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Abstract 
This paper addresses the problem of determining the 

most robust priority assignment for CAN messages that 
are subject to transmission errors due to Electromagnetic 
Interference. In the presence of errors on the bus, CAN 
messages have a non-zero probability of missing their 
deadlines. An appropriate choice of priority ordering can 
minimise the overall worst-case deadline failure 
probability resulting in a more robust system. 

This paper shows that “Deadline minus jitter” 
monotonic priority assignment, commonly used for 
priority assignment in commercial CAN systems, does not 
always result in the most robust priority ordering. 

A Robust Priority Assignment algorithm is presented 
that computes the most robust priority ordering for CAN 
messages subject to bit errors on the bus. This algorithm 
is optimal in the sense that it can be used to (i) maximise 
the number of errors tolerated, (ii) maximise the delay 
tolerated by any message, or (iii) minimise the probability 
of any message failing to meet its deadline. This algorithm 
is efficient and appropriate for use in an engineering 
context. 

1. Introduction 
1.1. Background 

Controller Area Network (CAN) is a serial 
communications bus designed to provide simple, efficient 
and reliable communications for in-vehicle networks 
(Bosch, 1991). Deployment of CAN in production 
vehicles began with Mercedes in 1991, with the majority 
of the European automotive industry adopting CAN by 
the end of the 1990s. An indication of the scale of 
adoption of CAN by the automotive industry can be 
gained from the sales of microcontrollers with on-chip 
CAN peripherals. Over 1 billion such devices have been 
deployed in automotive applications during the last three 
years (CiA, 2006). 

In automotive applications, CAN is typically used to 
provide high speed networks (500Kbits/s) connecting 
chassis and power-train Electronic Control Units (ECUs) 
and low speed networks (100 or 125Kbits/s) connecting 
body electronics. Messages sent on CAN are used to 
communicate state information, referred to as signals, 

between different ECUs. Examples of signals include: 
wheel speeds, engine rpm, gear selection, switch 
positions, climate control settings, fault codes, and so on. 
The majority of these signals have real-time constraints 
associated with them, in the range of 5ms to 1 second 
(Society of Automotive Engineers, 1993). 

The CAN protocol uses bit stuffing and a 15-bit CRC 
to enable nodes on the network to detect errors in 
messages sent on the bus. When an error is detected in a 
transmitted message, this leads to a cascade of error flag 
transmissions from other nodes; effectively aborting the 
errant message and causing it to be re-queued for 
subsequent re-transmission. As a result of this error 
recovery mechanism, a single bit error leads to an 
additional error recovery overhead, as well as re-
transmission of the affected message. 

Errors on CAN can be caused by Electromagnetic 
Interference (EMI). Predicting the effects of EMI is both 
difficult and uncertain (Ladkin, 1997), due to its diverse 
causes such as sparks, lightning, radar, mobile phones, 
high voltage switching etc. Whilst shielding and �twisted-
pair� wiring can help to reduce the incidence of errors, bit 
errors can and do occur in commercial systems. Typically 
error rates of 1110−  to 710−  errors/bit are observed 
depending heavily upon environmental conditions 
(Ferreira et al., 2004). 

Annex G, (Road Transport) of the IET fact file on 
Electromagnetic Compatibility and Functional Safety 
(IEE, 2000) states that: “The automotive EMC 
environment is one of the most severe and the most 
unpredictable. Road vehicles are inherently mobile and 
thus able to drive near to any fixed transmitter. Vehicle 
owners and operators believe it to be their right to attach 
any sort of transmitter (even very high-powered ones) to 
the vehicle while expecting it to function correctly. 
Owners also expect to be able to fit electronic equipment 
into the vehicle and power it off the vehicle’s power 
supply”. The conclusion this leads to is that errors on 
CAN caused by EMI cannot be predicted with any great 
accuracy. 

1.2. Related research on schedulability analysis of 
CAN 

Tindell and Burns (1994), and Tindell et al. (1994) 



showed how research into fixed priority pre-emptive 
scheduling for single processor systems could be adapted 
and applied to the scheduling of messages on CAN. This 
analysis provided a method of calculating the worst-case 
response times of all the messages on a network. 

Tindell et al. (1995) further developed the analysis of 
CAN, dealing with messages subject to single bit errors 
on the bus. These errors were modelled as a sporadic 
stream of faults with some minimum inter-arrival time 
between them. This deterministic fault model was later 
generalised by Punnekkat et al. (2000), to deal with 
interference caused by several sporadic sources. Leading 
on from this early work, Rufino et al. (1998), and Rufino 
(2002), developed an alternative fault model based on 
bounded omission and bounded inaccessibility 
assumptions. 

Navet et al. (2000) proposed an alternative fault model 
based on random arrivals, where faults are assumed to 
occur according to a Poisson distribution. Navet et al. 
(2000) introduced the idea of a �tolerable error threshold�, 
corresponding to the maximum number of errors that a 
message can tolerate before it becomes un-schedulable. 
Navet et al. (2000) used the tolerable error threshold in a 
calculation of worst-case deadline failure probability 
(WCDFP). Subsequently, Broster et al. (2002, 2005), and 
Broster (2003) extended the work of Navet et al. (2000), 
correcting and improving upon the WCDFP analysis. 

Nolte et al. (2002, 2003) considered probabilistic 
rather than worst-case bit-stuffing and its impact on 
message worst-case response times. 

