
Schedulability Analysis for Multi-core Systems

Accounting for Resource Stress and Sensitivity

Rob Davis, David Griffin, Iain Bate

Real-Time Systems Research Group, University of York

◼ COTS Multi-core hardware
◼ Designed to deliver high average-case

performance at low cost

◼ Achieved by sharing hardware resources
(such as cache, interconnect or bus, and
main memory) between cores

◼ Cross-core contention
◼ When co-running tasks attempt to access

shared hardware resources at the same time

◼ This contention extends task execution
times compared to the stand-alone case

◼ The increase in task execution times is
referred to as interference

◼ Problem of cross-core contention and
interference has led to timing verification
of multi-cores becoming a hot topic of real-
time systems research over the last 10 years

2

Cross-core contention in multi-cores

Core 1 Core 2

Core 3 Core 4

Main

memory

L1 Cache

L1 Cache

L1 Cache

L1 Cache

◼ Academia

◼ Summarized by Maiza et al. in a survey [32] published in 2019 that classified over

120 research papers on the topic

◼ The majority of the research discussed in the survey relies on detailed timing

information about shared hardware resources and their arbitration policies

◼ Substantial difficulties:

◼ Information is often not disclosed by hardware vendors, or is incomplete, or even

incorrect

◼ Overall the behaviour can be so complex as to preclude a static analysis that

provides meaningful bounds rather than gross over-estimates

◼ Industry

◼ Common practice is to use measurement-based timing analysis [1]

◼ Viable for well-designed systems on single core platforms

◼ BUT, its simple extension to multi-core systems cannot provide an adequate

solution that correctly bounds cross-core interference

3

Timing verification for multi-cores

◼ Simple (naïve) approach

◼ Run the tasks in parallel, measure their

execution times and hence interference

◼ Maximum Interference

◼ Depends on precise timing of contention

i.e. the accesses to shared hardware

resources by the task under analysis and

also the co-running tasks on other cores

◼ Timing depends on the inputs, the paths

taken, the data accessed etc.

◼ Also depends on scheduling, task start

times, and any pre-emptions

◼ Impossible in practice to find the

combination of behaviours that gives

the maximum interference

4

Cross-core contention in multi-cores

Co-running

task

Task of

interest

Resource

accesses

Interference =

Contention

To solve this problem we need to break it down

+

◼ Resource stressing contender
◼ Maximizes the stress on a resource r by continuously making accesses to it that cause

the most contention

◼ Running a resource stressing contender in parallel with a task creates the maximum
increase in execution time for the task due to contention over resource r emanating
from any possible (single) co-runner

◼ Resource Sensitivity of a task equates to this increase in execution time

◼ Resource sensitive contender
◼ Suffers the maximum possible interference by repeatedly making accesses to the

resource r that suffer from the most contention

◼ Running a resource sensitive contender in parallel with a task creates the maximum
increase in execution time for any (single) co-running contender due to contention
over the specific resource r emanating from that task

◼ Resource Stress of a task equates to this increase in execution time of the
resource sensitive contender

Note, resource stressing and resource sensitive contenders for a given shared hardware

resource are not necessarily one and the same
5

Concepts: resource stress and sensitivity

◼ Using contenders

◼ Removes problematic alignment issues as

the contenders continuously access the

resource

◼ Task resource sensitivity is obtained using

a resource stressing contender

◼ Task resource stress is obtained using a

resource sensitive contender

◼ Task resource sensitivity and task resource

stress are not necessarily the same

◼ Interference can be

◼ Sub-additive (contention partly ameliorated

by parallelism in the hardware)

◼ Additive (directly reflecting the bandwidth

used)

◼ Super-additive (contention changes the state

of the resource so subsequent operations

take longer)
6

Quantifying task resource sensitivity

and task resource stress

Task resource sensitivity
Resource

accessesResource stressing contender

Task under

analysis

Task resource

sensitivity =

Contention

+ + +
Interference

Resource

accessesTask under analysis

Task resource

stress =

Contention

+ + +

Task resource stress

Resource sensitive contender

Interference

◼ Proposed approach

◼ Using resource stress and resource

sensitivity for each task

◼ Maximum Interference (two tasks)

◼ Bounded by resource sensitivity of the

task under analysis and by the resource

stress of the co-running task

◼ Follows directly from how these terms

are defined and also how resource

stressing and resource sensitive

contenders are defined

7

Quantifying cross-core contention and

interference

Maximum interference on the task under analysis

= = min(,)

Co-running task

Task under analysis

Resource

accesses

Resource stress =

Resource sensitivity =

Considering interference as inflating individual execution times can be grossly

pessimistic, so we need to extend these concepts to multiple tasks and their scheduling

