
Scheduling IDK Classifiers with Arbitrary
Dependences to Minimize the Expected

Time to Successful Classification

Tarek Abdelzaher, Kunal Agrawal, Sanjoy Baruah, Alan Burns,

Robert I. Davis, Zhishan Guo, Yigong Hu

◼ Focus of this Research

◼ Perception in autonomous mobile Cyber-Physical Systems is typically performed

using classifiers that are based on Deep Learning (Deep Neural Networks)

◼ How to minimize the expected duration (average time) to successful classification,

subject to constraints on classification quality, and optionally a hard constraint on the

worst-case latency

◼ Approach

◼ Uses an ensemble of classifiers that can individually return either a class or say

“I Don’t Know” (IDK)

◼ The problem is to decide on the optimal order in which the IDK classifiers should run

to minimize the overall expected duration subject to constraints on classification

quality and worst-case latency, given the classifier’s execution times, success

probabilities, and dependences

2

Overview

◼ Base Classifier

◼ Takes an input sample and outputs the class that it determines most likely matches

the input sample, and a confidence that indicates how confident it is that the input

sample belongs to the class

◼ Examples

3

Background: Classifiers

Base
Classifier 1

Base
Classifier 1

Base
Classifier 1

(“SUV”, 0.92)

(“HGV”, 0.94)

(“HGV”, 0.65)

◼ IDK Classifier

◼ Augments a base classifier with a confidence threshold: If the confidence is below

the threshold then it outputs “I Don’t Know” (IDK) otherwise it outputs the class

◼ A precision threshold (not shown) indicates the long run proportion of a classifier’s

non-IDK outputs that must be correct, in other words in agreement with the ground

truth, and is used to set the confidence threshold (as discussed later)

◼ Examples

4

Background: Classifiers

IDK
Classifier 1

IDK
Classifier 1

IDK
Classifier 1

“SUV”

“HGV”

IDK

Confidence threshold = 0.9

◼ Variety of Classifiers

◼ Classifiers can make different trade offs between accuracy and execution time

◼ For example by using more layers in a Deep Neural Network (DNN) to obtain more

accurate results at the expense of a longer run time

◼ Classifiers can also be used on different granularity images, for example 64 x 64,

256 x 256, or 1024 x 1024 pixels, to trade-off run-time versus accuracy

◼ Classifiers can also use completely different types of data from an input sample, for

example vision, acoustic, and seismic data

◼ Examples

5

Background: Classifiers

IDK
Classifier 1

IDK
Classifier 2

IDK

“HGV”

◼ Probability of Successful Classification

◼ Each IDK classifier (Ki) is characterized by an average execution time , a worst-

case execution time Ci and a probability Pi of successful classification (i.e. returning a

class rather than IDK)

◼ Dependences

◼ In some cases these probabilities may be pair-wise independent, meaning that the

probability that one classifier will output a real class is independent of whether it is

run on all inputs or on only those inputs where the other classifier outputs IDK

◼ Classifiers that operate on disparate parts of an input sample, for example image and

seismic data, may in some cases be independent

◼ Classifiers that operate on different resolutions of the same image are typical not
independent, but rather may be fully dependent, meaning that the classifier operating
at a lower resolution is only able to successfully classify a strict subset of the input
samples that the more powerful classifier operating at a higher resolution can identify

◼ In general classifiers may exhibit arbitrary dependences (introduced by the
environment, by the training process, and by common components and algorithms)

This work considers classifiers which exhibit arbitrary dependences between their

probabilities of successful classification 6

IDK Classifier Model

◼ IDK Cascades

◼ An IDK cascade is an ordered list of IDK classifiers

◼ On a single processor, an IDK cascade comprises a linear sequence of IDK classifiers

that is invoked as follows for any input sample that needs to be classified

1. The first classifier in the IDK cascade is executed

2. If it outputs a real class, rather than IDK, then the IDK cascade terminates and

characterizes the input sample as being of the identified class

3. Otherwise, the classifier outputs IDK, the subsequent classifier in the IDK

cascade runs and the process continues from step 2.