Recently, Davis et al. (2007) highlighted and corrected 
significant flaws in the original schedulability analysis of 
CAN developed by Tindell and Burns (1994), and Tindell 
et al. (1994, 1995) and utilised in much of the subsequent 
research (Punnekkat et al., 2000; Rufino et al., 1998; 
Rufino, 2002; Navet et al., 2000; Broster et al., 2002, 
2005; Broster, 2003; Nolte et al., 2002, 2003). 

1.3. Motivation 
In their work on the schedulability analysis of CAN 

Tindell and Burns (1994), and Tindell et al. (1994, 1995) 
claimed that �deadline minus jitter� monotonic priority 
order (D-JMPO)1 was the optimal priority assignment 
policy to use. This conjecture has since been proven 
incorrect (Davis et al., 2007). Davis et al. (2007) showed 
that an optimal priority assignment for CAN messages can 
be found using Audsley�s optimal priority assignment 
algorithm (Audsley, 1991). This algorithm is optimal in 
the sense that it guarantees to find a schedulable priority 
ordering if one exists. However, in the case of systems 
which are schedulable with a number of different priority 

1 D-JMPO assigns priorities in order of �deadline minus jitter�, such that 
the message with the smallest value of deadline minus jitter is assigned 
the highest priority. 

orderings, the priority ordering found by Audsley�s 
algorithm is heavily dependent on the initial message 
ordering and can result in systems that are close to being 
un-schedulable. Such a priority ordering may be fragile 
rather than robust, as a small amount of additional 
interference in the form of errors on the bus could cause 
deadline failures. 

The work of Navet et al. (2000), Broster et al. (2002, 
2005), and Broster (2003) showed that the worst-case 
response time of a CAN message and its tolerance to 
errors on the bus are heavily dependent on its relative 
priority. In commercial applications of CAN, what is 
required is a message priority ordering that is as robust as 
possible to additional interference (Davis and Burns, 
2007). Determining such a robust priority ordering is the 
focus of this paper. 

1.4. Related research on priority assignment 
Research into priority assignment for fixed priority 

scheduling on single-processor systems has mainly 
focussed on finding the optimal priority assignment policy 
or algorithm. A priority assignment policy or algorithm is 
referred to as optimal if it provides a feasible priority 
ordering (resulting in a schedulable system) whenever 
such an ordering exists. 

For fixed priority pre-emptive systems, Serlin (1972), 
and Liu and Layland (1973), showed that for synchronous 
tasks (that share a common release time), that comply 
with a restrictive system model, and that have deadlines 
equal to their periods )( TD = , then rate monotonic
priority ordering (RMPO) is optimal. 

Leung and Whitehead (1982) showed that for 
synchronous tasks with deadlines less than or equal to 
their periods )( TD ≤ , but otherwise compliant with Liu 
and Layland�s system model, then deadline monotonic
priority ordering (DMPO) is optimal. They noted that for 
asynchronous tasks (that do not share a common release 
time), DMPO is not optimal. 

More recently, Zuhily and Burns (2007) confirmed 
that �deadline minus jitter� monotonic priority ordering 
(D-JMPO) is optimal for synchronous task sets with 

TD ≤  and arbitrary release jitter. Both DMPO and 
RMPO are effectively special cases of D-JMPO. 

Audsley (1991, 2001) solved the problem of priority 
assignment for asynchronous task sets. Audsley�s priority 
assignment algorithm is optimal in the sense that it finds a 
schedulable priority ordering if one exists. 

George et al. (1996) provided schedulability analysis 
for non-pre-emptive fixed priority scheduling. They 
showed that in the non-pre-emptive case, DMPO is no 
longer optimal for synchronous tasks with deadlines less 
than or equal to their periods )( ii TD ≤ . 



Figure 1: Standard Format Data Frame 

George et al. (1996) showed that Audsley�s optimal 
priority assignment algorithm is however applicable in 
this case. George et al. (1996) claimed that DMPO is 
optimal for the restricted case of non-pre-emptive 
scheduling where ii TD ≤  and ji DD ≥ ⇒ ji CC ≥ . The 
appendix to this paper provides a counter example, 
showing that DMPO is not optimal in this case. 

Bletsas and Audsley (2006) showed that both 
Audsley�s algorithm and DMPO remain optimal, for 
pre-emptive systems, in the presence of blocking when 
resources are accessed according to the Stack Resource 
Policy (SRP) (Baker, 1991) developed from the Priority 
Ceiling Protocol (PCP) (Sha et al., 1990). 

Related research by Lehoczky et al. (1989), Katcher 
et al. (1993), Punnekkat et al. (1997), and Regehr (2002) 
used the critical scaling factor2 as a metric for 
examining schedulability. Regehr (2002) explored the 
idea of a robust-optimal class of scheduling algorithms 
that maximise the critical scaling factor. Regehr showed 
that for tasksets where DMPO is optimal, it is also 
robust-optimal with respect to the critical scaling factor. 

Davis and Burns (2007) introduced the concept of a 
robust priority ordering, defined as the priority ordering 
that is schedulable, and also tolerates the maximum 
amount of additional interference of any feasible priority 
ordering. Davis and Burns gave a Robust Priority 
Assignment algorithm that finds the robust priority 
ordering for a wide range of systems scheduled 
according to fixed priorities. Davis and Burns (2007) 
also showed that for systems where D-JMPO is the 
optimal priority assignment policy, it is also a robust 
priority assignment policy, effectively independent of 
the additional interference function. 

