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◼ COTS Multi-core hardware
◼ Designed to deliver high average-case 

performance at low cost

◼ Achieved by sharing hardware resources 
(such as cache, interconnect or bus, and 
main memory) between cores

◼ Cross-core contention
◼ When co-running tasks attempt to access 

shared hardware resources at the same time

◼ This contention extends task execution 
times compared to the stand-alone case

◼ The increase in task execution times is 
referred to as interference

◼ Problem of cross-core contention and 
interference has led to timing verification 
of multi-cores becoming a hot topic of real-
time systems research over the last 10 years
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◼ Academia

◼ Summarized by Maiza et al. in a survey [32] published in 2019 that classified over 

120 research papers on the topic

◼ The majority of the research discussed in the survey relies on detailed timing 

information about shared hardware resources and their arbitration policies

◼ Substantial difficulties: 

◼ Information is often not disclosed by hardware vendors, or is incomplete, or even 

incorrect

◼ Overall the behaviour can be so complex as to preclude a static analysis that 

provides meaningful bounds rather than gross over-estimates

◼ Industry

◼ Common practice is to use measurement-based timing analysis [1]

◼ Viable for well-designed systems on single core platforms

◼ BUT, its simple extension to multi-core systems cannot provide an adequate 

solution that correctly bounds cross-core interference
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Timing verification for multi-cores



◼ Simple (naïve) approach

◼ Run the tasks in parallel, measure their 

execution times and hence interference

◼ Maximum Interference

◼ Depends on precise timing of contention 

i.e. the accesses to shared hardware 

resources by the task under analysis and 

also the co-running tasks on other cores

◼ Timing depends on the inputs, the paths 

taken, the data accessed etc.

◼ Also depends on scheduling, task start 

times, and any pre-emptions

◼ Impossible in practice to find the 

combination of behaviours that gives 

the maximum interference
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◼ Resource stressing contender
◼ Maximizes the stress on a resource r by continuously making accesses to it that cause 

the most contention

◼ Running a resource stressing contender in parallel with a task creates the maximum 
increase in execution time for the task due to contention over resource r emanating 
from any possible (single) co-runner

◼ Resource Sensitivity      of a task     equates to this increase in execution time

◼ Resource sensitive contender
◼ Suffers the maximum possible interference by repeatedly making accesses to the 

resource r that suffer from the most contention

◼ Running a resource sensitive contender in parallel with a task creates the maximum 
increase in execution time for any (single) co-running contender due to contention 
over the specific resource r emanating from that task

◼ Resource Stress      of a task     equates to this increase in execution time of the 
resource sensitive contender

Note, resource stressing and resource sensitive contenders for a given shared hardware 

resource are not necessarily one and the same
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Concepts: resource stress and sensitivity



◼ Using contenders

◼ Removes problematic alignment issues as 

the contenders continuously access the 

resource

◼ Task resource sensitivity is obtained using 

a resource stressing contender

◼ Task resource stress is obtained using a 

resource sensitive contender

◼ Task resource sensitivity and task resource 

stress are not necessarily the same

◼ Interference can be

◼ Sub-additive (contention partly ameliorated 

by parallelism in the hardware)

◼ Additive (directly reflecting the bandwidth 

used)

◼ Super-additive (contention changes the state 

of the resource so subsequent operations 

take longer)
6

Quantifying task resource sensitivity
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◼ Proposed approach

◼ Using resource stress and resource 

sensitivity for each task

◼ Maximum Interference (two tasks)

◼ Bounded by resource sensitivity of the 

task under analysis and by the resource 

stress of the co-running task

◼ Follows directly from how these terms 

are defined and also how resource 

stressing and resource sensitive 

contenders are defined
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Quantifying cross-core contention and 

interference
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Considering interference as inflating individual execution times can be grossly 

pessimistic, so we need to extend these concepts to multiple tasks and their scheduling



◼ Processor and scheduling

◼ Multi-core with m homogenous cores

◼ Partitioned fixed priority pre-emptive and non-pre-emptive scheduling

◼ Multi-core Resource Stress and Sensitivity (MRSS) Task model

◼ Sporadic tasks, each task     with stand-alone execution time , minimum inter-

arrival time  , and constrained deadline 

◼ Set of shared hardware resources

◼ Each task characterized by its resource sensitivity        and resource stress      to each 

shared hardware resource r
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System model



◼ Consider interference over time frame of task response times

◼ Using total resource stress and total resource sensitivity occurring within that time frame