◼ If it is a requirement that all inputs are successfully classified, then the last classifier

in the IDK cascade must always succeed

◼ A classifier that always succeeds is referred to as a deterministic classifier, and has

Pi=1

◼ Alternatively, the overall probability of successful classification may be required to

reach some classification threshold (L), such that the long run proportion of inputs to

the IDK cascade that result in a real class is at least L

7

Scheduling IDK Classifiers

8

IDK Cascades: Examples

IDK
Classifier 3

IDK
Classifier 1

“HGV”

IDK?
IDK

Classifier 2
IDK?

IDK
Classifier 3

IDK
Classifier 1

IDK?
IDK

Classifier 2
IDK?

“HGV”

IDK?

◼ ResNet
◼ Case study from the domain of (camera) image classification

◼ Used classifiers based on the ResNet Deep Residual Network:

- ResNet-18

- ResNet-34

- ResNet-50

- ResNet-152

◼ ResNet-x implies x layers in the neural network, with larger numbers of layers

typically improving classification quality at the expense of a longer execution time

◼ Used a representative data-set of 50,000 test images from the validation set of the

ImageNet Large Scale Visual Recognition Challenge

◼ Classifiers were run on an NVIDIA Jetson TX2

9

Validation: ResNet Case Study

◼ Multi-Modal

◼ Case study based on data from a project that seeks to autonomously detect enemy

vehicles in a battlefield environment

◼ Uses multi-modal classifiers that analyse camera images, acoustic, and seismic data

◼ Initially four classifiers were studied (see paper for more details):

- deepsense_both_contras,

- cnn_acoustic,

- deepsense_seismic,

- yolov5s-compressed

◼ Up to nine classifiers in all, using different combinations of modal data and

compression

◼ Made use of the entire available data-set of 1800 input samples

◼ Classifiers were run on a Raspberry Pi 4

10

Validation: Multi-Modal Case Study

◼ Profiling Phase

◼ Creates a profile table for each classifier based on representative input data

augmented by ground truths

◼ Uses the information in the profile table to set the confidence threshold for each IDK

classifier based on a required precision threshold

◼ Derives a probability table from the profile tables for all the IDK classifiers,

capturing their dependences

◼ Synthesis Phase

◼ Builds a DAG-based representation of all possible IDK cascades

◼ Evaluates the cost of edges in the DAG using information from the probability table

◼ Prunes the vertices and edges to cater for a latency constraint and a classification

threshold

◼ Uses a standard topological ordering algorithm to determine an Optimal IDK

Cascade and its characteristics

11

Overview of the Approach

◼ Initialize the Profile Table

◼ The base classifiers are profiled against N representative input samples with known

ground truths

◼ Each input sample contains data for all modalities of the classifiers, for example

image, acoustic, seismic and so on

◼ The set of input samples must be representative of the population of all possible inputs

(typically the data sets used in verifying classifier performance can be re-used for

profiling)

◼ This creates a profile table with a row for each of the N input samples giving the

(class, confidence) pair output by each of the base classifiers along with the ground

truth class

◼ The precision threshold is then used to set the confidence threshold Hi for each IDK

classifier, with input samples assigned a confidence below the confidence threshold

resulting in IDK being returned

A precision threshold of 0.95 ensures that when an IDK classifier returns a real class,

rather than IDK, we can expect it to be correct (i.e. in accordance with the ground

truth) 95% of the time

12

Profiling Phase: Profile Table

◼ Set the Confidence Thresholds
◼ A minimum confidence

threshold Hi is set for each

classifier such that the

proportion of input samples

with a confidence above the

threshold that are correctly

classified (according to the

ground truth) is no less than

the required precision

threshold (e.g. 0.95)