The research presented in this paper extends the idea 
of robust priority assignment to cover both deterministic 
and probabilistic analysis of CAN. In doing so, it builds 
upon previous work on: probabilistic analysis of CAN 
(Navet et al., 2000; Broster et al., 2002, 2005; Broster, 
2003), optimal priority assignment (Audsley, 1991, 
2001), and robust priority assignment (Davis and Burns, 
2007). 

2 The critical scaling factor is the largest factor by which the execution 
time of every task can be increased and the system remain schedulable. 

1.5. Organisation 
Section 2 describes the CAN protocol and 

terminology before outlining the scheduling model and 
notation used in subsequent sections. Section 3 outlines 
basic schedulability analysis for CAN. This is then 
extended to cover both deterministic and probabilistic 
fault models. Section 4 shows that the Robust Priority 
Assignment algorithm introduced by Davis and Burns 
(2007) is applicable to CAN and then adapts it to 
determine robust priority orderings that maximise three 
robustness metrics. Section 5 concludes with a summary 
of the main contributions of the paper and 
recommendations for future research. 

2. Controller Area Network 
This section gives an outline of elements of the CAN 

protocol and the characteristics of a system model that 
are needed to formulate response time analysis for CAN. 
For a complete description of the CAN protocol, the 
reader is referred to the CAN specification version 2.0 
(Bosch, 1991). 

2.1. CAN protocol and terminology 
CAN is an asynchronous, multi-master, broadcast, 

serial data bus that uses Carrier Sense Multiple Access/ 
Collision Resolution (CSMA/CR) to determine access. 
Message transfer over CAN is controlled by 4 different 
types of frame: Data frames, Remote Transmit Request 
(RTR) frames, Overload frames and Error frames. In 
this paper we are interested in data frames and error 
frames. This work can however easily be extended to 
include RTR frames using the approach given by Tindell 
et al. (1995). 

The layout of a standard format data frame is shown 
in Figure 1. This figure highlights the various control 
fields, with the 0-8 byte data field shown at a reduced 
scale. Each CAN data frame is required to have a unique 
identifier. Identifiers may be 11-bit (standard format) or 
29-bit (extended format). The CAN protocol uses the 
message identifier as a priority to determine which 
message, among those contending for the bus, will be 
transmitted next. 

The CAN physical layer supports two states termed 
dominant (�0�) and recessive (�1�). If two or more CAN 



controllers are transmitting at the same time and at least 
one of them transmits a �0� then the value on the bus 
will be a �0�. This mechanism is used to control access 
to the bus and also to signal errors. 

2.1.1 Priority based arbitration 
The CAN protocol calls for nodes to wait until a bus 

idle period3 is detected before attempting to transmit. If 
two or more nodes start to transmit at the same time, 
then by monitoring each bit on the bus, each node can 
determine if it is transmitting the highest priority 
message (with the numerically lowest identifier) and 
should continue or if it should stop transmitting and wait 
for the next bus idle period before trying again. As the 
message identifiers are unique, a node transmitting the 
last bit of the identifier field, without detecting a �0� bit 
that it did not transmit, must be transmitting the highest 
priority message that was ready for transmission at the 
start of arbitration. This node then continues to transmit 
the remainder of its message, all other nodes having 
backed off. 

The arbitration mechanism employed by CAN 
means that messages are sent as if all the nodes on the 
network shared a single global priority based queue. In 
effect messages are sent on the bus according to fixed 
priority non-pre-emptive scheduling. 

2.1.2 Error detection 
CAN was designed as a robust and reliable form of 

communication for short messages. It provides a number 
of mechanisms to detect errors on the bus. 

The transmitting node effectively reads back each bit 
it sends on the bus. This means that it is potentially able 
to immediately detect bit errors, with the following two 
exceptions (Rufino and Verissimo, 1995): 

1. Corrupt bits in the arbitration field, where all 
transmitters send a �1� (recessive) but receive 
back a �0� (dominant) are not immediately 
detected by the transmitter(s). They are instead 
interpreted as another node transmitting the 
identifier for a higher priority frame. 

2. Corrupt bits in the acknowledge slot, where the 
transmitter sends a �1� and receives back a �0�. 
This is interpreted as at least one node having 
received the message correctly. 

As well as the transmitter checking the bits sent, the 
receiving nodes check the message for bit-stuffing errors 
(see Section 2.1.3), form-errors in the fixed parts of the 
message, CRC-errors, and acknowledgement errors. 

A 15-bit Cyclic Redundancy Check (CRC) is used 
by receiving nodes to check for bit errors in the variable 
part of the transmitted message. The CRC is calculated 
over all of the fields in the message up to and including 

3 A bus idle period is an interval of arbitrary length comprising only 
recessive bits and beginning with the last bit of the inter-frame space � 
the final 3-bit field shown in Figure 1. 

the CRC (see Figure 1). 
If a node detects an error in the transmitted message, 

then it transmits an error flag. The error flag consists of 
6 bits of the same polarity: �000000� if the node is in the 
error active state and �111111� if it is error passive. 
Transmission of an error flag typically causes other 
nodes to also detect an error, leading to transmission of 
further error flags. The length of an error frame is 
between 17 and 31 bits. Hence each message 
transmission that is signalled as an error can lead to a 
maximum of 31 additional bits4 of error recovery 
overhead plus re-transmission of the message itself. 

