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◼ Focus of this Research

◼ Perception in autonomous mobile Cyber-Physical Systems is typically performed 

using classifiers that are based on Deep Learning (Deep Neural Networks)

◼ How to minimize the expected duration (average time) to successful classification, 

subject to constraints on classification quality, and optionally a hard constraint on the 

worst-case latency

◼ Approach

◼ Uses an ensemble of classifiers that can individually return either a class or say

“I Don’t Know” (IDK)

◼ The problem is to decide on the optimal order in which the IDK classifiers should run 

to minimize the overall expected duration subject to constraints on classification 

quality and worst-case latency, given the classifier’s execution times, success 

probabilities, and dependences
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Overview



◼ Base Classifier

◼ Takes an input sample and outputs the class that it determines most likely matches 

the input sample, and a confidence that indicates how confident it is that the input 

sample belongs to the class

◼ Examples
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Background: Classifiers
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◼ IDK Classifier

◼ Augments a base classifier with a confidence threshold: If the confidence is below 

the threshold then it outputs “I Don’t Know” (IDK) otherwise it outputs the class

◼ A precision threshold (not shown) indicates the long run proportion of a classifier’s 

non-IDK outputs that must be correct, in other words in agreement with the ground 

truth, and is used to set the confidence threshold (as discussed later)

◼ Examples
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Background: Classifiers
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◼ Variety of Classifiers

◼ Classifiers can make different trade offs between accuracy and execution time

◼ For example by using more layers in a Deep Neural Network (DNN) to obtain more 

accurate results at the expense of a longer run time

◼ Classifiers can also be used on different granularity images, for example 64 x 64,

256 x 256, or 1024 x 1024 pixels, to trade-off run-time versus accuracy

◼ Classifiers can also use completely different types of data from an input sample, for 

example vision, acoustic, and seismic data

◼ Examples
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Background: Classifiers
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◼ Probability of Successful Classification

◼ Each IDK classifier (Ki) is characterized by an average execution time     , a worst-

case execution time Ci and a probability Pi of successful classification (i.e. returning a 

class rather than IDK)

◼ Dependences

◼ In some cases these probabilities may be pair-wise independent, meaning that the 

probability that one classifier will output a real class is independent of whether it is 

run on all inputs or on only those inputs where the other classifier outputs IDK

◼ Classifiers that operate on disparate parts of an input sample, for example image and 

seismic data, may in some cases be independent

◼ Classifiers that operate on different resolutions of the same image are typical not 
independent, but rather may be fully dependent, meaning that the classifier operating 
at a lower resolution is only able to successfully classify a strict subset of the input 
samples that the more powerful classifier operating at a higher resolution can identify

◼ In general classifiers may exhibit arbitrary dependences (introduced by the 
environment, by the training process, and by common components and algorithms)

This work considers classifiers which exhibit arbitrary dependences between their 

probabilities of successful classification 6

IDK Classifier Model



◼ IDK Cascades

◼ An IDK cascade is an ordered list of IDK classifiers

◼ On a single processor, an IDK cascade comprises a linear sequence of IDK classifiers 

that is invoked as follows for any input sample that needs to be classified

1. The first classifier in the IDK cascade is executed

2. If it outputs a real class, rather than IDK, then the IDK cascade terminates and 

characterizes the input sample as being of the identified class

3. Otherwise, the classifier outputs IDK, the subsequent classifier in the IDK 

cascade runs and the process continues from step 2.

