
Response-Time Analysis for Mixed Criticality
Systems

S.K. Baruah
Department of Computer Science,
University of North Carolina, US.

Email: baruah@cs.unc.edu

A. Burns
Department of Computer Science,

University of York, UK.
Email: burns@cs.york.ac.uk

R.I. Davis
Department of Computer Science,

University of York, UK.
Email: rob.davis@cs.york.ac.uk

Abstract—Many safety-critical embedded systems are subject
to certification requirements. However, only a subset of the
functionality of the system may be safety-critical and hence
subject to certification; the rest of the functionality is non safety-
critical and does not need to be certified, or is certified to a lower
level. The resulting mixed criticality system offers challenges
both for static schedulability analysis and run-time monitoring.
This paper considers a novel implementation scheme for fixed
priority uniprocessor scheduling of mixed criticality systems. The
scheme requires that jobs have their execution times monitored
(as is usually the case in high integrity systems). An optimal
priority assignment scheme is derived and sufficient response-
time analysis is provided. The new scheme formally dominates
those previously published. Evaluations illustrate the benefits of
the scheme.

I. INTRODUCTION

One of the ways that scheduling analysis has been extended
in recent years is the removal of the assumption that all tasks
in the system have the same level of criticality or importance.
Models have been produced that allow mixed criticality levels
to co-exist on the same execution platform. For systems that
contain components that have been given different criticality
designations there are two, mainly distinct, issues: run-time
robustness [16] and static verification [23], [9].

Run-time robustness is a form of fault tolerance that allows
graceful degradation to occur in a manner that is mindful of
criticality levels: informally speaking, in the event that all com-
ponents cannot be serviced satisfactorily the goal is to ensure
that lower-criticality components are denied their requested
levels of service before higher-criticality components are.

Static verification of mixed-criticality systems is closely re-
lated to the problem of certification of safety-critical systems.
The current trend towards integrating multiple functionalities
on a common platform (for example in Integrated Modula
Avionics, IMA, systems and in the Automotive Open System
Architecture, Autosar) means that even in highly safety-critical
systems, typically only a relatively small fraction of the overall
system is actually of critical functionality and needs to be
certified. In order to certify a system as being correct, the
certification authority (CA) must make certain assumptions
about the worst-case behavior of the system during run-time.
CA’s tend to be very conservative, and hence it is often the
case that the assumptions required by the CA are far more
pessimistic than those the system designer would typically

use during the system design process if certification was not
required. However, while the CA is only concerned with
the correctness of the safety-critical part of the system the
system designer wishes to ensure that the entire system is
correct, including the non-critical parts. We illustrate this with
a contrived example.

Example 1: Consider a system to be implemented on a
preemptive fixed priority uniprocessor, that comprises just
three jobs J1, J2, and J3. All three jobs are released at time
zero. Job J1 has a deadline at time-instant 2, while the other
two jobs have their deadlines at time-instant 3.5. Jobs J2 and
J3 are high-criticality and subject to certification, whereas J1
is low-criticality and hence is not.

The system designer is confident that each job has a worst-
case execution time (WCET) not exceeding 1. Hence all three
jobs will complete by their deadlines as long as J1 is not given
the lowest priority.

However, the CA requires the use of more pessimistic WCET
estimates during the certification process, and allows for the
possibility that jobs J2 and J3 may each need 1.5 time units
of execution. Even if J1 executes for only 1 time unit, jobs
J2 and J3 are only schedulable if they are given the highest
two priority levels; but if this is done J1 will miss its deadline
even if J2 and J3 only execute for 1 time unit.

One might therefore conclude that the system cannot be
scheduled in a manner acceptable to both the system designer
and the certification authority. Fortunately there is an imple-
mentation scheme (and priority assignment) that can satisfy
both parties. Consider the priority ordering J2, then J1 and
finally J3; and the following run-time behaviour from time 0:

• Execute the highest priority job J2 over [0, 1).
• If J2 completes execution by time-instant 1, then execute
J1 over [1, 2) and J3 over [2, 3), thereby ensuring that
all deadlines are met (J3 could therefore execute over
[2, 3.5) if needed).

• If J2 does not complete execution by time-instant 1, then
discard J1 and continue the execution of J2, following
that with the execution of J3 over [1.5, 3).

So if the system designer is right all jobs execute for 1 time
unit and meet their deadlines. If the CA is right then the two
high-criticality jobs execute for 1.5 time units each and meet
their deadlines. Both parties are satisfied.



Related work. In prior work [7], [5], we have studied
mixed-criticality (MC) systems implemented on a preemptive
uniprocessor platform that can be modeled, as in the example
above, as finite collections of jobs. However, most real-time
systems are better modeled as collections of recurrent tasks
that are specified using, e.g., the sporadic tasks model [19],
[8]. Schedulability analysis of such systems is typically far
more difficult than the analysis of systems modeled as col-
lections of independent jobs. Vestal [23] initiated the study
of certification-cognizant scheduling of such sporadic task
systems, and proposed a static fixed-priority (FP) algorithm,
based on a specialization of Audsley’s priority-assignment
technique [2], for assigning priorities optimally to the tasks
in such a system. Some other works (e.g., [9], [18]) have con-
sidered algorithms that are not fixed-priority, for scheduling
mixed-criticality systems in a certifiably correct manner.

In this paper we develop the scheduling scheme illustrated
in the example above. Sufficient response-time analysis is
derived and evaluated via comparisons with previous schemes.
This evaluation indicates that the scheme leads to a significant
improvement in system schedulability.

