assigns a subset
of tasks γk ⊆ τ to core sk with a cumulative utilization
uksum =

∑
τi∈γk ui ≤ 1. However, finding an optimal

allocation is an NP-hard problem in the strong sense [9] and
so non-optimal solutions derived from the use of bin-packing
heuristics are typically used [10], [11], [12].

In a partitioned scheduling scheme, once tasks are allocated
to cores, an on-line uniprocessor scheduling algorithm is used.
In this paper we consider non-preemptive EDF scheduling.
A γk is schedulable using a non-preemptive EDF scheduling
algorithm if the following conditions [13] are satisfied: (1)
uksum ≤ 1 and (2) ∀τi ∈ γk | ∀L : P1 < L ≤ Pi, L ≥
Ci +

∑i−1
j=1b

L−1
Pj
cCj .

However, any other non-preemptive uniprocessor scheduling
algorithm can be used. Note, we consider non-preemptive
scheduling as this is used in many commercial systems,
particularly those in aerospace applications. Non-preemptive
scheduling significantly reduces the difficulty involved in ob-
taining valid estimates of the WCET, as the use of preemption
can introduce new inter-tasks interferences due to the cold start
when the task is resumed. This is part of our future work.

B. Multicore Architecture

This paper considers the analyzable multicore processor
described in [2], [8] as the target processor in which tasksets
are allocated. Concretely, we consider a four-core processor in
which each core has a private data and instruction L1 cache
connected to a partitioned L2 cache through a shared bus. The
L2 cache is loaded from a JEDEC-compliant DDR2 SDRAM
memory system. Figure 2 shows the complete architecture.

Under this architecture, the execution environment in which
a given HRT can run is identified by two parameters: (1) the
cache partition size assigned to each core and (2) the number
of HRTs running simultaneously at any point in time. To do so,
the architecture ensures, by design, that the maximum delay
a request to a shared hardware resource can suffer due to
inter-tasks interferences is bounded by a pre-computed Upper
Bound Delay (UBD) and such UBD depends on the number
of co-running HRTs, but not the number of co-running NRTs.
In other words, the architecture ensures that requests cannot
be delayed longer than UBD cycles, regardless of behavior
of the other simultaneous tasks running with a given HRT [2],
[8].

In this architecture, there are two sources of inter-task
interferences that can increase the WCET estimation of HRTs:
bus and memory interferences. The former appears when two
requests from different cores attempt to access the L2 cache

Fig. 2. Multicore processor architecture considered

at the same time. The latter appears when two requests from
different cores attempt to access the SDRAM memory device
at the same time.

In order to make the analysis of inter-task interferences
independent of other simultaneous HRTs, the arbitration com-
ponent of both resources, i.e. the bus arbiter and the memory
controller, implement a round robin arbitration policy with a
private request queue per core (see Figure 2) and prioritize
HRTs over NRTs. By doing so, the UBD a request can
suffer due to interferences is determined by the worst access
latency of that resource and the number of simultaneous
HRTs (NoHRT), i.e. the number of round robin slots. For
this, the UBD can be defined as a function of NoHRT ,
i.e. UBD(NoHRT). For example, in case of the bus, the
UBDbus = NoHRT · Lbus − 1 [2], Lbus being the bus
transmission latency: In the worst case scenario, a request
must wait until all other HRTs have been served. Similarly,
in case of the memory controller, the UBDMC = NoHRT ·
tILWORST − 1 [8], tILWORST being the longest possible
issue latency, which depends on the specific timing constraints
determined by the DDR2-SDRAM memory device used [14].
Please note that in both formulas (UBDMC and UBDbus)
the impact that NRTs may have on HRTs is considered.

Then, in order to consider the UBD(NoHRT) in the com-
putation of the WCET estimation, every request that access
to the bus and the memory controller is delayed by UBDbus

and UBDMC cycles respectively, so the HRT is subject to the
worst-case delay that it can suffer due to interferences. Hence,
the WCET estimates obtained considering the UBD(NoHRT)
are the largest values that could occur [2], [15]. It is important
to remark that different UBD(NoHRT) (varying the NoHRT)
lead to different execution environments, and so different
WCET estimates, making them independent of the specific
details of the tasks that are running at the same time.

Finally, in order not to be affected by cache interferences
(bank and storage inter-task interferences[2]), the architecture
also allows the software to set dynamically the amount of
private cache partition given to each core. This technique,
called bankization, assigns to each core a private subset of
the total number of banks that no other core can use.

Therefore, under this architecture, there are as many execu-
tion environments as possible cache partitions multiplied by
the number of simultaneous HRTs, upper bounded by the total
cache size and the number of cores respectively.

III. OUR PROPOSAL

This section presents the main contribution of this paper:
IA3, an off-line interference-aware allocation algorithm for
multicore processors that, based on the WCET-matrix and
the WCET-sensitivity concepts, generates a more efficient
allocation compared to other partitioned schemes.

A. WCET-matrix and WCET-sensitivity

Current scheduling approaches typically consider only a
single WCET value per task to perform the allocation, which
usually corresponds to the highest WCET estimation in all
execution environments in which the HRT task can run [6].
Instead, in this paper we propose an allocation algorithm that
considers a set of WCET-values, each corresponding to a
different execution environment in which the task can run.

Definition 1. Given a HRT, the WCET-matrix is the collection
of WCET estimations of this HRT when it runs on a processor
under different execution environments.

Thus, each WCET estimation inside the WCET-matrix is
identified by the execution environment parameters that result
in that WCET. For example the number of simultaneous HRTs
that run in a multicore processor, and the size of the cache
partition assigned to each task.

Note, not all HRTs are affected in the same way due to inter-
task interferences. For example, when comparing the WCET
estimation of a memory intensive HRT that requires a lot of
accesses to main memory in an execution environment with
two, three or four HRTs running simultaneously, its WCET
estimations will vary more than the WCET estimations of a
CPU bounded HRT that does not access the main memory.

Definition 2. Given a HRT, the WCET-sensitivity measures
the WCET estimation variation among the different execution
environments that comprise the WCET-matrix.