◼ If it is a requirement that all inputs are successfully classified, then the last classifier 

in the IDK cascade must always succeed

◼ A classifier that always succeeds is referred to as a deterministic classifier, and has 

Pi=1

◼ Alternatively, the overall probability of successful classification may be required to 

reach some classification threshold (L), such that the long run proportion of inputs to 

the IDK cascade that result in a real class is at least L
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Scheduling IDK Classifiers
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IDK Cascades: Examples
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◼ ResNet
◼ Case study from the domain of (camera) image classification

◼ Used classifiers based on the ResNet Deep Residual Network:

- ResNet-18

- ResNet-34

- ResNet-50

- ResNet-152

◼ ResNet-x implies x layers in the neural network, with larger numbers of layers 

typically improving classification quality at the expense of a longer execution time

◼ Used a representative data-set of 50,000 test images from the validation set of the 

ImageNet Large Scale Visual Recognition Challenge

◼ Classifiers were run on an NVIDIA Jetson TX2
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Validation: ResNet Case Study



◼ Multi-Modal 

◼ Case study based on data from a project that seeks to autonomously detect enemy 

vehicles in a battlefield environment

◼ Uses multi-modal classifiers that analyse camera images, acoustic, and seismic data

◼ Initially four classifiers were studied (see paper for more details):

- deepsense_both_contras,

- cnn_acoustic,

- deepsense_seismic,

- yolov5s-compressed

◼ Up to nine classifiers in all, using different combinations of modal data and 

compression 

◼ Made use of the entire available data-set of 1800 input samples

◼ Classifiers were run on a Raspberry Pi 4
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Validation: Multi-Modal Case Study



◼ Profiling Phase

◼ Creates a profile table for each classifier based on representative input data 

augmented by ground truths

◼ Uses the information in the profile table to set the confidence threshold for each IDK 

classifier based on a required precision threshold

◼ Derives a probability table from the profile tables for all the IDK classifiers, 

capturing their dependences

◼ Synthesis Phase

◼ Builds a DAG-based representation of all possible IDK cascades

◼ Evaluates the cost of edges in the DAG using information from the probability table

◼ Prunes the vertices and edges to cater for a latency constraint and a classification 

threshold

◼ Uses a standard topological ordering algorithm to determine an Optimal IDK 

Cascade and its characteristics
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Overview of the Approach



◼ Initialize the Profile Table

◼ The base classifiers are profiled against N representative input samples with known 

ground truths

◼ Each input sample contains data for all modalities of the classifiers, for example 

image, acoustic, seismic and so on

◼ The set of input samples must be representative of the population of all possible inputs 

(typically the data sets used in verifying classifier performance can be re-used for 

profiling)

◼ This creates a profile table with a row for each of the N input samples giving the 

(class, confidence) pair output by each of the base classifiers along with the ground 

truth class

◼ The precision threshold is then used to set the confidence threshold Hi for each IDK 

classifier, with input samples assigned a confidence below the confidence threshold 

resulting in IDK being returned

A precision threshold of 0.95 ensures that when an IDK classifier returns a real class, 

rather than IDK, we can expect it to be correct (i.e. in accordance with the ground 

truth) 95% of the time
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Profiling Phase: Profile Table



◼ Set the Confidence Thresholds
◼ A minimum confidence 

threshold Hi is set for each 

classifier such that the 

proportion of input samples 

with a confidence above the 

threshold that are correctly 

classified (according to the 

ground truth) is no less than 

the required precision 

threshold (e.g. 0.95)

◼ A precision threshold of 0.95 

results in a confidence

threshold of about 0.9 for all 

of the ResNet classifiers

13

Profiling Phase: Confidence Thresholds



◼ A confidence threshold of 

about 0.9 for the ResNet

classifiers results in different 

proportions of IDKs returned

◼ This is because the confidence 

levels of classifiers with fewer 

layers are typically lower 

resulting in more IDKs at the 

same threshold

◼ For example, we obtain nearly 

60% IDKs with ResNet-18, 

compared to about 40% IDKs 

with ResNet-152
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Profiling Phase: Confidence Thresholds

◼ Effect on the proportion of IDKs



◼ Probability Table

◼ Once a confidence threshold 

has been set for each 

classifier, the profile table 

can be updated to indicate the 

inputs samples for which each 

classifier returns IDK

◼ A probability table can then 

be constructed indicating:

