
Robust Priority Assignment for Messages on Controller Area Network (CAN)

Robert Davis and Alan Burns
Real-Time Systems Research Group, Department of Computer Science,

University of York, YO10 5DD, York (UK)
rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper addresses the problem of determining the

most robust priority assignment for CAN messages that
are subject to transmission errors due to Electromagnetic
Interference. In the presence of errors on the bus, CAN
messages have a non-zero probability of missing their
deadlines. An appropriate choice of priority ordering can
minimise the overall worst-case deadline failure
probability resulting in a more robust system.

This paper shows that “Deadline minus jitter”
monotonic priority assignment, commonly used for
priority assignment in commercial CAN systems, does not
always result in the most robust priority ordering.

A Robust Priority Assignment algorithm is presented
that computes the most robust priority ordering for CAN
messages subject to bit errors on the bus. This algorithm
is optimal in the sense that it can be used to (i) maximise
the number of errors tolerated, (ii) maximise the delay
tolerated by any message, or (iii) minimise the probability
of any message failing to meet its deadline. This algorithm
is efficient and appropriate for use in an engineering
context.

1. Introduction
1.1. Background

Controller Area Network (CAN) is a serial
communications bus designed to provide simple, efficient
and reliable communications for in-vehicle networks
(Bosch, 1991). Deployment of CAN in production
vehicles began with Mercedes in 1991, with the majority
of the European automotive industry adopting CAN by
the end of the 1990s. An indication of the scale of
adoption of CAN by the automotive industry can be
gained from the sales of microcontrollers with on-chip
CAN peripherals. Over 1 billion such devices have been
deployed in automotive applications during the last three
years (CiA, 2006).

In automotive applications, CAN is typically used to
provide high speed networks (500Kbits/s) connecting
chassis and power-train Electronic Control Units (ECUs)
and low speed networks (100 or 125Kbits/s) connecting
body electronics. Messages sent on CAN are used to
communicate state information, referred to as signals,

between different ECUs. Examples of signals include:
wheel speeds, engine rpm, gear selection, switch
positions, climate control settings, fault codes, and so on.
The majority of these signals have real-time constraints
associated with them, in the range of 5ms to 1 second
(Society of Automotive Engineers, 1993).

The CAN protocol uses bit stuffing and a 15-bit CRC
to enable nodes on the network to detect errors in
messages sent on the bus. When an error is detected in a
transmitted message, this leads to a cascade of error flag
transmissions from other nodes; effectively aborting the
errant message and causing it to be re-queued for
subsequent re-transmission. As a result of this error
recovery mechanism, a single bit error leads to an
additional error recovery overhead, as well as re-
transmission of the affected message.

Errors on CAN can be caused by Electromagnetic
Interference (EMI). Predicting the effects of EMI is both
difficult and uncertain (Ladkin, 1997), due to its diverse
causes such as sparks, lightning, radar, mobile phones,
high voltage switching etc. Whilst shielding and �twisted-
pair� wiring can help to reduce the incidence of errors, bit
errors can and do occur in commercial systems. Typically
error rates of 1110− to 710− errors/bit are observed
depending heavily upon environmental conditions
(Ferreira et al., 2004).

Annex G, (Road Transport) of the IET fact file on
Electromagnetic Compatibility and Functional Safety
(IEE, 2000) states that: “The automotive EMC
environment is one of the most severe and the most
unpredictable. Road vehicles are inherently mobile and
thus able to drive near to any fixed transmitter. Vehicle
owners and operators believe it to be their right to attach
any sort of transmitter (even very high-powered ones) to
the vehicle while expecting it to function correctly.
Owners also expect to be able to fit electronic equipment
into the vehicle and power it off the vehicle’s power
supply”. The conclusion this leads to is that errors on
CAN caused by EMI cannot be predicted with any great
accuracy.

1.2. Related research on schedulability analysis of
CAN

Tindell and Burns (1994), and Tindell et al. (1994)

showed how research into fixed priority pre-emptive
scheduling for single processor systems could be adapted
and applied to the scheduling of messages on CAN. This
analysis provided a method of calculating the worst-case
response times of all the messages on a network.

Tindell et al. (1995) further developed the analysis of
CAN, dealing with messages subject to single bit errors
on the bus. These errors were modelled as a sporadic
stream of faults with some minimum inter-arrival time
between them. This deterministic fault model was later
generalised by Punnekkat et al. (2000), to deal with
interference caused by several sporadic sources. Leading
on from this early work, Rufino et al. (1998), and Rufino
(2002), developed an alternative fault model based on
bounded omission and bounded inaccessibility
assumptions.

Navet et al. (2000) proposed an alternative fault model
based on random arrivals, where faults are assumed to
occur according to a Poisson distribution. Navet et al.
(2000) introduced the idea of a �tolerable error threshold�,
corresponding to the maximum number of errors that a
message can tolerate before it becomes un-schedulable.
Navet et al. (2000) used the tolerable error threshold in a
calculation of worst-case deadline failure probability
(WCDFP). Subsequently, Broster et al. (2002, 2005), and
Broster (2003) extended the work of Navet et al. (2000),
correcting and improving upon the WCDFP analysis.

Nolte et al. (2002, 2003) considered probabilistic
rather than worst-case bit-stuffing and its impact on
message worst-case response times.

Recently, Davis et al. (2007) highlighted and corrected
significant flaws in the original schedulability analysis of
CAN developed by Tindell and Burns (1994), and Tindell
et al. (1994, 1995) and utilised in much of the subsequent
research (Punnekkat et al., 2000; Rufino et al., 1998;
Rufino, 2002; Navet et al., 2000; Broster et al., 2002,
2005; Broster, 2003; Nolte et al., 2002, 2003).

1.3. Motivation
In their work on the schedulability analysis of CAN

Tindell and Burns (1994), and Tindell et al. (1994, 1995)
claimed that �deadline minus jitter� monotonic priority
order (D-JMPO)1 was the optimal priority assignment
policy to use. This conjecture has since been proven
incorrect (Davis et al., 2007). Davis et al. (2007) showed
that an optimal priority assignment for CAN messages can
be found using Audsley�s optimal priority assignment
algorithm (Audsley, 1991). This algorithm is optimal in
the sense that it guarantees to find a schedulable priority
ordering if one exists. However, in the case of systems
which are schedulable with a number of different priority

1 D-JMPO assigns priorities in order of �deadline minus jitter�, such that
the message with the smallest value of deadline minus jitter is assigned
the highest priority.

orderings, the priority ordering found by Audsley�s
algorithm is heavily dependent on the initial message
ordering and can result in systems that are close to being
un-schedulable. Such a priority ordering may be fragile
rather than robust, as a small amount of additional
interference in the form of errors on the bus could cause
deadline failures.

The work of Navet et al. (2000), Broster et al. (2002,
2005), and Broster (2003) showed that the worst-case
response time of a CAN message and its tolerance to
errors on the bus are heavily dependent on its relative
priority. In commercial applications of CAN, what is
required is a message priority ordering that is as robust as
possible to additional interference (Davis and Burns,
2007). Determining such a robust priority ordering is the
focus of this paper.

1.4. Related research on priority assignment
Research into priority assignment for fixed priority

scheduling on single-processor systems has mainly
focussed on finding the optimal priority assignment policy
or algorithm. A priority assignment policy or algorithm is
referred to as optimal if it provides a feasible priority
ordering (resulting in a schedulable system) whenever
such an ordering exists.

For fixed priority pre-emptive systems, Serlin (1972),
and Liu and Layland (1973), showed that for synchronous
tasks (that share a common release time), that comply
with a restrictive system model, and that have deadlines
equal to their periods)(TD = , then rate monotonic
priority ordering (RMPO) is optimal.

Leung and Whitehead (1982) showed that for
synchronous tasks with deadlines less than or equal to
their periods)(TD ≤ , but otherwise compliant with Liu
and Layland�s system model, then deadline monotonic
priority ordering (DMPO) is optimal. They noted that for
asynchronous tasks (that do not share a common release
time), DMPO is not optimal.

More recently, Zuhily and Burns (2007) confirmed
that �deadline minus jitter� monotonic priority ordering
(D-JMPO) is optimal for synchronous task sets with

TD ≤ and arbitrary release jitter. Both DMPO and
RMPO are effectively special cases of D-JMPO.

Audsley (1991, 2001) solved the problem of priority
assignment for asynchronous task sets. Audsley�s priority
assignment algorithm is optimal in the sense that it finds a
schedulable priority ordering if one exists.