◼ A precision threshold of 0.95

results in a confidence

threshold of about 0.9 for all

of the ResNet classifiers

13

Profiling Phase: Confidence Thresholds

◼ A confidence threshold of

about 0.9 for the ResNet

classifiers results in different

proportions of IDKs returned

◼ This is because the confidence

levels of classifiers with fewer

layers are typically lower

resulting in more IDKs at the

same threshold

◼ For example, we obtain nearly

60% IDKs with ResNet-18,

compared to about 40% IDKs

with ResNet-152

14

Profiling Phase: Confidence Thresholds

◼ Effect on the proportion of IDKs

◼ Probability Table

◼ Once a confidence threshold

has been set for each

classifier, the profile table

can be updated to indicate the

inputs samples for which each

classifier returns IDK

◼ A probability table can then

be constructed indicating:

(i) the probability Prob-S that

exactly the classifiers with a 1

in the specified pattern will

return a real class and those

with a 0 will return IDK

(ii) the probability Prob-A

that any one of the classifiers

with a 1 in the pattern will

return a real class
15

Profiling Phase: Probability Table
ResNet Case Study: Probability Table

◼ Probability Table
◼ The Prob-S values come

directly from the frequency of
occurrence of the pattern in
the profile table

◼ The Prob-A values are
computed from the Prob-S
values in time that is quadratic
in the number of rows, which
is O(4n) overall, since there
are 2n rows in the table

16

Profiling Phase : Probability Table

Probability Prob-S that classifiers

B, C, and D return a real class

and classifier A returns IDK

Probability Prob-A that at least one of

B, C, or D returns a real class

Pattern

Multi-Modal Case Study: Probability Table

◼ Dependences in Behaviour
◼ Compared classifier behaviour

(1: non-IDK, 0: IDK) for N input
samples

◼ Computed Pearson’s correlation
coefficient

◼ ResNet classifiers shows strong
(>0.5) degrees of correlation (red)

◼ Multi-Modal classifiers show
moderate (0.1-0.5) (orange),
weak (0.05-0.1) (yellow),
very weak (<0.05) (green)
degrees of correlation

17

Profiling Phase: Dependences

ResNet: Pearson’s correlation coefficient

Multi-Modal: Pearson’s correlation coefficient

As expected, many pairs of classifiers exhibit arbitrary dependences

◼ Dependences in Execution Times
◼ Compared classifier execution times

(1: > median, 0: ≤ median)

◼ Computed Pearson’s correlation
coefficient

◼ All classifiers shows weak or very
weak degrees of correlation

◼ Using a Chi-squared test indicates no
evidence against a null hypothesis of
independence for some pairs of
classifiers, but not for others

◼ In conclusion the majority of the
execution time is independent, with a
small component (<7%) that is
dependent

◼ Validates that an assumption of
independence for execution times is a
reasonable approximation

18

Profiling Phase: Dependences

ResNet: Pearson’s correlation coefficient

Multi-Modal: Pearson’s correlation coefficient

Our subsequent analysis assumes that

execution times are independent but the

classifier behaviour is not

◼ Probabilities

◼ Consider an IDK cascade of classifiers in order:

◼ Let be the probability that at least one of the classifiers in the subset S returns a

real class and not IDK, and is given by the Prob-A values in the probability table

◼ The expected duration of an IDK cascade is given by:

since each IDK classifier only executes if all of the previously finished classifiers

returned IDK

◼ Previous work

◼ Prior research published in “Optimally ordering IDK classifiers subject to deadlines”

showed how to compute these values for IDK classifiers with independent or fully

dependent behaviour and provided algorithms for determining optimal IDK cascades

in those cases

This research provides analysis and algorithms for determining optimal IDK cascades in the

practical case of IDK classifiers with arbitrary dependences
19

Analysing IDK Cascades

◼ Analysis

◼ For any arbitrary IDK cascade, we can compute:

(i) the expected duration (formula on previous slide)

(ii) the worst-case duration (sum of the execution times), and

(iii) the probability of successful classification (, i.e. Prob-A, where S is the set of

all classifiers in the cascade)