Thus, a HRT with low WCET-sensitivity means that the
variation of the WCET estimations under different execu-
tion environments is small, while a HRT with high WCET-
sensitivity means that different execution environments in
which the task is executed make the WCET change signifi-
cantly.

Therefore, by considering the WCET-matrix and the WCET
sensitivity, the allocation algorithm can be aware of how the
execution environment impacts on the WCET estimation of
each task, thus enabling a more efficient allocation to be

found. Current partitioning allocation approaches, e.g. first-
fit decreasing, prioritize tasks by sorting them based on their
utilization, so tasks with higher utilization are allocated first.
Instead, WCET sensitivity enables partitioning based on the
execution environment required, such that tasks with higher
resource demand are allocated first.

B. Re-defining Terminology and Notations

The introduction of the WCET-matrix and the WCET-
sensitivity makes it necessary to extend the terminology and
notations provided in Section II.

Our interference-aware allocation algorithm not only assigns
a taskset τ composed of n independent tasks (τ1, ...τn) to a set
of m identical cores (s1, .., sm), but also selects the execution
environment in which each task will run based on the WCET-
matrix and the WCET-sensitivity. For that, we define config-
uration ϕ as the set of tuples (< e1, a1 >, ..., < en, an >),
such that each task ti ∈ τ has an associated tuple < ei, ai >
that specifies the execution environment ei in which ti runs,
and the core ai to which ti is allocated. It is important to
remark that, in a partitioned scheduling approach such as the
one considered in this paper, tasks are statically assigned to
different cores, forcing each task to be executed exclusively
on one core. Therefore, all tasks that have been assigned to a
given core are forced to have the same execution environment.

The relationship between the WCET estimation and the
execution environment can be defined as an n-dimensional
vector space M ⊆ Nz+1 of n = z + 1 dimensions, in
which the first z dimensions identify all possible parame-
ters that define an execution environment and the (z + 1)-
th dimension identifies all possible WCET estimations of a
HRT under the different execution environments. A vector
v̂ =< v1, ..., vz+1 > associates each WCET-estimation (vz+1)
with its corresponding execution environment (v1, ..., vz). The
WCET-matrix of each task τi ∈ τ is a vector sub-space
WM ⊆ M that corresponds to the set of v̂ in which this
task can run. We require that all WCET-matrices are such
that: Given a task τi and two vectors v̂1 and v̂2 both from the
same task, if the execution environment of v̂1 requires less
resources than v̂2, the associated WCET estimation of v̂1 is
equal to or higher than the associated WCET estimation of v̂2.

Similarly, the variation that the WCET estimation has
among all different execution environments can be defined as a
n-dimensional vector space S ⊆ Zz+1. A vector ŵ, defined as
v̂1− v̂2 where v̂1 and v̂2 ∈M , measure the WCET estimation
variation when changing the execution environment from the
one defined in v̂2 to the one defined in v̂1. Hence, the WCET-
sensitivity of each task τi ∈ τ is a vector sub-space WS ⊆ S
that corresponds to the set of ŵ = v̂1 − v̂2 in which v̂1 and
v̂2 belong to τi and where they represent all the different
execution environments.

It is important to remark that configuration ϕ must contain
a valid set of execution environments. If we consider the
previous example in which different cache partitions can be
assigned to each core, the size of each cache partition in the
configuration ϕ must be equal to or less than the total cache

size. Moreover, the maximum number of simultaneous HRTs
considered must be equal to or less than the total number of
cores. In this case we say that configuration ϕ is valid.

C. IA3: Interference-Aware Allocation Algorithm

The main objective of IA3 is to determine a valid set of ϕ
to schedule a taskset τ that minimizes the resources assigned
to HRTs and hence enables the rest of the resources to be
assigned to NRTs, thus maximizing the hardware utilization
and taking full advantage of multicore processors.

The IA3 is composed of two phases: the common partitioned
phase, in which the same execution environment is considered
in all cores, and the WCET-sensitivity phase, in which differ-
ent execution environments are assigned to different cores.
Figure 3 shows the pseudo-code implementation of IA3 con-
sidering the multicore processor described in [2], [8] and sum-
marized in Section II-B, in which the execution environment
is identify by: (1) the number of HRTs that run simultaneously
(NoHRT) and (2) the size of the cache partition assigned to
each core (p). Thus, the WCET-matrix of a task is a vector
sub-space of z = 2 dimensions with m ·x vectors (where x is
number of cache partition sizes, and m is the number of cores),
such that given a v̂ =< k, p, c > it associates the WCET
estimation c with the cache partition p and the number of
cores k used by HRTs. Moreover, given two different vectors
v̂1 =< k1, p1, c1 > and v̂2 =< k2, p2, c2 >, the WCET-
sensitivity is defined as ŵ =< k1 − k2, p1 − p2, c1 − c2 >,
where c1− c2 is the WCET estimation variation changing the
execution environment from < k2, p2 > to < k1, p1 >. We
note that IA3 can be generalized for additional dimensions
(Section VI considers execution environments identified by
different parameters).

Concretely, IA3 takes as input the taskset τ , the total
number of cores m and the different cache partition sizes
cache partitions. As output it provides a list of valid con-
figurations φ that schedule τ .

The IA3 iterates over all z = 2 dimensions of the WCET-
matrix, i.e. over NoHRT (line 2) and p (line 7), using a depth-
first search approach [16] in increasing order, i.e. from the
execution environment in the WCET-matrix that leads to the
lowest WCET estimation for each task (NoHRT = 1 and p1
= biggest size of cache partition), to the one that leads to the
highest WCET estimation (NoHRT = m and px which refers
to the smallest size of cache partition). Note this ordering
is used because we are interested in solutions that use the
least processing capacity, thus maximizing the available spare
capacity for NRTs. At the beginning of every new iteration of
the outermost loop (line 2), NoHRT determines the number
of cores available (n av cores) for the HRTs (line 3) and a
working copy (τ ′) of the original taskset (τ) is set (line 4).
Note that the selected starting point, i.e. the one that leads to
the lowest WCET estimation, aims to determine the minimum
number of processors that could possibly result in a solution,
and then refine the solution from there.