George et al. (1996) provided schedulability analysis
for non-pre-emptive fixed priority scheduling. They
showed that in the non-pre-emptive case, DMPO is no
longer optimal for synchronous tasks with deadlines less
than or equal to their periods)(ii TD ≤ .

Figure 1: Standard Format Data Frame

George et al. (1996) showed that Audsley�s optimal
priority assignment algorithm is however applicable in
this case. George et al. (1996) claimed that DMPO is
optimal for the restricted case of non-pre-emptive
scheduling where ii TD ≤ and ji DD ≥ ⇒ ji CC ≥ . The
appendix to this paper provides a counter example,
showing that DMPO is not optimal in this case.

Bletsas and Audsley (2006) showed that both
Audsley�s algorithm and DMPO remain optimal, for
pre-emptive systems, in the presence of blocking when
resources are accessed according to the Stack Resource
Policy (SRP) (Baker, 1991) developed from the Priority
Ceiling Protocol (PCP) (Sha et al., 1990).

Related research by Lehoczky et al. (1989), Katcher
et al. (1993), Punnekkat et al. (1997), and Regehr (2002)
used the critical scaling factor2 as a metric for
examining schedulability. Regehr (2002) explored the
idea of a robust-optimal class of scheduling algorithms
that maximise the critical scaling factor. Regehr showed
that for tasksets where DMPO is optimal, it is also
robust-optimal with respect to the critical scaling factor.

Davis and Burns (2007) introduced the concept of a
robust priority ordering, defined as the priority ordering
that is schedulable, and also tolerates the maximum
amount of additional interference of any feasible priority
ordering. Davis and Burns gave a Robust Priority
Assignment algorithm that finds the robust priority
ordering for a wide range of systems scheduled
according to fixed priorities. Davis and Burns (2007)
also showed that for systems where D-JMPO is the
optimal priority assignment policy, it is also a robust
priority assignment policy, effectively independent of
the additional interference function.

The research presented in this paper extends the idea
of robust priority assignment to cover both deterministic
and probabilistic analysis of CAN. In doing so, it builds
upon previous work on: probabilistic analysis of CAN
(Navet et al., 2000; Broster et al., 2002, 2005; Broster,
2003), optimal priority assignment (Audsley, 1991,
2001), and robust priority assignment (Davis and Burns,
2007).

2 The critical scaling factor is the largest factor by which the execution
time of every task can be increased and the system remain schedulable.

1.5. Organisation
Section 2 describes the CAN protocol and

terminology before outlining the scheduling model and
notation used in subsequent sections. Section 3 outlines
basic schedulability analysis for CAN. This is then
extended to cover both deterministic and probabilistic
fault models. Section 4 shows that the Robust Priority
Assignment algorithm introduced by Davis and Burns
(2007) is applicable to CAN and then adapts it to
determine robust priority orderings that maximise three
robustness metrics. Section 5 concludes with a summary
of the main contributions of the paper and
recommendations for future research.

2. Controller Area Network
This section gives an outline of elements of the CAN

protocol and the characteristics of a system model that
are needed to formulate response time analysis for CAN.
For a complete description of the CAN protocol, the
reader is referred to the CAN specification version 2.0
(Bosch, 1991).

2.1. CAN protocol and terminology
CAN is an asynchronous, multi-master, broadcast,

serial data bus that uses Carrier Sense Multiple Access/
Collision Resolution (CSMA/CR) to determine access.
Message transfer over CAN is controlled by 4 different
types of frame: Data frames, Remote Transmit Request
(RTR) frames, Overload frames and Error frames. In
this paper we are interested in data frames and error
frames. This work can however easily be extended to
include RTR frames using the approach given by Tindell
et al. (1995).

The layout of a standard format data frame is shown
in Figure 1. This figure highlights the various control
fields, with the 0-8 byte data field shown at a reduced
scale. Each CAN data frame is required to have a unique
identifier. Identifiers may be 11-bit (standard format) or
29-bit (extended format). The CAN protocol uses the
message identifier as a priority to determine which
message, among those contending for the bus, will be
transmitted next.

The CAN physical layer supports two states termed
dominant (�0�) and recessive (�1�). If two or more CAN

controllers are transmitting at the same time and at least
one of them transmits a �0� then the value on the bus
will be a �0�. This mechanism is used to control access
to the bus and also to signal errors.

2.1.1 Priority based arbitration
The CAN protocol calls for nodes to wait until a bus

idle period3 is detected before attempting to transmit. If
two or more nodes start to transmit at the same time,
then by monitoring each bit on the bus, each node can
determine if it is transmitting the highest priority
message (with the numerically lowest identifier) and
should continue or if it should stop transmitting and wait
for the next bus idle period before trying again. As the
message identifiers are unique, a node transmitting the
last bit of the identifier field, without detecting a �0� bit
that it did not transmit, must be transmitting the highest
priority message that was ready for transmission at the
start of arbitration. This node then continues to transmit
the remainder of its message, all other nodes having
backed off.

The arbitration mechanism employed by CAN
means that messages are sent as if all the nodes on the
network shared a single global priority based queue. In
effect messages are sent on the bus according to fixed
priority non-pre-emptive scheduling.

2.1.2 Error detection
CAN was designed as a robust and reliable form of

communication for short messages. It provides a number
of mechanisms to detect errors on the bus.

The transmitting node effectively reads back each bit
it sends on the bus. This means that it is potentially able
to immediately detect bit errors, with the following two
exceptions (Rufino and Verissimo, 1995):

1. Corrupt bits in the arbitration field, where all
transmitters send a �1� (recessive) but receive
back a �0� (dominant) are not immediately
detected by the transmitter(s). They are instead
interpreted as another node transmitting the
identifier for a higher priority frame.

2. Corrupt bits in the acknowledge slot, where the
transmitter sends a �1� and receives back a �0�.
This is interpreted as at least one node having
received the message correctly.

As well as the transmitter checking the bits sent, the
receiving nodes check the message for bit-stuffing errors
(see Section 2.1.3), form-errors in the fixed parts of the
message, CRC-errors, and acknowledgement errors.

A 15-bit Cyclic Redundancy Check (CRC) is used
by receiving nodes to check for bit errors in the variable
part of the transmitted message. The CRC is calculated
over all of the fields in the message up to and including

3 A bus idle period is an interval of arbitrary length comprising only
recessive bits and beginning with the last bit of the inter-frame space �
the final 3-bit field shown in Figure 1.

the CRC (see Figure 1).
If a node detects an error in the transmitted message,

then it transmits an error flag. The error flag consists of
6 bits of the same polarity: �000000� if the node is in the
error active state and �111111� if it is error passive.
Transmission of an error flag typically causes other
nodes to also detect an error, leading to transmission of
further error flags. The length of an error frame is
between 17 and 31 bits. Hence each message
transmission that is signalled as an error can lead to a
maximum of 31 additional bits4 of error recovery
overhead plus re-transmission of the message itself.

2.1.3 Bit stuffing
As the bit patterns �000000� and �111111� are used

to signal errors, it is essential that these bit patterns are
avoided in the variable part of a transmitted message �
see Figure 1. The CAN protocol therefore requires that a
bit of the opposite polarity is inserted by the transmitter
whenever 5 bits of the same polarity are transmitted.
This process is referred to as bit-stuffing, and is reversed
by the receiver.

Stuff bits increase the maximum transmission time
of CAN messages. Including stuff bits and the inter-
frame space, the maximum transmission time mC , of a
CAN message m containing ms data bytes is given by:

bitmm sC τ)1055(+= (1)
for standard (11-bit) identifiers and

bitmm sC τ)1080(+= (2)
for extended (29-bit) identifiers, where bitτ is the
transmission time for a single bit.

2.2. Scheduling model
In this section we describe an appropriate system

model and notation that can be used to analyse the
worst-case response times of messages on CAN.

The system is assumed to comprise a number of
nodes (microprocessors) connected via CAN. Each node
is assumed to be capable of ensuring that, at any given
time when arbitration starts, the highest priority message
queued at that node is entered into arbitration.

The system is assumed to contain a static set of hard
real-time messages, each statically assigned to a node on
the network. Each message m has a unique identifier and
hence a unique priority. For convenience, we will refer
to the messages priorities as being from 1 to n (where n
is the total number of messages). 1 therefore represents
the highest priority and n the lowest. Each message has a
maximum number of data bytes ms , and a maximum
transmission time mC , given by Equation (1) or (2) as

4 The maximum error recovery overhead is specified as 29 bits on
page 8 of part A of the CAN specification 2.0 (Bosch 1991) for
standard identifiers only, and as 31 bits on page 40 of the CAN
specification 2.0 Part B (Bosch 1991) for both standard and extended
identifiers.

appropriate.
The event that triggers queuing of each message is

assumed to occur with a minimum inter-arrival time of
mT , referred to as the message period. This model

supports events that occur strictly periodically with a
period of mT , events that occur sporadically with a
minimum separation of mT , and events that occur only
once before the system is reset, in which case mT is
infinite.

