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Abstract Without the use of caches the increasing gap between processor and memory
speeds in modern embedded microprocessors would have resulted in memory access times
becoming an unacceptable bottleneck. In such systems, cache related pre-emption delays can
be a significant proportion of task execution times. To obtain tight bounds on the response
times of tasks in pre-emptively scheduled systems, it is necessary to integrate worst-case
execution time analysis and schedulability analysis via the use of an appropriate model of
pre-emption costs.

In this paper, we introduce a new method of bounding pre-emption costs, called the
ECB-Union approach. The ECB-Union approach complements an existing UCB-Union ap-
proach. We improve upon both of these approaches via the introduction of Multiset variants
which reduce the amount of pessimism in the analysis. Further, we combine these Multi-
set approaches into a simple composite approach that dominates both. These approaches to
bounding pre-emption costs are integrated into response time analysis for fixed priority pre-
emptively scheduled systems. Further, we extend this analysis to systems where tasks can
access resources in mutual exclusion, in the process resolving omissions in existing models
of pre-emption delays. A case study and empirical evaluation demonstrate the effectiveness
of the ECB-Union, Multiset and combined approaches for a wide range of different cache
configurations including cache utilization, cache set size, reuse, and block reload times.

Keywords Fixed priority pre-emptive scheduling · Cache related pre-emption delay ·
Response time analysis

Sebastian Altmeyer
Compiler Design Lab
Saarland University, Germany
E-mail: altmeyer@cs.uni-saarland.de

Robert I. Davis
University of York
York, UK
E-mail: rob.davis@cs.york.ac.uk

Claire Maiza
Verimag
INP Grenoble, France
E-mail: Claire.Maiza@imag.fr



2 Sebastian Altmeyer et al.

Extended version

This paper forms an extended version of (Altmeyer et al, 2011b). The main extensions are
as follows:

– Section 4 introduces the ECB-Union Multiset and UCB-Union Multiset approaches, and
includes additional examples showing how pessimism can occur with the ECB-Union
approach.

– Section 5 shows how blocking can be integrated into the Multiset approaches.
– Section 6 and Section 7 provide a case study and empirical evaluation examining the

performance of the Multiset approaches.

1 Introduction

During the last two decades, applications in aerospace and automotive electronics have pro-
gressed from deploying embedded microprocessors clocked in the 10’s of MHz range to
significantly higher performance devices operating in the high 100’s of MHz to GHz range.
The use of such high performance embedded processors has meant that memory access times
have become a significant bottleneck, necessitating the use of cache to tackle the increasing
gap between processor and memory speeds.

In the majority of research papers on fixed priority pre-emptive scheduling an assump-
tion is made that the costs of pre-emption can either be neglected or subsumed into the
worst-case execution time of each task. With today’s high performance embedded proces-
sors, pre-emption costs can make up a significant proportion of each task’s execution time.
Such costs cannot be neglected nor is it necessarily viable to simply subsume them into
worst-case execution times, as this can lead to a pessimistic overestimation of response
times.

In this paper, we consider the costs incurred when a pre-empting task evicts useful cache
blocks of a pre-empted task. These useful cache blocks subsequently need to be reloaded
after the pre-empted task resumes execution, introducing an additional cache related pre-
emption delay (CRPD).

Non-pre-emptive scheduling is one way of avoiding such cache related pre-emption
costs; however, disabling pre-emption is often not an option. Systems that include tasks
or interrupt handlers with short deadlines typically cannot disable pre-emption for the full
duration of each task’s execution. An alternative approach is co-operative scheduling, with
re-scheduling only possible at specific pre-emption points within each task, or after a pre-
determined time has elapsed, thus dividing each task into a series of non-pre-emptable sec-
tions. Recently, significant progress has been made in this area, with algorithms designed to
make an optimal selection of pre-emption points (Bertogna et al, 2010, 2011). These algo-
rithms minimise the overall cost of pre-emption for each task while maintaining the schedu-
lability of the taskset as a whole. However, difficulties remain, for example in determining
the placement of pre-emption points when the code includes branches and loops.

Exact response time analysis for fixed priority pre-emptive systems was developed dur-
ing the 1980’s and 1990’s and subsequently refined into a set of engineering techniques
(Joseph and Pandya, 1986; Audsley et al, 1993; Davis et al, 2008). However, basic response
time analysis does not consider cache related pre-emption costs explicitly. In Schneider
(2000), the pre-emption costs were effectively subsumed into the execution time bound for
each task. While this approach accounts for both direct and indirect or nested pre-emption
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costs, the cumulative way in which pre-emption costs are considered can introduce sig-
nificant pessimism in the computed response times. Explicit integration of pre-emption
costs has previously been considered in a number of ways: analyzing the effect of the pre-
empting task (Busquets-Mataix et al, 1996; Tomiyama and Dutt, 2000), the effect on the
pre-empted task (Lee et al, 1998), or a combination of both (Staschulat et al, 2005; Tan
and Mooney, 2007). With later refinements giving an upper bound on the number of pre-
emptions (Ramaprasad and Mueller, 2006). More recent work has also considered how the
pre-emption cost varies with the progress of task execution (Marinho et al, 2012).

In fixed priority pre-emptive systems, there are a number of ways of managing task pri-
orities that can be used to reduce the number of pre-emptions and hence the overall pre-
emption costs. These include; non-pre-emption groups (Davis et al, 2000), pre-emption
thresholds (Keskin et al, 2010; Regehr, 2002; Wang and Saksena, 1999), and FP-FIFO
scheduling (Martin et al, 2007), which is supported by a large number of real-time oper-
ating systems, including the Linux kernel (SCHED FIFO).

In this paper, we build upon previous work that integrates pre-emption costs into re-
sponse time analysis for fixed priority pre-emptive scheduling. Section 2 introduces the
scheduling model, terminology, and notation used. In Section 3, we review existing ap-
proaches to integrating pre-emption costs into response time analysis. Building on the in-
sights gained from this review, Section 4 introduces the new ECB-Union and Multiset ap-
proaches to computing pre-emption costs. The ECB-Union approach complements an ex-
isting UCB-Union approach, and the Multiset approaches remove some pessimism present
in both. We combine the ECB-Union Multiset and UCB-Union Multiset approaches into
a simple composite that dominates both. In Section 5, we extend our analysis to systems
where tasks can access resources in mutual exclusion, in the process resolving omissions in
existing models of pre-emption delays. A case study in Section 6 and an empirical evalua-
tion in Section 7 demonstrate the effectiveness of the ECB-Union, Multiset and combined
approaches for a wide range of different task parameters and cache configurations. Section 8
concludes with a summary of the main contributions of the paper.

The research in this paper focuses on fixed priority pre-emptive scheduling with unique
priority levels; however, the approaches derived are also applicable to FP-FIFO scheduling.

2 Task model, Terminology, and Notation

We are interested in an application executing under a fixed priority pre-emptive sched-
uler on a single processor. The application is assumed to comprise a static set of n tasks
(τ1,τ j, . . . ,τn), each assigned a fixed priority. We use the notation hp(i) (and lp(i)) to mean
the set of tasks with priorities higher than (lower than) that of τi. Similarly, we use the nota-
tion hep(i) (and lep(i)) to mean the set of tasks with priorities higher than or equal to (lower
than or equal to) that of τi. We consider systems where each task has a unique priority.