◼ Processor and scheduling

◼ Multi-core with m homogenous cores

◼ Partitioned fixed priority pre-emptive and non-pre-emptive scheduling

◼ Multi-core Resource Stress and Sensitivity (MRSS) Task model

◼ Sporadic tasks, each task with stand-alone execution time , minimum inter-

arrival time , and constrained deadline

◼ Set of shared hardware resources

◼ Each task characterized by its resource sensitivity and resource stress to each

shared hardware resource r

8

System model

◼ Consider interference over time frame of task response times

◼ Using total resource stress and total resource sensitivity occurring within that time frame

◼ Worst-case interference

◼ Bounded by total resource sensitivity of jobs executing on the same core as the task

under analysis within its response time. Also bounded by the total resource stress of jobs

executing on another core within that response time

9

Schedulability analysis concept

Maximum interference on the task under analysis =

= min (,

Co-running tasks on another core y

Tasks running within the response time of the task under analysis on core x

Resource accesses

Total resource stress =

Total resource sensitivity =

)

◼ Response time analysis for partitioned Fixed Priority Pre-emptive
Scheduling (pFPPS)
◼ Derives from standard RTA [5,25]

◼ Interference is an upper bound on the interference that may occur within the
response time of task via shared hardware resource r, due to tasks executing on
other cores

◼ Where:

is the total resource stress emanating from core y in the response time of
task

is the total resource sensitivity of the tasks executing on core x during the
response time of task

10

Schedulability analysis (pFPPS)

◼ Formulation for total resource sensitivity
◼ Considering the jobs executing on core x within the response time of task

◼ Derives directly from standard RTA

◼ Only jobs of same or higher priority than task can execute within its response time

11

Total Resource Sensitivity

◼ Formulation for total resource stress
◼ Consider jobs executing on another core y

within the response time of task

◼ Include jobs from all tasks on core y
irrespective of their priority

◼ Cp-FPPS-m-R test (context dependent)

◼ Contention may emanate from a job
anytime up to its own response time

◼ Cp-FPPS-m-D test (context dependent)

◼ Contention may emanate from a job
anytime up to its own deadline

◼ Cp-FPPS-m-fc test (context independent)

◼ Fully composable, assumes any level
of resource stress could be possible

12

Total Resource Stress

∞

Dominance relation between the tests: Cp-FPPS-m-R → Cp-FPPS-m-D → Cp-FPPS-m-fc

◼ Response time analysis for partitioned Fixed Priority Non-Pre-
emptive Scheduling (pFPNS)
◼ Derives from a sufficient test [11]

◼ Interference

◼ Formulation for total resource sensitivity
◼ Derives from considering the jobs executing on core x within the response time of task

◼ Formulation for total resource stress
◼ Same as before forming three tests with dominance relations

Cp-FPNS-m-R → Cp-FPNS-m-D → Cp-FPNS-m-fc
13

Schedulability analysis (pFPNS)

◼ Preemptive case:
◼ Cp-FPPS-m-fc (context independent): equates to standard RTA for FPPS with the

execution time of each task increased according to its resource sensitivity therefore
Deadline Monotonic Priority Ordering is optimal

◼ Cp-FPPS-m-D (context dependent): Deadline Monotonic Priority Ordering is optimal
(proof in the paper)

◼ Cp-FPPS-m-R (context dependent): Audsley’s Optimal Priority Assignment (OPA)
algorithm is not applicable (proof in the paper)

◼ Non-preemptive case:
◼ Cp-FPNS-m-fc (context independent): equates to standard RTA for FPNS with the

execution time of each task increased according to its resource sensitivity therefore
Audsley’s OPA algorithm is optimal

◼ Cp-FPNS-m-D (context dependent): Audsley’s OPA algorithm is optimal (proof in the
paper)

◼ Cp-FPNS-m-R (context dependent): Audsley’s OPA algorithm is not applicable (proof in
the paper)

14

Priority assignment

◼ Parameter settings
◼ Considered tasks on 1-4 cores of a 4 core system with 10 tasks on each core

◼ Same task set utilization was used on each core, but different task sets

◼ Task utilizations were generated using the DRS algorithm [20] summing to the total
utilization required for each core

◼ Task periods generated according to a log normal distribution in the range 1-100ms
(10-100ms for non-pre-emptive scheduling)

◼ Deadlines equal to periods

◼ Stand-alone execution time

◼ Resource sensitivity values were generated using the DRS algorithm such that the total
resource sensitivity utilization of each task set was Sensitivity Factor (SF) times the task
set utilization (default SF = 0.25) and the individual task resource sensitivity values did not
exceed the stand-alone execution times

◼ Task resource stress values were set to Stress Factor (RF) times the task resource
sensitivity values (default RF = 0.5)