Each message is assumed to be queued by a software
task, process or interrupt handler executing on the host
microprocessor. This task is either invoked by, or polls
for, the event that triggers queuing of the message, and
takes a bounded amount of time, between 0 and mJ , to
queue the message ready for transmission. mJ is
referred to as the queuing jitter of the message and is
inherited from the overall response time of the task,
including any polling delay.

Each message has a hard deadline mD ,
corresponding to the maximum permitted time from
occurrence of the initiating event to the end of
successful transmission of the message, at which time
the message data is assumed to be available on the
receiving nodes that require it. Tasks on the receiving
nodes may place different timing requirements on the
data, however in such cases we assume that mD is the
tightest such time constraint. We assume that all
messages have deadlines less than or equal to their
periods)(mm TD ≤ .

The worst-case response time mR , of a message is
defined as the longest time from the initiating event
occurring to the message being correctly received by the
nodes that require it. A message is said to be
schedulable if and only if its worst-case response time is
less than or equal to its deadline)(mm DR ≤ . The
system is schedulable if and only if all of the messages
in the system are schedulable.

2.3. Error model
In this section we describe a basic model of the

effects of errors caused by Electromagnetic Interference.
This model is used in the remainder of the paper.

We assume that EMI results in single bit-errors,
effectively corrupting the value of a bit on the CAN bus
from recessive to dominant or vice-versa. We assume
that all bit errors are detected; either immediately by the
transmitter (with the exceptions noted in Section 2.1.2)
or subsequently by receiving nodes.

For immediate detection to occur the transmitting
node must be amongst the group of nodes that the error
manifests itself to; in other words, the transmitter must
read back a �1� when it transmitted a �0� or vice-versa.
This is not always the case with errors caused by EMI. It
is arguable that nodes further from the transmitter and/or
nearer the source of EMI are much more likely to see a

corrupt bit than the transmitter, which is actively driving
the voltage differential on the bus. In this case, error
detection will typically not be immediate; with a group
of receivers reading the corrupt value, but only
signalling an error once the CRC field has been
transmitted.

For this reason, we make worst-case assumptions
with respect to the effects of single bit-errors caused by
EMI, We assume that:

(i) Each bit-error affects a separate message
transmission.

(ii) The message affected is the longest one that
could delay successful transmission of
message m.

(iii) The error is detected on the last bit of the
message.

(iv) The error recovery overhead F, is the
maximum possible.

The maximum interference, on message m, resulting
directly from a single bit error is therefore:

)(max
)(

k
mhepk

CF
∈

+ (3)

where hep(m) is the set of messages with the same
priority as message m or higher, and F is the maximum
error recovery overhead.

2.4. Summary of notation
Table 1 summarises the notation used in this paper.

Table 1: Notation
Symbol Description

bitτ Transmission time for a single bit.

ms Number of data bytes in message m.

mC Maximum transmission time for message m

mT Minimum inter-arrival time of message m.

mD Relative deadline of message m.

mR Worst-case response time of message m.

mw Worst-case queuing delay before message m
commences successful transmission.

F Maximum error recovery overhead for a single
bit fault.

KmR | The worst-case response time for message m,
assuming K single bit faults prior to successful
transmission.

mK The maximum number of single bit faults that
message m can tolerate without missing its
deadline.

λ Average number of bit errors per second.
),(tKp Probability of K faults occurring in a time

interval of length t.
)(|KmRp Upper bound on the probability of response

time KmR | occurring.

)(failpm Upper bound on the probability that message
m will fail to meet its deadline. Referred to as
the worst-case deadline failure probability
(WCDFP).

Symbol Description
)(failp Upper bound on the worst-case deadline

failure probability for any message.
)(failpQ Upper bound on worst-case deadline failure

probability for any message, given priority
ordering Q.

),,(mwE α Additional interference function, with α as a
scaling factor.

P
mα Value of α characterising the maximum

amount of additional interference tolerated by
message m under priority ordering P.

Pα Value of α characterising the maximum
amount of additional interference tolerated by
any message under priority ordering P.

hp(m) The set of messages with priority strictly
higher than m.

hep(m) The set of messages with priority higher than
or equal to m.

hp(k,P) The set of messages with priority strictly
higher than k in priority ordering P.

hep(k,P) The set of messages with priority higher than
or equal to k in priority ordering P.

lp(k,P) The set of messages with priority strictly
lower than k in priority ordering P.

3. Schedulability analysis for CAN
Response time analysis for CAN aims to provide a

method of calculating the worst-case response time of
each message. These values can then be compared to the
message deadlines to determine if the system is
schedulable. Response time analysis for CAN was first
provided by Tindell and Burns (1994), and Tindell et al.
(1994, 1995), however, flaws in this original analysis
have recently been discovered and corrected (Davis et
al., 2007).

3.1. Basic schedulability analysis
In this paper, we make use of the simple sufficient

but not necessary schedulability test given by Davis et
al. (2007). We note that this analysis is exact for many
commercial CAN systems that have 8 data byte (soft)
real-time messages present at lower priorities. The
interested reader is referred to (Davis et al., 2007) for
details of other schedulability tests for CAN and the
conditions under which the various tests provide
sufficient or exact analysis.

The worst-case response time of a message can be
viewed as being made up of three elements:

(i) The queuing jitter mJ , corresponding to the
longest time between the initiating event
and the message being queued, ready for
transmission.

(ii) The queuing delay mw , corresponding to
the longest time that the message can
remain in the CAN controller slot or device
driver queue, before commencing
successful transmission.

(iii) The transmission time mC , corresponding
to the longest time that the message can
take to be transmitted.

The queuing delay mw can be determined using the
following recurrence relation:

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+=

)(

1),max(
τ

 (4)
where hp(m) is the set of messages with priority higher
than m, and),max(mm CB corresponds to longest
possible time for which an invocation of message m can
be blocked either by lower priority messages or via push
through blocking due to the previous invocation of the
same message. A suitable starting value is

),max(0
mmm CBw = . The recurrence relation iterates

until either mm
n
mm DCwJ >++ +1 in which case the

message is not schedulable, or n
m

n
m ww =+1 in which case

the worst-case response time of the message is given by:
mmmm CwJR ++= (5)

3.2. Deterministic fault model
Navet et al. (2000) showed that the worst-case

response time KmR | , for message m, assuming K single
bit errors prior to successful transmission, can be
calculated via the following recurrence relation:

k
mhpk k

bitk
n
m

k
mhepk

mm
n
m

C
T
Jw

CFKCBw

∑
∈∀

∈

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++

+⎟
⎠
⎞

⎜
⎝
⎛ ++=

)(

)(

1)(max),max(

τ
 (6)

 Using Equation (6), a set of response times KmR | ,
can be determined for increasing values of K from 0 to

mK , the maximum number of single bit errors that can
be tolerated by message m without missing its deadline.

3.3. Probabilistic fault model
Broster et al. (2005) suggested that a Poisson

distribution is the most appropriate way of modelling the
occurrence of bit errors on CAN due to EMI. For a
Poisson arrival process, the probability of K errors
occurring in some time interval t is given by:

!
)(),(

K
tetKp

Kt λλ−
= (7)

Broster et al. (2005) derived the following equation
giving an upper bound on the probability)(|KmRp , that
response time KmR | occurs.

),()(|| KmKm RKpRp =

),()(||

1

0
| jmKm

K

j
jm RRjKpRp −−− ∑

−

=

 (8)

Essentially, Equation (8) states that the probability
)(|KmRp of response time KmR | occurring is given by

the probability),(|KmRKp , of exactly K faults

occurring in a time interval of length KmR | , less the
probabilities of all such scenarios where K faults occur
in the interval, but their distribution within the interval is
such that the message successfully completes
transmission before KmR | and thus has some smaller
response time jmR | with the remaining jK − faults
occurring between jmR | and KmR | , after the message
has been successfully transmitted.

Noting that),0()(0|0| mm RpRp = and therefore that
)(0|mRp can be obtained directly from Equation (7).

Equation (8) can be used to obtain an upper bound on
the probability that each response time KmR | occurs, for
numbers of faults from 0 to mK . These values can then
be used to compute the worst-case deadline failure
probability (WCDFP).

