OPTIMAL PRIORITY ASSIGNMENT ALGORITHMS FOR PROBABILISTIC REAL-TIME SYSTEMS

Dorin Maxim*, Olivier Buffet*,

Luca Santinelli*, Liliana Cucu-Grosjean*

and Robert I. Davis#

*INRIA, Nancy Grand-Est, France, firstname.lastname@inria.fr,

#University of York, Real-Time Systems Research Group, United Kingdom,
rob.davis@cs.york.ac.uk

PROBABILISTIC REAL-TIME SYSTEMS?

• Deterministic analysis can lead to significant overprovision in the system architecture.

PROBABILISTIC REAL-TIME SYSTEMS?

- Deterministic analysis can lead to significant overprovision in the system architecture.
- An alternative approach is to use probabilistic analysis. System reliability is typically expressed in terms of probabilities for hardware failures, memory failures, software faults, etc.

PROBABILISTIC REAL-TIME SYSTEMS?

- Deterministic analysis can lead to significant overprovision in the system architecture.
- An alternative approach is to use probabilistic analysis. System reliability is typically expressed in terms of probabilities for hardware failures, memory failures, software faults, etc.
- For example, the reliability requirements placed on the timing behaviour of a system might indicate that the timing failure rate must be less than 10^{-9} per hour of operation.

THE PROBABILISTIC REAL-TIME SYSTEM

- Probabilistic execution times
- Pre-emptive
- Single processor
- Fixed priorities
- Synchronous
- Constrained deadline
- Periodic

The goal: Finding an optimal* priority assignment

*Optimal in the sense that it optimizes some metric related to the probability of deadline failures

TASK MODEL

A set of *n* independent periodic tasks $\Gamma = {\tau_1, \tau_2, ..., \tau_n}$

Each task τ_i generates an infinite number of jobs

Jobs are independent of other jobs of the same task and those of other tasks

 τ_i is characterized by:

$$\tau_i = (\mathbf{C}_i, \mathrm{T}_i, \mathrm{D}_i)$$

 T_i being its period;

D_i being its relative deadline;

 C_i being its execution time described by a *random variable*:

$$\mathbf{C}_{i} = \begin{pmatrix} c_{i,k} \\ \mathbf{P}(C_{i} = c_{i,k}) \end{pmatrix}$$

THE PROBABILISTIC EXECUTION TIME

The execution time of task τ_i is assumed to have a known probability function

$$f_{C_i}(\bullet) = P(C_i = c)$$

giving the probability that τ_i has a computation time equal to c

Example:
$$C_i = \begin{pmatrix} 2 & 3 & 4 \\ 0.5 & 0.45 & 0.05 \end{pmatrix}$$

THE PROBABILISTIC EXECUTION TIME

The execution time of task τ_i is assumed to have a known probability function

$$f_{C_i}(\bullet) = P(C_i = c)$$

giving the probability that τ_i has a computation time equal to c

Example:
$$C_i = \begin{pmatrix} 2 & 3 & 4 \\ 0.5 & 0.45 & 0.05 \end{pmatrix}$$
 τ_i

THE PROBABILISTIC EXECUTION TIME

The execution time of task τ_i is assumed to have a known probability function

$$f_{C_i}(\bullet) = P(C_i = c)$$

giving the probability that τ_i has a computation time equal to c

Example:
$$C_i = \begin{pmatrix} 2 & 3 & 4 \\ 0.5 & 0.45 & 0.05 \end{pmatrix}$$
 τ_i

$$\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$
 $\tau_2 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$

$$\tau_1 = (\begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$

$$\tau_2 = (\begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$

$$\tau_1 = (\begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$

$$\tau_2 = (\begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$

$$\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5$$

$$\tau_2 = (\begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$

$$\tau_1 = (\begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$

$$\tau_2 = (\begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$$

Combining the four scenarios we have:

$$\mathbf{z}_{2,1} = \begin{pmatrix} 4 & 5 & 5 & 6 \\ 0.81 & 0.09 & 0.09 & 0.09 & 0.1 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix} \otimes \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix} = \begin{pmatrix} 4 & 5 & 6 \\ 0.81 & 0.18 & 0.01 \end{pmatrix}$$

Definition: The *Response Time* of a job is the elapsed time between its *release* and its *completion*.

