

Uniprocessor Real-Time
Scheduling

Robert Davis

Real-Time Systems Research Group, University of York

rob.davis@york.ac.uk
http://www-users.cs.york.ac.uk/~robdavis/

2

Overview
 Background

 What is real-time?, Task models, Scheduling policies and Analysis
 Fixed Priority Scheduling

 Fundamentals, Resource Sharing, Response Time Analysis,
Extensions: Arbitrary Deadlines, Non-pre-emptive scheduling

 Modelling RTOS behaviour and overheads
 Priority Assignment

 EDF Scheduling
 Fundamentals, Resource Sharing, Processor Demand Analysis,

QPA,
 EDF v FP in theory and practice

 Building on the fundamentals
 Limited Pre-emption, Cache Related Pre-emption Delays

 Wrap up
 Success stories, hot topics, open problems

3

What is a Real-Time System?
Real-Time System is any system which has to respond to
externally generated input stimuli within a specified time
 Functionally correct – the right computations
 Temporally correct – completed within predefined time constraints
 Time constraints typically expressed in terms of deadlines on the

elapsed time between the stimuli and the corresponding response

 Hard Real-Time
 Failure to meet a deadline constitutes a failure of the application

(e.g. flight control system)
 Soft Real-Time

 Latency in excess of the deadline leads to degraded quality of
service (e.g. data acquisition, video playback)

4

Examples of Real-Time Systems

Robotics and Factory
Automation

Telecommunications

Instrumentation

Space

Avionics

Automotive Electronics

Medical Systems

5

Real-Time Applications
 Time-triggered

 Monitoring and data acquisition
 Control loops
 Typically periodic behaviours e.g. every 20ms

 Event-triggered (interrupt-driven)

 Simple sensors (switch closes)
 Engine rotation
 Peripheral devices (e.g. comms – message received)
 Often generate non-periodic behaviours

6

Real-Time Applications
 Applications de-composed into tasks

 Tasks implement the functionality of the system
 Tasking model

 Static set of n tasks τi (i = 1 to n)
 Each task gives rise to a potentially infinite sequence of jobs
 Job of task τi

 Arrives at some time t and is released (ready to execute)
 Execute for a time no greater than Worst-Case Execution Time (WCET) Ci
 Before an Absolute Deadline which is a Relative Deadline Di after its arrival

7

Task Timing Behaviour
 Types of task (time-triggered and event-triggered) based on

pattern of arrivals
 Periodic: generates jobs with a strict period of Ti between them

 Sporadic: minimum inter-arrival time Ti between jobs

 Aperiodic: no minimum inter-arrival time, so jobs can arrive

arbitrarily close together

8

Task Timing Behaviour
 Execution times

 Assume a bounded WCET C i for Hard Real-Time task τi
 Types of Deadline

 Implicit: Same as period / minimum inter-arrival time Di =Ti
between them

 Constrained: Di ≤Ti
 Arbitrary: not related toTi (but needs to be ≥ C i)

 Release jitter
 Job may arrive but may not be released ready for processing

immediately
 Variability in time from arrival to release is release jitter Ji (e.g.

tick-driven RTOS)

Tick-driven RTOS

tick of 2ms
5ms period task

exhibits jitter

9

Task Timing Behaviour
 Shared Resources

 Jobs may need mutually exclusive access to shared resources (e.g.
shared data structures, on-chip peripherals e.g. communications)

 Non-pre-emptable behaviour

 Jobs may have critical sections with interrupts disabled
 RTOS API calls may internally disable/enable interrupts or

scheduling
 Jobs may need to execute non-pre-emptably to reduce output

jitter (from reading a sensor value to outputting a response to an
actuator)

10

Uniprocessor Real-Time Scheduling
 Why do we need scheduling at all?

 Single processor can only execute one job at a time
 Tasks can have very different timing characteristics (C,D,T)
 Multiple tasks and each task can potentially generate

an infinite sequence of jobs

 Terminology
 Scheduler: part of a RTOS which decides at run-time which job to

execute
 Scheduling policy: rules used by the scheduler to choose between

jobs
 Schedulability analysis: some maths used offline to determine if

jobs can always be guaranteed to meet their deadlines according
to a system and task model
 To be useful need to upper bound OS and other overheads

11

Scheduling policies: Offline
 Static Cyclic Scheduling:

 Table driven or Cyclic Executive – no scheduler as such, just a
hard-coded cycle of procedures to execute

 Advantages:
 Apparently low overhead (simple cyclic code), Deterministic

 Disadvantages:
 Hard to support sporadic behaviour (need to reserve time in each

cycle) for what may be one off jobs
 Need to split large jobs (long C,T) into fragments
 Hard to maintain
 Lacks flexibility

12

Scheduling policies: Online
 Fixed Task Priority

 Referred to as Fixed Priority (FP) in uniprocessor scheduling
 Each task has a fixed priority, each job of a task has the same

priority as the task
 At run-time the scheduler executes the ready job with the highest

priority
 Fixed Job Priority

 Each job has a fixed priority (jobs of the same task can have
different priorities)

 Earliest Deadline First (EDF) – scheduler executes the ready job
with the earliest absolute deadline

 Dynamic Priority
 The priority of a job can vary at run-time
 Least Laxity First (LLF) – scheduler executes the ready job with

least laxity (absolute deadline less remaining execution time)

13

Scheduling policies
Fixed Priority (Pre-emptive)



14

Scheduling policies
Earliest Deadline First (Pre-emptive)



15

Terminology: scheduling policies
 Pre-emptive / non-pre-emptive

 A scheduling policy is pre-emptive if it will chose to suspend a job
that has started executing, but not yet finished in order to run
another job

 A scheduling policy is non-pre-emptive if it always allows any job
that has started executing to complete before starting another job

 Work-conserving
 A scheduling policy is work-conserving if it never idles the

processor when there are jobs ready

16

Terminology: Schedulability
 Schedulable

 A taskset is schedulable using a specific scheduling algorithm
(policy) if all valid sequences of jobs that may be generated by the
taskset can be scheduled without a deadline being missed

 Feasible
 A taskset is feasible if there exists some scheduling algorithm

(policy) under which it is schedulable
 Optimality

 A scheduling policy is optimal if it can schedule any feasible
taskset

EDF is an optimal pre-emptive scheduling policy for single processors

17

Terminology: Schedulability tests
 Aim to build predictable systems

 Want to ensure before a system runs that its deadlines will be met
[or in the case of probabilistic real-time systems that the chance of
a deadline being missed is below a specified threshold e.g. 10-9
per hour]