Navet et al. (2000), and Broster et al. (2005) showed
that an upper bound on the WCDFP for each message is
given by:

∑
=

−=
mKK

Kmm Rpfailp
..0

|)(1)((9)

where)(|KmRp is the upper bound on the probability
that response time KmR | occurs, given by Equation (8).
Effectively Equation (9) states that the worst-case
deadline failure probability is given by one minus the
probabilities of all possible schedulable worst-case
response times.

The WCDFP calculated according to the analysis of
Navet et al. (2000), Broster et al. (2002, 2005), and
Broster (2003) provides an upper bound on the
probability that an invocation of a message will miss its
deadline. However, a number of worst-case assumptions
mean that this WCDFP may be significantly larger than
the actual probability of deadline failure averaged over a
large number of invocations of the message:

(i) The message is assumed to be queued at a
critical instant, simultaneously with all
higher priority messages.

(ii) The message is assumed to be subject to the
maximum possible delay due to blocking.

(iii) All messages are assumed to have their
maximum possible transmission time due to
worst-case bit stuffing. Nolte et al. (2002,
2003) showed that the probability of this
happening in practice is very small.

We note that the practical application of Equations
(6) to (9), with typical time constraints on CAN
messages and realistic error rates (for example λ = 10
bit errors/s), can easily lead to values of 10>mK , and
some very small probabilities (2010−<). As a result of
the way the probabilities are composed, it is essential to
use an arbitrary precision floating point arithmetic
package when solving the equations, otherwise the
values obtained may be incorrect by orders of magnitude

due to rounding errors5.

4. Priority assignment for CAN
We now consider the problem of priority assignment

for CAN. For a commercial CAN system, it is important
that messages are both schedulable and can tolerate
delays on the network due to errors. The priority
assignment chosen has a significant impact on the
number of errors that can be tolerated by each message
on the bus.

In this section, we show that the Robust Priority
Assignment (RPA) algorithm introduced by Davis and
Burns (2007) is applicable to CAN and then adapt it to
determine robust priority orderings that are not only
schedulable, but also:

(i) maximize the number of faults tolerated,
(ii) maximize the delay tolerated, or
(iii) minimise the maximum worst-case deadline

failure probability for any message.

4.1. Applicability of the RPA algorithm to CAN
Davis and Burns (2007) gave four conditions that

must be met for the RPA algorithm to be applicable to a
fixed priority system. These four conditions are stated
below as they apply to CAN messages:

Condition 1: The worst-case response time of a
message is dependent on the set of higher priority
messages, but not on the relative priority ordering of
those messages.

Condition 2: The worst-case response time of a
message may be dependent on the set of lower priority
messages, but not on the relative priority ordering of
those messages.

Condition 3: When the priorities of any two messages
are swapped, the worst-case response time of the
message being assigned a higher priority cannot increase
with respect to its previous value.

Condition 4: When the priorities of any two messages
are swapped, the worst-case response time of the
message being assigned a lower priority cannot decrease
with respect to its previous value.

It is evident from the schedulability analysis equations
for CAN (Equations (4), (5) and (6) in Section 3.1) that
all four conditions hold and that the RPA algorithm can
therefore be used to determine robust priority orderings
for CAN messages.

The RPA algorithm (Davis and Burns, 2007) also
assumes additional interference in the form of a function

),,(mwE α , where α is a scaling factor used to model
variability in the amount of additional interference (for

5 64-bit floating point arithmetic does not provide sufficient resolution
for these calculations.

example due to faults), w is the length of the time
interval over which the interference occurs and m is a
priority level affected by the interference. The RPA
algorithm requires only that),,(mwE α is a monotonic
non-decreasing function of its parameters. Hence for any
fixed values of α and w,),,(),,(kwEjwE αα ≥ if and
only if priority level j has a higher numeric value (i.e. a
lower priority) than k. Similarly, if time interval

''' ww > , then),'',(),',(mwEmwE αα ≥ for any fixed
values of α and m and finally, if the scaling factor

''' αα > , then),,''(),,'(mwEmwE αα ≥ for any fixed
values of w and m.

These monotonicity requirements on),,(mwE α are
met for CAN: α is a scaling factor and so by definition,

),,(mwE α can be formulated to be monotonically non-
decreasing in α . Interference due to errors on the bus is
never less in a longer time interval than it is in a shorter
one, and finally, errors affecting a high priority message
also cause interference on messages at lower priority
levels and so the additional interference function,

),,(mwE α is monotonically non-decreasing with
respect to priority level.

Accounting for the additional interference
),,(mwE α , the queuing delay and hence worst-case

response time of message m can be calculated using the
following recurrence relation:

),,(),max(1 mwECBw mm
n
m α+=+

k
mhpk k

bitk
n
m C

T
Jw∑

∈∀ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ++
+

)(

τ (10)

Details of additional interference functions
appropriate for CAN are given in subsequent sections;
see Equation (12) and Equation (13).

4.2. Robust Priority Assignment algorithm for
CAN

The RPA algorithm (Davis and Burns, 2007) is given
below. The algorithm proceeds by considering each
priority level in turn, lowest first. At each priority level,
the algorithm determines which of the currently
unassigned messages are both schedulable and can
tolerate the maximum amount of additional interference
(largest value of α) at that priority level, and assigns
that message to the priority level.

Note, in the RPA algorithm, when each unassigned
message is tried at a given priority level, it is assumed
that the other unassigned messages all have higher
priorities, although exactly what these priorities are is as
yet unknown.

The RPA algorithm determines a schedulable
priority ordering P, for any system where such an
ordering exists. Further, the algorithm computes the
maximum additional interference represented by P

mα
that can be tolerated by each message m under priority

ordering P. The maximum additional interference that
can be tolerated by the system as a whole is given by:

)(min P
mm

P αα
∀

= (11)

Robust Priority Assignment Algorithm

for each priority level m, lowest first
{

for each unassigned message M
{
 binary search for the largest value

 of α for which message M is
 schedulable at priority m

}
if no messages are schedulable at

 priority m
 return unschedulable
else
 assign the schedulable message that

 tolerates the max α at priority m to
 priority m
}
return schedulable

Definition: The priority ordering P, determined by the
RPA algorithm is a robust priority ordering in the sense
that there are no systems, compliant with the system
model, that are both schedulable and can tolerate
additional interference characterized by a scaling factor

Qα using another priority ordering Q that are not also
both schedulable and can tolerate additional interference
characterized by the same or larger scaling factor

QP αα ≥ , using the priority ordering P, generated by
the RPA algorithm.

4.3. Maximising the number of faults tolerated
We now show how the RPA algorithm can be used

to determine a robust priority ordering, such that
messages on the network are able to tolerate the
maximum number (α) of errors in the worst-case
without missing their deadlines. In this case, by
reference to Equation (3), the additional interference
function is given by:

))(max(),,(
)(

j
mhepj

CFmwE
∈

+= αα (12)

Note that here α corresponds to the number of
single bit errors tolerated by the message; equivalent to
the parameter K used in Equation (6), Section 3.2, and
the �tolerable error threshold� described by Navet et al.
(2000). F is the maximum error recovery overhead,
which is 29 bitτ assuming a network using only standard
11-bit identifiers.

The algorithm requires n(n+1)/2 binary searches to
determine the robust priority ordering. Suitable starting
values for each binary search are: lower limit: 0=α ,
upper limit: FDM /=α where MD is the deadline of
the message, and F is the maximum error recovery
overhead. (Note this upper limit is guaranteed to be

unschedulable as the additional interference exceeds the
message deadline).

Theorem 1: The priority assignment produced by the
RPA algorithm using the additional interference
function given by Equation (12) maximises the number
of faults that the system can tolerate without any
message missing its deadline.

Proof of Theorem 1 follows the same logic employed in
the proof of Theorem 2 in (Davis and Burns, 2007).

Proof: We assume (for contradiction) that there is an
alternative priority ordering Q, which tolerates a larger
number of faults and therefore greater additional
interference than the priority ordering P found by the
RPA algorithm; so PQ αα > . For the purposes of the
proof, we will refer to this alternative priority ordering
as nQ . We will iteratively transform nQ into 1−nQ .. 1Q ,
where 1Q is the same ordering as P. The transformation
will be such that kk QQ αα ≥−1 , thus proving the theorem
via the contradiction: QP αα ≥ .
 We use k as an iteration count and also the priority
level that we will transform. Thus k counts down from
an initial value of n to 1. We note that as a result of the
transformations, the messages at priority levels lower
than k become the same in both kQ and P, hence 1Q
and P represent the same priority ordering.
 On iteration k, we transform priority ordering kQ as
follows: First we find the priority level i in kQ of the
message assigned to priority level k in P. We refer to
this message as km , as we intend to assign it to priority
level k. Note that as the messages of lower priority than
k are the same in both kQ and P, priority level i must be
either higher than or equal to k.