Application tasks may arrive either periodically at fixed intervals of time, or sporadi-
cally after some minimum inter-arrival time has elapsed. Each task, is characterized by: its
relative deadline Di, worst-case execution time Ci, minimum inter-arrival time or period Ti
and release jitter Ji, defined as the maximum time between the task arriving and it being
released (ready to execute). Tasks are assumed to have constrained deadlines, i.e. Di ≤ Ti.
It is assumed that once a task starts to execute it will never voluntarily suspend itself. The
processor utilization Ui of task τi is given by Ci/Ti. The total utilization U of a taskset is
the sum of the individual task utilizations. The worst-case response time Ri of a task τi, is
the longest time from it becoming ready to execute to it completing execution. A task is
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referred to as schedulable if its worst-case response time is less than or equal to its deadline
less release jitter (Ri ≤ Di− Ji). A taskset is referred to as schedulable if all of its tasks
are schedulable. We use E j(Ri) to denote the maximum number of times that a task τ j can
execute (pre-empt) during the response time Ri of task τi.

In Section 3 and Section 4 we assume that tasks are independent. In Section 5, we relax
this restriction, permitting tasks to access shared resources in mutual exclusion according
to the Stack Resource Policy (SRP) (Baker, 1991). As a result of the operation of the SRP,
a task τi may be blocked by lower priority tasks for at most Bi, referred to as the blocking
time.

In our analysis of cache related pre-emption delays, we use aff(i, j) to mean the set of
tasks that can not only execute between the release and completion of task τi and so affect
its response time, but can also be pre-empted by task τ j. For the basic task model, without
shared resources, aff(i, j) = hep(i)∩ lp( j).

With respect to a given system model, a schedulability test is said to be sufficient if every
taskset it deems to be schedulable is in fact schedulable. Similarly, a schedulability test is
said to be necessary if every taskset it deems to be unschedulable is in fact unschedulable.
Tests that are both sufficient and necessary are referred to as exact.

A schedulability test A is said to dominate another schedulability test B if all of the
tasksets deemed schedulable by test B are also deemed schedulable by test A, and there exist
tasksets that are schedulable according to test A but not according to test B. Schedulability
tests A and B are said to be incomparable if there exists tasksets that are deemed schedulable
by test A and not by test B and also tasksets that are deemed schedulable by test B and not
by test A.

2.1 Pre-emption Costs

We now extend the sporadic task model introduced above to include pre-emption costs. To
this end, we need to explain how pre-emption costs can be derived. To simplify the following
explanation and examples, we assume direct-mapped caches.

The additional execution time due to pre-emption is mainly caused by cache eviction:
the pre-empting task evicts cache blocks of the pre-empted task that have to be reloaded
after the pre-empted task resumes. The additional context switch costs due to the scheduler
invocation and a possible pipeline-flush can be upper-bounded by a constant. We assume that
these constant costs are already included in Ci. Hence, from here on, we use pre-emption
cost to refer only to the cost of additional cache reloads due to pre-emption. This cache
related pre-emption delay (CRPD) is bounded by g×BRT where g is an upper bound on the
number of cache block reloads due to pre-emption and BRT is an upper-bound on the time
necessary to reload a memory block in the cache (block reload time).

To analyse the effect of pre-emption on a pre-empted task, Lee et al (1998) introduced
the concept of a useful cache block: A memory block m is called a useful cache block
(UCB) at program point P , if (i) m may be cached at P and (ii) m may be reused at
program point Q that may be reached from P without eviction of m on this path. In the
case of pre-emption at program point P , only the memory blocks that (i) are cached and
(ii) will be reused, may cause additional reloads. Hence, the number of UCBs at program
point P gives an upper bound on the number of additional reloads due to a pre-emption at
P . The maximum possible pre-emption cost for a task is determined by the program point
with the highest number of UCBs. For each subsequent pre-emption, the program point with
next smaller number of UCBs can be considered. Thus, the j-th highest number of UCBs
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can be counted for the j-th pre-emption. A tighter definition is presented by Altmeyer and
Burguière (2009); however, in this paper we need only the basic concept.

The worst-case impact of a pre-empting task is given by the number of cache blocks
that the task may evict during its execution. Recall that we consider direct-mapped caches:
in this case, loading one block into the cache may result in the eviction of at most one cache
block. A memory block accessed during the execution of a pre-empting task is referred to as
an evicting cache block (ECB). Accessing an ECB may evict a cache block of a pre-empted
task.

In this paper, we represent the sets of ECBs and UCBs as sets of integers with the
following meaning:

s ∈ UCBi⇔ τi has a useful cache block in cache-set s

s ∈ ECBi⇔ τi may evict a cache block in cache-set s

A bound on the pre-emption cost due to task τ j directly pre-empting τi is therefore given
by BRT · |UCBi∩ECB j|. Precise computation is more complex as different program points
may exhibit different sets of UCBs. Hence, the worst-case pre-emption delay considering a
pre-empting and pre-empted task may not necessarily occur at the pre-emption point with the
highest number of UCBs but instead at the point with the largest intersection between UCBs
and ECBs—(see Altmeyer and Maiza, 2011) for a detailed description of the computation
of pre-emption costs. Note that the simplification we apply, using ECBi and UCBi, does not
impact the correctness of the equations.

Separate computation of the pre-emption cost is restricted to architectures without tim-
ing anomalies (Lundqvist and Stenström, 1999) but is independent of the type of cache used,
i.e. data, instruction or unified cache.

Set-Associative Caches

In the case of set-associative LRU caches1, a single cache-set may contain several useful
cache blocks. For instance, UCB1 = {1,2,2,2,3,4} means that task τ1 contains 3 UCBs in
cache-set 2 and one UCB in each of the cache sets 1,3 and 4. As one ECB suffices to evict all
UCBs of the same cache-set, multiple accesses to the same set by the pre-empting task does
not need to appear in the set of ECBs. Hence, we keep the set of ECBs as used for direct-
mapped caches. A bound on the CRPD in the case of LRU caches due to task τi directly pre-
empting τ j is thus given by the intersection UCB j ∩′ ECBi = {m|m ∈ UCB j : m ∈ ECBi},
where the result is also a multiset that contains each element from UCB j if it is also in ECBi.
A precise computation of the CRPD in the case of LRU caches is given in (Altmeyer et al,
2010). In this paper, we assume direct-mapped caches. All equations provided within this
paper are for direct-mapped caches, they are also valid for set-associative LRU caches with
the above adaptation to the set-intersection.

1 The concept of UCBs and ECBs cannot be applied to FIFO or PLRU replacement policies as shown
by Burguière et al (2009).
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3 Response Time Analysis for pre-emptive Systems

Response time analysis (Audsley et al, 1993; Joseph and Pandya, 1986) for fixed priority
pre-emptive scheduling calculates the worst-case response time Ri of task τi, using the fol-
lowing equation.

Ri =Ci + ∑
∀ j∈hp(i)

⌈
Ri + J j

Tj

⌉
(C j) (1)

The worst-case response time appears on both the left-hand side (LHS) and the right-hand
side RHS of the equation. As the RHS is a monotonically non-decreasing function of Ri,
the equation can be solved using fixed point iteration: Iteration starts with an initial value
for the response time, typically r0

i = Ci, and ends either when rn+1
i = rn

i in which case the
worst-case response time Ri is given by rn

i or when ri > Di− Ji in which case the task is
unschedulable. We note that (1) does not explicitly include pre-emption costs.