II. SYSTEM MODEL

A system is defined as a finite set of components K. Each
component has a level of criticality (defined by the system’s
engineer responsible for the entire system), L, and contains
a finite set of sporadic tasks. Each task, τi, is defined by
its period (minimum arrival interval), deadline, computation
time and criticality level: (Ti, Di, Ci, Li). These parameters
are however not independent, in particular the worst-case
computation time, Ci, will be derived by a process dictated by
the criticality level. The higher the criticality level, the more
conservative the verification process and hence the greater will
be the value of Ci.

At run-time a task will have fixed values of T , D and L. Its
actual computation time is however unknown; it is not directly
a function of L. The task will execute on the available hard-
ware, and apart from catching and/or dealing with overruns the
task’s actual criticality level will not influence the behaviour
of the hardware. Rather the probability of failure (executing
beyond its deadline) will reduce for higher levels of L (due
to C being monotonically non-decreasing with L).

In a mixed criticality system further information is needed in
order to undertake schedulability analysis. Tasks can depend
on other tasks with higher or lower levels of criticality. In
general a task is now defined by: (T , D, ~C, L), where ~C is a
vector of values – one per criticality level, with the constraint:

L1 > L2⇒ C(L1) ≥ C(L2)

for any two criticality levels L1 and L2.
The general task τi with criticality level Li will have

one value from its ~Ci vector that defines its representative
computation time. This is the value corresponding to Li, ie.
Ci(Li). This will be given the normal symbol Ci.

Definition 1 (Behaviors): During different runs, any given
task system will, in general, exhibit different behaviors: dif-
ferent jobs may be released at different time instants, and
may have different actual execution times. Let us define the
criticality level of a behavior to be the smallest criticality level
such that no job executed for more than its C value at this
criticality level.

Static verification. From the perspective of static verifica-
tion, the correctness criterion expected of an algorithm for
scheduling mixed-criticality task systems is as follows: for
each criticality level L, all jobs of all tasks with criticality ≥ L
will complete by their deadlines in any criticality-L behavior.

In this paper we consider only the issues surrounding the
static verification of a mixed criticality (MC) system scheduled
by the standard fixed priority preemptive dispatcher on a single
processor. We evaluate three possible priority assignment
schemes:

• Partitioned Criticality (PC) – a standard scheme some-
times called criticality monotonic priority assignment

• Static Mixed Criticality (SMC) – a previously published
scheme, reviewed in Section III;

• Adaptive Mixed Criticality (AMC) – a novel scheme,
introduced in Section IV.

In Partitioned Criticality, priorities are assigned according to
criticality, so all jobs of criticality L1 have a higher priority
than all jobs of criticality L2 if L1>L2. Within a criticality,
priorities are assigned according to a standard optimal scheme
such as deadline monotonic priority assignment (for tasks with
constrained deadlines, i.e., those that have relative deadline no
greater than period: D ≤ T ). Each job is assumed to have an
execution time no greater than its representative value. This
partitioned approach has the advantage that a timing error
in a low criticality job (i.e., executing for longer than its
representative ‘worst-case execution time’) will not impact on
any higher criticality jobs. No run-time monitoring is required.

However, if run-time support is provided then the kinds
of performance guarantees that can be made in scheduling
mixed-criticality systems are enhanced. An important form
of platform support is the ability to monitor the execution
of individual jobs, i.e., being able to determine how long a
particular job has been executing. For instance, many safety
critical systems that have replicated computing systems (chan-
nels– see, e.g., [13]) monitor execution times so that erroneous
behavior can be identified and the associated channel closed
down (and possibly restarted). A strong case can be made for
this ability to be part of the standard mechanisms for safety-
critical applications. Such functionality is already commonly
available on many real-time platforms and is widely assumed
in, for example, many implementations of servers (e.g., [1],
[11]), or in real-time “open” environments that support the
policing or budget-enforcement of individual jobs or of col-
lections of jobs in order to ensure that they do not exceed their
execution allowances [24].

The other two priority assignment schemes utilise forms of
execution time monitoring and allow the priorities of different



criticality jobs to be interleaved. This improves schedulability.
The Static scheme (SMC) does not allow a job to execute for
more than its representative execution time, Ci. The Adaptive
scheme (AMC) goes further and does not allow jobs of
criticality L to execute at all if any job (of equal or higher
criticality) executes for more than its C(L) parameter. The
main contribution of this paper is the introduction of response-
time analysis for this Adaptive Mixed Criticality scheme.

For ease of presentation, in this paper we will restrict
our attention to dual-criticality systems: systems in which
there are only two criticality levels: HI (high) and LO (low),
with HI>LO. We also consider only independent tasks with
constrained deadlines. We have explored the more general
M-criticality level (M>2) model and it introduces no added
fundamental issues apart from the need to deal with concurrent
criticality changes (for example a change from LO to ME
(medium) in progress when a change from ME to HI occurs)
– this topic is left to ‘future work’.

III. STATIC MIXED CRITICALITY - SMC

With this scheme all jobs can execute up to their representa-
tive execution time Ci but are prevented from executing further
– they are either aborted or, if error recovery is desirable,
descheduled until it is safe for them to execute again. Means
of programming recovery are explained elsewhere [6]. In this
section we first review response-time analysis for SMC and
then consider priority assignment.

A. Scheduling Analysis for SMC

The distinctive feature of mixed criticality as opposed to
partitioned criticality is that schedulability is obtained from
optimising the temporal characteristics of the tasks rather than
their importance/criticality parameter.

Consider the common deadline-monotonic priority assign-
ment scheme. Here the key operational parameter, priority (P ),
is derived solely from the deadlines of the tasks. For any two
tasks τi and τj : Di < Dj ⇒ Pi > Pj . For mixed criticality
systems this means that a task may suffer interference from
another task with a higher priority but a lower criticality level.
(A phenomenon referred to as criticality inversion.)