Figure 2: Transformation of priority order
There are two cases to consider:
1. Message km is at priority k in both P and kQ , in

which case no transformation is required on this
iteration, and so 1−kQ is identical to kQ .

2. Message km is at a higher priority i in kQ . In this
case, we form priority ordering 1−kQ by modifying

kQ as follows: Message km is moved down in

priority from priority level i to priority level k, and
the messages at priority levels i+1 to k are all
moved up one priority level (see Figure 2).

We now introduce a concise notation to aid in the
discussion of groups of messages within a priority
ordering:

hep(k,P) is the set of messages with priority higher
than or equal to k in priority ordering P.
hp(k,P) is the set of messages with priority strictly
higher than k in priority ordering P.
lp(k,P) is the set of messages with priority strictly
lower than k in priority ordering P.

Comparing the messages in priority order 1−kQ with
their counterparts in kQ . There are effectively four
groups of messages to consider:
1.),(1−kQihp : These messages are assigned the same

priorities in both kQ and 1−kQ and so can tolerate
the same additional interference.

2.),(),(11 −− ∩ kk QilepQkhp : These messages retain
the same partial order but are shifted up one priority
level in 1−kQ and so can tolerate at least as much
additional interference as they can in kQ .

3. Message km , which is at priority level i in kQ and
at the lower priority level k in 1−kQ : We know,
from the RPA algorithm, that km can tolerate at
least as much additional interference when at
priority k as any of the messages in),(Pkhep ,
when they are assigned priority k. Now

),(),(PklpQklp k = implies that
),(),(PkhepQkhep k = , and so km can tolerate at

least as much additional interference at priority k as
the message at priority k in kQ .

4.),(1−kQklp : These messages are assigned the same
priorities in both kQ and 1−kQ , and as

),(),(1 kk QkhepQkhep =− , they are subject to
interference from the same set of higher priority
messages, and so can tolerate the same additional
interference in each case.

For every message in 1−kQ , the above analysis identifies
a message in kQ which does not have a greater
tolerance to additional interference. Thus 1−kQ can
tolerate at least as much additional interference as kQ
and so kk QQ αα ≥−1 .

A total of n iterations of the above procedure (for
values of k from n down to 1) are sufficient to transform
any arbitrary priority ordering Q into the priority
ordering P, generated by the RPA algorithm. Further,
this transformation is achieved without any reduction in
the maximum amount of additional interference (α) that
the system can tolerate. As α corresponds to the number
of single-bit errors □

Example: To illustrate the operation of the RPA
algorithm using the additional interference function
from Equation (12), we use a simple example with the

message parameters given in Table 2 below.

Table 2: Message parameters
Message Period

(ms)
Deadline
(ms)

Number
of bits

TX time
(ms)

A 5.75 5.75 135 1.08
B 6.75 6.75 135 1.08
C 7.25 7.25 65 0.52
D 15.0 15.0 135 1.08
E 17.3 17.3 65 0.52

Recall that for each priority level, lowest first, the
RPA algorithm selects the unassigned message that
tolerates the maximum value of α at that priority level.
For each priority level, the values of α computed by the
RPA algorithm are given in Table 3.

The maximum value of α at each priority is
highlighted in bold, indicating the message that is
subsequently assigned to that priority level. Entries in
the table marked �-� indicate that no value was computed
by the algorithm, as the message had already been
assigned a lower priority.

Table 3: Computed values of αα (errors)
 Message

Priority A B C D E
5 0 1 0 4 4
4 0 1 1 4 -
3 1 2 1 - -
2 2 - 2 - -
1 2 - - - -

The robust priority ordering for this example is (A,
C, B, D, E). With this robust priority ordering, the
overall tolerance to additional interference is
characterised by 2=α . In other words, all of the
messages can tolerate at least two errors in the worst-
case. By comparison, using �deadline minus jitter�
monotonic priority ordering (D-JMPO), (A, B, C, D, E),
yields values of α of (2, 2, 1, 4, 4), with message C
able to tolerate only a single error in the worst case.

We note that in the above example, when
considering priority levels 2 and 5, two maximum
values of α are obtained. Such ties may be broken
arbitrarily without affecting the overall tolerance of the
system to additional interference.

At priority level 2, there is a tie between messages
A and C. In this case, the alternative priority ordering of
message C at priority 1 and message A at priority 2
results in message C tolerating up to 7 errors. The
disparity between the two cases is caused by the
difference in the length of the two messages; with the
longer message magnifying the impact of transmission
errors.

4.4. Maximising the delay tolerated
Whilst the previous metric can undoubtedly improve

upon priority assignments achieved considering message

schedulability alone, it is arguable that the susceptibility
of messages to errors is dependent on the maximum
delay that they can tolerate. For example, a message that
can tolerate a delay of 490 bitτ will be more robust to
errors than a message that can tolerate a delay of just
330 bitτ ; even though in the worst-case, both messages
can only tolerate 2 errors.

We now use the RPA algorithm to determine a
robust priority order, such that messages on the network
are able to tolerate the maximum additional interference
in terms of a number (α) of bit times delay without
missing their deadlines. In this case, the appropriate
additional interference function is:

bitiwE ατα =),,((13)
In this case, suitable starting values for the binary

searches are, lower limit: 0=α , upper limit:
bitMD τα /= where MD is the deadline of the

message.

Theorem 2: The priority assignment produced by the
RPA algorithm using the additional interference
function given by Equation (13) maximises the delay
that the system can tolerate without any message
missing its deadline.

Proof: Follows directly from the proof of Theorem 1,
noting that in this case, α corresponds to the delay □

Example: Table 4 gives the values of α computed by
the RPA algorithm for the example set of messages,
assuming the additional interference function given by
Equation (13).

Table 4: Computed values of αα (delay)
 Message

Priority A B C D E
5 51 176 112 681 690
4 186 311 247 960 -
3 251 376 312 - -
2 386 - 447 - -
1 451 - - - -

The robust priority ordering with this additional
interference function is (A, C, B, D, E). With this robust
priority ordering, the overall tolerance to additional
interference is characterised by 376=α . In other
words, all of the messages can tolerate a delay of at least
376 bitτ . By comparison, using D-JMPO, (A, B, C, D,
E), yields values of α of (451, 441, 312, 746, 690),
with message C able to tolerate a delay of at most
312 bitτ .

Although this metric could be viewed as an
improvement over considering the number of errors
tolerated, it has a number of drawbacks: Firstly, the
delay tolerated by a message does not necessarily reflect
the number of errors which it can tolerate. For example,
if message C (with 1 byte of data) was assigned the
highest priority, then it could tolerate 5 errors, whereas

message A (with 8 bytes of data) can only tolerate 2
errors when it is at the highest priority. Secondly, the
probability of a message missing its deadline depends
upon a number of other factors besides the delay that it
can tolerate. These factors include: the delay an error
can cause for a particular message and the time interval
over which errors may impact the message. These
factors are addressed in the next section.

4.5. Minimising the probability of deadline
failure

We now modify the RPA algorithm for the purpose
of determining a robust priority ordering such that
message transmission has the smallest probability of
deadline failure.

The Probabilistic RPA algorithm, given below,
computes the worst-case deadline failure probability
(WCDFP) for each schedulable but unassigned message
using the analysis of Broster et al (2002, 2005), and
Broster (2003) given by Equations (8) and (9). It then
assigns the schedulable message with the lowest
WCDFP to that priority level.

Probabilistic Robust Priority Assignment
Algorithm

for each priority level m, lowest first
{

for each unassigned message M
{
 Compute the WCDFP of message M at

 priority m
}
if no messages are schedulable at

 priority m
 return unschedulable
else
 assign the schedulable message with

 the smallest WCDFP at priority m to
 priority m
}
return schedulable

Recall that in Equation (9), we use the notation
)(failpm to mean the WCDFP for the message at

priority m. Similarly, let)(failp be the WCDFP for any
message. Hence:

))((max)(failpfailp mm∀= (14)

Theorem 3: If a schedulable priority ordering exists,
then the Probabilistic RPA algorithm generates a
priority ordering that has the minimum WCDFP for any
message ()(failp) of any feasible priority ordering.

Proof of Theorem 3 follows the logic employed in the
proof of Theorem 1. We note the following points:
Shifting a message up in priority cannot:

(i) decrease the maximum delay that the
message can tolerate,

(ii) increase the worst-case delay to the

message caused by an error, nor
(iii) increase the worst-case response time of the

message for a given delay that was
previously tolerated.