When pre-emption costs are included, then synchrounous release of all higher priority
tasks does not necessarily represent the worst-case scenario as shown by Meumeu Yomsi and
Sorel (2007). The worst-case number of pre-emptions due to each higher priority task can
however be bounded, and used to extend (1) forming a sufficient, but not exact schedulability
test.

Equation (1) can be extended by γi, j representing the pre-emption cost due to each job
of a higher priority pre-empting task τ j executing within the worst-case response time of
task τi (Busquets-Mataix et al, 1996):

Ri =Ci + ∑
∀ j∈hp(i)

⌈
Ri + J j

Tj

⌉
(C j + γi, j) (2)

Task τ j does not necessarily pre-empt task τi directly; a nested pre-emption is also possible.
Any pre-emption by task τ j of a task τk that executes while τi is pre-empted may also
increase the response time of task τi. The problem of obtaining a valid yet tight upper bound
on the pre-emption costs is made difficult by the effects of nested pre-emption, as a pre-
empting task may evict useful cache-blocks belonging to a number of pre-empted tasks.

The precise meaning of γi, j and its computation depends on the approach used. Below,
we review a number of existing approaches and discuss their advantages and disadvantages.

3.1 ECB-Only

Busquets-Mataix et al (1996) and later Tomiyama and Dutt (2000), used the ECBs of the
pre-empting task to bound the pre-emption costs:

γ
ecb
i, j = BRT · |ECB j| (3)

In this case, γi, j represents the worst-case effect of task τ j on any arbitrary lower priority
task, independent of such a task’s actual UCBs.

3.2 UCB-Only

By contrast, Lee et al (1998) used the number of UCBs to bound the pre-emption costs.
Here, however one has to correctly account for nested pre-emptions. The cost of τ j pre-
empting some task τk of intermediate priority may be higher than that of τ j pre-empting τi.
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Thus, the pre-emption cost due to a job of task τ j executing during the response time of task
τi is only bounded by the maximum number of UCBs over all tasks that may be pre-empted
by τ j and have at least the priority of τi (i.e. tasks from the set aff(i, j) = hep(i)∩ lp( j)).

γ
ucb
i, j = BRT · max

∀k∈aff(i, j)
{|UCBk|} (4)

The disadvantage of the ECB-Only and UCB-Only approaches is clear: considering
only the pre-empted tasks or alternatively only the pre-empting tasks leads to an over-
approximation. Not every UCB may be evicted during pre-emption, and not every ECB
may evict a UCB. This is illustrated in Figure 1.

Figure 1 shows an example taskset that leads to an overestimation when the pre-emption
cost is estimated using (3) or (4). Task τ1 accesses blocks in cache sets 1 and 2. Task τ2
accesses blocks in cache sets 1, 2, 3 and 4. However, only sets 3 and 4 may contain useful
cache blocks, hence a pre-emption of task τ2 by task τ1 never evicts any useful cache blocks;
and so there are no cache reloads due to pre-emption. However, (4) and (3) account for 2
additional reloads; an overestimation of the pre-emption cost.

0 1 2 3 4

τ1

τ2

UCBi ECBi

{1,2} {1,2}

{3,4} {1,2,3,4}

Execution

Fig. 1 Taskset {τ1,τ2} with C1 = 1, C2 = 2 and block reload time 1. Response time analysis of task τ2: only
counting the number of possibly evicted UCBs (4) or possibly evicting ECBs (3) leads to a pre-emption cost
of 2, whereas the actual pre-emption cost is 0.

Since both (3) and (4) can over-estimate the actual pre-emption cost, combining both
UCBs and ECBs might be expected to result in precise bounds. However, the naive com-
putation γi, j = BRT · |UCBi ∩ECB j| is optimistic and thus cannot be used. It may lead to
underestimation in two cases: when the cost of task τ j pre-empting a task τk of intermediate
priority is higher than that of τ j pre-empting τi (see Figure 2(a)) and when the execution of
τ j may evict useful cache blocks of both task τi and of task τk (see Figure 2(b)).

3.3 UCB-Union

Tan and Mooney (2007) considered both the pre-empted and the pre-empting task. They
take the union of all possible affected useful cache blocks and combine this with the set of
ECBs of the pre-empting task.

γ
ucb-u
i, j = BRT ·

∣∣∣∣∣∣
 ⋃
∀k∈aff(i, j)

UCBk

∩ECB j

∣∣∣∣∣∣ (5)

This UCB-Union approach dominates the ECB-only approach since:

γ
ecb
i, j ≥ γ

ucb-u
i, j
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0 1 2 3 4 5 6 7 8 9 10 11

τ1

τ2

τ3

UCBi ECBi

/0 {1,2}

{1} {1,2}

{3,4} {1,2,3,4}

Execution Pre-emption Delay

(a) τ1 pre-empting τ2 causes higher costs than τ1 pre-empting τ3.

0 1 2 3 4 5 6 7 8

τ1

τ2

τ3

UCBi ECBi

/0 {2,3}

{1,2} {1,2}

{3,4} {1,2,3,4}

(b) Nested pre-emption: τ1 pre-empting τ2 pre-empting τ3, causes higher
costs than any non-nested pre-emption.

Fig. 2 Two taskets {τ1,τ2,τ3} with C1 = 1, C2 = 2, C3 = 3, and a block reload time of 1.

but may be worse than the UCB-only approach in some cases. Consider the taskset shown
in Figure 3, the values of γi, j for the response time analysis of task τ3 are as follows:

γ
ucb-u
3,1 = |{(UCB2∪UCB3)∩ECB1}|= |{1,2,3,4}∩{1,2,3,4}|= 4

γ
ucb-u
3,2 = |{(UCB3)∩ECB2}|= |{3,4}∩{1,2,3,4}|= 2

Given that each task is executed at most once, the total computed pre-emption cost is 6.
However, the actual pre-emption cost is only 4: either UCBs in cache sets {1,2,3,4} have
to be reloaded (in the case of nested pre-emption) or UCBs in cache sets {3,4} are reloaded
twice (in the case of consecutive pre-emption of τ3 by τ1 and then by τ2).

0 1 2 3 4 5 6 7 8 9 10

τ1

τ2

τ3

UCBi ECBi

/0 {1,2,3,4}

{1,2} {1,2,3,4}

{3,4} {1,2,3,4}

Fig. 3 Taskset {τ1,τ2,τ3} with C1 = 1, C2 = C3 = 2, and a block reload time of 1. Equation (5) computes
total pre-emption costs of 6, whereas the actual cost is only 4.

In the case of set-associative caches, Tan and Mooney (2007) account only for those
cache blocks that are actually evicted due to pre-emption. We note that this can be optimistic,
as shown by Burguière et al (2009).
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3.4 Staschulat’s Formula

Staschulat et al (2005) also combine information about the pre-empting and the pre-empted
task; however, their approach is somewhat more complex than the methods described so far.
Below we give a concise description of their method, for further details and a more complete
desription see (Staschulat et al, 2005).

The analysis of Staschulat et al. is extended to account for the fact that each additional
pre-emption of task τi may result in a smaller pre-emption cost than the last. (Their approach
is an improvement over that of Petters and Farber (2001)). The basic response time analysis
used differs from (2): γi, j does not refer to the cost of a single pre-emption, but instead to
the total cost of all pre-emptions due to jobs of task τ j executing within the response time
of task τi.