To test for schedulability, the standard Response Time
Analysis (RTA) [17], [3] approach first computes the worst-
case completion time for each task (its response time, R) and
then compares this value with the task’s deadline D (i.e. tests
for Ri ≤ Di for all tasks τi). The response time value is
obtained from the following (where hp(i) denotes the set of
tasks with priority higher than that of task τi):

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri
Tj

⌉
Cj (1)

This is solved using standard techniques for solving recurrence
relations.

For a criticality monotonic system, eqn (1) is applied
directly once the priorities have been assigned according to a
‘deadline monotonic within criticality monotonic’ algorithm.

For SMC three cases need to be considered depending on
whether the arbitrary higher priority task τj has an equal,
higher or lower criticality than τi [6]. For each case the correct
value of Cj must be ascertained:

1) If Li = Lj then the tasks are at the same level of
criticality and the normal representative value Cj is used.

2) If Li < Lj then it is not necessary to use the large value
of computation time represented by Cj , rather the smaller
amount corresponding to the criticality level of τi should
be used (as this is the level of assurance needed for this
task). Hence eqn (1) should use Cj(Li).

3) If Li > Lj then we have criticality inversion. One
approach here would be to again use Cj(Li), but this
is allowing τj to execute for far longer than the task
is assumed to do at its own criticality level. Moreover,
it would require all low criticality tasks to be verified
to the highest levels of importance, which would be
prohibitively expensive (and in many ways undermine
one of the reasons for having different criticality levels
in the first place). Rather we should employ Cj , but the
run-time system must ensure that τj does not execute
for more than this value.

The latter point is crucially important. Obviously all the
shared run-time software must be verified to the highest
criticality level of the application components. One aspect of
this is the platform functionality that monitors the execution
time of tasks and makes sure they do not ask for more resource
than was catered for during the analysis phase of the system’s
verification.

The response time equation, eqn (1), can be rewritten as:

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri
Tj

⌉
Cj(min(Li, Lj)) (2)

Note that this use of minimum implies that values of C
are only required for the task’s criticality level and all lower
criticality levels. This is in contrast to the scheme originally
defined by Vestal [23] in which there is no monitoring of
computation time and hence all LO-critical tasks must also be
analysed for their C(HI) value. As a result eqn (2) becomes:

Ri = Ci +
∑

τj∈hp(i)

⌈
Ri
Tj

⌉
Cj(Li) (3)

As indicated earlier, this requirement to verify LO-criticality
tasks to the same level of assurance as HI-criticality tasks
would be prohibitively expensive in practice. In the evaluation
work (Section V) this version of SMC is termed SMC-NO
(meaning no run-time support required).

B. Priority Assignment for SMC

Vestal [23] showed that deadline monotonic priority as-
signment is not optimal for schemes in which tasks have
more than one ‘worst-case execution time’. As a result, SMC
assigns priorities by applying a version of Audsley’s priority
assignment algorithm [2]. That is, it first identifies some



task which may be assigned the lowest priority; having done
so, this task is removed from the task system and priority
assignment is recursively obtained for the remaining tasks.
Proof that Audsley’s approach is applicable to SMC has
already been published [23], [6]. The advantage of applying
Audsley’ algorithm is that it delivers an optimal assignment
in a maximum of n(n + 1)/2 steps. If the algorithm were
not applicable then an exhaustive search over all n! possible
orderings would be required.

Example 2: Consider an example task system τ comprised
of three tasks, as follows:

τi L Ci(LO) Ci(HI) Di Ti
τ1 LO 1 - 2 2
τ2 HI 1 2 10 10
τ3 HI 20 20 100 100

It is evident (since τ3’s WCET, at both criticality levels,
exceeds both D1 and D2), that neither τ1 nor τ2 can possibly
be assigned the lowest priority. We seek to determine whether
τ3 can be assigned lowest priority.

Based on the arguments above, we see that τ3 may be
assigned the lowest priority if it would meet its deadline as
the lowest-priority job. According to eqn (2), the worst-case
response time of any of τ3’s jobs is equal to the smallest
positive solution to the following recurrence relation:

R3 = 20 +

⌈
R3

2

⌉
· 1 +

⌈
R3

10

⌉
· 2

It is easily verified that 68 is a solution to this recurrence,
since for t = 68 the RHS evaluates to (20 + 34 + 14) = 68,
and hence the smallest positive solution is ≤ 68 (in fact, the
smallest positive solution is 68). Since 68 is no larger than τ3’s
deadline, we conclude that task τ3 may indeed be assigned the
lowest priority.

However, the reader may verify that if C2(HI) had been
equal to 5 then the response-time of τ3 would not be smaller
than τ3’s deadline of 100, and we would therefore fail to
assign priorities to this particular task system; meaning it
is unschedulable according to SMC. We shall return to this
example later.

Run-time complexity. As noted above, the use of Audsley’s
algorithm reduces the complexity of finding the optimal prior-
ity ordering from n! to n(n+ 1)/2 schedulability tests. Here
we observe that for mixed criticality systems, with D ≤ T
for all tasks, the priority assignment problem is even more
straightforward.