During the common partitioning phase, the IA3 tries to
allocate the taskset τ ′ using n av cores cores, assigning to

IA3

Input τ : taskset
m: total number of cores,
cache partitions: cache partition sizes

Output listϕ: list of valid ϕ

1 l i s t ϕ := ∅ ;
2 f o r NoHRT in [1 :m]
3 n a v c o r e s :=NoHRT ;
4 τ ′ := τ ;
5 tmplistϕ := ∅ ;
6 ϕwcstmp , ϕffdtmp := ∅ ;
7 f o r each pj in cache partitions sizes (d e c r e a s i n g o r d e r)
8 / / Common P a r t i t i o n Phase
9 <ϕffdtmp ,∅> := f f d (τ ′ , n av cores ,NoHRT ,pj ,∅) ;

10 i f (s c h e d u l a b l e (τ ,ϕffdtmp ∪ ϕwcstmp))
11 i f (v a l i d (ϕffdtmp ∪ ϕwcstmp)
12 add−to− l i s t (ϕffdtmp ∪ ϕwcstmp , tmplistϕ) ;
13 e n d i f
14 e l s e
15 i f (p = max (cache partitions))
16 break ;
17 e n d i f
18 / / WCET s e n s i t i v i t y Phase
19 wst := compute−s e n s i t i v i t y (τ ′ ,NoHRT ,pj ,pj−1) ;
20 < ϕ1c ,τ ′ > := f f d (τ ′ , 1 ,NoHRT ,pj−1 , wst) ;
21 ϕwcstmp := ϕ1c ∪ ϕwcstmp ;
22 n a v c o r e s := n a v c o r e s − 1 ;
23 <ϕffdtmp ,∅> := f f d (τ ′ , n av cores ,NoHRT ,pj ,∅) ;
24 i f (s c h e d u l a b l e (τ , ϕffdtmp ∪ ϕwcstmp))
25 i f (v a l i d (ϕffdtmp ∪ ϕwcstmp)
26 add−to− l i s t (ϕffdtmp ∪ ϕwcstmp , tmplistϕ) ;
27 e n d i f
28 e l s e
29 break ;
30 e n d i f
31 e n d i f
32 endfor
33 ϕmin := f i n d−minimum−ϕ (tmplistϕ) ,
34 add−to− l i s t (ϕmin , l i s t ϕ) ;
35 endfor
36 re turn l i s t ϕ ;

Fig. 3. Pseudo-code implementation of the IA3 considering the multicore
architecture presented in Section II-B with z = 2.

each core the execution environment defined by NoHRT and
p, and generating configuration ϕffdtmp. To do so, the IA3

applies a first-fit decreasing heuristic[7] (ffd function) using
the WCET-estimations ci such that v̂i =< ki, pi, ci >∈ WM
(the WCET-matrix), ki = NoHRT and pi = pj (line 9)3. The
last parameter of the ffd function (in this case ∅) defines the
criteria used to sort tasks before allocating them: ∅ indicates
to use the WCET estimations. Then, if the resulting ϕffdtmp
(joined with the result of previous WCET sensitivity phases)
can schedule the complete taskset τ (line 10) and it is a valid
configuration (line 11), i.e. the amount of resources required
by τ do not exceed the actual amount of resources available
in the processor, it is stored (line 12) .

Let us assume that the execution environment e2 (defined
by NoHRT and pj) cannot schedule τ while e1 (defined by
NoHRT and pj−1) can. Note that the size of the cache partition
considered in e1 (pj−1) is bigger than the one considered
in e2 (pj). In this case, the IA3 starts the WCET-sensitivity

3v̂i exists as all execution environments considered by IA3 have a corre-
sponding v̂i per task

phase (line 18), in which it identifies those tasks whose
WCET estimations suffer a higher impact when changing
the execution environment from e1 to e2. To do so, the IA3

computes the WCET-sensitivity ŵ = v̂1 − v̂2 for all tasks in
τ ′, such that the first 2 dimensions of v̂1 and v̂2 are equal to
e1 and e2 respectively, and it sorts all the tasks by the 3rd
dimension of ŵ (line 19). The task order4 is stored in wst.
Note that, since the amount of resources assigned to e2 is less
than e1, the 3rd dimension of ŵ will be always bigger than or
equal to 0.

Then, the subset of tasks γ ∈ τ ′ with higher sensitivity are
allocated to one core, fixing e1 as the execution environment of
that core. To do so, the ffd function uses the WCET estimations
ci such that v̂i =< ki, pi, ci >∈ WM, ki = NoHRT and
pi = pj−1 and the task order defined by wst (line 20). As a
result the ffd function provides the partial configuration ϕ1c,
which only contains the set of tuples < ei, ai > assigned to γ,
being ei = e1, and a new taskset τ ′ that replaces the previous
one, such that for all ti ∈ τ ′, ti /∈ γk and ti ∈ τ . This new
ϕ1c is then added to other allocations that have been computed
during previous WCET sensitivity phases (ϕwcstmp)(line 21)
and the number of available cores is reduced (line 22). By
doing so we expect to assign the tasks γ with the highest
WCET-sensitivity to a core with an execution environment
e1, so the new taskset τ ′ may be scheduled with e2 or less
resources on the remaining cores.

Finally, the ffd function is called with the remaining tasks
contained in the new τ ′, the current available cores and the
execution environment e2, resulting in a new partial config-
uration ϕffdtmp (line 23). Then, it is checked whether the
complete configuration made up of ϕffdtmp and ϕwcstmp can
schedule the complete taskset τ (line 24). If the unified ϕ is
valid and it can schedule τ , it is added to the tmplistϕ (line
25). If τ is not schedulable, the cache partition exploration
finishes (line 29).

Note that the IA3 uses two different first fit decreasing
sorting criteria: one uses the WCET estimation and it does
not modify τ ′ (lines 9 and 23 with ∅ in the input and output),
and one that uses the WCET sensitivity and generates a new
τ ′ (line 20).