Note: The response time of a job/task is, as the execution time, described by a random variable.

$$R_{i,j} = B_i(\lambda_{i,j}) \otimes I_i(\lambda_{i,j}) \otimes C_i$$

$$R_{i,j} = B_i(\lambda_{i,j}) \otimes I_i(\lambda_{i,j}) \otimes C_i$$

Definition (Job Deadline Miss Probability):

$$DMP_{i,j} = P(R_{i,j} > D_i)$$

is the probability that $\tau_{i,j}$ misses its deadline.

Definition (Job Deadline Miss Probability):

$$DMP_{i,j} = P(R_{i,j} > D_i)$$

is the probability that $\tau_{i,j}$ misses its deadline.

Example:
$$\mathcal{R}_{2,1} = \begin{pmatrix} 4 & 5 & 6 \\ 0.81 & 0.18 & 0.01 \end{pmatrix}$$

$$D_2 = 5$$

$$D_2 = 5$$

Definition (Task Deadline Miss Ratio):

$$DMR_{i}(a,b) = \frac{P(R_{i}^{[a,b]} > D_{i})}{n_{[a,b]}} = \frac{1}{n_{[a,b]}} \sum_{j=1}^{n_{[a,b]}} DMP_{i,j}$$

is the deadline miss ratio of task τ_i in the interval [a,b] and

$$n_{[a,b]} = \left[\frac{b-a}{T_i}\right]$$
 is the number of jobs of τ_i released in [a,b]

Definition (Task Deadline Miss Ratio): Is the deadline miss ratio of task τ_i in an interval.

$$\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 10, 10)$$
 $\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$

Definition (Task Deadline Miss Ratio): Is the deadline miss ratio of task τ_i in an interval.

$$\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 10, 10)$$
 $\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$

Definition (Task Deadline Miss Ratio): Is the deadline miss ratio of task τ_i in an interval.

$$\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 10, 10)$$
 $\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5)$

$$\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.9 & 0.1 \end{pmatrix}, 5, 5$$

$$R_{2,1} = \begin{pmatrix} 4 & 5 & 6 \\ 0.81 & 0.18 & 0.01 \end{pmatrix}.$$

$$R_{2,2} = \begin{pmatrix} 2 & 3 & 4 \\ 0,991 & 0,008 & 0,001 \end{pmatrix}$$

$$DMR_2 = \frac{DMR_{2,1} + DMR_{2,2}}{2} = \frac{0.01 + 0}{2} = \frac{0,005}{2}$$

1. Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \le p_i$$

1. Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \le p_i$$

2. Minimization of the Maximum Priority Assignment Problem (MPAP): involves finding a priority assignment that minimizes the maximum deadline miss ratio of any task.

$$\max_{i} \{ DMR_{i}(a, b, \Phi^{*}) \} = \min_{\Phi} \{ \max_{i} DMR_{i}(a, b, \Phi) \}$$

1. Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \le p_i$$

2. Minimization of the Maximum Priority Assignment Problem (MPAP): involves finding a priority assignment that minimizes the maximum deadline miss ratio of any task.

$$\max_{i} \{ DMR_{i}(a, b, \Phi^{*}) \} = \min_{\Phi} \{ \max_{i} DMR_{i}(a, b, \Phi) \}$$

3. Average Priority Assignment Problem (APAP): involves finding a priority assignment that minimizes the sum of the deadline miss ratios for all tasks.

$$\Sigma_{i} DMR_{i}(a, b, \Phi^{*}) = min_{\Phi} \{\Sigma_{i} DMR_{i}(a, b, \Phi)\}.$$

ORDER OF HIGHER PRIORITY TASKS

Theorem 1 (Order of higher priority tasks). Considering a task τ_i , if membership of the sets HP(i) and LP(i) are unchanged, then the response time $\mathcal{R}_{i,j}$ of any job of $\tau_{i,j}$ is unchanged and the response time $\mathcal{R}_{i}^{[a,b]}$ of task τ_i is unchanged whatever the priority order of tasks within HP(i) and within LP(i).