 Use Schedulability Analysis to calculate offline based on models of
the application tasks and the system if deadlines will be met online

 Schedulability tests:

 Sufficient: All tasksets deemed schedulable by the test are in fact
schedulable

 Necessary: All tasksets deemed unschedulable by the test are in
fact unschedulable

 Exact: Sufficient and necessary

18

Fixed Priority Scheduling

19

Fixed Priority Scheduling
Early Schedulability Tests

 Utilisation based tests for independent periodic tasks with
implicit deadlines
 Processor utilisation of a taskset

 1967 Fineberg & Serlin

 Two periodic tasks with implicit deadlines (D = T)
 Better to assign the higher priority to the task with the shorter period
 Schedulable provided that

 1973 Liu & Layland (also Serlin 1972)

 n periodic tasks with implicit deadlines (D=T)
 Rate Monotonic is the optimal priority assignment policy
 Schedulable provided that

Test are sufficient but not exact: many tasksets fail the tests but are
schedulable

∑
∀

=
j j

j

T
C

U

83.0)12(2 ≈−≤U

)12(−≤ nnU 693.0)2ln(≈→

20

Resource sharing
 Mutually exclusive access to shared resources

 Peripheral devices and communications
 Shared data structures requiring atomic update to preserve

data consistency

 Non-pre-emptive scheduling solves this but at a high cost to
schedulability

 Simple approach using semaphores or mutexes
 Impacts schedulability
 Problems of Deadlock

21

Resource sharing:
Binary Semaphores

Low priority job
locks resource

Pre-empted by
medium priority job

Pre-empted by high
priority job that wants

the resource

Medium priority jobs
cause ‘unbounded’

blocking

Low priority job
resumes and releases

resource

22

Stack Resource Policy (SRP)
 Stack Resource Policy for FP scheduling

 SRP assigns a Ceiling Priority to each Resource equal to the
highest priority of any task that accesses the resource

 On locking a resource
 Job’s priority is saved (on the stack) and its priority is raised to the

higher of its current priority and the Ceiling Priority of the resource
 On unlocking a resource

 Job’s previous priority is restored (from the stack)
 Fixed priority scheduling

 Takes care of mutual exclusion as no job can access a resource
that is already locked as its priority will not be high enough to pre-
empt the job that locked the resource

[T.P. Baker “Stack-based Scheduling of Real-Time Processes.” Real-Time Systems Journal (3)1, pages
67-100. 1991]

23

Resource sharing:
Stack Resource Policy

Low priority job
locks resource

Ceiling Priority 1

Low priority job
executes at Priority 1

while holding
the resource

Medium priority job
blocked before it
Starts executing

Minimal
priority inversion

24

Stack Resource Policy (SRP)
 Schedulability analysis with SRP: Blocking factor Bi

 Bi is the time for which a job of task τi may be blocked from
executing by jobs of lower priority tasks

 Bi is limited to the (single) longest time that a job of a lower
priority task executes with a resource locked that has a Ceiling
Priority of i or higher (i.e. a resource shared with task τi or a task
of higher priority)

 Properties of SRP
 Resource access is serialised, once a job starts to execute it never

has to wait for a lower priority job to unlock a resource, so
no additional context switches due to resource locking

 Deadlock free
 Permits and requires properly nested resource access
 Enables single stack execution (Important in RTOS: OSEK,

Autosar)

[T.P. Baker “Stack-based Scheduling of Real-Time Processes.” Real-Time Systems Journal
(3)1, pages 67-100. 1991]

25

Stack Resource Policy (SRP)
 Name confusion

 Often referred to as the Priority Ceiling Protocol, but that is
actually a more complex policy without some of the nice properties
of SRP - check out Baker’s original paper for a comparison

 SRP sometimes also referred to as the Immediate Priority Ceiling
Protocol

 Don’t believe what it says on Wikipedia!

 Utilisation based tests with blocking

)12(−≤









+∑

∀

n

j j

j

j

j n
T
B

T
C

26

Fixed Priority Scheduling:
Response Time Tests

 Response Time Test
 Worst-Case Response Time Ri is the longest time that a job of task

τi can take from arrival to completion (= release jitter + longest
time from release to completion)

 Response time compared to the task’s deadline to determine
schedulability (Ri ≤Di)

 Precise calculation of Ri gives an exact test

 Critical Instant
 Defines a scenario or pattern of job releases such that a job of

task τi experiences its worst-case response time
 Synchronous release of a job of task τi and jobs of all higher priority

tasks, which are then released again as soon as possible
 First job of each higher priority task has maximum release jitter,

subsequent jobs have zero jitter (maximises interference)
 First job of task τi has maximum release jitter (maximises release

delay)
 Low priority task locks a resource creating the maximum blocking just

before this synchronous release (maximises blocking)
 Proof this is the worst-case?

27

Key concepts
Critical Instant

28

Key concepts
Priority level-i Busy Period

 Priority level-i Busy period
 Period of time [t1, t2) during which tasks, of priority i or higher

hp(i), that were released at the start of the busy period at t1, or
during the busy period but strictly before its end at t2, are either
executing or ready to execute.

 With pre-emptive scheduling, the end of the busy period is when
the last execution at priority i released before the end of the busy
period completes

Busy period ends
here

Job released AT the
end of the busy period

does not extend it

Busy period starts
here

 Sporadic Tasks with Constrained Deadlines

 Worst-case response time Ri of task τi corresponds to its release
jitter + longest time from release to completion

 Longest time from release to completion equates to the length wi
of the longest priority level-i busy period including one job of task
τi
 Only need to include one job of task τi because if the busy period is

not finished by the next release then the job is unschedulable
(as Di ≤ Ti)

 Critical instant:
 Defines how we determine the length of the busy period

29

Response Time Analysis
Constrained Deadlines

iii JwR +=

Number of releases of higher priority
tasks

30

Busy-period calculation

Blocking from a

job of a lower
Priority task

Execution time
of task τi

Increased with
release jitter of

hp(i) tasks

Interference from
multiple jobs of higher

priority tasks

∑
∈∀

++=
)(ihpj
jiii ICBw













j

i

T
w











 +

j

ji

T
Jw

j
j

ji
j C

T
Jw

I










 +
=

Interference

 Solution?
 Busy period length wi on both LHS and RHS of equation
 RHS is a monotonic non-decreasing function of wi
 Solve using a fixed point iteration starting with
 Ends when in which case the task is unschedulable
 Or on convergence in which case the task is schedulable