◼ Worst-case interference

◼ Bounded by total resource sensitivity of jobs executing on the same core as the task 

under analysis within its response time. Also bounded by the total resource stress of jobs 

executing on another core within that response time
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Schedulability analysis concept
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◼ Response time analysis for partitioned Fixed Priority Pre-emptive 
Scheduling (pFPPS)
◼ Derives from standard RTA [5,25]

◼ Interference             is an upper bound on the interference that may occur within the 
response time of task     via shared hardware resource r, due to tasks executing on 
other cores

◼ Where:

is the total resource stress emanating from core y in the response time of 
task 

is the total resource sensitivity of the tasks executing on core x during the 
response time of task 
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Schedulability analysis (pFPPS)



◼ Formulation for total resource sensitivity 
◼ Considering the jobs executing on core x within the response time of task 

◼ Derives directly from standard RTA

◼ Only jobs of same or higher priority than task     can execute within its response time
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Total Resource Sensitivity



◼ Formulation for total resource stress
◼ Consider jobs executing on another core y

within the response time of task

◼ Include jobs from all tasks on core y
irrespective of their priority

◼ Cp-FPPS-m-R test (context dependent)

◼ Contention may emanate from a job 
anytime up to its own response time 

◼ Cp-FPPS-m-D test (context dependent)

◼ Contention may emanate from a job 
anytime up to its own deadline

◼ Cp-FPPS-m-fc test (context independent)

◼ Fully composable, assumes any level 
of resource stress could be possible
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Total Resource Stress
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Dominance relation between the tests: Cp-FPPS-m-R → Cp-FPPS-m-D → Cp-FPPS-m-fc



◼ Response time analysis for partitioned Fixed Priority Non-Pre-
emptive Scheduling (pFPNS)
◼ Derives from a sufficient test [11]

◼ Interference

◼ Formulation for total resource sensitivity 
◼ Derives from considering the jobs executing on core x within the response time of task 

◼ Formulation for total resource stress 
◼ Same as before forming three tests with dominance relations

Cp-FPNS-m-R → Cp-FPNS-m-D → Cp-FPNS-m-fc
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Schedulability analysis (pFPNS)



◼ Preemptive case:
◼ Cp-FPPS-m-fc (context independent): equates to standard RTA for FPPS with the 

execution time of each task increased according to its resource sensitivity therefore 
Deadline Monotonic Priority Ordering is optimal

◼ Cp-FPPS-m-D (context dependent): Deadline Monotonic Priority Ordering is optimal 
(proof in the paper)

◼ Cp-FPPS-m-R (context dependent): Audsley’s Optimal Priority Assignment (OPA) 
algorithm is not applicable (proof in the paper)

◼ Non-preemptive case:
◼ Cp-FPNS-m-fc (context independent): equates to standard RTA for FPNS with the 

execution time of each task increased according to its resource sensitivity therefore 
Audsley’s OPA algorithm is optimal

◼ Cp-FPNS-m-D (context dependent): Audsley’s OPA algorithm is optimal (proof in the 
paper)

◼ Cp-FPNS-m-R (context dependent): Audsley’s OPA algorithm is not applicable (proof in 
the paper)
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Priority assignment



◼ Parameter settings
◼ Considered tasks on 1-4 cores of a 4 core system with 10 tasks on each core

◼ Same task set utilization was used on each core, but different task sets

◼ Task utilizations were generated using the DRS algorithm [20] summing to the total 
utilization required for each core

◼ Task periods generated according to a log normal distribution in the range 1-100ms
(10-100ms for non-pre-emptive scheduling)

◼ Deadlines equal to periods

◼ Stand-alone execution time 

◼ Resource sensitivity values were generated using the DRS algorithm such that the total 
resource sensitivity utilization of each task set was Sensitivity Factor (SF) times the task 
set utilization (default SF = 0.25) and the individual task resource sensitivity values did not 
exceed the stand-alone execution times

◼ Task resource stress values were set to Stress Factor (RF) times the task resource 
sensitivity values (default RF = 0.5)

◼ Task priorities were set according to Deadline Monotonic Priority Ordering

◼ Per core task set utilization was varied from 0.05 to 0.95 in steps of 0.025

◼ 1000 task sets were generated per utilization value
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Schedulability test performance
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◼ Success ratio: varying utilization

◼ More cores equate to more interference and hence lower schedulability for all tests:
2 cores (red) vs. 3 cores (blue) vs. 4 cores (green)