◼ Task priorities were set according to Deadline Monotonic Priority Ordering

◼ Per core task set utilization was varied from 0.05 to 0.95 in steps of 0.025

◼ 1000 task sets were generated per utilization value
15

Schedulability test performance

16

◼ Success ratio: varying utilization

◼ More cores equate to more interference and hence lower schedulability for all tests:
2 cores (red) vs. 3 cores (blue) vs. 4 cores (green)

◼ Dominance relations between the three types of test evident in the comparison between the
thick solid lines (-R tests), dashed lines (-D tests), and dotted lines (-fc tests)

Evaluation results

◼ Weighted schedulability: Sensitivity Factor

◼ Higher Sensitivity Factor equates to more interference and hence lower schedulability

◼ Broad comparison between the different tests is similar to the success ratio graphs

17

Evaluation results

◼ Weighted schedulability: Stress Factor

◼ Higher Stress Factor equates to more interference and hence lower schedulability

◼ As the Stress Factor exceeds 1, total resource stress nearly always exceeds the
total resource sensitivity reducing all tests that consider contention to the same
level as the context independent tests 18

Evaluation

◼ Main contribution: Multi-core Resource Stress and Sensitivity (MRSS)

task model and its accompanying schedulability analyses

◼ The MRSS task model:

◼ Characterizes how much each task stresses shared hardware resources and how much it is

sensitive to such resource stress

◼ Provides an effective interface between timing analysis and schedulability analysis,

retaining the advantages of the traditional two-step approach to timing verification

◼ Caters in a generic and versatile way for a variety of different shared hardware resources

◼ Schedulability analyses:

◼ Provide efficient context-dependent and context independent schedulability tests for both

fixed priority pre-emptive and non-pre-emptive scheduling

◼ Exhibit dominance relationships illustrating the trade-off between context independence

and schedulability

◼ Proven compatible or incompatible with efficient optimal priority assignment algorithms

◼ Subject to systematic evaluation illustrating their effectiveness across a wide range

parameter values
19

Conclusions

◼ Purpose validation of the model

◼ Obtain resource stress and resource sensitivity data for tasks from an industrial application

to act as a proof-of-concept for the MRSS task model

◼ NOT intended to provide definitive values (doing so is a challenging research problem)

◼ Application:

◼ 24 tasks from a Rolls-Royce aero-engine controller (object code 300 Kbytes to 40 Mbytes)

◼ Developed in SPARK-Ada and verified according to DO-178C standards (level A)

◼ Originally designed to run on a specific packaged processor, ported to run on Raspberry PI

◼ Hardware and OS:

◼ Raspberry PI 3B+: Broadcom BCM2837 System-on-Chip with a quad-core ARM Cortex-

A53 processor (16 KByte L1 data cache, 16 KByte L1 instruction cache, 512 KByte L2

shared cache, and 1 GByte of DDR2-DRAM)

◼ Raspberry Pi OS Lite and the Linux Kernel 5.10.11-v7+

◼ Configured to run at 600MHz to avoid any thermal throttling

◼ Focus was on main memory (DDR2-DRAM) as the shared hardware resource, since the

L2 cache was not used by the CPUs 20

Preliminary industrial case study

◼ Configuration

◼ Examined 10,000 traces for each of the 24 tasks

◼ Each trace is a job of a task with random values chosen for its input parameters controlled

via a random seed for repeatability

◼ Each run was repeated 9 times to ensure consistency and to enable anomalies caused by

the kernel scheduler tick and clock synchronization interrupt to be eliminated

◼ Each experiment paired a task with either a single contender or with a single different task

◼ Contenders

◼ Three synthetic contenders were used that made Read-Read, Read-Write, or Write-Write

accesses to main memory

◼ 100 accesses were done in the body of each contender loop to ensure that the loop

overhead was small compared to the resource contention

◼ Each Read or Write access compiled down to a single instruction

◼ A handshaking protocol was used to ensure that the contender always started before the

task and finished after it

21

Case study experimental setup

◼ Experiment A.1: Task vs. Resource Contender

◼ For each task the maximum values for stand-alone execution time, resource sensitivity,

and resource stress were obtained over the 10,000 traces and each of three contenders

◼ Resource sensitivity varied from 3.8% to 15% of the task’s stand-alone execution time

◼ Resource stress varied from 1.5% to 19.3% of the task’s stand-alone execution time

◼ Ratio of task resource stress to sensitivity varied from 0.23 to 1.58 22

Case study results

◼ Experiment A.2: Task vs. Task

◼ For each task pairing the maximum interference (increase in stand-alone execution time),

was obtained over 10,000 traces and compared to the bound computed from resource stress

and sensitivity values obtained in Experiment A.1

◼ The maximum measured increase in execution time was no greater than the computed bound

On average it was 69% of the bound, and varied between 26% and 99%.
23

Case study results

24

Questions?

(rob.davis@york.ac.uk)