 Need to check all tasks to show taskset is schedulable
 Exact test – pseudo-polynomial complexity

 Can speed up convergence by starting with better initial values

[N.C. Audsley, A. Burns, M. Richardson, A.J. Wellings, “Applying new Scheduling Theory to Static Priority
Pre-emptive Scheduling”. Software Engineering Journal, 8(5), pages 284-292, 1993.]
[R.I. Davis, A. Zabos, A. Burns, "Efficient Exact Schedulability Tests for Fixed Priority Real-Time Systems”.
IEEE Transactions on Computers, Vol. 57, No. 9, pages 1261-1276, 2008]

j
ihpj j

j
m
i

ii
m
i C

T
Jw

CBw ∑
∈∀

+











 +
++=

)(

1

31

Response Time Analysis
Constrained Deadlines

iii CBw +=

m
i

m
i ww =+1

ii
m
i DJw >++1

iii JwR +=

32

Response Time Analysis
Example:

Task Execution Time Deadline Period

A 3 7 7

B 2 12 12

C 5 20 20

152
12
133

7
135

132
12
103

7
105

102
12
53

7
55

5

3

2

1

0

=



+



+=

=



+



+=

=



+



+=

=

c

c

c

c

w

w

w

w

18

182
12
183

7
185

182
12
153

7
155

5

4

=

=



+



+=

=



+



+=

c

c

c

R

w

w

Response time of first job of task A is 104
Response time of second job of task A is 106

[Lehoczky J., “Fixed priority scheduling of periodic task sets with arbitrary deadlines”. In proceedings
Real-Time Systems Symposium, pages 201–209, 1990]

33

Response Time Analysis
Arbitrary Deadlines
Task Execution Time Deadline Period

A 52 110 100

B 52 154 140

34

Response Time Analysis
Arbitrary Deadlines

 Busy period and response times
 Worst-case response time occurs for some job of task τi in the

priority level-i busy period following a critical instant
 Characterised as before: Simultaneous release of jobs of task τi and all

higher priority tasks. All jobs re-arrive as soon as possible. Blocking
due to a lower priority task at the start of the busy period

 However, busy period does not end with completion of the first job
because by then another job of the same task may have been
released

 Don’t know which job of task τi will have the worst-case response
time, so need to check all of them in the priority level-i busy
period

 Length of Busy Period

 Solve via fixed point iteration
 Number of jobs of task τi in busy period

j
ihepj j

j
m
i

i
m
i C

T
JL

BL ∑
∈∀

+











 +
+=

)(

1











 +
=

i

ii
i T

JL
Q

∑
∈∀

+











 +
+++=

)(

,1
,)1(

ihpj
j

j

j
m

qi
ii

m
qi C

T
Jw

CqBw

35

FP: Response Time Analysis:
Arbitrary Deadlines

 Find completion time of qth job of task τi from start of busy
period (q = 0 is the first):

 Starts with initial value
 End when (job and task is unschedulable)
 or when completion time is then
 Do this for checking all jobs in the busy period
 Then WCRT

 Task schedulable provided that
Exact test – pseudo-polynomial complexity

[K.W. Tindell, A. Burns, A.J. Wellings, “An extendible approach for analyzing fixed priority hard real-time
tasks”. Real-Time Systems. Volume 6, Number 2, pages 133-151, 1994]

iiqi CqBw)1(0
, ++=

iii
m

qi DJqTw >+−+1
, m

qi
m

qi ww ,
1

, =+ 1
,,

+= m
qiqi wW

1,...3,2,1,0 −= iQq

)(max ,1...2,1,0 ii
p
qiQqi JqTWR

i
+−= −=∀

ii DR ≤

36

Response Time Analysis
Non-pre-emptive Scheduling

 Similar approach as for arbitrary deadlines
 Need to look at the whole priority level-i busy period as WCRT

may not occur for first job of task τi following a critical instant
even with constrained deadlines

 Due to push-through blocking from the previous job of the same
task

Example

 First job of task C, R = 12
 Second job, R = 14



Task Execution Time Deadline Period

A 4 10 10

B 4 12 16

C 4 13 14

37

Response Time Analysis
Non-pre-emptive Scheduling

 Interested in start time of jobs
 Non-pre-emptive scheduling so once a job starts it finishes Ci later
 Need to find first time wi when on the next time unit processor

would be idle and so the next job of task τi could start

 Use rather than

  1+  

Completion time
Use ‘ceiling’ so

we don’t include job 3
of Task A

Start time
Use ‘floor +1’ so

we do include job 2
of Task A

38

Response Time Analysis
Non-pre-emptive Scheduling

 Blocking

 Find start time of qth job of task τi from start of busy period:
 Once it starts, it will finish Ci later (as its non-pre-emptable)

 Iteration starts with initial value
 Ends when (job and task is unschedulable)
 or when start time is then
 Do this for checking all jobs in the busy period
 Then WCRT

 Task schedulable provided that
Exact test – pseudo-polynomial complexity

m
qi

m
qi ww ,

1
, =+ 1

,,
+= m

qiqi wW
1,...3,2,1,0 −= iQq

ii DR ≤

)1(max
)(

−=
∈∀

kilpki CB

∑
∈∀

+













+











 +
++=

)(

,1
, 1

ihpj
j

j

j
m

qi
ii

m
qi C

T
Jw

qCBw

iiqi qCBw +=0
,

iiii
m

qi DJqTCw >+−++1
,

)(max ,1...2,1,0 iiiqiQq
JqTCWR

ii
+−+=

−=∀

39

Response Time Analysis
Non-pre-emptive Scheduling

 Simpler test for constrained deadlines
 Idea of push-through or self-blocking from the previous job of the

same task

 Now only need to check one job
 Test is only sufficient, it may deem some tasksets unschedulable

that are in fact schedulable

)1(max
)(

−=
∈∀

kilpki CB

∑
∈∀

+













+











 +
+=

)(

1 1),max(
ihpj

j
j

j
m
i

ii
m
i C

T
Jw

CBw

iii JCwR
i

++=

ii DR ≤

40

Controller Area Network
 CAN is a simple broadcast network used in nearly all cars sold

today
 Approx. 1 billion CAN enabled microcontrollers sold each year
 Typical cars today have 20 – 30 ECUs inter-connected via 2 or

more CAN buses
 CAN messages scheduled non-pre-emptively with message

arbitration making the network similar in terms of analysis to a
single processor