2.1.3 Bit stuffing 
As the bit patterns �000000� and �111111� are used 

to signal errors, it is essential that these bit patterns are 
avoided in the variable part of a transmitted message � 
see Figure 1. The CAN protocol therefore requires that a 
bit of the opposite polarity is inserted by the transmitter 
whenever 5 bits of the same polarity are transmitted. 
This process is referred to as bit-stuffing, and is reversed 
by the receiver. 

Stuff bits increase the maximum transmission time 
of CAN messages. Including stuff bits and the inter-
frame space, the maximum transmission time mC , of a 
CAN message m containing ms  data bytes is given by: 

bitmm sC τ)1055( +=       (1) 
for standard (11-bit) identifiers and 

bitmm sC τ)1080( +=       (2) 
for extended (29-bit) identifiers, where bitτ  is the 
transmission time for a single bit. 

2.2. Scheduling model 
In this section we describe an appropriate system 

model and notation that can be used to analyse the 
worst-case response times of messages on CAN. 

The system is assumed to comprise a number of 
nodes (microprocessors) connected via CAN. Each node 
is assumed to be capable of ensuring that, at any given 
time when arbitration starts, the highest priority message 
queued at that node is entered into arbitration. 

The system is assumed to contain a static set of hard 
real-time messages, each statically assigned to a node on 
the network. Each message m has a unique identifier and 
hence a unique priority. For convenience, we will refer 
to the messages priorities as being from 1 to n (where n
is the total number of messages). 1 therefore represents 
the highest priority and n the lowest. Each message has a 
maximum number of data bytes ms , and a maximum 
transmission time mC , given by Equation (1) or (2) as 

4 The maximum error recovery overhead is specified as 29 bits on 
page 8 of part A of the CAN specification 2.0 (Bosch 1991) for 
standard identifiers only, and as 31 bits on page 40 of the CAN 
specification 2.0 Part B (Bosch 1991) for both standard and extended 
identifiers.



appropriate. 
The event that triggers queuing of each message is 

assumed to occur with a minimum inter-arrival time of 
mT , referred to as the message period. This model 

supports events that occur strictly periodically with a 
period of mT , events that occur sporadically with a 
minimum separation of mT , and events that occur only 
once before the system is reset, in which case mT  is 
infinite. 

Each message is assumed to be queued by a software 
task, process or interrupt handler executing on the host 
microprocessor. This task is either invoked by, or polls 
for, the event that triggers queuing of the message, and 
takes a bounded amount of time, between 0 and mJ , to 
queue the message ready for transmission. mJ  is 
referred to as the queuing jitter of the message and is 
inherited from the overall response time of the task, 
including any polling delay. 

Each message has a hard deadline mD , 
corresponding to the maximum permitted time from 
occurrence of the initiating event to the end of 
successful transmission of the message, at which time 
the message data is assumed to be available on the 
receiving nodes that require it. Tasks on the receiving 
nodes may place different timing requirements on the 
data, however in such cases we assume that mD  is the 
tightest such time constraint. We assume that all 
messages have deadlines less than or equal to their 
periods )( mm TD ≤ . 

The worst-case response time mR , of a message is 
defined as the longest time from the initiating event 
occurring to the message being correctly received by the 
nodes that require it. A message is said to be 
schedulable if and only if its worst-case response time is 
less than or equal to its deadline )( mm DR ≤ . The 
system is schedulable if and only if all of the messages 
in the system are schedulable. 

2.3. Error model 
In this section we describe a basic model of the 

effects of errors caused by Electromagnetic Interference. 
This model is used in the remainder of the paper. 

We assume that EMI results in single bit-errors, 
effectively corrupting the value of a bit on the CAN bus 
from recessive to dominant or vice-versa. We assume 
that all bit errors are detected; either immediately by the 
transmitter (with the exceptions noted in Section 2.1.2) 
or subsequently by receiving nodes. 

For immediate detection to occur the transmitting 
node must be amongst the group of nodes that the error 
manifests itself to; in other words, the transmitter must 
read back a �1� when it transmitted a �0� or vice-versa.  
This is not always the case with errors caused by EMI. It 
is arguable that nodes further from the transmitter and/or 
nearer the source of EMI are much more likely to see a 

corrupt bit than the transmitter, which is actively driving 
the voltage differential on the bus. In this case, error 
detection will typically not be immediate; with a group 
of receivers reading the corrupt value, but only 
signalling an error once the CRC field has been 
transmitted. 

For this reason, we make worst-case assumptions 
with respect to the effects of single bit-errors caused by 
EMI, We assume that: 

(i) Each bit-error affects a separate message 
transmission. 

(ii) The message affected is the longest one that 
could delay successful transmission of 
message m. 

(iii) The error is detected on the last bit of the 
message. 

(iv) The error recovery overhead F, is the 
maximum possible. 

The maximum interference, on message m, resulting 
directly from a single bit error is therefore: 

)(max
)(

k
mhepk

CF
∈

+      (3) 

where hep(m) is the set of messages with the same 
priority as message m or higher, and F is the maximum 
error recovery overhead. 