For a given NoHRT IA3 generates at most one valid
configuration. That is, fixing NoHRT , the algorithm selects the
configuration, if there is one, that minimizes the total cache
used. This is performed at the end of every iteration of the
pj loop, by calling the function find−minimum− ϕ (line
33) that, given the list of ϕs stored during the exploration
of cache partition sizes pj , selects the one that requires the
smallest amount of cache. However, different number of cores
(NoHRT) can lead to multiple configurations (ϕs), so the same
τ can be scheduled using different execution environments and
different task-to-core mappings (line 34). Then, the embedded
system designer can select the proper solution according to

4We also checked ordering tasks using the sensitivity/period rather
than just sensitivity criteria, expecting that tasks with a large decrease in
utilization by virtue of having more cache, could be assigned on a core with
a larger cache partition. However, both heuristics have very similar results.

the system constraints.
It is important to remark that the IA3 explores invalid

configurations, i.e. with more resources than the ones available
in the processor, in order to reach a valid one. For example,
it can be the case that the IA3 explained above explores a
configuration in which the sum of the cache partition sizes
assigned to each core exceeds the total cache size. Then,
the goal of the WCET sensitivity phase is to identify those
tasks that require a higher cache partition and group them
into a core, such that the remaining tasks may be assigned
to cores with a smaller cache partition. By doing this a valid
configuration in which the sum of the cache partition sizes
does not exceed the total cache size can be reached.

D. Example: Applying IA3 to a four-core processor with
partitioned cache

This section explains all the steps of the IA3 implementation
described in Section III-C considering the following input
parameters: a taskset τ , m = 4 and cache partitions =
[64, 32, 16, 8].

Let us assume that the first iteration of the common partition
phase (NoHRT = 1, p = 64) results in a ϕffdtmp that cannot
schedule τ (line 10) (no WCET sensitivity phase has been
executed, so ϕwctmp is empty). Then, since p1 = 64, i.e. the
biggest cache partition size (line 15), IA3 breaks out of the pj
loop (line 16). The same conditions are verified in the next
iteration (NoHRT = 2, p1 = 64). Instead, with NoHRT =
3 and p1 = 64, τ is schedulable (line 10), but the resultant
ϕffdtmp is not stored because it is not valid (line 11) (ϕffdtmp
assigns 64 KB to each core but the total available cache size
is 64 KB). The same happens in the next iteration (NoHRT
= 3 and p2 = 32). Note that in these two cases the IA3 is
exploring invalid configurations. Instead, when performing the
common partition phase with NoHRT = 3 and p3 = 16, τ
is not schedulable with the resultant ϕffdtmp. In this case,
the condition stated in line 15 does not hold, so the WCET
sensitivity phase starts.

In the WCET-sensitivity phase, the WCET-sensitivity vectors
ŵ are computed (line 19), such that NoHRT = 3, p3 = 16,
and p2 = 32, storing the sort criteria in wst. Table I shows
an example of the computation of the WCET-sensitivity of the
three highest sensitive tasks in τ ′, please note that the first z
dimensions of ŵ are not considered. Then, the IA3, using a
first-fit decreasing heuristic, allocates the tasks with the highest
WCET-sensitivity to a single core, and it fixes NoHRT = 3,
p2 = 32 as the execution environment of this core (line 20).
This allocation is stored in ϕ1c and the set of tasks that have
not been allocated are stored in τ ′. Then, ϕ1c is joined with
the results of the previous WCET sensitivity phases, ϕwcstmp
(which in this case is empty), and the number of available
cores is reduced to 2. Finally, a first fit decreasing algorithm
is applied on the remaining 2 cores, with NoHRT = 3, p3 = 16
and the new taskset τ ′. The resultant ϕffdtmp is joined with
ϕwcstmp, i.e. considering 3 cores, with respectively 32, 16 and
16 KB of cache partition. Let us assume that τ is schedulable.

TABLE I
WCET-SENSITIVITY COMPUTATION (ŵ) OF 3 TASKS CONSIDERING
k1 = 3, k2 = 3, p1 = 16 AND p2 = 32. ORDERED BY THE 3-RD

DIMENSION.

v̂1 v̂2 ŵ
task6 < 3, 16, 132 > < 3, 32, 101 > < −,−, 31 >
task2 < 3, 16, 100 > < 3, 32, 75 > < −,−, 25 >
task5 < 3, 16, 256 > < 3, 32, 235 > < −,−, 21 >

Thus, since the new ϕ is valid, it is added to tmplistϕ (line
26).

In the next iteration (NoHRT = 3 and p4 = 8) the common
partition phase is started again, but considering 2 available
cores and the new τ ′ (line 9). In this case, the resultant
ϕffdtmp is joined with the previous ϕwcstmp (line 10), i.e.
considering 3 cores, with respectively 32, 8 and 8 KB of cache
partitions. Let us assume, τ is schedulable and the resultant
ϕ is valid, so it is added to the list tmplistϕ. However, in
the next iteration (NoHRT = 3 and p5 = 4) the common
partition phase results in a ϕ that cannot schedule τ so the
WCET sensitivity phase starts again. In the WCET sensitivity
phase, the resultant joined ϕffdtmp and ϕwcstmp is 3 cores,
with respectively 32, 8 and 4 KB of cache partition, which
cannot schedule τ so IA3 breaks out of the p loop (line 29).

Once the cache size dimension pj has been fully explored,
the function find−minimum−ϕ finds, among all the stored
ϕ (3 cores, with respectively 32, 16 and 16 KB of cache
partition and 3 cores, with respectively 32, 8 and 8 KB of
cache partition), the one with the smallest amount of cache
used, i.e. 3 cores, with respectively 32, 8 and 8 KB of cache
partition. Thus, in order to reach this valid configuration, the
IA3 has explored invalid ones, i.e. assigning to each core 32
KB. Then, a new iteration starts with NoHRT = 4. The same
steps are carried out, but they are omitted here due to lack of
space.