41

Controller Area Network
 Schedulability analysis for CAN developed in 1993-95

The original analysis was:
 Used in teaching
 Referenced in over 500 subsequent research papers
 Lead to at least two PhD Theses
 In 1995 recognised by Volvo Car Corporation

used in the development of the Volvo S80 (P23)
 Formed basis of commercial CAN analysis tools

now owned by Mentor Graphics
 Used by many Automotive manufacturers who built millions of cars

with networks analysed using these techniques
 Enabled increases in network utilisation

from 30-40% to typically 70-80%
But, it was flawed…

[K.W. Tindell, A. Burns, A.J. Wellings, “Calculating Controller Area Network (CAN) Message Response
Times”, Control Engineering Practice, Vol 3, No 8, pp1163-1169, 1995. DOI:10.1016/0967-
0661(95)00112-8]

42

Example

t=3.5ms

Messages B
and C queued

A

t=5ms

Message A
queued

B A

t=0ms

Messages
A,B,C queued

t=2.5ms

Message A
queued

A B C

0 1 2 3

Rc=3

4 5 6 7

The original CAN schedulability analysis gave an optimistic
response time for message C: 3ms v. 3.5ms

But 2nd instance of message C misses its deadline

C

Rc=3.5

t=6.75ms

Message C misses
its deadline

Msg Pri Period Deadline TX Time R

A 1 2.5ms 2.5ms 1ms 2ms

B 2 3.5ms 3.25ms 1ms 3ms

C 3 3.5ms 3.25ms 1ms 3ms

43

What is the flaw in the analysis?

A

BUT transmission of message C
is non-pre-emptive and blocks
message A, pushing extra
interference into next period of C

Response time of 1st
instance of message C is
3ms - less than its period
(and deadline)

A B C

0 1 2 3

Rc=3

4 5 6 7

Busy period at priority of
message C does NOT end
with transmission of
message C

B A C

Busy period ends here. Must
examine all instances of
message C in the busy
period to find WCRT

44

Revised Analysis for CAN
 [R.I.Davis, A. Burns, R.J. Bril, and J.J. Lukkien, “Controller Area

Network (CAN) Schedulability Analysis: Refuted, Revisited and
Revised”. Real-Time Systems, Volume 35, Number 3, pp. 239-272,
April 2007. DOI: 10.1007/s11241-007-9012-7]

 Volcano Network Architect
 Commercial CAN schedulability analysis tool
 Used a sufficient schedulability test, assuming maximum possible

blocking factor irrespective of message priorities
 Equates to the simple sufficient test and is therefore slightly

pessimistic but correct
 Used to analyse CAN systems for

Volvo S80, S/V/XC 70, S40, V50, XC90
and many other cars from other manufacturers



45

Response Time Analysis for
Controller Area Network

 Great example of applying schedulability analysis
 No WCET problem (TX times)
 No awkward overheads

 Does everything match the classic schedulability analysis?
No!
 CAN peripherals and SW Device Drivers behaviours
 Mix of priority and FIFO queues at different levels

 So not quite ‘Fixed Priority Scheduling’
 Non-abortable TX buffers

 Cause unbounded priority inversion while low priority message waits to
be sent (blocking all those behind it)

[R.I. Davis, S. Kollmann, V. Pollex, F. Slomka, "Schedulability Analysis for Controller Area Network (CAN)
with FIFO Queues Priority Queues and Gateways”. Real-Time Systems, Volume 49, Issue 1, pages 73-
116, Jan 2013]
[D.A. Khan, R.I. Davis, N. Navet “Schedulability Analysis of CAN with Non-abortable Transmission
Requests”. In proceedings IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2011]

Still work to be done
20 years after the first

papers were published

46

Analysing Real Systems:
Uniprocessors

 What else do we need to account for?
 RTOS behaviour and overheads

 Context switch times
 Blocking due to API calls (critical sections) and context switches
 Tick-driven or Event-driven scheduler

 Interference from Interrupt Handlers
 More complex task behaviours

 It can be done

 ETAS RTA-OSEK (and RTA-OS Autosar) RTOS
Schedulability analysis tools exist taking into account transactions,
offsets, RTOS behaviour and overheads

 But its not easy
 Needs careful RTOS design (compliant with scheduling theory) and

determination of worst-case overheads
 Additions to schedulability analysis for simple theoretical models

47

Response Time Analysis for
Real Systems

 Example: analysis for an event-driven RTOS
 Non-pre-emptive RTOS execution at the start and end of each job

 Also typically need more sophisticated modelling of task timing
behaviour e.g. offsets, transactions, more complex arrival
patterns, etc. Interference from Interrupt Handlers (bursty
arrivals) etc.

)),(max,max(
)(

post
k

pre
kilpk

i
CS
i CCBB

∈∀
=

∑
∈∀

+ ++










 +
+++=

)(

1)(),max(
ihpj

post
ii

pre
i

j

j
m
i

i
pre

i
post

i
CS
i

m
i CCC

T
Jw

CCCBw

post
ii

pre
i CCC ++

iii JwR +=

48

Fixed Priority Scheduling
 Scheduling and schedulability analysis are only half the story…

 What about Priority Assignment?
 Why is it important?
 What is an optimal assignment?
 How do we find it?
 Is Optimal Priority Assignment enough?

Can we optimise other things as well?

49

Priority assignment
 Why is priority assignment important

 Achieve a schedulable system when it otherwise wouldn’t be
 Provide a schedulable system avoiding hardware overprovision /

maximising use of hardware resources
 Provide headroom for unforeseen interference or overruns

 Example

 Controller Area Network (CAN)
 Used for in-vehicle networks
 Message IDs are the priorities

50

When priority assignment goes bad!
 From Darren Buttle’s Keynote talk at

ECRTS 2012

The myth of CAN bus Utilisation –
“You cannot run CAN reliably at
more than 30% utilisation1”
1 Figures may vary but not significantly

 Why?