◼ Hence we can determine if each IDK cascade complies with a given latency

constraint on its worst-case duration, and a given classification threshold on the

overall probability of successful classification

◼ Permutations

◼ The number of possible IDK cascades grows as a factorial with increasing n (number

of classifiers)

◼ A more nuanced approach, than brute-force evaluation of all possibilities, is needed to

find an optimal IDK cascade, i.e. with the minimum expected duration that complies

with the constraints

20

Synthesizing Optimal IDK Cascades

◼ DAG-based representation

◼ To avoid factorial complexity we employ a

graph-based representation in the form of a

Directed Acyclic Graph (DAG)

◼ Each vertex corresponds to a unique subset

of the n IDK classifiers, hence there are

2n − 1 such vertices

◼ We also include a start vertex X and an exit

vertex E

◼ A directed edge connects each vertex

representing a subset of IDK classifiers

with each of the vertices that represents the

same subset extended via the addition of

exactly one further classifier

◼ In addition there is a directed edge from all

other vertices to the exit vertex E

21

Synthesizing Optimal IDK Cascades

◼ Paths and Edges

◼ Each unique permutation of classifiers

forming an IDK cascade corresponds to a

path through the DAG, from start to exit

◼ On a given path the corresponding IDK

cascade can be recovered by collecting the

classifiers that are added in moving from

one vertex to the next

◼ For example the path X → A → AC →

ACD → ABCD → E (highlighted in red)

corresponds to the IDK cascade

⟨A,C,D,B,E⟩

◼ A directed edge represents the cost

of adding the new classifier to any sub-

sequence formed from all of the classifiers

in the subset S represented by the previous

vertex

22

Synthesizing Optimal IDK Cascades

◼ Paths and Edges

◼ For example, the edge from ACD to ABCD

represents the addition of classifier B with a

cost of

◼ Importantly, this is the case irrespective of

which path was taken to reach vertex ACD,

since the cost depends only on the set of

classifiers ACD, and not on their order

◼ Once the DAG has been constructed, the

problem of finding the optimal IDK

cascade is reduced to finding the shortest

path, which can be achieved, in time linear

in the number of edges plus vertices, using

standard topological ordering algorithms

◼ Complexity is thus O(n2n), i.e. exponential

rather than factorial, hence the method is

effective for up to 20 classifiers

23

Synthesizing Optimal IDK Cascades

◼ Latency Constraint

◼ Can be accounted for by summing the

execution time of all classifiers in each

vertex and then deleting those vertices (and

adjoining edges) where this worst-case

duration exceeds the latency constraint

◼ For example in the DAG shown, BCD and

ABCD have been removed

◼ Classification Threshold

◼ Can be accounted for by determining the

probability of success for the subset S

of classifiers in each vertex, and then

deleting the edge to the exit from each

vertex where this probability is less than the

classification threshold

◼ For example, in the DAG shown only ABC,

ABD, and ACD meet the classification

threshold and have edges to the exit vertex 24

Synthesizing Optimal IDK Cascades

◼ Classifiers

◼ (A) ResNet-18,

(B) ResNet-34,

(C) ResNet-50,

(D) ResNet-152, and

(E) a hypothetical

deterministic classifier

◼ 65 possible IDK cascades

◼ Optimal IDK cascade

◼ ⟨A,C,B,D,E⟩ with an expected

duration of 405.39ms

◼ Assuming independence

would result in ⟨A,B,C,D,E⟩
being wrongly selected as

optimal, with an underestimate

of 111ms for the expected

duration
25

Case Study: ResNet

◼ Classifiers

◼ (A) deepsense_both_contras,

(B) cnn_acoustic,

(C) deepsense_seismic,

(D) yolov5s-compressed, and

(E) a hypothetical deterministic

classifier

◼ 65 possible IDK cascades

◼ Optimal IDK cascade

◼ ⟨C,B,A,D,E⟩ with an expected

duration of 242.5ms

◼ Assuming independence would

result in the same IDK cascade

being selected as optimal, with

an underestimate of 110.2ms

for the expected duration

26

Case Study: Multi-Modal

◼ Latency Constraint

◼ Max latency of 1100ms

◼ ⟨B,C,E⟩ is the optimal IDK

cascade, with an expected

duration of 446.43ms

◼ Pareto Front

◼ Graph shows how the

minimum expected duration

(y-axis) varies with the

latency constraint (x-axis)