Hence shifting a message up in priority cannot increase
the WCDFP of the message.

Proof: We assume (for contradiction) that there is an
alternative priority ordering Q, which has a smaller
WCDFP for any message ()(failpQ) than the priority
ordering P found by the Probabilistic RPA algorithm; so

)()(failpfailp PQ > . For the purposes of the proof, we
will refer to this alternative priority ordering as nQ . We
will iteratively transform nQ into 1−nQ .. 1Q , where 1Q
is the same ordering as P. The transformation will be
such that)()(1 failpfailp kk QQ ≥− , thus proving the
theorem via the contradiction:)()(failpfailp QP ≥ .
 We use k as an iteration count and also the priority
level that we will transform. Thus k counts down from
an initial value of n to 1. We note that as a result of the
transformations, the messages at priority levels lower
than k become the same in both kQ and P, hence 1Q
and P represent the same priority ordering.
 On iteration k, we transform priority ordering kQ as
follows: First we find the priority level i in kQ of the
message assigned to priority level k in P. We refer to
this message as km , as we intend to assign it to priority
level k. Note that as the messages of lower priority than
k are the same in both kQ and P, priority level i must be
either higher than or equal to k.

Figure 3: Transformation of priority order

There are two cases to consider:
1. Message km is at priority k in both P and kQ ,

in which case no transformation is required on
this iteration, and so 1−kQ is identical to kQ .

2. Message km is at a higher priority i in kQ . In
this case, we form priority ordering 1−kQ by
modifying kQ as follows: Message km is
moved down in priority from priority level i to
priority level k, and the messages at priority
levels i+1 to k are all moved up one priority
level (see Figure 3).

Comparing the messages in priority order 1−kQ with
their counterparts in kQ . There are effectively four
groups of messages to consider:

1.),(1−kQihp : These messages are assigned the
same priorities in both kQ and 1−kQ and so
have the same WCDFPs.

2.),(),(11 −− ∩ kk QilepQkhp : These messages
retain the same partial order but are shifted up
one priority level in 1−kQ and so have
WCDFPs that are no greater than they are in

kQ .
3. Message km , which is at priority level i in kQ

and at the lower priority level k in 1−kQ : We
know, from the Probabilistic RPA algorithm,
that km at priority k, has a WCDFP no greater
than the WCDFP of any of the messages in

),(Pkhep , when they are assigned priority k.
Now),(),(PklpQklp k = implies that

),(),(PkhepQkhep k = , and so km at priority
k, has a WCDFP no greater than the WCDFP of
the message at priority k in kQ .

4.),(1−kQklp : These messages are assigned the
same priorities in both kQ and 1−kQ , and as

),(),(1 kk QkhepQkhep =− , they are subject to
interference from the same set of higher
priority messages, and so have the same
WCDFPs in each case.

For every message in 1−kQ , the above analysis identifies
a message in kQ which has a WCDFP that is the same
or greater. Thus 1−kQ has an overall WCDFP for any
message that is no greater than that of kQ , i.e.

)()(1 failpfailp kk QQ ≥− .
A total of n iterations of the above procedure (for

values of k from n down to 1) are sufficient to transform
any arbitrary priority ordering Q into the priority
ordering P, generated by the Probabilistic RPA
algorithm. Further, this transformation is achieved
without any increase in the minimum WCDFP for any
message ()(failp), given by Equation (14) □

Example: We now apply the Probabilistic RPA
algorithm to the example message set given in Table 2.
Here, we assume that faults occur according to a Poisson
arrival process with λ = 10 faults/s approximately
equivalent to an error rate of 410− errors/bit for a
125Kbit/s bus.

Table 5 gives the maximum number of faults
tolerated, the response time (in ms) given that number of
faults and the WCDFP for each message, as computed
by the Probabilistic RPA algorithm. For example, at
priority 5, message A can tolerate no errors, has a worst-
case response time of 5.366ms, and a WCDFP of
5.20x10-2 (given, in this case, by the probability of no
faults occurring in 5.366ms). Entries in the table marked

�-� indicate that no value was computed by the
algorithm, as the message had already been assigned a
lower priority.

Table 5: Computed values of αα, Rm|αα, WCDFP
 Message

Pri A B C D E
5 0

5.336
5.20x10-2

1
6.648

2.03x10-3

0
5.336

5.20x10-2

4
14.344

2.88x10-7

4
17.024

4.90x10-7

4 1
5.568

1.41x10-3

1
5.568

1.41x10-3

1
5.568

1.41x10-3

- 5
16.176

9.83x10-9

3 1
5.048

1.15x10-3

2
6.360

3.50x10-5

1
5.048

1.15x10-3

- -

2 2
5.280

1.85x10-5

- 2
5.280

1.85x10-5

- -

1 2
4.760

1.27x10-5

- - - -

We note that in the above example, when
considering priority level 5, although both message E
and message D could tolerate 4 errors, the fact that the
errors would need to occur during a shorter response
time of 14.344ms for message D compared to 17.024ms
for message E, mean that message D has a lower
probability of failure and is therefore assigned priority 5.

The robust priority ordering found for this example,
was (A, C, B, E, D). With this priority ordering, the
maximum WCDFP of any message is 3.5x10-5. By
comparison, D-JMPO (A, B, C, D, E) yields a maximum
WCDFP of 1.15x10-3. Stated otherwise, there is an
upper bound on the probability of failure of any given
message transmission of approximately 1 in 28,500
when priorities are assigned according to the
Probabilistic RPA algorithm, and 1 in 870 with D-JMPO
- a factor of over 30 worse.

Figure 4 plots the maximum WCDFP for the
example set of messages, against the 120 different
permutations of priority assignment, in lexicographical
(dictionary) order: (A,B,C,D,E), (A,B,C,E,D),
(A,B,D,C,E), (A,B,D,E,C), (A,B,E,C,D), (A,B,E,D,C),
(A,C,B,D,E), (A,C,B,E,D) � Of these orderings, D-
JMPO is the 1st one generated and the robust priority
ordering determined by the Probabilistic RPA algorithm
is the 8th generated. The 120 priority orderings can be
classified as follows:

o 54 priorities orderings result in a high
maximum WCDFP of approximately 0.05,
corresponding to a failure rate of 1in 20.

o 62 priority orderings, including D-JMPO, result
in a maximum WCDFP in the range 0.002 to
0.001, corresponding to failure rates between 1
in 500 and 1 in 1000.

0.00001

0.0001

0.001

0.01

0.1

1

10 20 30 40 50 60 70 80 90 100 110 120

Priority Order

M
ax

im
um

 W
C

D
FP

Robust Priority Assignment

D-JMPO

Figure 4: Maximum WCDFP for different priority orderings
o Just 4 priority orderings are robust. The

maximum WCDFP for these priority orderings
is 3.5x10-5, corresponding to a failure rate of 1
in 28,500.

This example shows how robust priority ordering of
CAN messages can significantly reduce the worst-case
deadline failure probability. Further it serves to illustrate
that �deadline minus jitter� monotonic priority
assignment, commonly used to assign priorities to CAN
messages, is not necessarily the most robust priority
ordering to use.

We note that �deadline minus jitter� monotonic
priority ordering (D-JMPO) is a robust priority ordering
for systems where D-JMPO is the optimal priority
ordering when additional interference is not considered
(Davis and Burns, 2007). However, D-JMPO is not the
optimal priority ordering for CAN (as shown by Davis
et al. (2007) and the Appendix) due to the non-pre-
emptive nature of message transmission.

4.6. Experimental investigation
In this section, we investigate how often the

Probabilistic RPA algorithm improves upon D-JMPO in
terms of the maximum WCDFP for a set of CAN
messages.

To explore this question, we generated random sets
of messages. Each message set contained 8 messages,
each with 1 to 8 bytes of data. The number of data bytes
was chosen from a uniform random distribution.
Message periods were chosen from the range 2.5ms to
20ms, in steps of 0.25ms, again according to a uniform
random distribution. Message deadlines were set equal
to their periods and message jitter set to zero. In each
case, a 125 Kbit/s network, standard 11-bit identifiers,
and 8 data-byte background messages were assumed.

In calculating WCDFPs, faults were assumed to
occur according to a Poisson arrival process with λ = 10

faults/s. We determined the schedulability and
maximum WCDFP for the message sets using D-JMPO
and compared the results to those obtained using the
Probabilistic RPA algorithm.

In total, 10,000 message sets were generated; 1,000
for each of ten 5% utilisation bands, starting at 50-55%
and finishing at 95-100%.