 Message IDs i.e. priorities assigned
in an ad-hoc way reflecting data and
ECU supplier (legacy issues)

 …as well as many other issues,
including device driver implementation

 Example: CAN
 Typical automotive config:

 80 messages
 10ms -1s periods
 All priority queues

 x10,000 message sets

 Breakdown utilisation
 Scale bus speed to find util. at

which deadlines are missed

 80% v 30% or less

51

When priority assignment goes bad!

Optimal
Priorities

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Fr
eq

ue
nc

y

Breakdown Utilisation

Optimal
Priorities

Random
Priorities

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Fr
eq

ue
nc

y

Breakdown Utilisation
[R.I. Davis, S. Kollmann, V. Pollex, F. Slomka,
"Schedulability Analysis for Controller Area Network (CAN)
with FIFO Queues Priority Queues and Gateways”.
Real-Time Systems, 2012]

52

Optimal priority assignment

 Definition Optimal priority assignment

 For a given system model, a priority assignment policy P is referred to

as optimal if there are no systems, compliant with the model, that are
schedulable using fixed priority scheduling with another priority
assignment policy that are not also schedulable using policy P.

 For fixed priority scheduling, by using an optimal priority assignment

policy we can schedule any system that can be scheduled under using
any other priority assignment policy

 [N.C. Audsley, "Optimal priority assignment and feasibility of static priority tasks with arbitrary start

times", Technical Report YCS 164, Dept. Computer Science, University of York, UK, 1991.]
 [N.C. Audsley, “On priority assignment in fixed priority scheduling”, Information Processing Letters, 79(1):

39-44, May 2001.]

53

Early work on priority assignment

 1967 Fineberg & Serlin
 Two periodic tasks with implicit deadlines, better to assign the higher

priority to the task with the shorter period
 1973 Liu & Layland

 Rate-Monotonic priority ordering is optimal for implicit deadline periodic
tasksets (synchronous arrivals)

 1982 Leung & Whitehead
 Deadline-Monotonic priority ordering is optimal for constrained deadline

tasksets (synchronous arrivals)
 Deadline Monotonic not optimal for the asynchronous case (offsets)

 1990 Lehoczky
 Deadline Monotonic not optimal for arbitrary deadline tasksets

 1994 Burns et al.
 Deadline Monotonic not optimal for deadlines prior to completion

 1996 George
 Deadline Monotonic not optimal for non-pre-emptive scheduling

54

Deadline Monotonic optimality

 Deadline Monotonic Priority Ordering (DMPO) Optimal for synchronous
constrained deadline tasksets
 Response time analysis

j

ihpj j

m
i

i
m
i C

T
RCR ∑

∈∀

+












+=

)(

1

Proof sketch
Assume some other priority ordering Q is
schedulable
Swap two tasks A and B at adjacent priorities
where DA > DB and A is at a higher priority
and the taskset will remain schedulable
Priority order Q : let y = RB ≤ DB ≤ TB
Priority order P : RA = y (as y ≤ TB) and so
there is interference from only one job of task
B, hence as DA > DB task A is schedulable



Tasks with arbitrary deadlines

[Lehoczky J., “Fixed priority scheduling of periodic task sets with arbitrary deadlines”. In proceedings
Real-Time Systems Symposium, pages 201–209, 1990]

55

Deadline Monotonic: non-optimality

Task Execution Time Deadline Period

A 52 110 100

B 52 154 140



 Non-pre-emptive scheduling

[L. George, N. Rivierre, M. Spuri, “Preemptive and Non-Preemptive Real-Time UniProcessor Scheduling”,
INRIA Research Report, No. 2966, September 1996]
Example derived from: [R.I. Davis and A. Burns "Robust priority assignment for messages on Controller
Area Network (CAN)”. Real-Time Systems, Volume 41, Issue 2, pages 152-180, February 2009]

 56

Deadline Monotonic: non-optimality
Task Execution Time Deadline Period

A 4 10 10

B 4 12 16

C 4 13 14

 

57

Optimal Priority Assignment

[N.C. Audsley, "Optimal priority assignment and feasibility of static priority tasks with arbitrary start times",
Technical Report YCS 164, Dept. Computer Science, University of York, UK, 1991.]
[N.C. Audsley, “On priority assignment in fixed priority scheduling”, Information Processing Letters, 79(1): 39-
44, May 2001.]
[K. Bletsas, and N.C. Audsley, “Optimal priority assignment in the presence of blocking”. Information Processing
Letters Vol. 99, No. 3, pp83-86, August. 2006]

for each priority level i, lowest first {
 for each unassigned task τ {
 if τ is schedulable at priority i
 assuming that all unassigned tasks are
 at higher priorities {
 assign task τ to priority level i
 break (exit for loop)
 }
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
}
return schedulable

Tasks
A, B, C, D, E

D

Tasks
A, B, C, E

Tasks
A, C, E

B

E

C

Tasks
A, C

A

Tasks
A

n(n+1)/2 schedulability tests rather than n!
by exploring all possible orderings
n = 25, that is 325 tests rather than 15511210043330985984000000

58

OPA applicability
OPA algorithm provides optimal priority assignment w.r.t. any
schedulability test S for fixed priority scheduling provided that
three conditions are met…
Condition 1: Schedulability of a task may, according to the test, be dependent on the set

of higher priority tasks, but not on their relative priority ordering
Condition 2: Schedulability of a task may, according to the test, be dependent on the set

of lower priority tasks, but not on their relative priority ordering
Condition 3: When the priorities of any two tasks of adjacent priority are swapped, the

task being assigned the higher priority cannot become unschedulable according to the
test, if it was previously deemed schedulable at the lower priority

 Tests meeting these conditions referred to as OPA-compatible

Applicability
 Resource sharing, offsets, arbitrary deadlines, deadlines before completion,

non-pre-emptive, CAN, multiframe tasks, mixed criticality, some global FP
scheduling on multiprocessors

[R.I. Davis, A. Burns "Priority Assignment for Global Fixed Priority Pre-emptive Scheduling in
Multiprocessor Real-Time Systems”. In proceedings Real-Time Systems Symposium pp 398-409, 2009.]