◼ The longer the permitted

latency, the more the

expected duration can be

reduced

◼ 11 Pareto optimal IDK

cascades

27

Case Study: ResNet

ResNet: Pareto Optimal IDK Cascades

28

Case Study: Multi-Modal

◼ Latency Constraint

◼ Max latency of 5030ms

◼ ⟨B,A,E⟩ is the optimal IDK

cascade, with an expected

duration of 411.6ms

◼ Pareto Front

◼ Graph shows how the

minimum expected duration

(y-axis) varies with the

latency constraint (x-axis)

◼ The longer the permitted

latency, the more the

expected duration can be

reduced

◼ 9 Pareto optimal IDK

cascades

MultiModal: Pareto Optimal IDK Cascades

30

Validation: ResNet

◼ Validation
◼ Used 10,000 images from the “TopImages” version of the ImageNetV2 data set

◼ Difference in computed and actual duration and between computed and actual
probability of classification is between 2% and 4%

◼ Strong validation result given the disparate data sets used for profiling and
validation

31

Case Study: Complete Multi-Modal

◼ Nine IDK Classifiers

◼ Optimal IDK Cascades

32

Case Study: Complete Multi-Modal

◼ Dependences: Behaviour

◼ Dependences: Execution Times

◼ Model

◼ m processors, so up to m IDK classifiers can run in parallel (non-pre-emptively)

◼ Each classifier (Ki) takes the same execution time and has the same probability of

successful classification (Pi), irrespective of which processor it executes on

◼ Make a simplifying assumption of constant execution times (or at least constant

processor hold times)

◼ Analysis

◼ The ordered finish times (fi) for each classifier determine the expected duration, i.e.

elapsed time required for the IDK cascade (irrespective of the scheduling policy or

processor allocation):

◼ The formula is derived by observing that the probability of execution continuing

between one finish time fi and the next fi+1 depends only on the probability of

successful classification by those classifiers that have finished by the earlier finish

time fi

◼ To cater for a classification threshold L, we can terminate the summation once the

threshold has been reached i.e. once 33

IDK cascades on Multiple Processors

By an IDK cascade on multiple processors, we mean an allocation of classifiers to processors

and a schedule of classifiers on each processor

◼ Theorems and Proofs (in the paper)

◼ Lemma 1: An optimal IDK cascade is locally work conserving, in other words no

processor becomes idle until all classifiers allocated to it have finished

◼ Lemma 2: An optimal IDK cascade is globally work conserving, in other words it

leaves no processor idle when there is a classifier to run

◼ Theorem 1: List scheduling of an appropriate ordered list of classifiers suffices to

provide an optimal IDK cascade

(List scheduling means that whenever a processor becomes idle, it takes the next

available classifier in the ordered list and runs it)

◼ Permutations

◼ Theorem 1 implies that an optimal IDK cascade can be found by considering each

permutation of the n classifiers as a list and determining the corresponding allocation,

schedule, and hence expected duration (from the finish time formula)

◼ Issue is that this brute-force approach has factorial complexity, a more nuanced

approach is therefore needed 34

IDK cascades on Multiple Processors

◼ DAG-based representation

◼ Difficulties

◼ Unlike in the single processor case,

classifiers do not necessarily finish

in the same order as they start

executing

◼ For example the schedules on two

processors for IDK cascades

⟨A,B,C,D,E⟩, ⟨A,D,B,C,E⟩,
⟨A,D,E,B,C⟩, and ⟨A,E,D,B,C,⟩ are

shown in the diagram

◼ In the first schedule, classifier C

starts before D, but finishes later

◼ This complicates the DAG-based

representation as it needs to keep

track of which classifiers are

running and which have completed
35

Synthesizing an Optimal IDK Cascade

for Multiple Processors

◼ DAG-based representation

◼ Each vertex represents m completed sets

and m running sets (one per processor)