MONOTONICITY OF THE RESPONSE TIME

Theorem 2 (Monotonicity of the response time). Let Φ_1 and Φ_2 be two priority assignments with the same partial order for all tasks except for τ_i and τ_i is of lower in Φ_1 than in Φ_2 , then the response time of any of its jobs is such that $R_{i,j}(\Phi_1) \geq R_{i,j}(\Phi_2)$. Consequently, the task response time $R_i^{[a,b]}(\Phi_1) \geq R_i^{[a,b]}(\Phi_2)$.

MONOTONICITY OF THE RESPONSE TIME

Theorem 2 (Monotonicity of the response time). Let Φ_1 and Φ_2 be two priority assignments with the same partial order for all tasks except for τ_i and τ_i is of lower in Φ_1 than in Φ_2 , then the response time of any of its jobs is such that $R_{i,j}(\Phi_1) \geq R_{i,j}(\Phi_2)$. Consequently, the task response time $R_i^{[a,b]}(\Phi_1) \geq R_i^{[a,b]}(\Phi_2)$.

MONOTONICITY OF THE RESPONSE TIME

Theorem 2 (Monotonicity of the response time). Let Φ_1 and Φ_2 be two priority assignments with the same partial order for all tasks except for τ_i and τ_i is of lower in Φ_1 than in Φ_2 , then the response time of any of its jobs is such that $R_{i,j}(\Phi_1) \geq R_{i,j}(\Phi_2)$. Consequently, the task response time $R_i^{[a,b]}(\Phi_1) \geq R_i^{[a,b]}(\Phi_2)$.

Corolary

(Monotonicity of DMP and DMR).

In the same conditions as above:

 $\text{DMP}_{i,j}(\Phi_1) \geqslant \text{DMP}_{i,j}(\Phi_2)$ and

 $\mathrm{DMR}_{\mathrm{i}}^{[a,b]}(\Phi_1) \succcurlyeq \mathrm{DMR}_{\mathrm{i}}^{[a,b]}(\Phi_2).$

Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \le p_i$$

Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \le p_i$$

The Rate Monotonic priority assignment policy is not optimal for BPAP.

Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \leq p_i$$

$$\tau_1 = \begin{pmatrix} 2 & 3 \\ 0.5 & 0.5 \end{pmatrix}, 4, 4, 0.5)$$

$$\tau_2 = \begin{pmatrix} 2 & 3 \\ 0.5 & 0.5 \end{pmatrix}, 8, 8, 0.1)$$

If τ_1 has the higher priority and τ_2 the lower one, as RM dictates:

$$\mathbf{z}_2 = \begin{pmatrix} 4 & 7 & 8 & D_2^{+} \\ 0,25 & 0,25 & 0,375 & 0,125 \end{pmatrix}$$

If τ_2 has the higher priority and τ_1 the lower one:

$$\mathbf{z}_1 = \begin{pmatrix} 2 & 3 & 4 & D_1^{+} \\ 0,0625 & 0,1875 & 0,3125 & 0,4375 \end{pmatrix}$$

Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \le p_i$$

Arranging the tasks in increasing order of their maximum permitted deadline miss ratio is not a solution for BPAP.

Example in the paper.