Powerful idea as we have
said very little about the actual

schedulability test
hence broad applicability

59

Minimising the number of Priority
Levels with OPA
Important for practical systems that may support only a
limited number of priorities

[N.C. Audsley, “On priority assignment in fixed priority scheduling”, Information Processing Letters,
79(1): 39-44, May 2001.]

for each priority level i, lowest first {
 Z = empty set
 for each unassigned task τ {
 if τ is schedulable at priority i assuming that
 all unassigned tasks are at higher priorities {
 add τ to Z
 }
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
 else {
 assign all tasks in Z to priority i
 }
 if no unassigned tasks remain {
 break
 }
}
return schedulable

for each priority level i, lowest first {
 Z = empty set
 for each unassigned task τ {
 if τ is schedulable at priority i assuming that
 all unassigned tasks are at higher priorities {
 add τ to Z
 }
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
 else {
 assign all tasks in Z to priority i
 }
 if no unassigned tasks remain {
 break
 }
}
return schedulable

60

Robust Priority Assignment
 Drawback of OPA algorithm

 Arbitrary choice of schedulable tasks at each priority
 May leave the system only just schedulable – i.e fragile not robust

to minor changes

 In practice tasks may be subject to additional interference
 Execution time budget overruns; interrupts occurring in bursts or

at ill-defined rates; ill-defined RTOS overheads; ill-defined critical
sections; cycle stealing by peripheral devices (DMA) etc. etc.

 Want a robust priority ordering
 As well as being optimal, able to tolerate the maximum amount of

additional interference
 General model of additional interference E(α,w,i) (=α)

[R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed Priority Real-Time Systems”. In proceedings
IEEE Real-Time Systems Symposium pp. 3-14. Tucson, Arizona, USA. December 2007.]

61

RPA Algorithm
for each priority level i, lowest first
{
 for each unassigned task τ
 {
 determine the largest value of α for which task τ
 is schedulable at priority i assuming that all
 unassigned tasks have higher priorities
 }
 if no tasks are schedulable at priority i
 {
 return unschedulable
 }
 else
 {
 assign the schedulable task that tolerates the
 max α at priority i to priority i
 }
}
return schedulable

for each priority level i, lowest first
{
 for each unassigned task τ
 {
 determine the largest value of α for which task τ
 is schedulable at priority i assuming that all
 unassigned tasks have higher priorities
 }
 if no tasks are schedulable at priority i
 {
 return unschedulable
 }
 else
 {
 assign the schedulable task that tolerates the
 max α at priority i to priority i
 }
}
return schedulable

 Ordering achieved in optimal and robust (tolerates the most additional
interference (largest α) of any priority ordering)

62

Robust Priority Assignment
 Example: Non-pre-emptive scheduling

 Additional interference from single invocation of an interrupt
handler with unknown execution time

 Additional interference

Task C D T

τA 125 450 450

τB 125 550 550

τC 65 600 600

τD 125 1000 1000

τE 125 2000 2000

αα =),,(iwE

63

Robust Priority Assignment
 Computed values of α

Priority

Task

τA τB τC τD τE

5 NS NS NS 120 354

4 NS NS NS 120 -

3 10 110 74 - -

2 135 - 199 - -

1 200 - - - -

 Robust priority ordering
 Tolerates additional interference of up to 110 time units

 Deadline monotonic: neither optimal nor robust
 Tolerates additional interference of up to 74 time units

 OPA: may be worse still
 Might tolerate additional interference of only 10 time units

64

Robust Priority Assignment
 Mixed systems: two subsets of tasks

 “DM tasks”

 Satisfy the restrictions where Deadline Monotonic priority ordering is
known to be optimal

 Pre-emptable, D≤T, resource access according to SRP, no transactions
or offsets

 “Non DM tasks”
 Don’t satisfy the restrictions where Deadline Monotonic priority ordering

is known to be optimal
 Pre-emptable with D>T, non-pre-emptable, co-operative scheduling

with non-pre-emtable final sections, transactions, non-zero offset

[R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed Priority Real-Time Systems”. In proceedings
IEEE Real-Time Systems Symposium pp. 3-14. Tucson, Arizona, USA. December 2007.]

65

Robust Priority Assignment

 DM task
(e.g. constrained
deadline)

 Non DM task
(e.g. arbitrary deadline,
part of a transaction etc.)

Pr
io

rit
y Deadline

Monotonic
Partial order

For mixed systems containing both DM and non DM tasks, then there
exists a robust priority order with the DM tasks in Deadline Monotonic
partial order

66

Robust Priority Assignment
 Can improve efficiency of OPA and RPA algorithms

 Of all the DM tasks, the one with the largest deadline is the one
that can tolerate the most additional interference at a given priority
level

 Only one DM task need be checked at each priority level – the one
with the largest deadline of all unassigned DM tasks

 For n tasks, k of which are DM tasks:

 (n(n+1)-k(k-1))/2 task schedulability tests instead of n(n+1)/2

 Example: 4 tasks with D > T, 46 constrained deadline tasks
max. of 240 schedulability tests instead of 1275

[R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed Priority Real-Time Systems”. In proceedings
IEEE Real-Time Systems Symposium pp. 3-14. Tucson, Arizona, USA. December 2007.]

67

Fixed Priority Scheduling of
Mixed Criticality Systems

[S.K. Baruah, A. Burns, R.I. Davis “Response Time Analysis for Mixed Criticality Systems” . In proceedings 32nd
IEEE Real-Time Systems Symposium (RTSS'11) , pages 34-43, Nov 29th - Dec 2nd, 2011]

D
M

 P
rio

rit
y

or
de

r

LO Criticality tasks

D
M

 P
rio

rit
y

or
de

r

HI Criticality tasks

2n-1 schedulability tests rather than n(n+1)/2

68

Earliest Deadline First

69

Earliest Deadline First
 Pre-emptive EDF executes the job with the earliest absolute

deadline

 Early results
 Liu and Layland 1973 – showed that any independent, periodic

taskset with implicit deadlines is schedulable under EDF if U ≤ 1
 Dertouzos 1974 proved that pre-emptive EDF is an optimal

scheduling policy for single processors1

1At least when there are no overheads or complicated things like Cache Related Pre-
emption Delays (CRPD)

70

Stack Resource Polciy(SRP)
for EDF

 Uses concept of Pre-emption Levels
 Each resource has a pre-emption level equal to the minimum

Relative Deadline (or D-J) of any task that locks the resource
 Each job has an initial pre-emption level = Relative Deadline (or

D-J) of its task

 Run-time operation
 On locking a resource

 Save the current pre-emption level of the job on the stack, set its pre-
emption level to higher of current level and pre-emption level of the
resource (i.e. smaller value)