(i) the probability Prob-S that 

exactly the classifiers with a 1 

in the specified pattern will 

return a real class and those 

with a 0 will return IDK

(ii) the probability Prob-A

that any one of the classifiers 

with a 1 in the pattern will 

return a real class
15

Profiling Phase: Probability Table
ResNet Case Study: Probability Table



◼ Probability Table
◼ The Prob-S values come 

directly from the frequency of 
occurrence of the pattern in 
the profile table

◼ The Prob-A values are 
computed from the Prob-S 
values in time that is quadratic 
in the number of rows, which 
is O(4n) overall, since there 
are 2n rows in the table
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Profiling Phase : Probability Table

Probability Prob-S that classifiers

B, C, and D return a real class

and classifier A returns IDK

Probability Prob-A that at least one of

B, C, or D returns a real class

Pattern

Multi-Modal Case Study: Probability Table



◼ Dependences in Behaviour
◼ Compared classifier behaviour

(1: non-IDK, 0: IDK) for N input 
samples

◼ Computed Pearson’s correlation 
coefficient

◼ ResNet classifiers shows strong 
(>0.5) degrees of correlation (red)

◼ Multi-Modal classifiers show 
moderate (0.1-0.5) (orange),
weak (0.05-0.1) (yellow),
very weak (<0.05) (green)
degrees of correlation
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Profiling Phase: Dependences

ResNet: Pearson’s correlation coefficient

Multi-Modal: Pearson’s correlation coefficient

As expected, many pairs of classifiers exhibit arbitrary dependences



◼ Dependences in Execution Times
◼ Compared classifier execution times 

(1: > median, 0: ≤ median)

◼ Computed Pearson’s correlation 
coefficient

◼ All classifiers shows weak or very 
weak degrees of correlation

◼ Using a Chi-squared test indicates no 
evidence against a null hypothesis of 
independence for some pairs of 
classifiers, but not for others

◼ In conclusion the majority of the 
execution time is independent, with a 
small component (<7%) that is 
dependent

◼ Validates that an assumption of 
independence for execution times is a 
reasonable approximation
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Profiling Phase: Dependences

ResNet: Pearson’s correlation coefficient

Multi-Modal: Pearson’s correlation coefficient

Our subsequent analysis assumes that 

execution times are independent but the 

classifier behaviour is not



◼ Probabilities

◼ Consider an IDK cascade of classifiers in order:

◼ Let          be the probability that at least one of the classifiers in the subset S returns a 

real class and not IDK, and is given by the Prob-A values in the probability table

◼ The expected duration of an IDK cascade is given by:

since each IDK classifier only executes if all of the previously finished classifiers 

returned IDK 

◼ Previous work

◼ Prior research published in “Optimally ordering IDK classifiers subject to deadlines” 

showed how to compute these values for IDK classifiers with independent or fully 

dependent behaviour and provided algorithms for determining optimal IDK cascades 

in those cases

This research provides analysis and algorithms for determining optimal IDK cascades in the 

practical case of IDK classifiers with arbitrary dependences 
19

Analysing IDK Cascades



◼ Analysis

◼ For any arbitrary IDK cascade, we can compute:

(i) the expected duration (formula on previous slide)

(ii) the worst-case duration (sum of the execution times), and

(iii) the probability of successful classification (        , i.e. Prob-A, where S is the set of 

all classifiers in the cascade)

◼ Hence we can determine if each IDK cascade complies with a given latency 

constraint on its worst-case duration, and a given classification threshold on the 

overall probability of successful classification 

◼ Permutations

◼ The number of possible IDK cascades grows as a factorial with increasing n (number 

of classifiers) 

◼ A more nuanced approach, than brute-force evaluation of all possibilities, is needed to 

find an optimal IDK cascade, i.e. with the minimum expected duration that complies 

with the constraints
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Synthesizing Optimal IDK Cascades