2.4. Summary of notation 
Table 1 summarises the notation used in this paper.  

Table 1: Notation 
Symbol Description 

bitτ Transmission time for a single bit. 

ms Number of data bytes in message m. 

mC Maximum transmission time for message m

mT Minimum inter-arrival time of message m. 

mD Relative deadline of message m. 

mR Worst-case response time of message m. 

mw Worst-case queuing delay before message m
commences successful transmission. 

F Maximum error recovery overhead for a single 
bit fault. 

KmR | The worst-case response time for message m, 
assuming K single bit faults prior to successful 
transmission. 

mK The maximum number of single bit faults that 
message m can tolerate without missing its 
deadline. 

λ Average number of bit errors per second. 
),( tKp Probability of K faults occurring in a time 

interval of length t. 
)( |KmRp Upper bound on the probability of response 

time KmR |  occurring. 

)( failpm Upper bound on the probability that message 
m will fail to meet its deadline. Referred to as 
the worst-case deadline failure probability 
(WCDFP). 



Symbol Description 
)( failp Upper bound on the worst-case deadline 

failure probability for any message. 
)( failpQ Upper bound on worst-case deadline failure 

probability for any message, given priority 
ordering Q. 

),,( mwE α Additional interference function, with α as a 
scaling factor. 

P
mα Value of α  characterising the maximum 

amount of additional interference tolerated by 
message m under priority ordering P. 

Pα Value of α  characterising the maximum 
amount of additional interference tolerated by 
any message under priority ordering P. 

hp(m) The set of messages with priority strictly 
higher than m. 

hep(m) The set of messages with priority higher than 
or equal to m. 

hp(k,P) The set of messages with priority strictly 
higher than k in priority ordering P. 

hep(k,P) The set of messages with priority higher than 
or equal to k in priority ordering P. 

lp(k,P) The set of messages with priority strictly 
lower than k in priority ordering P. 

3. Schedulability analysis for CAN 
Response time analysis for CAN aims to provide a 

method of calculating the worst-case response time of 
each message. These values can then be compared to the 
message deadlines to determine if the system is 
schedulable. Response time analysis for CAN was first 
provided by Tindell and Burns (1994), and Tindell et al. 
(1994, 1995), however, flaws in this original analysis 
have recently been discovered and corrected (Davis et 
al., 2007). 

3.1. Basic schedulability analysis 
In this paper, we make use of the simple sufficient 

but not necessary schedulability test given by Davis et 
al. (2007). We note that this analysis is exact for many 
commercial CAN systems that have 8 data byte (soft) 
real-time messages present at lower priorities. The 
interested reader is referred to (Davis et al., 2007) for 
details of other schedulability tests for CAN and the 
conditions under which the various tests provide 
sufficient or exact analysis. 

The worst-case response time of a message can be 
viewed as being made up of three elements: 

(i) The queuing jitter mJ , corresponding to the 
longest time between the initiating event 
and the message being queued, ready for 
transmission. 

(ii) The queuing delay mw , corresponding to 
the longest time that the message can 
remain in the CAN controller slot or device 
driver queue, before commencing 
successful transmission. 

(iii) The transmission time mC , corresponding 
to the longest time that the message can 
take to be transmitted. 

The queuing delay mw  can be determined using the 
following recurrence relation: 

k
mhpk k

bitk
n
m

mm
n
m C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
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⎢
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+=

)(

1 ),max(
τ

 (4) 
where hp(m) is the set of messages with priority higher 
than m, and ),max( mm CB  corresponds to longest 
possible time for which an invocation of message m can 
be blocked either by lower priority messages or via push 
through blocking due to the previous invocation of the 
same message. A suitable starting value is 

),max(0
mmm CBw = . The recurrence relation iterates 

until either mm
n
mm DCwJ >++ +1  in which case the 

message is not schedulable, or n
m

n
m ww =+1  in which case 

the worst-case response time of the message is given by:  
mmmm CwJR ++=     (5) 

3.2. Deterministic fault model 
Navet et al. (2000) showed that the worst-case 

response time KmR | , for message m, assuming K single 
bit errors prior to successful transmission, can be 
calculated via the following recurrence relation: 

k
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 Using Equation (6), a set of response times KmR | , 
can be determined for increasing values of K from 0 to 

mK , the maximum number of single bit errors that can 
be tolerated by message m without missing its deadline. 

3.3. Probabilistic fault model 
Broster et al. (2005) suggested that a Poisson 

distribution is the most appropriate way of modelling the 
occurrence of bit errors on CAN due to EMI. For a 
Poisson arrival process, the probability of K errors 
occurring in some time interval t is given by: 

!
)(),(

K
tetKp

Kt λλ−
=      (7) 

Broster et al. (2005) derived the following equation 
giving an upper bound on the probability )( |KmRp , that 
response time KmR |  occurs. 

),()( || KmKm RKpRp =

),()( ||

1

0
| jmKm

K

j
jm RRjKpRp −−− ∑

−

=

  (8) 

Essentially, Equation (8) states that the probability 
)( |KmRp of response time KmR |  occurring is given by 

the probability ),( |KmRKp , of exactly K faults 



occurring in a time interval of length KmR | , less the 
probabilities of all such scenarios where K faults occur 
in the interval, but their distribution within the interval is 
such that the message successfully completes 
transmission before KmR |  and thus has some smaller 
response time jmR |  with the remaining jK −  faults 
occurring between jmR |  and KmR | , after the message 
has been successfully transmitted. 