Basic Priority Assignment Problem (BPAP): Considering that each task has a maximum permitted deadline miss ratio p_i , we search for a priority assignment Φ such that

$$DMR_i(\Phi) \leq p_i$$

Main idea: assigning priorities to tasks starting at the lowest priority level and continuing up to the highest priority level.

Algorithm 1: Solution to BPAP: the *feasibility* function verifies that for $\forall \tau_i, DMR_i < p_i$ **Input**: $\Gamma = \{\tau_i, i \in 1..n\}$ /* source set of tasks */ **Output:** Φ /* destination sequence of tasks */ $\Phi \leftarrow ()$ for $l \in n...1$ do $assignment \leftarrow FALSE$ for $\tau_i \in \Gamma'$ do /* feasibility function such that the computed $DMR_i < p_i$ */ if $feasible(\tau_i, \Phi)$ then $\Phi \leftarrow \Phi.\tau_i$ $\Gamma' \leftarrow \Gamma' \setminus \{\tau_i\}$ $assignment \leftarrow TRUE$ break if assignment = FALSE then

/* could not find a task to put at this priority level */

break

MPAP

Minimization of the Maximum Priority Assignment Problem (MPAP): involves finding a priority assignment that minimizes the maximum deadline miss ratio of any task.

The Lazy and Greedy algorithm incrementally builds a solution as a sequence of tasks, starting with the lowest priority first, and adding to Φ at each iteration an unassigned task.

```
Algorithm 2: Lazy and Greedy Algorithm
 Input: \Gamma = \{\tau_i, i \in 1..n\} /* source set of tasks */
 Output: \Phi /* sequence of tasks */, DMR _{worst} /* worst DMR */
 \Phi \leftarrow ()
 DMR_{worst} \leftarrow 0
 /* Loop over the priority levels (from lowest to highest) */
 for l \in n..1 do
       /* Search among unassigned tasks */
       (\tau_{best}, DMR_{best}) \leftarrow (0, +\infty)
       for \tau_i \in \Gamma do
             /* Compute DMR of current task \tau_i */
            \delta \leftarrow \text{DMR}_i(\Phi)
             /* If this DMR is better than (or equal to) the current worst DMR
             in \Phi, be lazy: pick this task and stop the search. */
            if \delta \leq DMR_{worst} then
                   (\tau_{hest}, DMR_{hest}) \leftarrow (\tau_i, \delta)
                   break
            /* If this DMR improves on other unassigned tasks, remember
             this task. */
            if \delta < DMR_{hest} then
                  (\tau_{best}, DMR_{best}) \leftarrow (\tau_i, \delta)
       /* The search is done. The task in 	au_{best} can be assigned at the current
       priority level. */
      \Gamma \leftarrow \Gamma \setminus \{\tau_{best}\}
       \Phi \leftarrow \Phi, \tau_{best}
       /* Update the value of the worst DMR in \Phi. */
       if DMR_{worst} < DMR_{best} then
            DMR_{worst} \leftarrow DMR_{best}
 return (\Phi, DMR_{worst})
```

MPAP

Minimization of the Maximum Priority Assignment Problem (MPAP): involves finding a priority assignment that minimizes the maximum deadline miss ratio of any task.

Greedy: At each iteration, it performs a for loop over the unassigned tasks to search for the one that has the best DMR at the current priority level.