◼ DAG-based representation

◼ To avoid factorial complexity we employ a 

graph-based representation in the form of a 

Directed Acyclic Graph (DAG)

◼ Each vertex corresponds to a unique subset

of the n IDK classifiers, hence there are

2n − 1 such vertices

◼ We also include a start vertex X and an exit 

vertex E

◼ A directed edge connects each vertex 

representing a subset of IDK classifiers 

with each of the vertices that represents the 

same subset extended via the addition of 

exactly one further classifier

◼ In addition there is a directed edge from all 

other vertices to the exit vertex E
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Synthesizing Optimal IDK Cascades



◼ Paths and Edges

◼ Each unique permutation of classifiers 

forming an IDK cascade corresponds to a 

path through the DAG, from start to exit

◼ On a given path the corresponding IDK 

cascade can be recovered by collecting the 

classifiers that are added in moving from 

one vertex to the next

◼ For example the path X → A → AC → 

ACD → ABCD → E (highlighted in red) 

corresponds to the IDK cascade 

⟨A,C,D,B,E⟩

◼ A directed edge represents the cost                             

of adding the new classifier to any sub-

sequence formed from all of the classifiers 

in the subset S represented by the previous 

vertex
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Synthesizing Optimal IDK Cascades



◼ Paths and Edges

◼ For example, the edge from ACD to ABCD 

represents the addition of classifier B with a 

cost of 

◼ Importantly, this is the case irrespective of 

which path was taken to reach vertex ACD, 

since the cost depends only on the set of 

classifiers ACD, and not on their order

◼ Once the DAG has been constructed, the 

problem of finding the optimal IDK 

cascade is reduced to finding the shortest 

path, which can be achieved, in time linear 

in the number of edges plus vertices, using 

standard topological ordering algorithms

◼ Complexity is thus O(n2n), i.e. exponential 

rather than factorial, hence the method is 

effective for up to 20 classifiers
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Synthesizing Optimal IDK Cascades



◼ Latency Constraint

◼ Can be accounted for by summing the 

execution time of all classifiers in each 

vertex and then deleting those vertices (and 

adjoining edges) where this worst-case 

duration exceeds the latency constraint

◼ For example in the DAG shown, BCD and 

ABCD have been removed

◼ Classification Threshold

◼ Can be accounted for by determining the 

probability of success         for the subset S

of classifiers in each vertex, and then 

deleting the edge to the exit from each 

vertex where this probability is less than the 

classification threshold

◼ For example, in the DAG shown only ABC, 

ABD, and ACD meet the classification 

threshold and have edges to the exit vertex 24

Synthesizing Optimal IDK Cascades



◼ Classifiers

◼ (A) ResNet-18,

(B) ResNet-34,

(C) ResNet-50,

(D) ResNet-152, and

(E) a hypothetical 

deterministic classifier

◼ 65 possible IDK cascades 

◼ Optimal IDK cascade

◼ ⟨A,C,B,D,E⟩ with an expected 

duration of 405.39ms

◼ Assuming independence 

would result in ⟨A,B,C,D,E⟩
being wrongly selected as 

optimal, with an underestimate 

of 111ms for the expected 

duration
25

Case Study: ResNet



◼ Classifiers

◼ (A) deepsense_both_contras, 

(B) cnn_acoustic,

(C) deepsense_seismic,

(D) yolov5s-compressed, and

(E) a hypothetical deterministic 

classifier

◼ 65 possible IDK cascades 

◼ Optimal IDK cascade

◼ ⟨C,B,A,D,E⟩ with an expected 

duration of 242.5ms

◼ Assuming independence would 

result in the same IDK cascade 

being selected as optimal, with 

an underestimate of 110.2ms 

for the expected duration
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Case Study: Multi-Modal



◼ Latency Constraint

◼ Max latency of 1100ms

◼ ⟨B,C,E⟩ is the optimal IDK 

cascade, with an expected 

duration of 446.43ms

◼ Pareto Front

◼ Graph shows how the 

minimum expected duration 

(y-axis) varies with the 

latency constraint (x-axis)