It is important to remark that this implementation can lead
to multiple allocation solutions. That is, the same τ can
be scheduled, for example, using a configuration with three
cores and cache partitions equal to 32, 8, 8 KB, and with a
configuration with four cores but with less cache, allowing the
embedded system designer to select the best solution according
to the system constraints.

IV. TEST METHODOLOGY

Evaluating the effectiveness of the IA3 requires a method-
ology of generating tasksets. However, in order to perform
an effective evaluation of our proposal, it is important to
consider tasks with different levels of WCET-sensitivity. To
that end, we first characterized the WCET-sensitivity of the
EEMBC Autobench [17] benchmark suite under different
execution environments considering the multicore architecture
introduced in section II. This characterization follows the same
methodology introduced in [2], [8].

A. Characterizing the EEMBC Autobench

The EEMBC Autobench is a well known benchmark suite
formed by sixteen applications widely used in both industry

and academia, that reflect the current real-world demands of
embedded systems. However, the data memory footprint of
these benchmarks is, at most, 32 KB. Hence, in order to be rep-
resentative of future hard-real time applications requirements
[1], we have increased their memory requirements without
modifying any instruction inside the source code, by enlarging
the data set structures they use. The new data memory footprint
of some of the EEMBC benchmarks are: aifftr01/aiifft01 (64
KB), aifirf01 (72 KB), pntrch01 (62 KB), ttsprk01 (104 KB),
tblook01 (70 KB), matrix01 (91 KB).

In order to characterize their WCET-sensitivity, we com-
puted the WCET estimation of each EEMBC benchmark
considering that each request to a shared resource is delayed by
UBD cycles (see Section II-B), under 20 different execution
environments, as a result of assigning different cache partition
sizes (128 KB, 64 KB, 32 KB, 16 KB and 8 KB) and varying
the number of HRTs that access simultaneously the shared bus
and the memory controller, i.e. different UBDs corresponding
to NoHRT from 1 HRT to 4 HRTs. Hence, the WCET-
matrix of each benchmark results in a 2-dimensional vector
space indexed by the cache partition size and the number of
simultaneous HRTs.

All WCET estimations were computed using RapiTime
[4], a commercial tool that estimates the WCET using a
measurement-based technique. Moreover, in order to model
in detail the multicore architecture presented in Section II, we
used an in-house cycle-accurate, execution-driven simulator
[2], [8]. Our simulator is compatible with Tricore [18], an
Instruction Set Architecture (ISA) designed by Infineon Tech-
nologies. We paid special attention to the simulator correct-
ness, extensively validating it through a wide range of tests.
Finally, the simulator also introduces the WCET computation
mode [2]. When obtaining the WCET estimation of a HRT,
the processor is set to this new mode and the HRT under
analysis is run in isolation. Under this mode, the bus arbiter
and the memory controller artificially delay every request by
UBD cycles. Once the WCET analysis of all the HRTs is
completed the processor is set to Standard Execution Mode in
which no artificial delay is introduced.

Once the WCET-matrix of each benchmark had been gener-
ated, we analyzed the results according to WCET-sensitivity,
i.e. how the WCET estimations vary across the different
execution environments, creating 3 sensitivity groups called
High, Medium and Low Sensitivity. Each group, whose WCET-
matrix is the average of the WCET-matrices of all tasks
that form the group, is formed by the following EEMBC
benchmarks: High (aifftr,aiifft,cacheb), Medium (aifirf, iirflt,
matrix, pntrch), Low (a2time, basefp, bitmnp, canrdr, idctrn,
puwmod, rspeed, tblook, ttsprk).

Figure 4 [2], [8] shows the normalized WCET-estimation
of medium and high sensitivity groups under the twenty
different execution environments, taking as a baseline the
WCET estimation of the corresponding group assuming no
inter-task interferences (it can be considered as the graphical
representation of the WCET-matrix of each group). We ob-
serve that, while the high sensitivity group reacts rapidly to any

(a) Medium-sensitivity Benchmarks

(b) High-sensitivity Benchmarks

Fig. 4. Normalized WCET estimation increment of two EEMBC WCET-
sensitivity groups: High and Medium, under twenty different execution envi-
ronments. This characterization follows the same methodology introduced in
[2], [8].

TABLE II
THE WCET-SENSITIVITY RANGE OF EACH SENSITIVITY GROUP

CONSIDERED IN THE GENERATION OF THE TASKS’ WCET-MATRIX

Cache Partition Number of simultaneous HRT

High Sensitivity 0.10 - 0.25 0.10 - 0.50
Medium Sensitivity 0.07 - 0.14 0.05 - 0.18

Low Sensitivity 0.00 - 0.03 0.00 - 0.01

change, the medium sensitivity group has a smooth increment
of the WCET estimation. The low sensitivity group, not shown
due to space constraints, is almost unaffected by variations in
the execution environment.

For each sensitivity group, we identified the WCET-
sensitivity between two adjacent execution environments of
the WCET-matrix. To do so, starting from the execution
environment with 1 HRT and 128KB of cache, we compute the
WCET-sensitivity as we reduce the cache size, and increase
the number of simultaneous HRTs. Table II shows the range
of the WCET-sensitivity when the cache size and the number
of simultaneous HRTs changes in each group.

B. Randomly-Generated Tasksets

We randomly-generated tasksets based on the WCET-
sensitivity ranges shown in Table II: Starting from an initial

TABLE III
PERCENTAGE OF TYPE OF TASKS IN THE TASKSET CONSIDERING THE

INITIAL WCET CLASS AND THE SENSITIVITY GROUP

High u (30%). Low u (70%)

High Sensitivity (20%) 20%× 30% = 6% 20%× 70% = 14%
Medium Sensitivity (30%) 30%× 30% = 9% 30%× 70% = 21%

Low Sensitivity (50%) 50%× 30% = 15% 50%× 70% = 42%

WCET (corresponding to an execution environment with 32KB
of cache partition and 1 HRT) we generate a complete WCET-
matrix by applying the variations among the different execu-
tion environments that resembles the WCET-matrix of a given
sensitivity group. In order not to generate identical WCET-
matrices, we use a uniform random-generator that considers
the maximum and the minimum variance of the corresponding
groups.