 On unlocking a resource
 Restore the job’s pre-emption level from the stack

 A job may only pre-empt another job if it has an earlier absolute
deadline and a strictly higher pre-emption level (smaller value)

71

Stack Resource Policy (SRP)
for EDF

 Properties
 Deadlock free
 All blocking before a job starts to actually execute
 No additional context switches due to resource locking
 Permits single stack execution
 Blocking limited to a single resource access from a single job with

a larger value of D-J (longer relative deadline minus Jitter)

72

Exact Schedulability Analysis for
Pre-emptive EDF

 Key concept: Processor Demand Bound
 The maximum processor demand in an interval of length t
 Equates to the jobs that are released and have their deadlines in

the interval

With release jitter we get jobs of task τi

Not included
release and deadline
not both in interval











+







 −+
1,0max

i

ii

T
DJt

i

n

i i

ii C
T

DJtth ∑
=











+







 −+
=

1
1,0max)(

Included
release and deadline
both in the interval

 Processor Demand Bound:

 Worst-case additional effect of blocking under SRP: b(t)

Aa,k is the time a job of task τa executes for with a resource locked that
is also accessed by task τ k

 Exact schedulability test:
 U ≤ 1 and overall Processor Demand in any interval t must not

exceed the length of the interval:

 Can limit values of t that we check as h(t) + b(t) only changes at

 but still infinitely many values to check…

[S.K. Baruah, A.K. Mok, L.E. Rosier, “Preemptively Scheduling Hard-Real-Time Sporadic Tasks on One
Processor”. In proceedings IEEE Real-Time Systems Symposium (RTSS), pages182-190, 1990]

()tJDtJDAtb kkaaka ≤−>−= ,|max)(,

73

Exact Schedulability Analysis for
Pre-emptive EDF

i

n

i i

ii C
T

DJtth ∑
=











+







 −+
=

1
1,0max)(

ttbtht ≤+∀)()(

iii JDkTti −+=∀

Derived by
substituting

x for

















−

−++
−−−−=

∑
∀<

U

UDJTdb
JTDJTDL i

iiiii
Dd

nnna
i

1

)())((max
),),...((max max

,,,111

 If taskset is unschedulable test will show this by t = L
 La : formula derived from h(t) +b(t) ≤ t (works for U < 1)

What happens if D=T, J=0, b(t)=0?
La = 0 which means we don’t need to test any values!

 Lb : length of longest busy period

 L = min(La, Lb)

Still there can be a very large number of points to check…

74

Exact Schedulability Analysis for EDF

 x

j
j j

j
m
bm

b C
T

JL
L ∑

∀

+











 +
=1

75

 QPA
 Key observation: h(t) + b(t) is monotonically non-decreasing in t

 If h(t) +b(t) > t then unschedulable
 If h(t) + b(t) = t move to next smaller deadline

[F. Zhang, A. Burns, "Schedulability Analysis for Real-Time Systems with EDF Scheduling," IEEE
Transactions on Computers, pages 1250-1258, September, 2009]
F. Zhang, A. Burns, A. “Schedulability Analysis of EDF Scheduled Embedded Real-Time Systems with
Resource Sharing”. ACM Transactions on Embedded Computing Systems 9, 4, Article 39, March 2011]

Quick Processor demand Analysis:
QPA for EDF

t

h(t)+b(t)

t t t t

DJmin
L

No value x here can
have h(x)+b(x) > h(t)+b(t)

so cannot show
unschedulable

h(t)+b(t) h(t)+b(t) h(t)+b(t) h(t)+b(t)

 QPA Algorithm

 Simple & effective
 Complexity of Processor Demand Bound test is exponential for

U =1 otherwise pseudo-polynomial
 QPA gives a very large reduction in the number of points

evaluated (exponentially so in practice) easily copes with 100s or
1000s of tasks

[F. Zhang, A. Burns, A. “Schedulability Analysis of EDF Scheduled Embedded Real-Time Systems with

76

Quick Processor demand Analysis:
QPA for EDF

77

Schedulability Analysis for
Non-pre-emptive EDF

 Same approach as for pre-emptive EDF
 Account for non-pre-emptive execution via different blocking term

 Same fundamental equations

 Can again use QPA to provide a quick test

[L. George, N. Rivierre, M. Spuri, “Preemptive and Non-Preemptive Real-Time UniProcessor Scheduling”,
INRIA Research Report, No. 2966, September 1996]

)1(max)(
:

−=
>−∀

itJDi
Ctb

ii

ttbtht ≤+∀)()(

78

Theorectical Comparison between
EDF and FP

 Optimality
 Pre-emptive EDF is an optimal uniprocessor scheduling policy
 Non-pre-emptive EDF is weakly optimal (optimal among all work-

conserving non-pre-emptive policies)

 How much better is EDF than FP?
 Utilisation bound for implicit deadline tasksets

FP:
EDF:

 So processor would need to be times faster to
guarantee that any implicit deadline taskset schedulable by EDF
could be scheduled using FP

[C.L. Liu, J.W. Layland, "Scheduling algorithms for multiprogramming in a hard-real-time environment",
Journal of the ACM, 20(1) pages 46-61, 1973]

)12(−≤ nnU 693.0)2ln(≈→
1≤U

44.1)2ln(/1 ≈

FP v EDF Speedup factors
Speedup factor: increase in processing speed required so that any
feasible taskset (schedulable by an optimal algorithm) can be
scheduled using Fixed Priority scheduling

[R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns, “Exact Quantification of the Sub-optimality of Uniprocessor Fixed
Priority Pre-emptive Scheduling.” Real-Time Systems, Volume 43, Number 3, pages 211-258, November 2009]

Taskset Constraints
[Priority ordering]

FP-P
Speedup factor

Lower bound Upper bound

Implicit-deadline
[RM] [OPA]

1/ln(2)
≈ 1.44269

Constrained-deadline
[DM] [OPA]

1/Ω
≈ 1.76322

Arbitrary-deadline
[OPA] [OPA]

1/Ω
≈ 1.76322

2

FP-NP
Speedup factor

Lower bound Upper bound

1/Ω
≈ 1.76322

2

1/Ω
≈ 1.76322

2

1/Ω
≈ 1.76322

2

80

In practice FP vs EDF
 FP used in most commercial RTOS
 Why if EDF is better?