◼ The longer the permitted 

latency, the more the 

expected duration can be 

reduced

◼ 11 Pareto optimal IDK 

cascades
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Case Study: ResNet

ResNet: Pareto Optimal IDK Cascades
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Case Study: Multi-Modal

◼ Latency Constraint

◼ Max latency of 5030ms

◼ ⟨B,A,E⟩ is the optimal IDK 

cascade, with an expected 

duration of 411.6ms

◼ Pareto Front

◼ Graph shows how the 

minimum expected duration 

(y-axis) varies with the 

latency constraint (x-axis)

◼ The longer the permitted 

latency, the more the 

expected duration can be 

reduced

◼ 9 Pareto optimal IDK 

cascades

MultiModal: Pareto Optimal IDK Cascades
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Validation: ResNet

◼ Validation
◼ Used 10,000 images from the “TopImages” version of the ImageNetV2 data set

◼ Difference in computed and actual duration and between computed and actual 
probability of classification is between 2% and 4%

◼ Strong validation result given the disparate data sets used for profiling and 
validation
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Case Study: Complete Multi-Modal

◼ Nine IDK Classifiers

◼ Optimal IDK Cascades
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Case Study: Complete Multi-Modal

◼ Dependences: Behaviour

◼ Dependences: Execution Times



◼ Model

◼ m processors, so up to m IDK classifiers can run in parallel (non-pre-emptively) 

◼ Each classifier (Ki) takes the same execution time      and has the same probability of 

successful classification (Pi), irrespective of which processor it executes on

◼ Make a simplifying assumption of constant execution times       (or at least constant 

processor hold times) 

◼ Analysis

◼ The ordered finish times ( fi) for each classifier determine the expected duration, i.e. 

elapsed time required for the IDK cascade (irrespective of the scheduling policy or 

processor allocation):

◼ The formula is derived by observing that the probability of execution continuing 

between one finish time fi and the next fi+1 depends only on the probability of 

successful classification by those classifiers that have finished by the earlier finish 

time fi

◼ To cater for a classification threshold L, we can terminate the summation once the 

threshold has been reached i.e. once 33

IDK cascades on Multiple Processors



By an IDK cascade on multiple processors, we mean an allocation of classifiers to processors 

and a schedule of classifiers on each processor

◼ Theorems and Proofs (in the paper)

◼ Lemma 1: An optimal IDK cascade is locally work conserving, in other words no 

processor becomes idle until all classifiers allocated to it have finished

◼ Lemma 2: An optimal IDK cascade is globally work conserving, in other words it 

leaves no processor idle when there is a classifier to run

◼ Theorem 1: List scheduling of an appropriate ordered list of classifiers suffices to 

provide an optimal IDK cascade

(List scheduling means that whenever a processor becomes idle, it takes the next 

available classifier in the ordered list and runs it)

◼ Permutations

◼ Theorem 1 implies that an optimal IDK cascade can be found by considering each 

permutation of the n classifiers as a list and determining the corresponding allocation, 

schedule, and hence expected duration (from the finish time formula)

◼ Issue is that this brute-force approach has factorial complexity, a more nuanced 

approach is therefore needed 34

IDK cascades on Multiple Processors



◼ DAG-based representation 

◼ Difficulties

◼ Unlike in the single processor case, 

classifiers do not necessarily finish 

in the same order as they start 

executing

◼ For example the schedules on two 

processors for IDK cascades

⟨A,B,C,D,E⟩, ⟨A,D,B,C,E⟩, 
⟨A,D,E,B,C⟩, and ⟨A,E,D,B,C,⟩ are 

shown in the diagram

◼ In the first schedule, classifier C 

starts before D, but finishes later

◼ This complicates the DAG-based 

representation as it needs to keep 

track of which classifiers are 

running and which have completed
35

Synthesizing an Optimal IDK Cascade 

for Multiple Processors



◼ DAG-based representation 

◼ Each vertex represents m completed sets 

and m running sets (one per processor)