Figure 5 plots, for each utilisation level, the
percentage of message sets that were schedulable
according to each priority assignment policy, along with
the percentage of message sets where the maximum
WCDFP differed depending on the priority assignment
policy used.

0%

20%

40%

60%

80%

100%

120%

140%

50-55
55-60

60-65
65-70

70-75
75-80

80-85
85-90

90-95
95-100

Utilisation

Pe
rc

en
ta

ge
 o

f m
es

sa
ge

 s
et

s

1 Schedulable with RPA
2 Schedulable with D-JMPO
3 WCDFP(D-JMPO) > WCDFP(RPA)
4 WCDFP(D-JMPO) > 10 x WCDFP(RPA)

Figure 5:
Line 3 in Figure 5 shows that typically 20-30% of

schedulable message sets at each utilisation level have a
maximum WCDFP that is strictly smaller with priorities

assigned according to the Probabilistic RPA algorithm,
than with D-JMPO.

Similarly, line 4 shows that typically 2-5% of
schedulable message sets at each utilisation level have a
maximum WCDFP that is more than an order of
magnitude smaller with priorities assigned according to
the Probabilistic RPA algorithm, than with D-JMPO.

The overall results of this experimental investigation
can be summarised as follows:

o All of the message sets with utilisation below
70% were schedulable with both priority
assignment policies.

o None of the 1,000 message sets with utilisation
exceeding 95% were schedulable with either of
the priority assignment policies. In total, 27%
(2666 out of 10,000) of the message sets
generated were not schedulable.

o 6% (121 out of 2,000) of the messages sets with
utilisation in the range 80-90% were schedulable
with priorities assigned according to the
Probabilistic RPA algorithm, but unschedulable
with D-JMPO.

o 25% (1802 out of 7,334) of the schedulable
message sets had a lower maximum WCDFP
with priorities assigned according to the
Probabilistic RPA algorithm, than with D-
JMPO.

o 3% (223 out of 7,334) of the schedulable
message sets had a maximum WCDFP more
than an order of magnitude smaller with
priorities assigned according to the Probabilistic
RPA algorithm, than with D-JMPO.

Overall, this investigation showed that although D-
JMPO cannot be guaranteed to provide an optimal
solution, it is a reasonable heuristic, which gives the
most robust solution approximately 70-80% of the time.

For a significant number of cases, 25% of the
schedulable message sets in our randomised test; D-
JMPO is not the most robust priority ordering. In around
3% of schedulable cases, D-JMPO gave a maximum
WCDFP at least an order of magnitude higher than
necessary, and for approximately 6% of schedulable
message sets with utilisations between 80-90%, D-
JMPO did not result in a schedulable system.

Finally, recall that both deadline monotonic priority
ordering (DMPO) and rate monotonic priority ordering
(RMPO) are special cases of D-JMPO. As the CAN
messages in this experimental investigation had zero
jitter, and deadlines equal to their periods, then the
above results apply equally to rate monotonic and
deadline monotonic priority orderings, neither of which
are guaranteed to be optimal or robust priority orderings
for CAN.

5. Summary and conclusions
In this paper, we showed how the Robust Priority

Assignment algorithm could be adapted to the problem
of providing a robust priority ordering for CAN
messages that are subject to errors on the bus caused by
Electromagnetic Interference.

5.1. Contribution
The major contributions of this work are as follows:

• Adapting the Robust Priority Assignment algorithm
to the problem of assigning priorities to CAN
messages. We showed how the RPA algorithm
could be used to provide priority orderings that:

(i) maximize the number of faults
tolerated,

(ii) maximize the delay tolerated,
(iii) minimise the probability of message

deadline failure (Equation (14)).
Of the three, we recommend (iii) as providing the
most suitable approach to the problem of assigning
priorities to CAN messages.

• Proving that the Probabilistic RPA algorithm
provides the most robust priority ordering possible
in the sense that of all feasible priority orderings, it
is the one with the minimum probability of message
deadline failure (Equation (14)).

• Showing that �deadline minus jitter� monotonic
priority assignment, considered for many years to
be optimal for CAN (Tindell and Burns, 1994;
Tindell et al., 1994; Tindell et al., 1995), and widely
used to assign priorities to CAN messages in
commercial systems, does not necessarily result in
the most robust priority ordering, nor does it always
result in a schedulable priority ordering when one
exists.

• Showing that assigning priorities according to the
Probabilistic RPA algorithm reduced the maximum
probability of deadline failure in around 25% of
cases, as compared to �deadline minus jitter�
monotonic priority assignment.

5.2. Conclusion
The Probabilistic RPA algorithm ensures that the
configuration of message identifiers chosen is robust to
errors on the bus in a way that previous approaches
using �deadline minus jitter� monotonic priority
assignment suggested by Tindell and Burns (1994), and
Tindell et al. (1994, 1995), or Audsley�s optimal priority
assignment algorithm suggested by Davis et al. (2007),
do not. Thus the Probabilistic Robust Priority
Assignment algorithm is useful to engineers wishing to
configure commercial CAN systems in a way that makes
them as robust as possible to errors on the bus, without
the need to switch to a higher baud rate, or to
compromise functionality by omitting some messages or
reducing their transmission rates.

5.3. Extensions and Future work
In many systems, it is possible to classify CAN

messages according to their importance as well as their
deadlines, for example, in an automotive application,
messages containing data to switch the brakes lights
on/off, raise/lower the windows might be considered
more important than messages containing data that
adjusts the volume/tuning of the radio. In this case,
messages could be grouped according to importance and
the Robust Priority Assignment algorithm modified so
that at each priority level it selects, from the lowest
importance group containing a schedulable message, the
message with the minimum WCDFP. This would have
the effect of minimising the overall WCDFP for the
most important group of messages.

The problem of bi-criteria or multi-criteria
optimisation, for example, minimising the maximum
WCDFP for the most important group of messages, then
minimising the maximum WCDFP of the next most
important group of messages and so on, is beyond the
scope of this paper, however it is an interesting area for
future research.

5.4. Acknowledgements
This work was funded in part by the EU Frescor

project.

Appendix
George et al. (1996) state the following theorem for

non-pre-emptive fixed priority scheduling (assuming no
jitter):

“Theorem 16:
Deadline monotonic priority order is an optimal

priority assignment for periodic or sporadic task sets
with ii TD ≤ and ji DD ≥ ⇒ ji CC ≥ ”.

In many commercial CAN systems, all messages
carry the maximum 8 bytes of data as a way of
ameliorating the large overheads of the control fields
and 15-bit CRC. If correct, the above theorem would
indicate that DMPO (or more likely D-JMPO6) was the
optimal priority assignment policy to use in such
systems.

The proof given by George et al. (1996), assumes
that “as i∀ , ii TD ≤ the worst-case response time of
any task is found in its first instance”; however this
assumption was shown to be false by Davis et al. (2007).
They noted that “the proof is undermined; however the
theorem may or may not still be true”.

The following counter-example resolves this
question, showing that Theorem 16 in (George et al.,
1996) is in fact false. Hence DMPO is not optimal for

6 If correct, the proof given in (George et al., 1996) could be extended
to the case where messages have non-zero jitter.

fixed priority non-pre-emptive systems with ii TD ≤ and
ji DD ≥ ⇒ ji CC ≥ . In fact, the counter-example also

shows that it is also not optimal for the interesting case
where ji CCji =∀ , .

The parameters of the counter-example message set
are given in Table 6 below. The total bus utilisation is
93.6%.

Table 6: Message parameters
Message Period

(ms)
Deadline
(ms)

Number
of bits

TX time
(ms)

A 2.5 2.5 125 1.0
B 4.0 3.0 125 1.0
C 3.5 3.25 125 1.0

Assuming DMPO, the worst-case response times of
the three messages (computed via the exact analysis
given by Davis et al. (2007)) are AR =2.0ms,

BR =3.0ms, and CR =3.5ms. The worst-case response
time of message C occurs for the second invocation of
the message within the busy period, as shown in Figure
6. The response time for this invocation is 3.5ms,
exceeding its deadline of 3.25ms.

Figure 6: DMPO unschedulable
With the alternative priority ordering; A, C, B, all

three messages can meet their deadlines in the worst-
case. The busy period for the lowest priority message
(now B) is shown in Figure 7.

Figure 7: Alternative priority ordering:
schedulable

The worst-case response times of the three messages,
in this case are: AR =2.0ms, BR =3.0ms, and

CR =3.0ms.
This set of messages is unschedulable with DMPO,

but schedulable with an alternative priority assignment,
thus proving that Theorem 16 from (George et al., 1996)
is false.