We assume two different classes of initial WCETs: a High
Utilization class, corresponding to a task with an utilization
ranging between 0.3 and 0.6; and a Low Utilization class,
with an utilization ranging between 0.1 and 0.3. The initial
WCET is also generated using an uniform random-generator
that considers the corresponding utilization ranges. For these
simple experiments, we are interested only in the effect
of different execution environments on the partitioning. We
therefore fixed all of the task periods to have the same value
(and the deadlines equal to the periods).

Finally, in order to generate tasksets composed of tasks
with different requirements, we assume that 30% of the tasks
belong to the high utilization class and 70% belong to the
low utilization class. Moreover, from the characterization of
the EEMBC Automotive benchmark suite we assume that
20% of the tasks in the taskset have a high sensitivity, 30%
have a medium and 50% have a low one. Note that, each
task can belong to a high or a low utilization class, and its
WCET-matrix can have a WCET-sensitivity that resembles a
high, medium or low sensitivity group. Table III shows the
percentage of tasks considering the sensitivity group and the
initial WCET. The total utilization of the generated tasksets,
i.e. the target Ut, is computed using the WCET value of each
task when running in the initial execution environment.

V. RESULTS

This section evaluates the IA3. To do so, we have generated
10 series of 10,000 tasksets, each composed of 10 tasks,
using the methodology explained in Section IV. Concretely,
for each series, we have fixed a target utilization Ut (i.e.
usum computed considering the initial WCET of each task
in the taskset t), ranging from 2.9 to 3.9 with an increment
step of 0.1. To do so, we used the simple naive and unbiased
method described in [19], [20]: we generate 9 out of 10
random WCET matrices in high and low utilization ranges
and then check if the remaining task with utilization equal
to Ut − usum belongs to the low utilization class; if not we
discard the taskset and start the process again. Moreover, we
also consider a real taskset composed of the sixteen EEMBC
Autobench benchmarks (described in Section IV), ranging its

Fig. 5. Percentage of schedulable tasksets when applying FF, UPP and IA3

in a 4-core processor, ranging the total utilization from 2.9 to 3.9 with an
increment step of 0.1

total utilization from 2.7 to 3.3 with an increment step of 0.1.
The target multicore architecture considered is a 4-core

processor with a 128 KB partitioned cache. The architecture
allows assigning dynamically to each core a private partition
of cache ranging in size from 4 KB to 128 KB.

We also compare IA3 to an idealized scheme that assumes
each core has the same cache partition size, and checks a
necessary feasibility condition (labeled UPP). In this case we
simply check that, given an execution environment with k
cores and a cache partition size assigned to each core identified
by p, that for all v̂ =< k, p, c >, the cumulative utilization∑
u∈v̂ ≤ k. If this test fails, then the configuration could not

possibly be schedulable as it has a higher utilization that the
available processor capacity. UPP represents an upper bound
on the maximum possible performance of a global scheduling
approach with no migration overheads.

Moreover, we also compare IA3 with a partitioned schedul-
ing algorithm that uses a First-Fit Decreasing Heuristics (la-
beled as FF) [7] that assigns to each core the same execution
environment such that the resources used are minimized, i.e.
the cache partition assigned and the number of cores. For
FF we are effectively applying only the common partitioning
phase of the IA3.

Figure 5 compares the percentage of schedulable tasksets
using IA3, FF and UPP, increasing the Ut from 2.9 to 3.9.
As expected, our allocation algorithm is able to consistently
schedule more tasksets than FF, while achieving almost the
same ratio of scheduled tasksets as the hypothetical upper
bound given by UPP. On average, when compared to FF,
IA3 is able to schedule 20% more tasksets, with a maximum
difference of 32% when considering Ut = 3.2 and minimum
of 5% when considering Ut = 3.5.

However, the benefit of IA3 is not only the number of
schedulable tasksets, but the resources used to schedule them.
Figures 6 and 7 show the cumulative distribution function of
the resources required to schedule tasksets with a Ut equal to
2.9 and 3.3 respectively, when using IA3 and FF. Concretely,
the figures show the percentage of scheduled tasksets with a
certain number of cores (X-axis division on figure 6) and the
size of cache partition assigned (in KB) to each core. For ex-
ample, when considering a total utilization equal to 2.9 (figure

Fig. 6. 10,000 Taskset with Total Utilization 2.9

Fig. 7. 10,000 Taskset with Total Utilization 3.3

6), the IA3 is able to schedule more than 70% of the tasksets
with only 3 cores, while, in the case of FF, less than 5% of
the tasksets have been scheduled with 3 cores. With a total
utilization of 3.3, both schemes require 4 cores to schedule
all tasksets. However, IA3 is able to schedule more than 30%
of the tasksets without requiring the complete cache size, i.e
128 KB. Therefore, IA3 generates a very efficient partition
scheme by assigning different environments to different cores
and so reducing the resources required. Reducing the amount
of resources assigned to HRTs is particularly beneficial in
mixed-application workloads, because the resources not used
by HRTs can be assigned to NRTs. For example, in Figure 6,
50% of the tasksets have been scheduled using only 3 cores
and less than 96 KB of cache partition, so the rest of the
resources, i.e. one core and 32 KB of cache partition can be
assigned to NRTs. By contrast, in the case of FF, only 15%
of the tasksets are able to be scheduled with less than 64 KB,
but requiring 4 cores, and so giving less resources to NRTs.

Finally, Table IV shows the number of cores and the total
cache partition size required to schedule the real taskset
composed of the sixteen EEMBC benchmarks when using FF,
UPP and IA3, with utilization Ut scaled from 2.7 to 3.3. IA3

requires consistently less resources than the other schemes.

