
Accounting for Cache Related Pre-emption Delays in
Hierarchical Scheduling with Local EDF Scheduler

Will Lunniss
Department of Computer Science

University of York
York, UK

wl510@york.ac.uk

Sebastian Altmeyer
Computer Systems Architecture Group

University of Amsterdam
Netherlands

altmeyer@uva.nl

Robert I. Davis
Department of Computer Science

University of York
York, UK

rob.davis@york.ac.uk

ABSTRACT
Hierarchical scheduling provides a means of composing multiple
real-time applications onto a single processor such that the
temporal requirements of each application are met. This has
become a popular technique in industry as it allows applications
from multiple vendors as well as legacy applications to co-exist in
isolation on the same platform. However, performance enhancing
features such as caches mean that one application can interfere
with another by evicting blocks from cache that were in use by
another application, violating the requirement of temporal
isolation. In this paper, we present some initial analysis that
bounds the additional delay due to blocks being evicted from
cache by other applications in a system using hierarchical
scheduling when using a local EDF scheduler.

1. INTRODUCTION
Hierarchical scheduling provides a means of composing multiple
applications onto a single processor such that the temporal
requirements of each application are met. This is driven by the
need to re-use legacy applications that once ran on slower, but
dedicated processors. Each application, referred to as a
component, has a dedicated server. A global scheduler then
allocates processor time to each server, during which the
associated component can use its own local scheduler to schedule
its tasks.
In hard real-time systems, the schedulability of each task must be
known offline in order to verify that the timing requirements will
be met at runtime. However, in pre-emptive multi-tasking
systems, caches introduce additional cache related pre-emption
delays (CRPD) caused by the need to re-fetch cache blocks
belonging to the pre-empted task which were evicted from the
cache by the pre-empting task. These CRPD effectively increase
the worst-case execution time of the tasks. It is therefore
important to be able to calculate, and account for, CRPD when
determining if a system is schedulable or not. This is further
complicated when using hierarchical scheduling as servers will
often be suspended while their components’ tasks are still active,
that is they have started but have not yet completed execution.
While a server is suspended, the cache can be polluted by the
tasks belonging to other components. When the global scheduler
then switches back to the first server, tasks belonging to the
associated component may have to reload blocks into cache that
were in use before the global context switch.
Hierarchical scheduling has been studied extensively in the past
15 years. Deng and Liu [7] were the first to propose such a two-
level scheduling approach. Later Feng and Mok [8] proposed the
resource partition model and schedulability analysis based on the
supply bound function. Shin and Lee [16] introduced the concept
of a temporal interface and the periodic resource model, and
refined the analysis of Feng and Mok. When using a local EDF
scheduler, Lipari et al. [11] [12] have investigated allocating
server capacity to components, proposing an exact solution.

Recently Fisher and Dewan [9] have developed a polynomial-time
approximation with minimal over provisioning of resources.
Hierarchical systems have been used mainly in the avionics
industry. For example, the ARINC 653 standard [2] defines
temporal partitioning for avionics applications. The global
scheduler is a simple Time Division Multiplexing (TDM), in
which time is divided into frames of fixed length, each frame is
divided into slots and each slot is assigned to one application.
Analysis of CRPD uses the concept of useful cache blocks
(UCBs) and evicting cache blocks (ECBs) based on the work by
Lee et al. [10]. Any memory block that is accessed by a task while
executing is classified as an ECB, as accessing that block may
evict a cache block of a pre-empted task. Out of the set of ECBs,
some of them may also be UCBs. A memory block m is classified
as a UCB at program point ρ, if (i) m may be cached at ρ and (ii)
m may be reused at program point ϥ that may be reached from ρ
without eviction of m on this path. In the case of a pre-emption at
program point ρ, only the memory blocks that are (i) in cache and
(ii) will be reused, may cause additional reloads. For a more
thorough explanation of UCBs and ECBs, see section 2.1 “Pre-
emption costs” of [1].
A number of approaches have been developed for calculating the
CRPD when using fixed priority pre-emptive scheduling under a
flat, single-level system. A summary of these approaches, along
with the state-of-the-art approach is available in [1]. In 2013,
Lunniss et al. [14] presented a number of approaches for
calculating CRPD when using pre-emptive EDF scheduling.
In 2014, Lunniss et al. [13] extended previous works to include
CRPD analysis under hierarchical scheduling when using a local
FP scheduler.
The remainder of the paper is organised as follows. Section 2
introduces the system model, terminology and notation used.
Section 3 recaps existing CRPD and schedulability analysis.
Section 4 introduces the new analysis for calculating component
level CRPD incurred in hierarchical systems when using a local
EDF scheduler. In section 5 the analysis is evaluated, and section
6 concludes with a summary and outline of future work.