Theorem 1: An optimal priority ordering exists that has all
tasks with the same criticality assigned priorities in deadline
monotonic priority order.
Proof. The proof follows the standard method of proving that
deadline monotonic priority ordering is optimal for tasks with
constrained deadlines (as described in any standard textbook
such as [14]). Assume τi is deemed schedulable at the lowest
priority (i.e., Ri ≤ Di). Let τk be any task with the same
criticality level as τi but a larger deadline: Dk > Di. If τi
is exchanged with τk (so it becomes the lowest priority task)

then τk will suffer exactly the same interference from LO and
HI tasks and hence the busy period for τk will be the same as
that for τi when it was assigned the lowest priority (both will
contain a single Ci and a single Ck term as D ≤ T for all
tasks). Hence Rk = Ri ≤ Di ≤ Dk (where Ri is the value
computed when τi was assigned the lowest priority). It follows
that τk is schedulable at the lowest priority and that the task
with the longest deadline (but identical criticality) is the best
candidate to place at this level. 2

Hence in seeking to determine whether some task may
be assigned the lowest priority, there are only two potential
candidates to consider: the LO-criticality task with the largest
relative deadline and the HI-criticality task with the largest
relative deadline. This implies that a total of 2n− 1 tests are
needed – compared to n(n+1)/2 for general systems that are
compatible with Audsley’s algorithm.

Note this observation about priority assignment for SMC is
also applicable to the scheme used with AMC.

IV. ADAPTIVE MIXED CRITICALITY - AMC

With a platform that can monitor for how long individual
jobs have been executing, the following adaptive run-time
scheduling algorithm can obtain enhanced performance over
the static scheme. The algorithm is provided with a mixed-
criticality sporadic task system along with an assignment of
unique distinct priorities to the tasks in the system. Dispatch-
ing of jobs for execution occurs according to the following
rules:

R1: There is a criticality level indicator Γ, initialized to LO.
R2: While (Γ ≡ LO), at each instant the waiting job gen-

erated by the task with highest priority is selected for
execution.

R3: If the currently-executing job executes for its LO-
criticality WCET without signalling completion, then
Γ← HI .

R4: Once (Γ ≡ HI), jobs with criticality level ≡ LO will
not be executing. Henceforth, therefore, at each instant
the waiting job generated by the HI-criticality task with
the highest priority is selected for execution.

R5: An additional rule could specify the circumstances when
Γ gets reset to LO. This could happen, for instance, if
no HI-criticality jobs are active at some instant in time.
(We will not discuss the process of resetting Γ ← LO
any further in this paper – a robust scheme for SMC is
described elsewhere [6] and could be adapted for AMC.)

Note, no run-time servers or dynamic slack reclaiming algo-
rithm is needed for AMC – just execution time monitoring.

It is assumed that a switch from LO to HI occurs, due to the
lack of a completion signal, as the computation time C(LO)
is reached (i.e., not at C(LO) + δ: for some positive small
value δ). Hence a task with a period of 10 and a response
time in LO (RLOi ) of 6 can invoke a criticality switch at time
6. Note, a task could execute for Ci(LO) before RLOi (due
to experiencing less interference from higher priority tasks)
and hence the criticality switch could occur earlier. And for a



sporadic task, released later, the switch could occur later than
RLOi . To cater for this we define an interval during which the
switch could occur and derive safe bounds for this interval
(see below).

To summarise the main difference between SMC and AMC,
in SMC any LO-critical task τl is descheduled if it executes for
more than Cl(LO). While in AMC, all LO-critical tasks are
descheduled if any job (from any task τa) executes for more
than Ca(LO). If a HI-critical job (τh) executes for more than
Ch(LO) (but no greater than Ch(HI)) then, under SMC, LO-
critical tasks continue to execute but may miss their deadlines;
but under AMC they stop executing. In both schemes HI-
critical tasks continue to meet their deadlines. It follows that
AMC’s behaviour subsumes that of SMC. We shall show that
this leads to the property that AMC dominates SMC in terms
of schedulability.

A. Response-Time Analysis for AMC

The analysis presented in this section has a number of
similarities to that for systems subject to mode changes [21],
[22], [20]. Fortunately the model here is simpler than the one
applicable to general mode changes.

The form that the analysis takes has three phases:

1) Verifying the schedulability of the LO-criticality mode,
2) Verifying the schedulability of the HI-criticality mode,
3) Verifying the schedulability of the criticality change itself.

Note the third phase is necessary as it cannot be deduced
from the schedulability of the stable modes [22]. For these
stable modes, standard response time analysis can be applied
– eg. eqns (4) and (5).

RLOi = Ci +
∑

j∈hp(i)

⌈
RLOi
Tj

⌉
Cj(LO) (4)

where hp(i) is the set of all tasks with priority higher than
that of task τi.

RHIi = Ci +
∑

j∈hpH(i)

⌈
RHIi
Tj

⌉
Cj(HI) (5)

where hpH(i) is the set of HI-critical tasks with priority
higher than, or equal to, that of task τi – we shall also use
hpL(i) to denote the LO-critical tasks with priority higher
than, or equal to, that of task τi. Note RHIi is only defined
for tasks of criticality HI.

The rest of this section deals with the analysis of the
criticality change. We will use for illustration the task set given
earlier in Example 2, but with C2(HI) = 5. With this task
set the LO and HI response times are calculated by the above
equations to be: RLO1 = 1, RLO2 = 2, RHI2 = 5, RLO3 = 50
and RHI3 = 40. Both modes are therefore schedulable.

In general exact tractable response-time analysis is possible
if the critical instant is clear (and is ideally when all tasks are
released together) and the worst-case occurs when sporadic
tasks arrive at their maximum rate. As the following analysis

of our example illustrates, this second property is unfortunately
not the case with AMC.