Noting that ),0()( 0|0| mm RpRp =  and therefore that 
)( 0|mRp  can be obtained directly from Equation (7). 

Equation (8) can be used to obtain an upper bound on 
the probability that each response time KmR |  occurs, for 
numbers of faults from 0 to mK . These values can then 
be used to compute the worst-case deadline failure 
probability (WCDFP). 

Navet et al. (2000), and Broster et al. (2005) showed 
that an upper bound on the WCDFP for each message is 
given by: 

∑
=

−=
mKK

Kmm Rpfailp
..0

| )(1)(    (9) 

where )( |KmRp  is the upper bound on the probability 
that response time KmR |  occurs, given by Equation (8). 
Effectively Equation (9) states that the worst-case 
deadline failure probability is given by one minus the 
probabilities of all possible schedulable worst-case 
response times. 

The WCDFP calculated according to the analysis of 
Navet et al. (2000), Broster et al. (2002, 2005), and 
Broster (2003) provides an upper bound on the 
probability that an invocation of a message will miss its 
deadline. However, a number of worst-case assumptions 
mean that this WCDFP may be significantly larger than 
the actual probability of deadline failure averaged over a 
large number of invocations of the message: 

(i) The message is assumed to be queued at a 
critical instant, simultaneously with all 
higher priority messages. 

(ii) The message is assumed to be subject to the 
maximum possible delay due to blocking. 

(iii) All messages are assumed to have their 
maximum possible transmission time due to 
worst-case bit stuffing. Nolte et al. (2002, 
2003) showed that the probability of this 
happening in practice is very small. 

We note that the practical application of Equations 
(6) to (9), with typical time constraints on CAN 
messages and realistic error rates (for example λ = 10 
bit errors/s), can easily lead to values of 10>mK , and 
some very small probabilities ( 2010−< ). As a result of 
the way the probabilities are composed, it is essential to 
use an arbitrary precision floating point arithmetic 
package when solving the equations, otherwise the 
values obtained may be incorrect by orders of magnitude 

due to rounding errors5. 

4. Priority assignment for CAN 
We now consider the problem of priority assignment 

for CAN. For a commercial CAN system, it is important 
that messages are both schedulable and can tolerate 
delays on the network due to errors. The priority 
assignment chosen has a significant impact on the 
number of errors that can be tolerated by each message 
on the bus. 

In this section, we show that the Robust Priority 
Assignment (RPA) algorithm introduced by Davis and 
Burns (2007) is applicable to CAN and then adapt it to 
determine robust priority orderings that are not only 
schedulable, but also: 

(i) maximize the number of faults tolerated, 
(ii) maximize the delay tolerated, or 
(iii) minimise the maximum worst-case deadline 

failure probability for any message. 

4.1. Applicability of the RPA algorithm to CAN 
Davis and Burns (2007) gave four conditions that 

must be met for the RPA algorithm to be applicable to a 
fixed priority system. These four conditions are stated 
below as they apply to CAN messages:  

Condition 1: The worst-case response time of a 
message is dependent on the set of higher priority 
messages, but not on the relative priority ordering of 
those messages. 

Condition 2: The worst-case response time of a 
message may be dependent on the set of lower priority 
messages, but not on the relative priority ordering of 
those messages.  

Condition 3: When the priorities of any two messages 
are swapped, the worst-case response time of the 
message being assigned a higher priority cannot increase 
with respect to its previous value. 

Condition 4: When the priorities of any two messages 
are swapped, the worst-case response time of the 
message being assigned a lower priority cannot decrease 
with respect to its previous value. 

It is evident from the schedulability analysis equations 
for CAN (Equations (4), (5) and (6) in Section 3.1) that 
all four conditions hold and that the RPA algorithm can 
therefore be used to determine robust priority orderings 
for CAN messages. 

The RPA algorithm (Davis and Burns, 2007) also 
assumes additional interference in the form of a function 

),,( mwE α , where α  is a scaling factor used to model 
variability in the amount of additional interference (for 

5 64-bit floating point arithmetic does not provide sufficient resolution 
for these calculations. 



example due to faults), w is the length of the time 
interval over which the interference occurs and m is a 
priority level affected by the interference. The RPA 
algorithm requires only that ),,( mwE α  is a monotonic 
non-decreasing function of its parameters. Hence for any 
fixed values of α  and w, ),,(),,( kwEjwE αα ≥  if and 
only if priority level j has a higher numeric value (i.e. a 
lower priority) than k. Similarly, if time interval 

''' ww > , then ),'',(),',( mwEmwE αα ≥  for any fixed 
values of α  and m and finally, if the scaling factor 

''' αα > , then ),,''(),,'( mwEmwE αα ≥  for any fixed 
values of w and m. 

These monotonicity requirements on ),,( mwE α  are 
met for CAN: α  is a scaling factor and so by definition, 

),,( mwE α  can be formulated to be monotonically non-
decreasing in α . Interference due to errors on the bus is 
never less in a longer time interval than it is in a shorter 
one, and finally, errors affecting a high priority message 
also cause interference on messages at lower priority 
levels and so the additional interference function, 

),,( mwE α  is monotonically non-decreasing with 
respect to priority level. 