VI. ADDITIONAL CONSIDERATIONS

The IA3 permits a WCET-matrix of z dimensions, z ⊆ N.
However, in this paper we have considered only a simple
WCET-matrix of z = 2 dimensions that includes the number
of simultaneous HRTs and the size of the cache partitions
assigned to each core, which improves taskset schedulability
when compared to a classical partitioned scheme. However
the benefit of making task allocation aware of the impact
that different execution environments have on the WCET is
potentially much bigger. For example, the WCET-matrix can

TABLE IV
NUMBER OF CORES AND CACHE PARTITION SIZE (IN KB) REQUIRED TO

SCHEDULE A TASKSET COMPOSED OF THE 16 EEMBC BENCHMARKS
WHEN APPLYING FF, UPP AND IA3 , RANGING THE TOTAL UTILIZATION

FROM 2.7 TO 3.3 WITH AND INCREMENT STEP OF 0.1

FF UPP IA3

Ut cores cache (KB) cores cache (KB) cores cache (KB)
2.7 4 32 3 48 3 40
2.8 4 32 4 32 3 52
2.9 4 32 4 32 4 20
3.0 4 64 4 32 4 28
3.1 4 64 4 64 4 32
3.2 4 64 4 64 4 32
3.3 not schedulable 4 64 4 40

potentially be applied to heterogeneous multicore processors,
in which each core has a different computational power. In this
case, an extra dimension is required to measure the WCET of
the different tasks under the different cores, Thus, the IA3

will consider a WCET-matrix of z = 3, assigning to the most
powerful cores those tasks with the highest WCET-sensitivity.

An important future research line of IA3 is to consider
a preemptive scheduling approach. Some works introduce a
factor in the WCET estimation [21], [22], [23] in order to
consider the impact of inter-tasks interferences introduced by
preemption due to the cold start when the task is resumed.
These factors can be introduced in the WCET-matrix to
allow IA3 to use preemption. Similarly, the WCET-matrix
can consider other execution environment parameters such
as the number of TDMA-slots assigned to a HRT, different
frequencies at which the processor can run, etc.

However, it is important to notice that adding additional
dimensions to the WCET-matrix increases the computational
complexity of IA3 because the current implementation of
the algorithm effectively searches over all combinations of
parameters (e.g. number of cores, and cache partition size).
The complexity can be reduced by applying a search algorithm
optimization, for example, Emberson et. al. [24]. However, as
WCET estimates need to be obtained for each task in all the
execution environments of the WCET-matrix, in practice the
dimension of the matrix will be limited to a small number of
important factors such as cache size, number of simultaneous
HRTs, computational speed, etc.

VII. RELATED WORK

There are two main strands of research in multiprocessor
scheduling [25], reflecting the ways in which tasks are allo-
cated to cores. Partitioned approaches allocate each task to a
single core, dividing the problem into one of task allocation
(bin-packing) followed by single processor scheduling. In
contrast, global approaches allow tasks to migrate from one
core to another at run-time. In partitioned scheduling finding
an optimal task allocation is an NP-hard problem in the strong
sense [9] and so non-optimal solutions derived from the use
of bin-packing heuristics are typically used.

Dhall and Liu [11] proposed two heuristic assignment
schemes: rate-monotonic next-fit and rate-monotonic first-fit
based on the next-fit and first-fit bin-packing heuristics. In both

schemes, tasks were sorted in decreasing order of their periods
and assigned to a so-called current core until the schedulability
condition was not achieved. Davari and Dhall [7] proposed a
variation of the rate-monotonic first-fit, the first-fit decreasing
utilization, in which tasks were sorted by their utilization.
Similarly, Oh and Son [26] proposed a best-fit decreasing uti-
lization in which tasks were allocated to the cores that would
then have the least remaining utilization. However, all these
approaches did not consider the effect that interferences have
on the WCET estimation. Jain et al. [6] proposed a scheduler
for a two-way simultaneous multithreading processor in which
the WCET estimation for each soft real-time task depends on
the co-running task. In this case, there is a single hardware
configuration so the execution environment of each task only
depends on the particular soft real-time task with which it is
executed. This approach has not been applied to hard real-time
systems.

Global scheduling approaches have also considered the
effect of the execution environment on WCET estimation.
Holman et al. [22] realized that scheduling all processors
simultaneously can result in a heavy bus contention at the
start of the scheduling quantum due to reloading data into
caches. To reduce such bus contention they presented a new
global scheduling model that distributes more uniformly the
bus traffic by shifting the scheduling decisions of the different
tasks. Anderson et al. [23] proposed a new task organization,
called megatasks as a way to reduce the miss rate in shared
caches on multicore platforms. Megatasks artificially inflate
their utilization factors in order to consider cache contention.
Both techniques have good results in the average case, re-
ducing the bus and cache contention. However, interferences
remain uncontrolled, and they are still unknown in the worst
case.

Kato et al. [5] considered the use of multiple execution
time estimations (EET) using U-Link Scheduling to schedule a
taskset in a soft real-time simultaneous multi-threading (SMT)
environment. Concretely, they provided the EET of a task in
an SMT execution environment based on WCET estimation
in a single-threading execution and the execution variation
introduced by the details of the other co-scheduled tasks. The
research presented in this paper differs from that of Kato et
al. in that our approach focuses on the WCET estimations
of each HRT considering only the parameters that determine
the execution environment in which a task runs, rather than
on estimations of the execution time variations due to details
of the various tasks when scheduling them in a simultaneous
multi-threading environment.

We note that multiple execution times per task have also
been considered as part of approaches to improve quality of
service on single processors [27].

The work of Pellizzoni et al. [28] considers the effect of
contention for access to main memory on WCETs of tasks.
This is done by abstracting the accesses of each interfering
core into an arrival curve which combined with peripheral
traffic gives a delay bound for the task under analysis. Again
this means that the analysis is dependent on the individual

characteristics of the tasks, rather than just the characteristics
of the execution environment.

To the best of our knowledge, IA3 is the first task allocation
algorithm that considers a matrix of WCET estimations for the
different execution environments in which tasks can run.

VIII. CONCLUSIONS

In this paper we presented IA3, an new off-line interference-
aware allocation algorithm for multicore processors. The IA3

is based on two novel concepts: the WCET-matrix and the
WCET-sensitivity.