Ri =Ci + ∑
∀ j∈hp(i)

(⌈
Ri + J j

Tj

⌉
C j + γ

sta
i, j

)
(6)

Staschulat et al (2005) compute the maximum number of pre-emptions q, including
nested pre-emptions, which may impact the response time of task τi due to cache blocks
evicted by task τ j. Thus q is given by the sum of the maximum number of jobs of task τ j
and tasks of lower priority than τ j but higher priority than τi that can execute during the
response time Ri of task τi

q = ∑
∀k∈hp(i)∩(lp( j)∪{ j})

Ek(Ri) (7)

where Ek(Ri) is used to denote the maximum number of jobs of task τk that can execute
during response time Ri. For our task model, Ek(Ri) = d(Ri + Jk)/Tke. The total pre-emption
cost γsta

i, j due to jobs of task τ j pre-empting during the response time of task τi is then
bounded by the q largest costs of task τ j pre-empting jobs of any lower priority task τk ∈
hep(i)∩ lp( j) that can execute during the response time of task τi. As each job of such a
task τk may execute up to Ek(Ri) times during Ri, and each of those jobs could potentially
be pre-empted at most E j(Rk) times by task τ j, the E j(Rk) highest pre-emption costs of τ j
directly pre-empting τk must be considered Ek(Ri) times:

γ
sta
i, j = BRT ·

q

∑
l=1
|Ml | (8)

where Ml is the l-th largest element from the multiset M

M =
⋃

k∈hep(i)∩lp( j)

 ⋃
Ek(Ri)

{
(UCBk ∩ECB j)

n|n ∈ [1;E j(Rk)]
} (9)

and (UCBk ∩ECB j)
n gives the n-th highest pre-emption cost for task τ j pre-empting task

τk. Note that M is a multiset and the union over Ek(Ri) means that the set of values for τk
are repeated Ek(Ri) times.

The drawback of this approach is that the number of pre-emptions taken into account
strongly over-estimates the number of pre-emptions that have an actual influence on the
response time; particularly when there are a large number of tasks. In addition, the reduction
in the pre-emption costs for a sequence of pre-emptions is typically rather limited (Bertogna
et al (2011) show that the maximal pre-emption cost can occur at various program points
within a task’s execution). The program point P in a task which exhibits the highest number
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of UCBs often occurs within a loop, thus, it has to be taken into account as often as the loop
iterates. In addition, program points close to P will often have a similar number of UCBs.
We note that Staschulat et al. also present an improvement to their analysis in (Staschulat
et al, 2005); however, the problem of strongly over-estimating the number of pre-emptions
remains.

4 ECB-Union and Multiset Approaches

This section presents new approaches to pre-emption cost aware response time analysis. The
ECB-Union approach complements the UCB-Union approach and the Multiset extensions
remove some pessimism present in both these methods.

4.1 ECB-Union Approach

With the ECB-Union approach, to account for nested pre-emptions, we compute the union
of all ECBs that may affect a pre-empted task. The intuition here is that direct pre-emption
by task τ j is represented by the pessimistic assumption that task τ j has itself already been
pre-empted by all of the tasks of higher priority and hence may result in eviction by the set⋃

h∈hp( j)∪{ j}ECBh

γ
ecb-u
i, j = BRT · max

∀k∈aff(i, j)


∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp( j)∪{ j}

ECBh

∣∣∣∣∣∣
 (10)

Task τ j may directly pre-empt any task τk ∈ aff(i, j) impacting the response time of
task τi. Thus taking the maximum over all of the tasks in aff(i, j) ensures that the pre-
emption cost for the highest number of evicted useful cache blocks is considered. Note we
use hp( j)∪ { j} to mean task τ j and all tasks of higher priority than task τ j, rather than
hep( j). This is because the two sets are different in the more general case where tasks can
share priority levels. Note that (10) is combined with (2) to determine task response times.
The ECB-Union approach (10) dominates the UCB-only approach, since:

γ
ucb
i, j ≥ γ

ecb-u
i, j

The ECB-Union approach and the UCB-Union approach (Tan and Mooney, 2007) are in-
comparable. Figure 3 provides an example where the ECB-Union approach outperforms the
UCB-Union approach: here the ECB-Union approach covers both a nested pre-emption (τ3
pre-empted by τ2 which is pre-empted by τ1) and consecutive pre-emption (of τ3 by τ1 and
τ2), obtaining for each pre-emption a cost of 2 and thus, a total cost of 4. In contrast, the
UCB-Union approach gives a total cost of 6.

γ
ecb-u
3,1 = max

∀k∈{2,3}
{|UCBk ∩ECB1|}

= max{|UCB2∩ECB1|, |UCB3∩ECB1|}
= max{|{1,2}| , |{3,4}|}= 2

γ
ecb-u
3,2 = max

∀k∈{3}
{|UCBk ∩ (ECB1∩ECB2)|}

= |UCB3∩ (ECB1,ECB2)|
= |{3,4}∩{1,2,3,4}|= |{3,4}|= 2
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Figure 4 provides an example from Altmeyer et al (2011a) where the UCB-Union ap-
proach outperforms the ECB-Union approach. Here, for the latter approach, the pre-emption
costs increasing the response time R3 of task τ3 are computed as follows:

γ
ecb-u
3,1 = max

∀k∈{2,3}
{|UCBk ∩ECB1|}

= max{|UCB2∩ECB1|, |UCB3∩ECB1|}
= max{| /0| , |{1,2}|}= 2

γ
ecb-u
3,2 = max

∀k∈{3}
{|UCBk ∩ (ECB1∩ECB2)|}

= |UCB3∩ (ECB1,ECB2)|
= |{1,2,3,4}∩{1,2,3,4}|= |{1,2,3,4}|= 4

With the ECB-Union approach, the eviction of UCBs of task τ3 ({1,2}) are considered
twice, even though they must be reloaded at most once, leading to an over-estimation of the
total pre-emption costs of 6. The UCB-Union approach, in this case, computes the precise
total of 4.

0 1 2 3 4 5 6 7 8 9 10

τ1

τ2

τ3

UCBi ECBi

/0 {1,2}

/0 {3,4}

{1,2,3,4} {1,2,3,4}

Fig. 4 Taskset {τ1,τ2,τ3} with C1 = 1, C2 =C3 = 2, and block reload time 1. Equation (10) computes a total
pre-emption cost of 6, whereas the actual cost is only 4.

The ECB-Union approach removes some of the pessimism in accounting for nested
pre-emptions, by including the direct effects of E j(Ri) pre-emptions by task τ j, during the
response time Ri of task τi. The indirect effect of pre-emptions by task τ j are then accounted
for via the ECB-Union term in (10). Thus the indirect effects of any cache block evictions by
task τ j are included when the pre-emption costs of an intermediate task τk ∈ hp(i)∩ lp( j) are
accounted for. This avoids some over-counting of indirect pre-emption costs as illustrated
in Figure 5. Figure 5 shows the worst case scenario for task τ3. During the response time of
task τ3 , task τ1 can pre-empt a total of 6 times. Task τ1 can have a direct effect on both task
τ2 and τ3 as shown by the solid arrows leading to pre-emption delays and an indirect effect
on task τ3 as shown by the dashed arrow. Task τ2 can also have a direct effect on τ3. The
ECBUnion approach, accounts for the indirect effect of task τ1 on task τ3 in the pre-emption
cost term for task τ2 pre-empting task τ3 via the inclusion of ECB1 in the ECB-union.