2. SYSTEM MODEL
We assume a single processor system comprising m components,
each with a dedicated server (S1..Sm) that allocates processor
capacity to it. We use Ψ to represent the set of all components in
the system. G is used to indicate the index of the component that
is being analysed. Each server SG has a budget QG and a period
PG, such that the associated component will receive QG units of
execution time from its server every PG units of time. Servers are
assumed to be scheduled globally using a non-pre-emptive
scheduler, as found in systems that use time partitioning to divide
up access to the processor. While a server has remaining capacity
and is allocated the processor, we assume that the tasks of the
associated component are scheduled using pre-emptive EDF.

13

The system comprises a taskset Г made up of a fixed number of
tasks (τ1..τn) divided between the components. Each component
contains a strict subset of the tasks, represented by ГG. For
simplicity, we assume that the tasks are independent and do not
share resources requiring mutually exclusive access, other than
the processor.
Each task, τi may produce a potentially infinite stream of jobs that
are separated by a minimum inter-arrival time or period Ti. Each
task has a relative deadline Di, a worst case execution time Ci
(determined for non-pre-emptive execution). We assume that
deadlines are either implicit (i.e. Di=Ti) or constrained (i.e. Di≤Ti).
Each task τi has a set of UCBs, UCBi and a set of ECBs, ECBi
represented by a set of integers. If for example, task τ1 contains 4
ECBs, where the second and fourth ECBs are also UCBs, these
can be represented using ECB1 = {1,2,3,4} and UCB1 = {2,4}.
Each component G also has a set of UCBs, UCBG and a set of
ECBs, ECBG, that contain respectively all of the UCBs, and all of
the ECBs, of their tasks, i.e. G UCBUCBG

i
i and

G ECBECBG
i

i .

Each time a cache block is reloaded, a cost is introduced that is
equal to the block reload time (BRT). We assume a direct mapped
cache, but the work extends to set-associative caches with the
LRU replacement policy as described in section 2 of [1]. We
focus on instruction only caches.

3. EXISTING SCHEDULABILITY AND
CRPD ANALYSIS
Schedulability analysis for EDF uses the processor demand bound
function [3], [4], in order to determine the demand on the
processor within a fixed interval. It calculates the maximum
execution time requirement of all tasks’ jobs which have both
their arrival times and their deadlines in a contiguous interval of
length t. Baruah et al. showed that a taskset is schedulable under
EDF iff ttht)(,0 . We use a modified equation for h(t)
from [14] which includes jt , to represent the CRPD caused by
task τj that may affect any job of a task with both its release times
and absolute deadlines within an interval of length t.

n

j
jtj

j

j C
T

Dtth
1

,1 ,0max)(

In order to determine the schedulability of a taskset in a
hierarchical system, we must account for the limited access to the
processor. The supply bound function [16], or specifically the
inverse of it, can be used to determine the maximum amount of
time needed by a specific server to supply some capacity c. We
define the inverse supply bound function, isbf, for component G as

Gisbf [15]:

1)()(G
GGG

Q
cQPccisbf

4. NEW CRPD ANALYSIS
In [13] Lunniss et al. presented a number of approaches for

calculating CRPD in hierarchical systems when using a local FP
scheduler. We now describe how CRPD analysis can be adapted
for use with a local EDF scheduler. This analysis assumes a non-
pre-emptive global scheduler (i.e. the capacity of a server is
supplied without pre-emption, but may be supplied starting at any
time during the server’s period).
The analysis must account for the cost of reloading any UCBs into
cache that may be evicted by tasks running in the other
components, which we call component level CRPD. To account
for the component level CRPD, we define a new term G

t that

represents the CRPD incurred by tasks in component G due to
tasks in the other components running while the server (SG) for
component G is suspended. Combining (1), with Gisbf , (2), and

G
t , we get the following expression for determining the

processor demand within an interval of length t.

n

j

G
tjtj

j

jG C
T

Dtisbfth
1

,1 ,0max)(

In the computation of G
t , we use a number of terms, described

below. We use)(tE j to denote the maximum number of jobs of
task τj that can have both their release times and their deadlines in
an interval of length t, which we calculate as follows:

j

j
j

T
DttE 1 ,0max)(

We use)(tEG to denote the maximum number of times server SG
can be both suspended and resumed during t. Note that (5) can be
used with t=Dj to calculate the maximum number of times server
SG can be suspended and resumed during a single job of task τj.