◼ Dominance relations between the three types of test evident in the comparison between the  
thick solid lines (-R tests), dashed lines (-D tests), and dotted lines (-fc tests)

Evaluation results



◼ Weighted schedulability: Sensitivity Factor

◼ Higher Sensitivity Factor equates to more interference and hence lower schedulability

◼ Broad comparison between the different tests is similar to the success ratio graphs
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Evaluation results



◼ Weighted schedulability: Stress Factor

◼ Higher Stress Factor equates to more interference and hence lower schedulability

◼ As the Stress Factor exceeds 1, total resource stress                 nearly always exceeds the 
total resource sensitivity                reducing all tests that consider contention to the same 
level as the context independent tests 18

Evaluation



◼ Main contribution: Multi-core Resource Stress and Sensitivity (MRSS) 

task model and its accompanying schedulability analyses

◼ The MRSS task model:

◼ Characterizes how much each task stresses shared hardware resources and how much it is 

sensitive to such resource stress

◼ Provides an effective interface between timing analysis and schedulability analysis, 

retaining the advantages of the traditional two-step approach to timing verification

◼ Caters in a generic and versatile way for a variety of different shared hardware resources

◼ Schedulability analyses:

◼ Provide efficient context-dependent and context independent schedulability tests for both 

fixed priority pre-emptive and non-pre-emptive scheduling 

◼ Exhibit dominance relationships illustrating the trade-off between context independence 

and schedulability

◼ Proven compatible or incompatible with efficient optimal priority assignment algorithms

◼ Subject to systematic evaluation illustrating their effectiveness across a wide range 

parameter values
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Conclusions



◼ Purpose validation of the model

◼ Obtain resource stress and resource sensitivity data for tasks from an industrial application 

to act as a proof-of-concept for the MRSS task model

◼ NOT intended to provide definitive values (doing so is a challenging research problem)

◼ Application:

◼ 24 tasks from a Rolls-Royce aero-engine controller (object code 300 Kbytes to 40 Mbytes)

◼ Developed in SPARK-Ada and verified according to DO-178C standards (level A)

◼ Originally designed to run on a specific packaged processor, ported to run on Raspberry PI

◼ Hardware and OS:

◼ Raspberry PI 3B+: Broadcom BCM2837 System-on-Chip with a quad-core ARM Cortex-

A53 processor (16 KByte L1 data cache, 16 KByte L1 instruction cache, 512 KByte L2 

shared cache, and 1 GByte of DDR2-DRAM)

◼ Raspberry Pi OS Lite and the Linux Kernel 5.10.11-v7+

◼ Configured to run at 600MHz to avoid any thermal throttling

◼ Focus was on main memory (DDR2-DRAM) as the shared hardware resource, since the

L2 cache was not used by the CPUs 20

Preliminary industrial case study



◼ Configuration

◼ Examined 10,000 traces for each of the 24 tasks 

◼ Each trace is a job of a task with random values chosen for its input parameters controlled 

via a random seed for repeatability

◼ Each run was repeated 9 times to ensure consistency and to enable anomalies caused by 

the kernel scheduler tick and clock synchronization interrupt to be eliminated

◼ Each experiment paired a task with either a single contender or with a single different task

◼ Contenders

◼ Three synthetic contenders were used that made Read-Read, Read-Write, or Write-Write 

accesses to main memory

◼ 100 accesses were done in the body of each contender loop to ensure that the loop 

overhead was small compared to the resource contention

◼ Each Read or Write access compiled down to a single instruction

◼ A handshaking protocol was used to ensure that the contender always started before the 

task and finished after it
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Case study experimental setup



◼ Experiment A.1: Task vs. Resource Contender

◼ For each task the maximum values for stand-alone execution time, resource sensitivity, 

and resource stress were obtained over the 10,000 traces and each of three contenders

◼ Resource sensitivity varied from 3.8% to 15% of the task’s stand-alone execution time

◼ Resource stress varied from 1.5% to 19.3% of the task’s stand-alone execution time

◼ Ratio of task resource stress to sensitivity varied from 0.23 to 1.58 22

Case study results



◼ Experiment A.2: Task vs. Task

◼ For each task pairing the maximum interference (increase in stand-alone execution time), 

was obtained over 10,000 traces and compared to the bound computed from resource stress 

and sensitivity values obtained in Experiment A.1

◼ The maximum measured increase in execution time was no greater than the computed bound

On average it was 69% of the bound, and varied between 26% and 99%.
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Case study results
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Questions? 

(rob.davis@york.ac.uk)