4.2 ECB-Union Multiset Approach

The ECB-Union approach is pessimistic in that it assumes that task τ j can pre-empt any
task τk ∈ aff(i, j) up to E j(Ri) times. While this is potentially true when τk = τi, it can be a
pessimistic assumption in the case of intermediate tasks. This is illustrated by the taskset in
Figure 5. Here, the direct pre-emption cost of task τ1 pre-empting task τ2 is higher than that
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

τ1

τ2

τ3

Fig. 5 Possible pessimism of the ECB-Union approach. Pre-emption cost of task τ1 pre-empting task τ2
contributes six times to the response time of task τ3; altough it may happen at most three times.

of task τ1 pre-empting task τ3. Thus the pre-emption cost γ3,1 comes from |UCB2 ∩ECB1|
which is included E1(R3) = 6 times. However, this is pessimistic, task τ1 can only actually
pre-empt task τ2 at most E1(R2)E2(R3) = 3 times during the response time of task τ3. The
ECB-Union Multi-set approach removes this source of pessimism by combining Staschu-
lat’s method of counting the maximum number of pre-emptions of each intermediate task
with the ECB-Union approach. Similar to Staschulat’s approach, the ECB-Union Multi-set
approach uses γecb-m

i, j to represent the pre-emption costs due to all jobs of task τ j executing
during the response time of task τi, and therefore effectively makes use of (6) as the response
time analysis equation. The pre-emption cost γecb-m

i, j is computed as follows, recognising the
fact that task τ j can pre-empt each intermediate task τk at most E j(Rk)Ek(Ri) times during
the response time of task τi. First, we form a multiset M that contains the cost∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp( j)∪{ j}

ECBh

∣∣∣∣∣∣ (11)

of τ j pre-empting task τk E j(Rk)Ek(Ri) times, for each task τk ∈ aff(i, j). Hence:

M =
⋃

k∈aff(i, j)

 ⋃
E j(Rk)Ek(Ri)

∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp( j)∪{ j}

ECBh

∣∣∣∣∣∣
 (12)

γecb-m
i, j is then given by the E j(Ri) largest values in M.

γ
ecb-m
i, j = BRT ·

E j(Ri)

∑
l=1
|Ml | (13)

where Ml is the l-th largest value in M. We note that by construction, the ECB-Union Mul-
tiset approach dominates the ECB-Union approach.

4.3 UCB-Union Multiset Approach

The UCB-Union approach is pessimistic in that it assumes that task τ j can, directly or indi-
rectly, pre-empt any task τk ∈ aff(i, j) up to E j(Ri) times during the response time Ri of task
τi. While this is potentially true when τk = τi, it can be a pessimistic assumption in the case
of intermediate tasks. This is illustrated by the taskset in Figure 6. Here, task τ1 can only
pre-empt task τ2 once during the response time of task τ3, yet the UCB-Union approach
considers that UCBs of task τ2 could be evicted by all three jobs of task τ1 executing within
this interval: γ3,1 = (UCB2∪UCB3)∩ECB1 with γ3,1 included E1(R3) = 3 times by the re-
sponse time analysis. The UCB-Union Multi-set approach removes this source of pessimism
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0 1 2 3 4 5 6 7 8 9 10

τ1

τ2

τ3

Fig. 6 Possible pessimism of the UCB-Union approach. Useful cache blocks of task τ2 are assumed to con-
tribute up to three times to the response time of task τ3. Task τ2, however, is executed at most once during the
response time of τ3.

by combining Staschulat’s method of counting the maximum number of pre-emptions of
each intermediate task with the UCB-Union approach. Similar to Staschulat’s approach, the
UCB-Union Multi-set approach uses γucb-m

3,1 to represent the pre-emption costs due to all
jobs of task τ j executing during the response time of task τi, and therefore effectively makes
use of (6) as the response time analysis equation. The pre-emption cost γucb-m

3,1 is computed
as follows, recognising the fact that task τ j can pre-empt each intermediate task τk directly
or indirectly at most E j(Rk)Ek(Ri) times during the response time of task τi. First, we form
a multi-set Mucb

i, j containing E j(Rk)Ek(Ri) copies of the UCBk of each task k ∈ aff(i, j). This
multi-set reflects the fact that during the response time Ri of task τi, task τ j cannot evict a
UCB of task τk more than E j(Rk)Ek(Ri) times. Hence:

Mucb
i, j =

⋃
k∈aff(i, j)

 ⋃
E j(Rk)Ek(Ri)

UCBk

 (14)

Next, we form a multi-set Mecb
j containing E j(Ri) copies of the ECB j of task τ j . This multi-

set reflects the fact that during the response time Ri of task τi, task τ j can evict ECBs in the
set ECB j at most E j(Ri) times.

Mecb
j =

⋃
E j(Ri)

(ECB j) (15)

γucb-m
i, j is then given by the size of the multi-set intersection of Mecb

j and Mucb
i, j

γ
ucb-m
i, j = BRT ·

∣∣∣Mucb
i, j ∩Mecb

j

∣∣∣ (16)

We note that by construction, the UCB-Union Multiset approach dominates the UCB-Union
approach.

Example: Let ECB1 = {1,2,3,4}, UCB2 = {2,3,4}, UCB3 = {1,2}, and E1(R3) = 3,
E1(R2) = 1, E2(R3) = 1. We then have:

Mucb
3,1 = {1,2}∪{1,2}∪{1,2}∪{2,3,4}= {1,2,1,2,1,2,2,3,4}

Mecb
1 = {1,2,3,4}∪{1,2,3,4}∪{1,2,3,4}= {1,2,3,4,1,2,3,4,1,2,3,4}

Mecb
1 ∩Mucb

3,1 = {1,2,1,2,1,2,3,4}

Hence the total pre-emption cost given by the UCB-Union Multi-set approach γucb-m
3,1 = 8 in

this case. This compares with a total pre-emption cost of 12 computed by the UCB-Union
approach (γucb

3,1 = 4, included 3 times).
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4.4 Combined Approach

The UCB-Union Multiset approach dominates the UCB-Union approach, which in turn
dominates the ECB-Only approach. Similarly the ECB-Union Multiset approach dominates
the ECB-Union approach, which in turn dominates the UCB-Only approach. Given that the
UCB-Union Multiset approach (16) and the ECB-Union Multiset approach (13) are incom-
parable, we can combine both to deliver a more precise bound on task response times that,
by construction, dominates the use of either approach alone:

Ri = min(Rucb-m
i ,Recb-m

i ) (17)

where Rucb-m
i is the response time of task τi computed using (16) and Recb-m

i is the response
time of task τi computed using (13). Figure 7 illustrates these relationships. Note that some

schedulable tasksets

Combined

ECB
Only

UCB-Union

UCB
Only

ECB-Union

UCB-U. Mult. ECB-U. Mult.

Fig. 7 Venn Diagramm illustrating the relation between the different pre-emption cost aware schedulability
tests. The larger the area, the more tasksets deemed schedulable.

task-sets are deemed schedulable by the combined approach, but not by any of the other
approaches in isolation.

5 Blocking Time

The discussion in Section 3 and Section 4 assumes non-blocking execution, i.e. no
shared resources. In this section, we relax this restriction, permitting tasks to access mu-
tually exclusive shared resources according to the Stack Resource Policy (SRP) introduced
by Baker (1991), extending the Priority Ceiling Protocol of Sha et al (1990).