◼ Each of the n classifiers may appear in at

most one of these sets, with at most one

classifier in each running set

◼ Each vertex records a finishing time equal

to the minimum makespan given the

allocated classifiers in the sets

◼ Also records the set S of all classifiers in

the m completed sets and hence the

probability of successful

classification

◼ Cost of an edge given by:

based on the finish times at the previous

and next vertices and the set S of

classifiers at the previous vertex
36

Synthesizing an Optimal IDK Cascade

for Multiple Processors

Full details of the DAG-based representation

and solution are given in the paper

◼ Classifiers

◼ Classification Thresholds (single processor)

37

Case Study: Complete Multi-Modal

◼ Classification Thresholds (multiple processors)

38

Case Study: Complete Multi-Modal
Single processor

Two processor

Three processor

Four processor

75%
65%

67%
64%

64%
53%

100%
100%

◼ Optimized C++ Implementation

◼ Computed the minimum cost for each

vertex on-the-fly during construction of

the DAG, with a pointer back to the

previous vertex corresponding to that

minimum, which avoids storing edges

◼ Used a large hash table (226 entries) to

detect and eliminate duplicate vertices

◼ Pruned vertices, during construction, to

obtain compliance with the latency

constraint and classification threshold

◼ Used a simplified algorithm for the

single processor case with a smaller

hash table (220 entries)

◼ Run on a laptop PC (Lenovo ThinkPad,

Intel Core i5 CPU 1.60GHz, 16 GBytes

RAM, Windows 10)

39

Proof-of-Concept Implementation:

DAG-based approach

Full details of the DAG-based

implementation are given in the paper

◼ Synthetic test case

◼ Approximates the worst-case

◼ Scalable to n classifiers

◼ Assumes:

The classifiers have disjoint

probabilities of 1/n and a

classification threshold of 1,

so that all n classifiers have

to be used

No latency constraint, so no

pruning of vertices

◼ Limited memory usage to

24Gbytes (paged)

◼ Graph shows that the space

complexity is exponential,

with straight lines against a

log scale for the y-axis

40

Proof-of-Concept Implementation:

Efficiency

Space Complexity: Number of Vertices

◼ Synthetic test case

◼ Limited run-time to about 1200

seconds (20 mins)

◼ Decrease in run-time from 6 to 7

classifiers due to cache warm up

◼ Roughly constant runtime for 6-11

classifiers due to initializing large

hash table (constant overhead)

◼ Summary

◼ Implementation supports:

20 classifiers on 1 processors

16 classifiers on 2 processors

13 classifiers on 3-6 processors

◼ Unlikely that more than about 12

classifiers would be used for the

same problem – so this approach

represents a practical solution
41

Proof-of-Concept Implementation:

DAG-based approach

Time Complexity: Runtime

◼ Summary

◼ Prior work showed how optimal IDK cascades can be synthesized for single

processors, but made the unrealistic assumptions about independence or full

dependence

◼ This work enables the synthesis of optimal IDK cascades in the practical case of

classifiers with arbitrary dependences, as well as introducing solutions for the case of

multiple processors

◼ It also caters for latency constraints and realistic classification thresholds, rather than

requiring the presence of a deterministic classifier that can classify all inputs

◼ The complexity of the approach is exponential (rather than factorial) and provides

solutions for up to 20 classifiers on a single processor, and 13 or more classifiers on

multiple processors

◼ The problem is NP-complete on multiple processors (as shown in the paper),

effectively necessitating exponential complexity to find optimal solutions

◼ Effectiveness of the approach has been demonstrated on two real-world case studies:

ResNet and Multi-Modal

42

Conclusions

43

Discussion and Questions?

rob.davis@york.ac.uk