G
G

P
ttE 1

We use the term disruptive execution to describe an execution of
server SZ while server SG is suspended that results in tasks from
component Z evicting cache blocks that tasks in component G
might have loaded and may need to reload in an interval of length
t. Note that if server SZ runs more than once while server SG is
suspended, its tasks cannot evict the same blocks twice and as
such, the number of disruptive executions is bounded by the
number of times that server SG can be both suspended and
resumed. Specifically, we are interested in how many disruptive
executions a server can have during an interval of length t. We use
XZ to denote the maximum number of such disruptive executions.

Z
GGZ

P
ttEtSX 1,min,

4.1 Component level CRPD
We first calculate an upper bound on the UCBs that if evicted by
tasks in the other components may need to be reloaded. We do
this by forming a multiset that contains the UCBs of task τk
repeated tEDE kk

G times for each task in G
k . This

multiset reflects the fact that server SG can be suspended and
resumed at most k

G DE times during a single job of task τk and
there can be at most tEk jobs of task τk that have their release
times and absolute deadlines within the interval of length t.

G kkGk tEDE

k
ucb

tGM UCB,

The second step is to determine which ECBs of the tasks in the
other components could evict the UCBs in (7), for which we
present three different approaches.

4.1.1 UCB-ECB-Multiset-All
The first option is to assume that every time server SG is
suspended, all of the other servers run and their tasks evict all the
cache blocks that they use. We therefore take the union of all
ECBs belonging to the other components to get the set of blocks
that could be evicted. We form a second multiset that contains

)(tEG copies of the ECBs of all of the other components in the
system. This multiset reflects the fact that the other servers’ tasks
can evict blocks (that need to be reloaded) at most)(tEG times
within an interval of length t.

(1)

(3)

(5)

(7)

(6)

(4)

(2)

14

tE
GZ

Z

Aecb
tG

G

M Z
, ECB

The total CRPD incurred by tasks in component G due to the
other components in the system is then given by the size of the
multiset intersection of ucb

tGM , (7) and Aecb
tGM , (8).

Aecb
tG

ucb
tG

G
t MM ,,BRT

4.1.2 UCB-ECB-Multiset-Counted
The above approach works well when the global scheduler uses a
TDM schedule such that each server has the same period and/or
components share a large number of ECBs. If some servers run
less frequently than server SG, then the number of times that their
ECBs can evict blocks may be over counted. One solution to this
problem is to consider each component separately by calculating
the number of disruptive executions, tSX GZ , , that server SZ
can have on tasks in component G during t. We form a second
multiset that contains tSX GZ , copies of ECBZ for each of the
other components Z in the system. This multiset reflects the fact
that the tasks of each component Z can evict blocks at most

tSX GZ , times within an interval of length t.

GZ
Z tSX

Cecb
tG

GZ

M
,

Z
, ECB

The total CRPD incurred by task τi, in component G due to the
other components in the system is then given by the size of the
multiset intersection of ucb

tGM , (7) and Cecb
tGM , (10).

Cecb
tG

ucb
tG

G
t MM ,,BRT

4.1.3 UCB-ECB-Multiset-Open
In open hierarchical systems, the other components may not be
known a priori as they can be introduced into a system
dynamically. Additionally, even in closed systems, full
information about the other components in the system may not be
available until the final stages of system integration. However, as
the cache utilisation of the other components can often be greater
than the size of the cache, the precise set of ECBs does not matter.
We form a second multiset that contains)(tEG copies of all
cache blocks. This multiset reflects the fact that server SG can be
both suspended and then resumed, after the entire contents of the
cache have been evicted at most)(tEG times within an interval
of length t.

tE

Oecb
tG

G

NM ,..2,1,

Where N is the number of cache sets.
The total CRPD incurred by tasks in component G due to the
other unknown components in the system is then given by the size
of the multiset intersection of ucb

tGM , (7) and Oecb
tGM , (12).

Oecb
tG

ucb
tG

G
t MM ,,BRT

For all approaches, we calculated the limit (largest value of t that
needs to be checked in (1)) using an inflated utilisation in a
similar way to that described in section V. D of [14].