The SRP associates a ceiling priority with each resource. This ceiling priority is equal
to the highest priority of any task that can access the resource. At run-time, when a task ac-
cesses a resource, its priority is immediately increased to the ceiling priority of the resource.
Thus SRP bounds the amount of blocking Bi which task τi is subject to, to the maximum
time for which any lower priority task holds a resource that is shared with task τi or any
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other task of equal or higher priority. SRP ensures that a task can only ever be blocked prior
to actually starting to execute.

When a lower priority task τk locks a resource and so blocks task τi, it can still be pre-
empted by tasks with priorities higher than that of the ceiling priority of the resource. Bi
does not account for the additional pre-emption cost due to such pre-emptions.

When pre-emption costs are considered, the synchronous release of task τi and all higher
priority tasks immediately after a lower priority task has locked a resource may not neces-
sarily represent the worst-case scenario for task τi. Nevertheless, the worst-case number of
pre-emptions can be bounded and used to form a sufficient test. Previous work integrating
pre-emption costs into response time analysis (Busquets-Mataix et al, 1996; Lee et al, 1998;
Staschulat et al, 2005; Tan and Mooney, 2007) extends (2) in this way to include blocking
via the simple addition of the blocking factor Bi:

Ri =Ci +Bi + ∑
∀ j∈hp(i)

⌈
Ri + J j

Tj

⌉
(C j + γi, j) (18)

In the case of the analysis by Busquets-Mataix et al (1996), this is correct, as the pre-
emption cost is accounted for only via the ECBs of the pre-empting tasks and is therefore
unaltered by the addition of resource accesses that could potentially also be pre-empted.
In contrast, Lee et al (1998); Staschulat et al (2005); Tan and Mooney (2007) make use
of the UCBs of pre-empted tasks. If, as is the case with the SRP, pre-emption can still
occur during resource access, then these analyses are optimistic and need to be modified
to correctly account for the additional pre-emption costs that can occur2. The key point is
that the blocking factor Bi does not represent execution of task τi, but instead represents
execution of some resource access within a lower priority task. Such a resource access may
be pre-empted, during the response time of task τi and therefore its UCBs need to be taken
into account, as illustrated by the example in Figure 8.

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

τ2

τ3

Execution Resource access Pre-emption Delay

UCBi ECBi

/0 {1,2}

/0 {3,4}

{1,2} {1,2,3,4}

Fig. 8 Tasks τ2 and τ3 share a common resource x, τ3 starts to execute, blocks τ2, which is released at time 1,
and is pre-empted by τ1. Thus, the finishing time of τ2 is delayed not only by the time for which τ3 accesses
the resource, but also by the additional pre-emption delay, reloading UCBs {1,2} after the resource access of
task τ3 is pre-empted by task τ1.

We now extend the ECB-Union (Multiset) and UCB-Union (Multiset) approaches to
take account of blocking. Specifically, we extend the pre-emption cost equations (10) &
(13), and (5) & (16) to include the UCBs of tasks in the set b(i, j), where b(i, j) is defined
as the set of tasks with priorities lower than that of task τi that lock a resource with a ceiling
priority higher than or equal to the priority of task τi but lower than that of task τ j. These

2 If all resource accesses are non-pre-emptive, then there are no additional pre-emption costs to be ac-
counted for.
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tasks can block task τi, but can also be pre-empted by task τ j. Hence they need to be included
in the set of tasks aff(i, j) whose UCBs are considered when determining the pre-emption
cost γi, j due to task τ j:

aff(i, j) = (hep(i)∩ lp( j))∪b(i, j) (19)

Tasks in b(i, j) have lower priorities than task τi and so cannot pre-empt during the
response time of task τi, hence their ECBs do not need to be considered when computing
γi, j. Using (19) extends the ECB-Union approach (10) and the UCB-Union approach (5) to
correctly account for pre-emption costs when tasks share resources according to the SRP.
For the Multiset approaches (13) and (16), we also need to bound the number of jobs of the
blocking tasks during the response time of τi. We do this by assuming that each blocking
task can be pre-empted at most E j(Ri) times by task τ j (i.e., assuming that E j(Rk)Ek(Ri) is
given by E j(Ri) in this case).

Revisiting the example given in Figure 8, we observe that as the set of affected tasks
aff(2,1) now includes task τ3 as well as task τ2, (5) correctly accounts for the overall pre-
emption cost of 2 due to the resource access of task τ3 being pre-empted by task τ1 during
the response time of task τ2.

We note that in the simplest case of the SRP where tasks share resources that are ac-
cessed non-pre-emptively (i.e. with ceiling priorities equal to that of the highest priority
task), then the set of tasks b(i, j) is empty (since no task can pre-empt during a resource
access) and hence the pre-emption cost γi, j is the same as for the basic task model, with no
increase in pre-emption costs due to blocking.

Although providing valid upper bounds on the pre-emption costs, the above extension
can be pessimistic. This is because it includes the UCBs of each lower priority task in
aff(i, j), rather than just the UCBs of each resource access within those tasks. More precise
analysis could potentially be obtained by considering each resource access as a sub-task
with its own UCBs. Such a detailed approach is however beyond the scope of this paper.

When determining the blocking factor Bi we cannot use the resource access execution
times as they occur within the non-pre-emptive execution of each containing task τk. This
is because we must assume that task τk could be pre-empted immediately before a resource
access and any useful cache blocks evicted. Instead, the execution time of each resource
access must be determined assuming execution of that section of code with no pre-emption,
and starting from the worst-case initial state.

6 Case Study

In this section, we evaluate the effectiveness of the different approaches based on a case
study. The worst-case execution times and the set of useful cache blocks and evicting cache
blocks have been derived from the Mälardalen benchmark suite (Gustafsson et al, 2010),
see Table 1, where the values are taken from (Altmeyer and Maiza, 2011). The target ar-
chitecture is an ARM7 processor3 with direct-mapped instruction cache of size 2kB with a
line size of 8 Bytes (and thus, 256 cache sets) and a block reload time of 8µs. The ARM7
features an instruction size of 4 Bytes.

We note that although the case study tasks do not represent a set of tasks scheduled
on an embedded real-time system, they do represent typical components of real-time ap-
plications and thus deliver meaningful values. We created a taskset from the above data by
assigning periods and implicit deadlines such that all 15 tasks had equal utilization. This is

3 http://www.arm.coms/products/CPUs/families/ARM7Family.html
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WCET UCBs ECBs
bs 445 5 35
minmax 504 9 79
fac 1252 4 24
fibcall 1351 5 24
insertsort 6573 10 41
loop3 13449 4 817
select 17088 15 151
qsort-exam 22146 15 170
fir 29160 9 105
sqrt 39962 14 477
ns 43319 13 64
qurt 214076 14 484
crc 290782 14 144
matmult 742585 23 100
bsort100 1567222 35 62

Table 1 Execution times and number of UCBs and ECBs for a selection of benchmarks from the Mälardalen
Benchmark Suite.

an entirely arbitrary choice. Evaluation with randomly generated taskset parameters is re-
ported in section 7. The periods where generated by multiplying each execution time by a
constant c (∀i : Ti = c ·Ci). We varied c from 15 upwards hence varying the utilization of
the taskset from 1.0 downwards. The tasks were assigned priorities in deadline monotonic
priority order. Note that deadline monotonic priority order is optimal in this case only when
pre-emption costs are zero.