In the example, and considering the response time of τ3,
a criticality change can be invoked by τ2 if it executes for 1
unit of time (without signaling completion) at any of its first
5 releases (i.e., at times 0, 10, 20, 30 or 40). The next release
is not before RLO3 and hence cannot have an impact. Testing
each of these releases shows that the release at time 40 is the
worst. From time 40, τ1 would execute for 1 unit, τ2 would
execute for 1 unit and invoke the criticality change. So the
response time of τ3 during the criticality change (R∗3) could
be computed by:

R∗3 = 20 + 21 + 4 +

⌈
R∗3 − 40

10

⌉
· 5

which has a solution of 50 (the value 4 comes from the first
4 executions of τ2). But if the final release of τ2 is delayed
by 4 units then τ1 would execute two more times:

R∗3 = 20 + 23 + 4 +

⌈
R∗3 − 44

10

⌉
· 5

which has a solution of 52.
We conclude that exact analysis for AMC is unlikely to

be tractable (as all release patterns of all sporadic tasks would
need to be tested). Indeed even for a periodic task model there
is the problem that the critical instant is not straightforward to
compute – in the above example if τ2 is strictly periodic but
initially released at time 4 rather than 0 then the same impact
on the worst-case occurs. In the remainder of this section
we therefore concentrate on sufficient analysis. We derive
two forms; one is an adaptation of the analysis presented in
Section III for SMC, the other considers a number of different
points at which the criticality change could occur and takes
the maximum value obtained from each of these points. The
latter is still tractable, but involves more computation.

B. Sufficient Analysis for AMC - Method 1

A simple form of sufficient analysis can be derived from
that described earlier for the SMC approach. Consider eqn (2)
rearranged to separate out the two criticality levels:

Ri = Ci +
∑

τj∈hpH(i)

⌈
Ri
Tj

⌉
Cj(min(Li, Lj)) +

∑
τk∈hpL(i)

⌈
Ri
Tk

⌉
Ck(LO)

During the criticality change we are only concerned with HI-
critical tasks, so for Li = HI:

Ri = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri
Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri
Tk

⌉
Ck(LO) (6)



This equation for SMC is conservative for AMC as it does
not take into account the fact that LO-critical tasks cannot
execute for the entire busy period of a high criticality task
in the HI-mode. A change to HI-criticality must occur before
RLOi and hence eqn (6) can be modified to the following:

R∗i = Ci(HI) +
∑

τj∈hpH(i)

⌈
R∗i
Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
RLOi
Tk

⌉
Ck(LO) (7)

this ‘caps’ the interference from LO-critical tasks as the
response-time during the change, R∗i , must be greater than
RLOi . In the evaluation (see Section (V)) this form of sufficient
analysis is denoted as AMC-rtb (for response time bound).
One obvious property of this analysis is that a task system that
is schedulable under SMC is also schedulable under AMC (as
analysed by Method 1, i.e.; eqn (7)). The analysis of SMC
is identical apart from the ‘cap’ that reduces the interference
from LO-critical tasks.

If this analysis is applied to the task set of Example 2) then

R∗3 = 20 +

⌈
R∗3
10

⌉
· 5 +

⌈
50

2

⌉
· 1

which has a solution of 85 which is less than the task’s
deadline (100). Recall that when using SMC the system is
unschedulable.

C. Sufficient Analysis for AMC - Method 2

In this approach we derive an expression for the maximum
interference on a HI-critical task if a criticality change, invoked
by task τs, occurs at some arbitrary time s. The criticality
change is triggered by any task executing for more than
C(LO). If this event impacts on task τi then s < RLOi , and
the priority of τs must be equal or greater than that of τi;
otherwise task τi will have completed before the criticality
change happened. A formulation for Rsi is constructed from
the different forms of interference it experiences1.

Rsi = Ci(HI) + IL(s) + IH(s) (8)

where IL(s) is the interference from low criticality tasks, and
IH(s) is the interference from tasks with higher or equal
criticality.

In this formulation we could differentiate between those
tasks that have a priority greater than τs, and those that have
a lower priority. Those with priority greater than τs must have
completed this ‘current’ job (so only executed for C(LO)),
while those with priority equal or less may not yet have
completed and hence their current job must be assumed to
need C(HI). However, we will later want to use this analysis
in an optimal priority ordering scheme based on Audsley’s

1Rs
i denotes the response time of task τi when a criticality change occurs

as time s (lower case) relative to the release of τi.

algorithm. For this algorithm to be applicable the response
time of τi can be a function of the set of higher priority tasks,
but must not depend on the relative priority ordering of these
tasks. To distinguish between these two groups of HI-criticality
tasks would break this rule, and so we use the simpler form
of eqn (8).

The low criticality tasks are prevented from executing after
s so their worst-case interference is bounded by:

IL(s) =
∑

j∈hpL(i)

(

⌊
s

Tj

⌋
+ 1)Cj(LO) (9)

The value floor + 1 is used rather than ceiling as we need
to include interference from any low criticality task as soon
as it is released. Note this formulation for IL(s) is an upper
bound, to compute this value exactly would require the amount
of computation completed before s to be calculated. Here
we assume, for the analysis, any task started at or before s
completes. For a possible alternative system model (in which
all low criticality tasks, that have been released but not yet
completed, are allowed to consume up to C(L) before being
descheduled) this bound is tight.

There are a number of possible ways of deriving a sufficient
(minimum) value of IH(s). Here we exploit a simple technique
that is clearly sufficient – we assume all jobs active at time s
execute for C(HI). Hence only jobs with a deadline before
s contribute a C(LO) value. However to be assured that the
analysis is conservative the worst-case phasing of the these
jobs needs to be taken into account.