Lazy: whenever a task is found with a deadline miss ratio better than or equal to the current worst DMR, the search is cancelled and this task is assigned.

```
Algorithm 2: Lazy and Greedy Algorithm
 Input: \Gamma = \{\tau_i, i \in 1..n\} /* source set of tasks */
 Output: \Phi /* sequence of tasks */, DMR _{worst} /* worst DMR */
 \Phi \leftarrow ()
 DMR_{worst} \leftarrow 0
 /* Loop over the priority levels (from lowest to highest) */
 for l \in n..1 do
       /* Search among unassigned tasks */
       (\tau_{best}, DMR_{best}) \leftarrow (0, +\infty)
       for \tau_i \in \Gamma do
            /* Compute DMR of current task \tau_i */
            \delta \leftarrow \text{DMR}_i(\Phi)
            /* If this DMR is better than (or equal to) the current worst DMR
             in \Phi, be lazy: pick this task and stop the search. */
            if \delta \leq DMR_{worst} then
                   (\tau_{best}, DMR_{best}) \leftarrow (\tau_i, \delta)
                   break
            /* If this DMR improves on other unassigned tasks, remember
             this task. */
            if \delta < DMR_{hest} then
                  (\tau_{best}, DMR_{best}) \leftarrow (\tau_i, \delta)
       /* The search is done. The task in 	au_{best} can be assigned at the current
       priority level. */
      \Gamma \leftarrow \Gamma \setminus \{\tau_{best}\}
       \Phi \leftarrow \Phi, \tau_{best}
       /* Update the value of the worst DMR in \Phi. */
       if DMR_{worst} < DMR_{best} then
            DMR_{worst} \leftarrow DMR_{best}
 return (\Phi, DMR_{worst})
```

APAP

Average Priority Assignment Problem (APAP): involves finding a priority assignment that minimizes the sum of the deadline miss ratios for all tasks.

The Lazy and Greedy Algorithm is not optimal for this problem

Counter example in the paper.

Algorithm 3: Depth-First Search $f_{best} = +\infty$ /* best value so far (glob. var) */ $\Gamma = \{\tau_i, i \in 1..n\}$ /* source set of tasks */ $(\Phi, q) \leftarrow \text{RECUR}(\Gamma, (), n, 0)$ return (Φ, q) /* Function recursively completing the current solution Φ. */ $RECUR(\Gamma, \Phi, l, g)$ /* Note: $g = g(\Phi)$ */ /* If priority level 0 is attained, we have a complete solution. */ if l=0 then /* Is this solution the new best solution? */ if $a < a^{best}$ then $q^{best} \leftarrow q$ return (Φ, q) /* Otherwise, if the current partial solution is worse than the best solution so far, then backtrack. */ if $q > q^{best}$ then return (Φ, g) /* Try each unassigned task τ_i at the current priority level. */ $(\Phi^{min}, q^{min}) \leftarrow ((), +\infty)$ for $\tau_i \in \Gamma$ do $\delta \leftarrow \text{DMR}_i(\Phi)$ /* Get the best solution completing $\Phi.\tau_i$. */ $(\Phi', q') \leftarrow \text{RECUR}(\Gamma \setminus \{\tau_i\}, \Phi, \tau_i, l-1, q+\delta)$ /* Memorize the best completed solution. */ if $q' < q^{min}$ then $(\Phi^{min}, g^{min}) \leftarrow (\Phi', g')$ /* If task τ_i has a null DMR, then backtrack. */ if $\delta = 0$ then

/* Return the best completed solution. */ ${\bf return}~(\Phi^{min},g^{min})$

break

APAP

Average Priority Assignment Problem (APAP): involves finding a priority assignment that minimizes the sum of the deadline miss ratios for all tasks.

To optimize $g(\Phi) = \sum_i DMR_i(\Phi)$, a simple approach is to use a tree search algorithm enumerating all solutions.

Among various possible tree search algorithms, we choose here Depth-First Search (DFS), which explores each branch as far as possible before backtracking.