The WCET-matrix is a z-dimensional vector space that
contains the WCET estimations of each task under different
execution environments. Each dimension represents a different
execution environment parameter (e.g. number of simultaneous
HRTs, size of the cache partition assigned to each core, etc.)
that makes the WCET estimation vary. The WCET-sensitivity
measures the impact of changing the execution environment,
i.e. modifying the parameters that define it, on the WCET
estimation. These two concepts allow IA3 to consider not just
a single WCET estimation but a set of WCET-estimations
generating a more efficient partitioning.

The target multicore architecture considered in this paper is
a four-core processor [2], [8], in which an execution environ-
ment can be identified based on the number of simultaneous
HRTs and the size of the cache partition assigned, and so
having a WCET-matrix of z = 2 dimensions.

In our simple experiments, comparing IA3 with a classical
first-fit decreasing partitioning scheme under the target archi-
tecture, IA3 is able to schedule, on average, 20% more tasksets.
Moreover, when considering the amount of resources used, IA3

schedules more than 70% of the tasksets with only 3 cores,
while the first-fit partitioning approach is able to schedule only
5% of the tasksets with 3 cores. Finally, using IA3 50% of the
tasksets that are scheduled using 3 cores require less than 96
KB of cache, and so leaving one free core and 32KB of cache
to NRTs. Instead, using first-fit only 15% of the tasksets that
are scheduled in four cores require less than 64 KB, which
does not leave any core to NRTs.

ACKNOWLEDGMENTS

This work has been mainly funded by MERASA STREP-
FP7 European Project under the grant agreement number
216415. Marco Paolieri is partially supported by the Cata-
lan Ministry for Innovation, Universities and Enterprise of
the Catalan Government and European Social Funds. Ed-
uardo Quiñones is partially funded by the Spanish Ministry
of Science and Innovation under the grant Juan de la Cierva
JCI2009-05455. Robert Davis is partially funded by the EP-
SRC Tempo project (EP/G055548/1) and the EU ArtistDesign
Network of Excellence. Authors would also like to thank
Professor Alan Burns and Guillem Bernat for their helpful
comments.

REFERENCES

[1] MERASA EU-FP7 Project: www.merasa.org, 2007.
[2] M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat, and M. Valero,

“Hardware support for WCET analysis of hard real-time multicore
systems,” in ISCA, 2009.

[3] D. Chiou, P. Jain, S. Devadas, and L. Rudolph, “Dynamic cache
partitioning via columnization,” in DAC, Los Angeles, CA, USA, 2000.
[Online]. Available: citeseer.ist.psu.edu/chiou00dynamic.html

[4] RapiTime: WCET analysis. User Guide. Rapita Systems. Ltd., 2007.
[5] S. Kato and N. Yamasaki, “Extended u-link scheduling to increase the

execution efficiency for smt real-time systems,” Real-Time Computing
Systems and Applications, International Workshop on, vol. 0, pp. 373–
377, 2006.

[6] R. Jain, C. J. Hughes, and S. V. Adve, “Soft real- time scheduling on
simultaneous multithreaded processors,” in RTSS, 2002, p. 134.

[7] S. Davari and S. Dhall, “An on line algorithm for real-time allocation,”
in ICSS, 1986, pp. 133–141.

[8] M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero, “An analyzable
memory controller for hard real-time CMPs,” in Embedded System
Letter, 2009.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[10] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son, “New strategies
for assigning real-time tasks to multiprocessor systems,” IEEE Trans.
Comput., vol. 44, no. 12, pp. 1429–1442, 1995.

[11] S. Dhall and C. L. Liu, “On a real-time scheduling problem,” in
Operation Research, 1978, pp. 127–140.

[12] Y. Oh and S. H. Son, “Allocating fixed-priority periodic tasks on
multiprocessor systems,” Real-Time Syst., vol. 9, no. 3, pp. 207–239,
1995.

[13] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling
of periodic and sporadic tasks,” in RTSS, 1991, pp. 129–139.

[14] DDR2 SDRAM specification JESD79-2E, JEDEC, 2008.
[15] J. W. Lee and K. Asanovic’, “Meterg: Measurement-based end-to-end

performance estimation technique in qos-capable multiprocessors,” in In
Proc. of the 12th RTAS, 2006, pp. 135–147.

[16] T. H. Cormen, C. E. Leiserson, R. L. R. Rivest, and C. Stein, Intro-
duction to Algorithms, Second Edition. MIT Press and McGraw-Hill,
2001.

[17] J. Poovey, Characterization of the EEMBC Benchmark Suite, North
Carolina State University, 2007.

[18] Tricore 1. 32-bit Unified Processor Core v1.3, Infineon, October 2005.
[19] R. Davis and A. Burns, “Priority assignment for global fixed priority

pre-emptive scheduling in multiprocessor real-time systems,” in RTSS,
Washington, USA, 2009.

[20] R. Davis and A. Burns, “Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,”
Real-Time Systems, 2010.

[21] J. Staschulat, S. Schliecker, and R. Ernst, “Scheduling analysis of real-
time systems with precise modeling of cache related preemption delay,”
in ECRTS, 2005, pp. 41–48.

[22] P. Holman and J. H. Anderson, “Adapting pfair scheduling for symmetric
multiprocessors,” Journal of Embedded Computing, vol. 1, no. 4, pp.
543–564, 2005.

[23] J. H. Anderson, J. M. Calndrino, and D. C. UmaMaheswari, “Real-time
scheduling on multicore platforms,” in RTAS, 2006, pp. 179–190.

[24] P. Emberson and I. Bate, “Extending a task allocation algorithm for
graceful degradation of real-time distributed embedded systems,” in
RTSS, 2008, pp. 270–279.

[25] R. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Survey (to appear), 2010.

[26] Y. Oh and S. H. Son, “Tight performance bounds of heuristics for a
real-time scheduling problem,” Charlottesville, VA, USA, Tech. Rep.,
1993.

[27] K. jay Lin, S. Natarajan, and J. Liu, “Imprecise results: Utilizing partial
computations in real-time systems,” in RTSS, 1987.

[28] R. Pellizzoni, A. Schranzhofery, J.-J. Cheny, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore sys-
tems,” in DATE, 2010.