 FP simpler & faster implementation
 Bit masks for priorities, in practice don’t need that many priority levels

to get good schedulability: FP + FIFO works
 FP vs EDF schedulability is the same for harmonic task periods
 FP More predictable under overload

 EDF have a cascade of deadline misses (all tasks), FP only task of
lower priority than the over-running job tend to miss deadlines

 Standards
 E.g. OSEK and Autosar OS standards – specify FP scheduling

 Supporting theory
 FP scheduling theory more mature than EDF, but EDF catching up

 Inertia
 Continuing with what has previously been done

81

Summing up

 Learnt about uniprocessor scheduling
 Fixed Priority and EDF scheduling

 Resource locking protocols (Stack Resource Policy)

 Fundamentals of Schedulability analysis

 Pre-emptive and non-pre-emptive cases
 Some extensions: blocking, release jitter, arbitrary deadlines

 Priority assignment

 Deadline Monotonic
 Optimal Priority Assignment
 Robust Priority Assignment

82

Success Stories
Fixed Priority Scheduling Theory

 Controller Area Network (CAN)
 Analysis enables bus utilisation of up to ~70-80% compared to

~30% before
 Involved in a start-up company NRTA that developed Volcano for

Volvo in mid-1990s
 Technology now owned and marketed by Mentor Graphics
 Influenced CAN device driver HW design (MSCAN)
 Used in millions of cars: Volvo, LandRover, Jaguar,

Aston-Martin, Mazda, SAIC (China)

 Classical theory still needs adapting to
HW behaviours and SW engineering practice
 Non-abortable TX buffers
 FIFO queues
 Multiple levels of FIFO and priority queues

 RTOS
 Involved in a start-up company LiveDevices that developed an

OSEK RTOS (1997-2003) RTA-OSEK
 RTOS was designed to comply with scheduling theory
 Took advantage of FP+SRP scheduling to permit single stack

operation saving memory (v. important for small microcontrollers)
 RTOS analysable with minimal overheads
 Supported by schedulability analysis tools
 Company sold in 2003 to ETAS (part of Bosch)

 Since then

 RTA-OS (Autosar) extension, and RTA-OSEK
 RTOS deployments running at approx. 50 million ECUs per year…

83

Success Stories
Fixed Priority Scheduling Theory

 Integration of WCET and Schedulability analysis
 CRPD and Limited Pre-emption

 Mixed Criticality Systems

 Scheduling techniques and analysis for systems with applications
at different criticality levels (different views of WCET)

 Probabilistic Real-Time Systems
 Providing assurance that the probability of a deadline being missed

is below some required threshold e.g. 10-9 failures per hour
 Randomised architectures

84

Hot research topics

85

Finally… a 20 year old Open Problem
 Dual Priority scheduling

 Each task has two priorities
 A fixed time Si after task τi is released, its priority is promoted to the

higher of its two priorities

 Hypothesis
 Utilisation bound for Dual Priority scheduling of implicit deadline

sporadic tasks is 100%
 Proved for n = 2
 No counter examples found so far for n > 2

 Problem: Choosing priorities and promotion times

[A. Burns, “Dual Priority Scheduling: Is the Processor Utilisation bound 100%” In proceedings RTSOPS, 2010.]

86

Questions?

	��Uniprocessor Real-Time Scheduling�
	Overview
	What is a Real-Time System?
	Examples of Real-Time Systems
	Real-Time Applications
	Real-Time Applications
	Task Timing Behaviour
	Task Timing Behaviour
	Task Timing Behaviour
	Uniprocessor Real-Time Scheduling
	Scheduling policies: Offline
	Scheduling policies: Online
	Scheduling policies�Fixed Priority (Pre-emptive)
	Scheduling policies�Earliest Deadline First (Pre-emptive)
	Terminology: scheduling policies
	Terminology: Schedulability
	Terminology: Schedulability tests
	Fixed Priority Scheduling
	Fixed Priority Scheduling�Early Schedulability Tests
	Resource sharing
	Resource sharing:�Binary Semaphores
	Stack Resource Policy (SRP)
	Resource sharing:�Stack Resource Policy
	Stack Resource Policy (SRP)
	Stack Resource Policy (SRP)
	Fixed Priority Scheduling:�Response Time Tests
	Key concepts�Critical Instant
	Key concepts�Priority level-i Busy Period
	Response Time Analysis�Constrained Deadlines
	�Busy-period calculation
	Response Time Analysis�Constrained Deadlines
	Response Time Analysis
	Response Time Analysis�Arbitrary Deadlines
	Response Time Analysis�Arbitrary Deadlines
	FP: Response Time Analysis: Arbitrary Deadlines
	Response Time Analysis�Non-pre-emptive Scheduling
	Response Time Analysis�Non-pre-emptive Scheduling
	Response Time Analysis�Non-pre-emptive Scheduling
	Response Time Analysis�Non-pre-emptive Scheduling
	Controller Area Network
	Controller Area Network
	Example
	What is the flaw in the analysis?
	Revised Analysis for CAN
	Response Time Analysis for�Controller Area Network
	Analysing Real Systems:�Uniprocessors
	Response Time Analysis for�Real Systems
	Fixed Priority Scheduling
	Priority assignment
	When priority assignment goes bad!
	When priority assignment goes bad!
	�Optimal priority assignment
	Early work on priority assignment
	Deadline Monotonic optimality
	Deadline Monotonic: non-optimality
	Deadline Monotonic: non-optimality
	Optimal Priority Assignment
	OPA applicability
	Minimising the number of Priority Levels with OPA
	Robust Priority Assignment
	RPA Algorithm
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Robust Priority Assignment
	Fixed Priority Scheduling of�Mixed Criticality Systems
	Earliest Deadline First
	Earliest Deadline First
	Stack Resource Polciy(SRP)�for EDF
	Stack Resource Policy (SRP)�for EDF
	Exact Schedulability Analysis for �Pre-emptive EDF
	Exact Schedulability Analysis for �Pre-emptive EDF
	Exact Schedulability Analysis for EDF
	Quick Processor demand Analysis: QPA for EDF
	Quick Processor demand Analysis: QPA for EDF
	Schedulability Analysis for �Non-pre-emptive EDF
	Theorectical Comparison between EDF and FP
	FP v EDF Speedup factors
	In practice FP vs EDF
	Summing up
	Success Stories�Fixed Priority Scheduling Theory
	Success Stories�Fixed Priority Scheduling Theory
	Hot research topics
	Finally… a 20 year old Open Problem
	Questions?