Consider the interference from any such task (τk) at time t
with t > s. The maximum number of releases of τk is⌈

t

Tk

⌉
The maximum number of releases that can fit into an interval
of length t− s is bounded (for tasks with T = D) by:⌈

t− s
Tk

⌉
+ 1

If D < T then this value can be improved upon as there is
forced to be an interval (for a schedulable system) in which
τk is not executing – i.e., the time between its deadline and
next release, so the above value becomes (assuming (t− s) >
(Tk −Dk)): ⌈

t− s− (Tk −Dk)

Tk

⌉
+ 1 (10)

If s is small and Dk is close to Tk then eqn (10)) can be
pessimistic, and include more jobs than can actually be present
in an interval of length t. Therefore we define

M(k, s, t) = min

{⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1,

⌈
t

Tk

⌉}
(11)

The interference term at time t becomes

IH(s) =
∑

k∈hpH(i)

{
(M(k, s, t) Ck(HI))+



(

⌈
t

Tk

⌉
−M(k, s, t)) Ck(LO)

}
And therefore

Rsi = Ci(H) +
∑

j∈hpL(i)

(

⌊
s

Tj

⌋
+ 1) Cj(LO)+

∑
k∈hpH(i)

{
(M(k, s,Rsi ) Ck(HI)+

(

⌈
t

Tk

⌉
−M(k, s,Rsi )) Ck(LO)

}
(12)

with

R∗i = max (Rsi )∀s (13)

Finally for this approach we need to define the values of
s that need to be considered. The overall interval of possible
s values runs from 0 to RLOi . An examination of eqn (12)
shows that the hpL term increases as a step function for
increased values of s; while the hpH term decreases as s
increases. It follows that Rsi can only increase at the points at
which a LO-criticality tasks are released – hence these are the
points that need to be considered. Note that a LO-criticality job
released at exactly RLOi will not be allowed to execute, and
hence s in restricted to the interval [0,RLOi ). There could be
a large number LO-criticality job released in this interval for
a sizeable application, but the upper bound of RLOi prevents
the scheme from becoming intractable. Again pessimism is
introduced here as not all the s points can actually correspond
to times at which a task reaches its C(LO) value.

Returning to our running example, τ1 is released 25 times
between 0 and 48. Each of these values for s needs to be
checked. The worst case occurs when s = 48; this leads to:

R48
3 = 20 + (

⌊
48

2

⌋
+ 1) · 1 +

⌊
48

10

⌋
· 1 + (

⌈
R48

3

10

⌉
−
⌊

48

10

⌋
) · 5

that is

R48
3 = 20 + 25 + 4 + (

⌈
R48

3

10

⌉
− 4) · 5

which has a solution of 59 (less than the 85 calculated by
Method 1).

A formal comparison of Methods 1 and 2 shows that any
task set deemed schedulable by Method 1 will also be found
to be schedulable by Method 2. This follows from a direct
comparison of the scheduling equations. Method 1 assumes
that LO-criticality tasks can execute concurrently with HI-
criticality tasks (executing at their C(HI) level) for the entire
interval [0,RLOi ). Method 1 also assumes that HI criticality
tasks execute for C(HI) for all of the interval of length t).
Method 2 may reduce one or both of these values; however,
they are both upper bounded by the values used in Method 1.
Hence Method 2 dominates Method 1.

D. Priority assignment for AMC

As AMC is an extension of SMC it follows that deadline
monotonic priority ordering is again not optimal. Fortunately
Audsley’s algorithm is again applicable. Formally for this to
be the case a schedulability test (referred to as S below) must
adhere to the following conditions [15]:
• Condition 1: The schedulability of a task τk may, ac-

cording to test S, depend on any independent properties
of tasks with priorities higher than τk, but not on any
properties of those tasks that depend on their relative
priority ordering.

• Condition 2: The schedulability of a task τk may, ac-
cording to test S, depend on any independent properties
of tasks with priorities lower than τk, but not on any
properties of those tasks that depend on their relative
priority ordering.

• Condition 3: When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according
to test S, if it was previously schedulable at the lower
priority. (As a corollary, the task being assigned the lower
priority cannot become schedulable according to test S,
if it was previously unschedulable at the higher priority).

An inspection of the scheduling equations for both of the
AMC methods shows that these properties hold. It follows
that Audsley’s algorithm can be employed. Moreover, the
property embedded in Theorem 1 is also valid for both of
the schedulability tests (Methods 1 and 2) and hence at most
2n− 1 tests are needed to find a feasible priority ordering if
one exists.

E. Comparing AMC and SMC

Here, before a more extensive evaluation, we prove that
AMC strictly dominates SMC.

Theorem 2: Any sporadic task system that is schedulable
under the rules and priority assignment scheme of SMC is
also schedulable by the rules and priority ordering of AMC.
Proof. Considering only Method 1, we noted earlier that the
scheduling equation for AMC is exactly that for SMC with
some interference removed. The theorem therefore holds 2

We have already shown an example that is schedulable by
AMC but not SMC and hence we can conclude that AMC
strictly dominates SMC. Note that this dominance holds even
though SMC is analysed by a sufficient and necessary scheme
while AMC has only a sufficient test. Recall also that Method
2 dominates Method 1.

V. EVALUATION

In this section, we present an empirical investigation, ex-
amining the effectiveness of our analysis techniques and the
AMC scheme itself.

A. Taskset parameter generation

The taskset parameters used in our experiments were ran-
domly generated as follows:



• Task utilisations (Ui = Ci/Ti) were generated using the
UUnifast algorithm [12], giving an unbiased distribution
of utilisation values.

• Task periods were generated according to a log-uniform
distribution with a factor of 100 difference between the
minimum and maximum possible task period. This rep-
resents a spread of task periods from 10ms to 1 second,
as found in many hard real-time applications.