5. EVALUATION
In this section we compare the different approaches for
calculating CRPD in hierarchical scheduling using synthetically
generated tasksets. The evaluation was setup to model an ARM
processor clocked at 100MHz with a 2KB direct-mapped

instruction cache. The cache was setup with a line size of 8 Bytes,
giving 256 cache sets, 4 Byte instructions, and a BRT of 8μs. To
generate the components and tasksets, we generated n (default of
24) tasks using the UUnifast algorithm [6] to calculate the
utilisation, Ui of each task so that the utilisations added up to the
desired utilisation level. Periods Ti, were generated at random
between 10ms and 1000ms according to a log-uniform
distribution. Ci was then calculated via Ci = Ui Ti. We assigned
implicit deadlines, i.e. Di = Ti. We used the UUnifast algorithm to
obtain the number of ECBs for each task so that the ECBs added
up to the desired cache utilisation (default of 10). Here, cache
utilisation describes the ratio of the total size of the tasks to the
size of the cache. A cache utilisation of 1 means that the tasks fit
exactly in the cache, whereas a cache utilisation of 10 means the
total size of the tasks is 10 times the size of the cache. The
number of UCBs was chosen at random between 0 and 30% of the
number of ECBs on a per task basis, and the UCBs were placed in
a single group at a random location in each task. We then split the
tasks at random into 3 components with equal numbers of tasks in
each and set the period of each component’s server to 5ms. We
generated 1000 systems using this technique.
For each system, the total task utilization across all tasks not
including pre-emption cost was varied from 0.025 to 1 in steps of
0.025. For each utilization value, we initialised each servers’
capacity to the minimum possible value, (i.e. the utilisation of all
of its tasks). We then performed a binary search between this
minimum and the maximum, (i.e. 1 minus the minimum
utilisation of all of the other components) until we found the
server capacity required to make the component schedulable. As
the servers all had equal periods, provided all components were
schedulable and the total capacity required by all servers was
≤ 100%, then the system was deemed schedulable at that specific
utilisation level. For every approach, the intra-component CRPD
(between tasks in the same component) was calculated using the
Combined Multiset approach given by Lunniss et al. [14].

Figure 1. Percentage of systems deemed schedulable

Figure 1 shows that the UCB-ECB-Multiset-All and UCB-ECB-
Multiset-Open approaches deem the same number of tasksets
schedulable. This is due to the cache utilisation of the other
components being greater than the size of the cache, which causes
the set of ECBs to be equal, i.e. contain all cache blocks. The
UCB-ECB-Multiset-Counted approach deems a lower number of
tasksets schedulable because it considers the effects of the other
components individually. As the components have equal server
periods, each time a component is suspended, it is assumed that
each other component will evict it’s set of ECBs, when in fact

(10)

(12)

(11)

(9)

(8)

(13)

15

they may only be evicted once per suspension. We note that the
results show that the analysis is somewhat pessimistic, as there is
a large difference between the No-Component-Pre-emption-Cost
case, and the approaches that consider component pre-emption
costs. Examining equation (7), we note that tEDE kk

G is based
on the deadline of a task and as such, the analysis effectively
assumes the UCBs of all tasks in component G could be in use
each time the server for component G is suspended.
The server period is a critical parameter when composing a
hierarchical system. The results for varying the server period from
1ms to 20ms, with a fixed range of task periods from 10 to
1000ms are shown in Figure 2 using the weighted schedulability
measure [5]. When the component pre-emption costs are ignored,
having a small server period ensures that short deadline tasks meet
their time constraints. However, switching between components
clearly has a cost associated with it making it desirable to switch
as infrequently as possible. As the server period increases,
schedulability increases due to a smaller number of server context
switches, and hence component CRPD, up until around 7-8ms for
the best performance. At this point, although the component
CRPD continues to decrease, short deadline tasks start to miss
their deadlines due to the delay in server capacity being supplied
unless server capacities are greatly inflated, and hence the overall
schedulability of the system decreases.

Figure 2. Weighted measure of the schedulability when

varying the server period from 1 to 20ms

6. CONCLUSION
In this paper, we have presented some initial analysis for
bounding CRPD under hierarchical scheduling when using a local
EDF scheduler. This analysis builds on existing work for
determining CRPD under single-level EDF scheduling [14], and
hierarchical scheduling with a local FP scheduler [13]. We also
showed that when taking inter-component CRPD into account,
minimising server periods does not maximise schedulability.
Instead, the server period must be carefully selected to minimise
inter-component CRPD while still ensuring short deadline tasks
meet their time constraints. We note that the analysis is somewhat
pessimistic due to the use of a tasks’ deadline for determining
how many times its component could be suspended and resumed
during its execution. In future work we would like to investigate
ways to resolve this. Furthermore, we believe that the analysis
could be optimised when using harmonic server periods, which
could lead to an improvement in the UCB-ECB-Multiset-Counted
approach. Finally, we would like to extend the analysis for use
with a pre-emptive global scheduler.