Summary
The simple counter-example given in this appendix

serves to illustrate that DMPO/D-JMPO is not optimal

for even the simplest of CAN systems (three messages,
with deadlines less than or equal to their periods, zero
jitter, and the same transmission times). When
configuring commercial CAN systems, it is important to
use an appropriate method of assigning priorities to
CAN messages. We recommend the use of the Robust
Priority Assignment algorithm described in the main
body of this paper.

6. References
N.C. Audsley, "Optimal Priority Assignment and Feasibility of
Static Priority Tasks with Arbitrary Start Times", Technical
Report YCS 164, Dept. Computer Science, University of York,
UK, December 1991.
N.C. Audsley, �Optimal Priority Assignment in Fixed Priority
Scheduling�. Information Processing Letters Vol. 79, No. 1,
pp39-44, 2001.
T.P. Baker. �Stack-based Scheduling of Real-Time Processes.�
Real-Time Systems Journal (3)1, pp. 67-100, 1991.
K. Bletsas, and N.C. Audsley, �Optimal Priority Assignment
in the Presence of Blocking�. Information Processing Letters
Vol. 99, No. 3, pp83-86, August. 2006.
Bosch. �CAN Specification version 2.0�. Robert Bosch
GmbH, Postfach 30 02 40, D-70442 Stuttgart, 1991.
I. Broster, A. Burns , G. Rodríguez-Navas, �Probabilistic
Analysis of CAN with Faults�, In Proceedings of the 23rd
IEEE Real-Time Systems Symposium (RTSS'02), pp. 269-278,
December, 2002
I. Broster. �Flexibility in Dependable Communication�. PhD
Thesis, Department of Computer Science, University of York,
UK, August 2003.
I. Broster, A. Burns and G. Rodriguez-Navas, �Timing
Analysis of Real-time Communication under Electromagnetic
Interference�, Real-Time Systems, 30(1-2) pp. 55-81, May
2005.
CiA �Special Edition Automotive� CiA CAN newsletter, 2006.
R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. �Controller
Area Network (CAN) Schedulability Analysis: Refuted,
Revisited and Revised�. Real-Time Systems, Volume 35,
Number 3, pp 239-272. April 2007.
R.I. Davis, A. Burns,. �Robust Priority Assignment in Fixed
Priority Real-time Systems�. IEEE Real-Time Systems
Symposium, 2007 (to appear).
J. Ferreira, A. Oliveira, P. Fonseca, J. A. Fonseca. �An
Experiment to Assess Bit Error Rate in CAN� In proceedings
3rd International workshop on real-time Networks RTN 2004.
June 2004.
L. George, N. Rivierre, and M. Spuri. �Pre-emptive and Non-
pre-emptive Real-time Uniprocessor Scheduling. Technical
Report 2966, Institut National de Recherche et Informatique et
en Automatique (INRIA), France, September 1996
D.I. Katcher, H. Arakawa, J.K. Strosnider, �Engineering and
Analysis of Fixed Priority Schedulers�. IEEE Transactions on
Software Engineering, 19(9):920�934, September 1993.
IEE 2000. �EMC and Functional Safety� IEE Guidance
Document, IEE. Available from
http://www.theiet.org/publicaffairs/electro/index.cfm

P.B. Ladkin. �Electromagnetic Interference with Aircraft Systems:
Why Worry?� Technical Report RVS-J-97-03, University of
Bielfield, Faculty of Technology. October 1997.
J.P. Lehoczky, L. Sha, Y. Ding, �The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behaviour�. In Proceedings of the 10th IEEE Real-Time
Systems Symposium, pp. 166�171, Santa Monica, CA, December
1989.
C. L. Liu and J. W. Layland. "Scheduling Algorithms for
Multiprogramming in a Hard Real-time Environment", Journal
of the ACM, 20(1): 46-61, January 1973.
J. Y.-T. Leung and J. Whitehead, "On the Complexity of
Fixed-priority Scheduling of Periodic Real-time Tasks,"
Performance Evaluation, 2(4): 237-250, December 1982.
N. Navet, Y-Q. Song, and F. Simonot. �Worst-case Deadline
Failure Probability in Real-time Applications distributed over
controller area network�. Journal of Systems Architecture
Volume 46 Number 1. pp. 607�617. 2000.
T. Nolte, H. Hansson, and C. Norstrom. �Minimizing CAN
Response-time Analysis Jitter by Message Manipulation�. In
Proceedings 8th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS'02), pp 197-206,
September 2002.
T. Nolte, H. Hansson, and C. Norstrom, "Probabilistic Worst-
case Response-time Analysis for the Controller Area
Network." In Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS'03), pp. 200-207, May 2003.
S. Punnekkat, R. Davis, A. Burns, �Sensitivity Analysis of Real-
time Task Sets�. In Proceedings of the Asian Computing Science
Conference, pp72�82, Nepal, December 1997.
S. Punnekkat, H. Hansson, C. Norstrom. �Response Time
Analysis under Errors for CAN�. In Proceedings 6th Real-Time
Technology and Applications Symposium, pp. 258-265, IEEE
Computer Society Press, May/June 2000.
J. Regehr, �Scheduling Tasks with Mixed Pre-emption Relations
for Robustness to Timing Faults�. In proceedings 23th IEEE Real-
Time Systems Symposium, pp. 315�326, IEEE Computer Society
Press, December 2002.
J. Rufino and P. Verissimo. �A Study on the Inaccessibility
Characteristics of Contoller Area Network� In Proceedings of 2nd
International CAN Conference, October 1995.
J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L.
Rodrigues. �Fault-tolerant Broadcasts in CAN�. In Digest of
Papers, The 28th IEEE International Symposium on Fault-
Tolerant Computing (FTCS’98). pp. 150-159, June 1998.
J. Rufino �Computational System for Real-Time Distributed
Control�. PhD-Thesis, Technical University of Lisbon,
Instituto Superior, July 2002.
O. Serlin, �Scheduling of Time Critical Processes�. In
proceedings AFIPS Spring Computing Conference, pp 925-
932, 1972.
L. Sha, R. Rajkumar, and J.P. Lehoczky. �Priority Inheritance
Protocols: An Approach to Real-time Synchronization�. IEEE
Transactions on Computers, 39(9): 1175-1185, 1990.
Society of Automotive Engineers. �Class C Application
Requirement Considerations, Recommended Practice�, SAE
Technical Report J2056/1. June 1993.

K.W. Tindell and A. Burns. �Guaranteeing Message Latencies
on Controller Area Network (CAN)�, In Proceedings of 1st
International CAN Conference, pp. 1-11, September 1994.
K.W. Tindell, H. Hansson, and A.J. Wellings. �Analysing
Real-time Communications: Controller Area Network (CAN)�.
In Proceedings 15th Real-Time Systems Symposium
(RTSS’94), pp. 259-263. IEEE Computer Society Press,
December 1994.
K.W. Tindell, A. Burns, and A. J. Wellings. �Calculating
Controller Area Network (CAN) Message Response Times�.
Control Engineering Practice, 3(8): 1163-1169, August 1995.
A. Zuhily and A. Burns �Optimality of (D-J)-Monotonic
Priority Assignment�. Information Processing Letters. Volume
103, Number 6, pp. 247-250, April 2007.

Biographies

Robert I. Davis received a DPhil in
Computer Science from the University of
York in 1995. Since then he has founded
three start-up companies, all of which have
succeeded in transferring real-time systems
research into commercial product. At
Northern Real-Time Technologies Ltd.
(1995-1997) he was responsible for
development of the Volcano CAN
software library. At LiveDevices Ltd.

(1997-2001) he was responsible for development of the Real-Time
Architect suite of products, including an OSEK RTOS and
schedulability analysis tools. In 2002, Robert returned to the
University of York, and in 2004 he was involved in setting up a
spin out company, Rapita Systems Ltd., aimed at transferring
worst-case execution time analysis technology into industry.
Robert is a Senior Research Fellow in the Real-Time Systems
Research Group at the University of York, and a Director of
Rapita Systems Ltd. His research interests include scheduling
algorithms and schedulability analysis for real-time systems.

Professor Alan Burns co-leads the Real-
Time Systems Research Group at the
University of York. His research interests
cover a number of aspects of real-time
systems including the assessment of
languages for use in the real-time domain,
distributed operating systems, the formal
specification of scheduling algorithms and
implementation strategies, and the design
of dependable user interfaces to real-time
applications. He has authored/co-authored

over 400 papers and 15 books, with a large proportion of them
concentrating on real-time systems and programming languages.
Professor Burns has been actively involved in the creation of the
Ravenscar Profile, a subset of Ada's tasking model, designed to
enable the analysis of high integrity real-time programs and their
timing properties.