Table 2 lists the breakdown utilization; the maximum utilization at which a scaled ver-
sion of the case study taskset was deemed schedulable by each approach.

Analysis Breakdown utilization:
No Pre-emption Cost 0.95

Combined 0.789
ECB-Union Multiset 0.789
UCB-Union Multiset 0.767

ECB-Union 0.767
UCB-Union 0.698
UCB-Only 0.75
ECB-Only 0.612
Staschulat 0.508

Table 2 Case study taskset: breakdown utilization for different approaches.

Staschulat’s approach performs worst, with a breakdown utilization of 0.508. Equa-
tion (7) computes the number of pre-emptions taken into account. For the effect of task τ1
(bs) to task τ5 (insertsort), only the 8 highest costs of τ1 pre-empting any task from τ2 to
τ5 need to be considered. However, for the effect of task τ1 (bs) to task τ15 (bsort100), the
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47362 highest costs need to be considered. Although the single pre-emption costs (for τi
pre-empted by τ j) are much smaller, the total cost is very pessimistic.

The ECB-Union Multiset approach performs best with breakdown utilization of 0.789,
followed by the ECB-Union and UCB-Union Multiset approaches, with breakdown utiliza-
tion of 0.767. As the cache contention is high (3 out of the 15 tasks fill the whole cache),
a single pre-emption often evicts all of the UCBs of the pre-empted task(s). In addition,
the total number of ECBs is much higher than the total number of UCBs hence the ECB-
only approach (3) is much more pessimistic than the UCB-only approach (4) and so has
a lower breakdown utilization of 0.612. As a consequence, the ECB-Union approach (10)
outperforms the UCB-Union approach (5) which has a breakdown utilization of 0.698. The
combination the two Multiset approaches (17) does not improve upon the ECB-Union Mul-
tiset approach. Finally, (1) deems the case study taskset schedulable up to a utilization of
0.95 ignoring pre-emption costs.

7 Evaluation

In this section, we evaluate the effectiveness of the different approaches to pre-emption cost
computation on a large number of tasksets with varying cache configurations and varying
taskset parameters. The task parameters used in our experiments were randomly generated
as follows:

– The default taskset size was 10.
– Task utilizations were generated using the UUnifast (Bini and Buttazzo, 2005) algo-

rithm.
– Task periods were generated according to a log-uniform distribution with a factor of 100

difference between the minimum and maximum possible task period and a minimum
period of 5ms. This represents a spread of task periods from 5ms to 500ms, as found in
most automotive and aerospace hard real-time applications.

– Task execution times were set based on the utilization and period selected: Ci =Ui ·Ti.
– Task deadlines were implicit4, i.e., Di = Ti.
– Priorities were assigned in deadline monotonic order.

The following parameters affecting pre-emption costs were also varied, with default values
given in parentheses:

– The number of cache-sets (CS = 256).
– The block-reload time (BRT = 8µs)
– The cache usage of each task, and thus, the number of ECBs, were generated using the

UUnifast (Bini and Buttazzo, 2005) algorithm (for a total cache utilization CU = 10).
UUnifast may produce values larger than 1 which means a task fills the whole cache.
We assumed the ECBs of each task to be consecutively arranged starting at a random
cache set S ∈ [0;CS−1], i.e. from S to S+ |ECB| mod CS.

– For each task, the UCBs were generated according to a uniform distribution ranging
from 0 to the number of ECBs5 times a reuse factor: [0,RF · |ECB|]. The factor RF was

4 Evaluation for constrained deadlines, i.e., Di ∈ [Ci;TI ] gives broadly similar results although fewer
tasksets are deemed schedulable by all approaches.

5 The set of ECBs generated may exceed the number of cache sets. In this case, the set of ECBs used
within the response time analysis is limited to the number of cache sets. However, for the generation of the
UCBs, the original set of ECBs is used.
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used to adapt the assumed reuse of cache-sets to account for different types of real-
time applications, for example, from data processing applications with little reuse up to
control-based applications with heavy reuse.

Staschulat’s approach exploits the fact that for the i-th pre-emption only the i-th highest
number of UCBs has to be considered. As our case study and other measurements (Bertogna
et al, 2011) have shown, a significant reduction typically only occurs at a high number of
pre-emptions. For the purposes of evaluation, for Staschulat’s approach, we simulated what
in practice is likely to be an optimistic reduction: reducing the number of UCBs per pre-
emption by one each time.

In each experiment the taskset utilization not including pre-emption cost was varied from
0.025 to 0.975 in steps of 0.025. For each utilization value, 1000 tasksets were generated
and the schedulability of those tasksets determined using the appropriate pre-emption cost
computation integrated into response time analysis.

7.1 Base configuration

We conducted experiments varying the number of tasks, the cache-size (i.e. number of
cache-sets (CS)), the block reload time (BRT), the cache utilization (CU) and the reuse
factor (RF). As a base configuration we used the default values of 10 tasks, a cache of 256
cache-sets, a block-reload time of 8µs, a reuse factor of 30% and a cache-utilization of
10. The latter two parameters were chosen according to the actual values observed in the

Fig. 9 Evaluation of base configuration. Number of tasksets deemed schedulable at the different total utiliza-
tions.

case-study. Figure 9 illustrates the performance of the different approaches for this base
configuration. The graph also shows a line marked Simulation-UB. This refers to the use of
simulation to form a necessary schedulability test. We simulated execution and pre-emption
of the tasks starting from near simultaneous release. The tasks were released in order, low-
est priority first, to increase the number of pre-emptions considered. We assumed that any
partial execution of a task uses all its ECBs and UCBs. If any task missed its deadline,
then the taskset was proven to be unschedulable w.r.t. the pre-emption cost model used, thus
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providing a valid upper bound on taskset schedulability including pre-emption costs. Note
that the lines on the graphs appear in the same order as they are described in the legend.
The graphs are best viewed online in colour. For each approach, we determined the aver-
age breakdown utilization for the tasksets generated for the base configuration, see Table 3.
These results show that the ECB-Union, and the Multiset approaches significantly improve
upon the performance of previous methods.

Analysis Average Breakdown Utilization Weighted Schedubality
No Pre-emption Cost 0.93 0.86

Simulation 0.81 0.62
Combined 0.70 0.50

ECB-Union Multiset 0.66 0.46
UCB-Union Multiset 0.67 0.46

ECB-Union 0.62 0.42
UCB-Union 0.59 0.37
UCB-Only 0.57 0.36
ECB-Only 0.40 0.20
Staschulat 0.33 0.32

Table 3 Average breakdown utilization and weighted schedulability measure of base configuration tasksets
for each approach.

Exhaustive evaluation of all combinations of cache and taskset configuration parame-
ters is not possible. We therefore fixed all parameters except one and varied the remaining
parameter in order to see how performance depends on this value. The graphs below show
the weighted schedulability measure Wy(p) (Bastoni et al, 2010) for schedulability test y
as a function of parameter p. For each value of p, this measure combines data for all of
the tasksets τ generated for all of a set of equally spaced utilization levels. Let Sy(τ, p) be
the binary result (1 if schedulable, 0 otherwise) of schedulability test y for a taskset τ and
parameter value p then:

Wy(p) = (∑
∀τ

u(τ) ·Sy(τ, p))/∑
∀τ

u(τ) (20)

where u(τ) is the utilization of taskset τ . This weighted schedulability measure reduces what
would otherwise be a 3-dimensional plot to 2 dimensions (Bastoni et al, 2010). Weighting
the individual schedulability results by taskset utilization reflects the higher value placed on
being able to schedule higher utilization tasksets.