Accounting for the additional interference 
),,( mwE α , the queuing delay and hence worst-case 

response time of message m can be calculated using the 
following recurrence relation: 
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Details of additional interference functions 
appropriate for CAN are given in subsequent sections; 
see Equation (12) and Equation (13). 

4.2. Robust Priority Assignment algorithm for 
CAN 

The RPA algorithm (Davis and Burns, 2007) is given 
below. The algorithm proceeds by considering each 
priority level in turn, lowest first. At each priority level, 
the algorithm determines which of the currently 
unassigned messages are both schedulable and can 
tolerate the maximum amount of additional interference 
(largest value of α ) at that priority level, and assigns 
that message to the priority level. 

Note, in the RPA algorithm, when each unassigned 
message is tried at a given priority level, it is assumed 
that the other unassigned messages all have higher 
priorities, although exactly what these priorities are is as 
yet unknown. 

The RPA algorithm determines a schedulable 
priority ordering P, for any system where such an 
ordering exists. Further, the algorithm computes the 
maximum additional interference represented by P

mα
that can be tolerated by each message m under priority 

ordering P. The maximum additional interference that 
can be tolerated by the system as a whole is given by: 

)(min P
mm

P αα
∀

=       (11) 

Robust Priority Assignment Algorithm 

for each priority level m, lowest first 
{ 

for each unassigned message M
{ 
  binary search for the largest value 

  of α for which message M is    
  schedulable at priority m

} 
if no messages are schedulable at   

 priority m
  return unschedulable 
else 
  assign the schedulable message that 

  tolerates the max α at priority m to 
  priority m
} 
return schedulable

Definition: The priority ordering P, determined by the 
RPA algorithm is a robust priority ordering in the sense 
that there are no systems, compliant with the system 
model, that are both schedulable and can tolerate 
additional interference characterized by a scaling factor 

Qα  using another priority ordering Q that are not also 
both schedulable and can tolerate additional interference 
characterized by the same or larger scaling factor 

QP αα ≥ , using the priority ordering P, generated by 
the RPA algorithm. 

4.3. Maximising the number of faults tolerated 
We now show how the RPA algorithm can be used 

to determine a robust priority ordering, such that 
messages on the network are able to tolerate the 
maximum number (α ) of errors in the worst-case 
without missing their deadlines. In this case, by 
reference to Equation (3), the additional interference 
function is given by: 

))(max(),,(
)(

j
mhepj

CFmwE
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Note that here α  corresponds to the number of 
single bit errors tolerated by the message; equivalent to 
the parameter K used in Equation (6), Section 3.2, and 
the �tolerable error threshold� described by Navet et al. 
(2000). F is the maximum error recovery overhead, 
which is 29 bitτ  assuming a network using only standard 
11-bit identifiers. 

The algorithm requires n(n+1)/2 binary searches to 
determine the robust priority ordering. Suitable starting 
values for each binary search are: lower limit: 0=α , 
upper limit: FDM /=α  where MD  is the deadline of 
the message, and F is the maximum error recovery 
overhead. (Note this upper limit is guaranteed to be 



unschedulable as the additional interference exceeds the 
message deadline). 

Theorem 1: The priority assignment produced by the 
RPA algorithm using the additional interference 
function given by Equation (12) maximises the number 
of faults that the system can tolerate without any 
message missing its deadline. 

Proof of Theorem 1 follows the same logic employed in 
the proof of Theorem 2 in (Davis and Burns, 2007). 

Proof: We assume (for contradiction) that there is an 
alternative priority ordering Q, which tolerates a larger 
number of faults and therefore greater additional 
interference than the priority ordering P found by the 
RPA algorithm; so PQ αα > . For the purposes of the 
proof, we will refer to this alternative priority ordering 
as nQ . We will iteratively transform nQ  into 1−nQ .. 1Q , 
where 1Q  is the same ordering as P. The transformation 
will be such that kk QQ αα ≥−1 , thus proving the theorem 
via the contradiction: QP αα ≥ . 
 We use k as an iteration count and also the priority 
level that we will transform. Thus k counts down from 
an initial value of n to 1. We note that as a result of the 
transformations, the messages at priority levels lower 
than k become the same in both kQ  and P, hence 1Q
and P represent the same priority ordering. 
 On iteration k, we transform priority ordering kQ  as 
follows: First we find the priority level i in kQ  of the 
message assigned to priority level k in P. We refer to 
this message as km , as we intend to assign it to priority 
level k. Note that as the messages of lower priority than 
k are the same in both kQ  and P, priority level i must be 
either higher than or equal to k. 

Figure 2: Transformation of priority order 
There are two cases to consider: 
1. Message km  is at priority k in both P and kQ , in 

which case no transformation is required on this 
iteration, and so 1−kQ  is identical to kQ . 

2. Message km  is at a higher priority i in kQ . In this 
case, we form priority ordering 1−kQ  by modifying 

kQ  as follows: Message km  is moved down in 

priority from priority level i to priority level k, and 
the messages at priority levels i+1 to k are all 
moved up one priority level (see Figure 2). 

We now introduce a concise notation to aid in the 
discussion of groups of messages within a priority 
ordering: 

hep(k,P) is the set of messages with priority higher 
than or equal to k in priority ordering P. 
hp(k,P) is the set of messages with priority strictly 
higher than k in priority ordering P.
lp(k,P) is the set of messages with priority strictly 
lower than k in priority ordering P.