Algorithm 3: Depth-First Search $f_{best} = +\infty \text{ /* best value so far (glob. var) */}$ $\Gamma = \{\tau_i, i \in 1...n\} \text{ /* source set of tasks */}$

```
(\Phi, q) \leftarrow \text{RECUR}(\Gamma, (), n, 0)
return (\Phi, q)
/* Function recursively completing the current solution Φ. */
RECUR(\Gamma, \Phi, l, g) /* Note: g = g(\Phi) */
/* If priority level 0 is attained, we have a complete solution. */
if l=0 then
      /* Is this solution the new best solution? */
     if q < q^{best} then
       q^{best} \leftarrow q
     return (\Phi, q)
/* Otherwise, if the current partial solution is worse than the best solution
so far, then backtrack. */
if q > q^{best} then
    return (\Phi, g)
/* Try each unassigned task \tau_i at the current priority level. */
(\Phi^{min}, q^{min}) \leftarrow ((), +\infty)
for \tau_i \in \Gamma do
     \delta \leftarrow \text{DMR}_i(\Phi)
      /* Get the best solution completing \Phi.\tau_i. */
      (\Phi', q') \leftarrow \text{RECUR}(\Gamma \setminus \{\tau_i\}, \Phi, \tau_i, l-1, q+\delta)
      /* Memorize the best completed solution. */
     if q' < q^{min} then
        (\Phi^{min}, g^{min}) \leftarrow (\Phi', g')
      /* If task \tau_i has a null DMR, then backtrack. */
      if \delta = 0 then
           break
/* Return the best completed solution. */
```

return (Φ^{min}, g^{min})

APAP

Average Priority Assignment Problem (APAP): involves finding a priority assignment that minimizes the sum of the deadline miss ratios for all tasks.

As in previous algorithms, we start with the lowest priority, extending the partial priority ordering Φ progressively as we go down the tree.

Because of the different criteria optimized in APAP, one cannot be as lazy as in MPAP. Nevertheless, if a task is encountered with a DMR equal to zero, then the search loop can also be interrupted early.

```
Algorithm 3: Depth-First Search
  f_{best} = +\infty /* best value so far (glob. var) */
 \Gamma = \{\tau_i, i \in 1..n\} /* source set of tasks */
 (\Phi, q) \leftarrow \text{RECUR}(\Gamma, (), n, 0)
  return (\Phi, q)
  /* Function recursively completing the current solution Φ. */
  RECUR(\Gamma, \Phi, l, g) /* Note: g = g(\Phi) */
  /* If priority level 0 is attained, we have a complete solution. */
  if l=0 then
        /* Is this solution the new best solution? */
       if q < q^{best} then
         q^{best} \leftarrow q
       return (\Phi, q)
  /* Otherwise, if the current partial solution is worse than the best solution
  so far, then backtrack. */
  if q > q^{best} then
       return (\Phi, g)
  /* Try each unassigned task \tau_i at the current priority level. */
  (\Phi^{min}, q^{min}) \leftarrow ((), +\infty)
  for \tau_i \in \Gamma do
       \delta \leftarrow \text{DMR}_i(\Phi)
       /* Get the best solution completing \Phi.\tau_i. */
        (\Phi', q') \leftarrow \text{RECUR}(\Gamma \setminus \{\tau_i\}, \Phi, \tau_i, l-1, q+\delta)
       /* Memorize the best completed solution. */
       if q' < q^{min} then
          (\Phi^{min}, g^{min}) \leftarrow (\Phi', g')
       /* If task \tau_i has a null DMR, then backtrack. */
       if \delta = 0 then
```

/* Return the best completed solution. */
return (Φ^{min}, q^{min})

break

CONCLUSIONS

Probabilistic analysis as a way to reduce the overprovisioning of real-time systems

Three analysis frameworks (problems):

- **BPAP** Greedy (Audsley) algorithm
- MPAP Greedy and Lazy algorithm
- APAP Tree Search Algorithm

CONCLUSIONS

Probabilistic analysis as a way to reduce the overprovisioning of real-time systems

Three analysis frameworks (problems):

- **BPAP** Greedy (Audsley) algorithm
- MPAP Greedy and Lazy algorithm
- APAP Tree Search Algorithm

FUTURE WORK

Probabilistic arrivals (periodic model)

More than one probabilistic parameter (for example probabilistic execution and probabilistic arrival)

THANK YOU FOR YOUR ATTENTION