• Task deadlines were set equal to their periods.
• The low criticality execution time of each task was set

based on the utilisation and period selected: Ci(LO) =
Ui/Ti.

• The high criticality execution time of each task was
a fixed multiplier of the low criticality execution time,
Ci(HI) = CF · Ci(LO) (e.g., CF = 2.0).

• The probability that a generated task was a high criticality
task was given by the parameter CP (e.g. CP = 0.5).

B. Schedulability tests investigated

We investigated the performance of the following techniques
and associated schedulability tests.

• UB-H&L: A composite upper bound, to pass this test, a
taskset must be deemed schedulable according to both
UB-L and UB-H where, UB-L is an upper bound on
taskset schedulability obtained by considering execution
of all tasks at the low criticality level and deadline
monotonic priority ordering (DMPO) which is optimal in
this case; and UB-H is an upper bound based solely on
the schedulability of the high criticality tasks executing
for their high criticality execution times, again assuming
DMPO. Any taskset that fails the UB-H&L test cannot
be schedulable using any fixed priority multi-criticality
scheduling technique. This upper bound value is depicted
as a dashed line in the Figures presented below2.

• AMC-max: Method 2 described in Section IV-C.
• AMC-rtb: Method 1 described in Section IV-B.
• SMC: the approach described in Section III-A
• SMC-NO: the SMC approach without run-time monitor-

ing (i.e., the approach published by Vestal [23]) described
at the end of Section III-A.

• CrMPO: Criticality Monotonic Priority Ordering. Task
priorities were ordered first according to criticality (high-
est criticality first) and then according to deadline (short-
est deadline first). Response time analysis was then used
to determine if the taskset was schedulable with high
criticality tasks assumed to execute for C(HI) and low
criticality tasks for C(LO) – i.e., one execution time
parameter per task.

C. Experiments

In our experiments, the taskset utilisation was varied from
0.025 to 0.9753. For each utilisation value, 1000 tasksets were

2For the sake of clarity and to avoid having too many lines on the graphs,
UB-L and UB-H are not shown.

3Utilisation here is computed from the C(L) values only.

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Utilisation

Sc
he

du
la

bl
e 

Ta
sk

se
ts

UB-H&L
AMC-max
AMC-rtb
SMC
SMC-NO
CrMPO

 

Fig. 1. Percentage of Schedulable Tasksets

generated and the schedulability of those tasksets determined
using the six algorithms / schedulability tests. The graphs are
best viewed online in colour.

Fig 1 plots the percentage of tasksets generated that were
deemed schedulable for a system of 20 tasks, with on average
50% of those tasks having high criticality (CP = 0.5) and each
task having a high criticality execution time that is 2.0 times
its low criticality execution time (CF = 2.0).

We observe that the SMC schedulability test outperforms
that for SMC-NO by a large margin. This is expected as
SMC-NO requires that low criticality tasks are schedulable
with all higher priority high-criticality tasks executing for their
high criticality execution times, whereas SMC only requires
such schedulability with higher priority high-criticality tasks
executing for their low criticality execution times. AMC-rtb
further significantly improves on the performance of SMC.
Again this is expected: when computing the high criticality
response time of a task τi, SMC includes interference from
jobs of higher priority, low criticality, tasks beyond the low
criticality response time of task τi, whereas AMC-rtb does
not. Finally, AMC-max makes a small but useful improvement
over AMC-rtb, giving overall performance that is close to the
limit illustrated by the UB-H&L upper bound.

In the following figures we show the weighted schedulabil-
ity measure Wy(p) [10] for schedulability test y as a function
of parameter p. For each value of p, this measure combines
results for all of the tasksets τ generated for all of a set of
equally spaced utilization levels (0.025 to 0.975 in steps of
0.025).

Let Sy(τ, p) be the binary result (1 or 0) of schedulability
test y for a taskset τ with parameter value p:



Wy(p) = (
∑
∀τ

u(τ) · Sy(τ, p))/
∑
∀τ

u(τ) (14)

where u(τ) is the utilization of taskset τ .
The weighted schedulability measure reduces what would

otherwise be a 3-dimensional plot to 2 dimensions [10].
Weighting the individual schedulability results by taskset
utilization reflects the higher value placed on being able to
schedule higher utilization tasksets.

We show how the results are changed by varying each of
the key parameters (one at a time). Fig 2 varies the criticality
factor, Fig 3 varies the percentage of tasks with high criticality
and Fig 4 varies the size of the task set. A number of points
are illustrated by these figures:
• CrMPO preforms very badly as priority ordering is far

from optimal.
• Fig 3 has a U-spaced curve because each end of the

interval represents a one-criticality task set, and hence
the priorities are optimal.

• Figs 2 and 3 show a decline in schedulability for high
criticality factors or high percentage of HI-critical tasks;
but this is due to utilisation (as used in the Y-axis) being
calculated via the C(LO) values only. In effect utilisation
goes up (and hence schedulability goes down) as the
parameter of the figure increases.

Overall the key observation of these figures, representing an
extensive set of experiments, is that the relationship between
the six lines on the graphs remains stable, and that AMC is a
very effective means of scheduling mixed criticality systems.

To show that task systems with deadline less than period
behave in a similar way, the fifth experiment (see Fig 5) returns
to the same basic parameter settings as the first experiment but
fixes each task’s deadline by choosing a random value between
Ci(HI) and Ti for HI-critical tasks and between Ci(LO) and
Ti for LO-critical tasks.