◼ Each of the n classifiers may appear in at 

most one of these sets, with at most one 

classifier in each running set

◼ Each vertex records a finishing time equal 

to the minimum makespan given the 

allocated classifiers in the sets

◼ Also records the set S of all classifiers in 

the m completed sets and hence the 

probability          of successful 

classification

◼ Cost of an edge given by:

based on the finish times at the previous 

and next vertices and the set S of 

classifiers at the previous vertex
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Synthesizing an Optimal IDK Cascade 

for Multiple Processors

Full details of the DAG-based representation 

and solution are given in the paper



◼ Classifiers

◼ Classification Thresholds (single processor)
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Case Study: Complete Multi-Modal



◼ Classification Thresholds (multiple processors)
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Case Study: Complete Multi-Modal
Single processor

Two processor

Three processor

Four processor

75%
65%

67%
64%

64%
53%

100%
100%



◼ Optimized C++ Implementation

◼ Computed the minimum cost for each 

vertex on-the-fly during construction of 

the DAG, with a pointer back to the 

previous vertex corresponding to that 

minimum, which avoids storing edges

◼ Used a large hash table (226 entries) to 

detect and eliminate duplicate vertices

◼ Pruned vertices, during construction, to 

obtain compliance with the latency 

constraint and classification threshold

◼ Used a simplified algorithm for the 

single processor case with a smaller 

hash table (220 entries)

◼ Run on a laptop PC (Lenovo ThinkPad, 

Intel Core i5 CPU 1.60GHz, 16 GBytes

RAM, Windows 10)
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Proof-of-Concept Implementation:

DAG-based approach

Full details of the DAG-based 

implementation are given in the paper



◼ Synthetic test case

◼ Approximates the worst-case

◼ Scalable to n classifiers 

◼ Assumes:

The classifiers have disjoint 

probabilities of 1/n and a 

classification threshold of 1, 

so that all n classifiers have 

to be used

No latency constraint, so no 

pruning of vertices

◼ Limited memory usage to 

24Gbytes (paged)

◼ Graph shows that the space 

complexity is exponential, 

with straight lines against a 

log scale for the y-axis
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Proof-of-Concept Implementation:

Efficiency

Space Complexity: Number of Vertices



◼ Synthetic test case

◼ Limited run-time to about 1200 

seconds (20 mins)

◼ Decrease in run-time from 6 to 7 

classifiers due to cache warm up

◼ Roughly constant runtime for 6-11 

classifiers due to initializing large 

hash table (constant overhead)

◼ Summary

◼ Implementation supports:

20 classifiers on 1 processors

16 classifiers on 2 processors

13 classifiers on 3-6 processors

◼ Unlikely that more than about 12 

classifiers would be used for the 

same problem – so this approach 

represents a practical solution
41

Proof-of-Concept Implementation:

DAG-based approach

Time Complexity: Runtime



◼ Summary

◼ Prior work showed how optimal IDK cascades can be synthesized for single 

processors, but made the unrealistic assumptions about independence or full 

dependence

◼ This work enables the synthesis of optimal IDK cascades in the practical case of 

classifiers with arbitrary dependences, as well as introducing solutions for the case of 

multiple processors

◼ It also caters for latency constraints and realistic classification thresholds, rather than 

requiring the presence of a deterministic classifier that can classify all inputs

◼ The complexity of the approach is exponential (rather than factorial) and provides 

solutions for up to 20 classifiers on a single processor, and 13 or more classifiers on 

multiple processors

◼ The problem is NP-complete on multiple processors (as shown in the paper), 

effectively necessitating exponential complexity to find optimal solutions

◼ Effectiveness of the approach has been demonstrated on two real-world case studies: 

ResNet and Multi-Modal
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Conclusions
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Discussion and Questions? 
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