7.2 Cache Utilization & Cache-Reuse

Cache utilization and cache-reuse are the most important factors for pre-emptively sched-
uled systems. If all tasks fit into the cache, i.e. the cache utilization is less than one or there
is no cache-reuse at all, then no additional cache related pre-emption delays occur. The other
extreme is when each task completely fills the cache. In this case, each UCB must be as-
sumed to be evicted, and hence the overall pre-emption delay depends solely on the number
of UCBs. Figure 10 shows the weighted schedulability measure for each approach as a func-
tion of the cache utilization. At a low cache utilization, only a few UCBs are actually evicted.
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Fig. 10 Weighted schedulability measure; varying cache utilization from 0 to 20, in steps of 2

The set of ECBs per task is low, and often smaller than the number of UCBs of all possibly
pre-empted tasks. Thus, an upper bound on the possibly evicted UCBs per pre-empting task
(as computed by the UCB-Union approach) is slightly pessimistic, while the ECB-Union
approach is in this case more pessimistic. The situation changes with increased cache utiliza-
tion. As each task uses a larger proportion of the whole cache on average, the UCB-Union
approach becomes significantly more pessimistic than the ECB-Union approach. The same
relation can be found in the case of the Multiset approaches, which—due to the reduced
pessimism—perform significantly better than the basic union-approaches. Figure 11, shows

Fig. 11 Weighted schedulability measure; varying reuse factor from 0% to 100%, in steps of 10%

the weighted schedulability measure for each approach as a function of the reuse factor. At
low values of the reuse factor, the set of UCBs per task is low compared to the ECBs, and so
the UCB-Union method is more pessimistic than the ECB-Union method, while at high val-
ues of the reuse factor, the opposite applies as the set of UCBs for each task becomes similar
to its set of ECBs. The same behaviour is observed in the case of the Multiset approaches,
in Figure 11 these two lines cross at a medium level of reuse, while the Combined approach



22 Sebastian Altmeyer et al.

outperforms both, providing the best performance in all cases. Since the reuse factor only
affects the number of UCBs, the performance of the ECB-only approach is independent of
the reuse factor. As expected, performance of the ECB-only approach is relatively poor at
low levels of reuse, but competitive at high levels.

7.3 Number of Tasks

In this experiment, we varied the number of tasks with the other parameters fixed at their
default values. Figure 12 shows that the more tasks there are, the less likely a taskset of a

Fig. 12 Weighted schedulability measure; varying number of tasks from 2 = 21 to 26 = 64.

given utilization is to be schedulable. This is because with an increased number of tasks
the number of pre-emptions and hence the overall pre-emption costs increase, reducing the
schedulability of the taskset. Note that the pre-emption costs are not included in the taskset
utilization. This reduction in schedulability with increasing taskset size holds for all of the
approaches, with a greater reduction observed with Staschulat’s approach for the reasons
explained in Section 6.

Note that the upper bound derived by simulation shows a much smaller reduction. This
is because, as the number of tasks increases, the number of possible execution scenarios
increases rapidly, thus it becomes less likely that the simulation will deliver the worst-case
scenario.

7.4 Cache-Size

The number of cache-sets also has an influence on the overall performance of the different
approaches. The more cache-sets there are, the higher the impact of a pre-emption may
be, given the same cache utilization and block reload time. Hence as the number of cache
sets is increased, all of the approaches show a similar decrease in schedulability with the
exception of the basic response time analysis which does not include pre-emption costs, see
Figure 13. Varying the block reload time results in similar behaviour, see Figure 14. We note
that when increasing the cache size, the execution time of each task might also be expected
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Fig. 13 Weighted schedulability measure; varying number of cache sets from 25 = 64 to 210 = 1024

Fig. 14 Weighted schedulability measure; varying block reload time from 20 = 1µs to 24 = 32µs

to decrease. In this experiment; however, we keep WCETs constant and examine only the
effect on schedulability of changing the cache size.

7.5 Range of task periods

The range of task periods may also influence the performance of the different approaches.
We therefore conducted experiments varying the task period generation. Our base configu-
ration used task periods in the range 5ms to 500ms, typical of many real-time systems. In
Figure 15, we varied the number of orders of magnitude v spanning the minimum to the max-
imum task period and hence the range of task periods and deadlines given by 5[1,10v]ms.
In Figure 15 we see that as the range of task periods is increased, by making the maximum
period larger, schedulability improves for all of the approaches. This is because increasing
the maximum period has the effect of reducing the proportion of task that are generated with
smaller periods (e.g. in the range 1-10ms). Given that the block reload time is constant in
this experiment, the ratio of pre-emption costs to taskset utilization reduces for increasing
ranges of task periods, thus improving schedulability (recall that pre-emption costs are not
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included in taskset utilization). Note the smaller improvement with no pre-emption costs
is a property of fixed priority scheduling; which on average can schedule higher utilization
tasksets when there is a wide disparity in task periods.

In Figure 16, we varied the scaling factor w from 1 to 10 and hence the range of task
periods given by w[1,100]ms. Given that the block reload time is again constant in this
experiment, the ratio of pre-emption costs to taskset utilization decreases as the task periods,
deadlines and execution times are all scaled up, thus increasing schedulability for all of the
approaches that include pre-emption costs. In fact these results are similar to the ones for
varying block reload times, but with the results for larger values of the scaling factor w
corresponding to those for smaller block reload times.

Fig. 15 Weighted schedulability measure; varying the range of task periods [5,50] to [5,5 ·104]

Fig. 16 Weighted schedulability measure; varying the scale of task periods w[1,100] from w = 2 to w = 10
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8 Conclusions

The major contribution of this paper is the introduction of new methods of bounding pre-
emption costs; the ECB-Union approach and the ECB-Union Multiset and UCB-Union
Multiset approaches. The ECB-Union Multiset approach dominates the ECB-Union ap-
proach, which in turn dominates the UCB-Only approach of Lee et al (1998). Similarly,
the UCB-Union Multiset approach dominates the UCB-Union approach of Tan and Mooney
(2007), which in turn dominates the ECB-only approach of Busquets-Mataix et al (1996) and
Tomiyama and Dutt (2000). The Multiset approaches removes pessimism present in both the
ECB-Union and UCB-Union approaches. The ECB-Union Multiset and UCB-Union Multi-
set approaches are incomparable and so we combined them into a composite response time
test that dominates both.

We extended the ECB-Union (Multiset) and UCB-Union (Multiset) approaches to sys-
tems that permit tasks to access shared resources in mutual exclusion according to the Stack
Resource Policy. Our work in this area revealed that previous approaches to computing pre-
emption delays, although including blocking factors in their schedulability analyses, did not
account for the pre-emption of blocking tasks during a resource access. This omission can
lead to optimistic (unsound) response times, an issue that we corrected.

Finally, we examined the performance of the various approaches to computing pre-
emption costs via a case study and an empirical evaluation of taskset schedulability. The
latter showed that a combined response time analysis test using both the new ECB-Union
Multiset and UCB-Union Multiset approaches derived in this paper provides an effective
method of determining task schedulability. This combined approach offers a significant im-
provement in performance over previous approaches for a wide range of different task and
cache configurations, including cache utilization level, amount of reuse, cache size, and
block reload times.
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