ACKNOWLEDGEMENTS
This work was partially funded by the UK EPSRC through the
Engineering Doctorate Centre in Large-Scale Complex IT Systems
(EP/F501374/1), the UK EPSRC funded MCC (EP/K011626/1), the
European Community's ARTEMIS Programme and UK Technology
Strategy Board, under ARTEMIS grant agreement 295371-2 CRAFTERS,
and COST Action IC1202: Timing Analysis On Code-Level (TACLe).

REFERNECES

[1] Altmeyer, S., Davis, R.I., and Maiza, C. Improved Cache Related
Pre-emption Delay Aware Response Time Analysis for Fixed Priority
Pre-emptive Systems. Real-Time Systems, 48, 5 (2012), 499-512.

[2] ARINC. ARINC 653: Avionics Application Software Standard
Interface (Draft 15). Airlines Electronic Engineering Committee
(AEEC), 1996.

[3] Baruah, S. K., Mok, A. K., and Rosier, L. E. Preemptive Scheduling
Hard-Real-Time Sporadic Tasks on One Processor. In Proceedings of
the 11th IEEE Real-Time Systems Symposium (RTSS) (1990), 182-
190.

[4] Baruah, S. K., Rosier, L. E., and Howell, R. R. Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic Real-
Time Tasks on One Processor. Real-Time Systems, 2, 4 (1990), 301-
324.

[5] Bastoni, A., Brandenburg, B., and Anderson, J. Cache-Related
Preemption and Migration Delays: Empirical Approximation and
Impact on Schedulability. In Proceedings of Operating Systems
Platforms for Embedded Real-Time applications (OSPERT) (2010),
33-44.

[6] Bini, E. and Buttazzo, G. Measuring the Performance of
Schedulability Tests. Real-Time Systems, 30, 1 (2005), 129-154.

[7] Deng, Z. and Liu, J. W. S. Scheduling Real-Time Applications in
Open Environment. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS) (1997).

[8] Feng, X. and Mok, A. K. A Model of Hierarchical Real-Time Virtual
Resources. In Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS) (2002), 26-35.

[9] Fisher, N. and Dewan, F. A Bandwidth Allocation Scheme for
Compositional Real-time Systems with Periodic Resources. Real-
Time Systems, 48, 3 (2012), 223-263.

[10] Lee, C., Hahn, J., Seo, Y. et al. Analysis of Cache-related Preemption
Delay in Fixed-priority Preemptive Scheduling. IEEE Transactions
on Computers, 47, 6 (June 1998), 700-713.

[11] Lipari, G. and Baruah, S. K. Efficient Scheduling of Real-time Multi-
task Applications in Dynamic Systems. In Proceddings Real-Time
Technology and Applications Symposium (RTAS) (2000), 166-175.

[12] Lipari, G., Carpenter, J., and Baruah, S. A Framework for Achieving
Inter-application Isolation in Multiprogrammed, Hard Real-time
Environments. In Proceedings of the 21st IEEE Real-Time Systems
Symposium (RTSS) (2000), 217-226.

[13] Lunniss, W., Altmeyer, S., Lipari, G., and Davis, R. I. Accounting for
Cache Related pre-emption Delays in Hierarchical Scheduling. In
Proceedings of the 22nd International Conference on Real-Time
Networks and Systems (RTNS) (2014).

[14] Lunniss, W., Altmeyer, S., Maiza, C., and Davis, R. I. Intergrating
Cache Related Pre-emption Delay Analysis into EDF Scheduling. In
Proceedings 19th IEEE Converence on Real-Time and Embedded
Technology and Applications (RTAS) (2013), 75-84.

[15] Richter, K. Compositional Scheduling Analysis Using Standard
Event Models. PhD Dissertation, Technical University Carolo-
Wilhelmina of Braunschweig, 2005.

[16] Shin, I. and Lee, I. Periodic Resource Model for Compositional Real-
Time Guarantees. In Proceedings of the 24th IEEE Real-Time
Systems Symposium (RTSS) (2003), 2-13.

16