VI. CONCLUSION

Due to the rapid increase in the complexity and diversity of
functionalities that are performed by safety-critical embedded
systems, the cost and complexity of obtaining certification
for such systems is fast becoming a serious concern [4].
We believe that in mixed-criticality systems, these certifica-
tion considerations give rise to fundamental new resource
allocation and scheduling challenges that are not adequately
addressed by conventional real-time scheduling theory.

In this paper, we consider fixed-priority (FP) scheduling,
upon preemptive uniprocessors, of mixed-criticality systems
that can be modeled using a mixed-criticality generalization
of the sporadic tasks model. We have studied two scheduling
algorithms: one that assumes limited run-time support for
mixed criticalities (SMC), and a new one, AMC, that requires
additional run-time support but is able to provide superior
schedulability/certifiability guarantees when provided with

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 1.5 2 2.5 3 3.5 4 4.5 5

Criticality Factor

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

UB-H&L
AMC-max
AMC-rtb
SMC
SMC-NO
CrMPO

 

Fig. 2. Varying the Criticality Factor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

Percentage of tasks with high criticality

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

UB-H&L
AMC-max
AMC-rtb
SMC
SMC-NO
CrMPO

 

Fig. 3. Varying the Criticality Mix

such support. Both these approaches have relatively efficient
implementations: of the same order of run-time complexity as
“regular” (i.e., non-MC) sporadic task systems; once priorities
have been assigned, run-time scheduling is not much more
complex than for non-MC systems. This offers up an inter-
esting contrast with non-FP scheduling of MC sporadic task
systems, in which the current state of the art, as represented
in [18], is an algorithm with potentially pseudo-polynomial
run-time complexity.

In further work we will generalize the analysis presented
here to multiple criticality levels; we shall also extend the



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

8 24 40 56 72 88

Taskset size

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

UB-H&L
AMC-max
AMC-rtb
SMC
SMC-NO
CrMPO

 

Fig. 4. Varying the Number of Tasks

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Utilisation

Sc
he

du
la

bl
e 

Ta
sk

se
ts

UB-H&L
AMC-max
AMC-rtb
SMC
SMC-NO
CrMPO

 

Fig. 5. Deadline less than Period

task model to include the standard notions of blocking and
jitter - and arbitrary deadlines.

Acknowledgements

Work supported by NSF grants CNS 0834270, CNS 0834132, and CNS
1016954; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549;
AFRL grant FA8750-11-1-0033 and EPSRC(UK) Tempo grant.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of the Real-Time Systems Symposium,
pages 3–13, Madrid, Spain, December 1998.

[2] N. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings.
Applying new scheduling theory to static priority preemptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[4] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy,
J. Scoredos, P. Stanfill, D. Stuart, and R. Urzi. White paper: A
research agenda for mixed-criticality systems, April 2009. Available
at http://www.cse.wustl.edu/˜ cdgill/CPSWEEK09 MCAR.

[5] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality
jobs. In P. Hlinený and A. Kucera, editors, Proceedings of the 35th
International Symposium on the Mathematical Foundations of Computer
Science, volume 6281 of Lecture Notes in Computer Science, pages 90–
101. Springer, 2010.

[6] S. Baruah and A. Burns. Implementing mixed criticality systems in
Ada. In A. Romanovsky, editor, Proceedings of Reliable Software
Technologies - Ada-Europe 2011, pages 174–188. Springer, 2011.

[7] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In Proceedings of the IEEE Real-Time
Technology and Applications Symposium (RTAS). IEEE, April 2010.

[8] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Proceedings of the 11th Real-
Time Systems Symposium, pages 182–190, Orlando, Florida, 1990. IEEE
Computer Society Press.

[9] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In ECRTS, pages 147–155, 2008.

[10] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedu-
lability. In Proceedings of Sixth International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, pages 33–44,
2010.

[11] G. Bernat and A. Burns. New results on fixed priority aperiodic servers.
In Proceedings 20th IEEE Real-Time Systems Symposium, pages 68–78,
1999.

[12] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Journal of Real-Time Systems, 30(1-2):129–154, 2005.

[13] A. Burns and B. Littlewood. Reasoning about the reliability of multi-
version, diverse real-time systems. In Proceedings of IEEE Real-Time
Systems Symposium (RTSS), pages 73–81, 2010.

[14] A. Burns and A. J. Wellings. Real-Time Systems and Programming
Languages. Addison Wesley Longman, 4th edition, 2009.

[15] R. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems Journal, pages 1–40, 2010.

[16] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 291–300, 2009.

[17] M. Joseph and P. Pandya. Finding response times in a real-time system.
BCS Computer Journal, 29(5):390–395, 1986.

[18] H. Li and S. Baruah. An algorithm for scheduling certifiable mixed-
criticality sporadic task systems. In Proceedings of the Real-Time
Systems Symposium, pages 183–192, San Diego, CA, 2010. IEEE
Computer Society Press.

[19] A. K. Mok. Fundamental Design Problems of Distributed Systems for
The Hard-Real-Time Environment. PhD thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1983. Available as
Technical Report No. MIT/LCS/TR-297.

[20] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In 10th Euromicro Workshop on Real-Time
Systems, pages 172–179. IEEE Computer Society, 1998.

[21] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priority-driven premptive scheduling. Journal of Real-Time
Systems, 1(3):244–264, 1989.

[22] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority
preemptive scheduled systems. In Proceedings Real Time Systems
Symposium, pages 100–109, Phoenix, Arizona, 1992.

[23] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 239–243, Tucson, AZ, December
2007. IEEE Computer Society Press.

[24] A. Zabos, R. Davis, A. Burns, and M. G. Harbour. Spare capacity
distribution using exact response-time analysis. In 17th International
Conference on Real-Time and Network Systems, pages 97–106, 2009.