Comparing the messages in priority order 1−kQ  with 
their counterparts in kQ . There are effectively four 
groups of messages to consider: 
1. ),( 1−kQihp : These messages are assigned the same 

priorities in both kQ  and 1−kQ  and so can tolerate 
the same additional interference. 

2. ),(),( 11 −− ∩ kk QilepQkhp : These messages retain 
the same partial order but are shifted up one priority 
level in 1−kQ  and so can tolerate at least as much 
additional interference as they can in kQ . 

3. Message km , which is at priority level i in kQ  and 
at the lower priority level k in 1−kQ : We know, 
from the RPA algorithm, that km  can tolerate at 
least as much additional interference when at 
priority k as any of the messages in ),( Pkhep , 
when they are assigned priority k. Now 

),(),( PklpQklp k =  implies that 
),(),( PkhepQkhep k = , and so km  can tolerate at 

least as much additional interference at priority k as 
the message at priority k in kQ . 

4. ),( 1−kQklp : These messages are assigned the same 
priorities in both kQ  and 1−kQ , and as 

),(),( 1 kk QkhepQkhep =− , they are subject to 
interference from the same set of higher priority 
messages, and so can tolerate the same additional 
interference in each case. 

For every message in 1−kQ , the above analysis identifies 
a message in kQ  which does not have a greater 
tolerance to additional interference. Thus 1−kQ  can 
tolerate at least as much additional interference as kQ
and so kk QQ αα ≥−1 . 

A total of n iterations of the above procedure (for 
values of k from n down to 1) are sufficient to transform 
any arbitrary priority ordering Q into the priority 
ordering P, generated by the RPA algorithm. Further, 
this transformation is achieved without any reduction in 
the maximum amount of additional interference (α) that 
the system can tolerate. As α corresponds to the number 
of single-bit errors □

Example: To illustrate the operation of the RPA 
algorithm using the additional interference function 
from Equation (12), we use a simple example with the 



message parameters given in Table 2 below. 

Table 2: Message parameters 
Message Period 

(ms) 
Deadline 
(ms) 

Number 
of bits 

TX time 
(ms) 

A 5.75 5.75 135 1.08 
B 6.75 6.75 135 1.08 
C 7.25 7.25 65 0.52 
D 15.0 15.0 135 1.08 
E 17.3 17.3 65 0.52 

Recall that for each priority level, lowest first, the 
RPA algorithm selects the unassigned message that 
tolerates the maximum value of α  at that priority level. 
For each priority level, the values of α  computed by the 
RPA algorithm are given in Table 3. 

The maximum value of α  at each priority is 
highlighted in bold, indicating the message that is 
subsequently assigned to that priority level. Entries in 
the table marked �-� indicate that no value was computed 
by the algorithm, as the message had already been 
assigned a lower priority. 

Table 3: Computed values of αα (errors) 
 Message 

Priority A B C D E 
5 0 1 0 4 4 
4 0 1 1 4 -
3 1 2 1 - - 
2 2 - 2 - - 
1 2 - - - - 

The robust priority ordering for this example is (A, 
C, B, D, E). With this robust priority ordering, the 
overall tolerance to additional interference is 
characterised by 2=α . In other words, all of the 
messages can tolerate at least two errors in the worst-
case. By comparison, using �deadline minus jitter� 
monotonic priority ordering (D-JMPO), (A, B, C, D, E), 
yields values of α  of (2, 2, 1, 4, 4), with message C 
able to tolerate only a single error in the worst case. 

We note that in the above example, when 
considering priority levels 2 and 5, two maximum 
values of α  are obtained. Such ties may be broken 
arbitrarily without affecting the overall tolerance of the 
system to additional interference. 

At priority level 2, there is a tie between messages 
A and C. In this case, the alternative priority ordering of 
message C at priority 1 and message A at priority 2 
results in message C tolerating up to 7 errors. The 
disparity between the two cases is caused by the 
difference in the length of the two messages; with the 
longer message magnifying the impact of transmission 
errors. 

4.4. Maximising the delay tolerated 
Whilst the previous metric can undoubtedly improve 

upon priority assignments achieved considering message 

schedulability alone, it is arguable that the susceptibility 
of messages to errors is dependent on the maximum 
delay that they can tolerate. For example, a message that 
can tolerate a delay of 490 bitτ  will be more robust to 
errors than a message that can tolerate a delay of just 
330 bitτ ; even though in the worst-case, both messages 
can only tolerate 2 errors.  

We now use the RPA algorithm to determine a 
robust priority order, such that messages on the network 
are able to tolerate the maximum additional interference 
in terms of a number (α ) of bit times delay without 
missing their deadlines. In this case, the appropriate 
additional interference function is: 

bitiwE ατα =),,(     (13) 
In this case, suitable starting values for the binary 

searches are, lower limit: 0=α , upper limit: 
bitMD τα /=  where MD  is the deadline of the 

message. 

Theorem 2: The priority assignment produced by the 
RPA algorithm using the additional interference 
function given by Equation (13) maximises the delay 
that the system can tolerate without any message 
missing its deadline. 

Proof: Follows directly from the proof of Theorem 1, 
noting that in this case, α corresponds to the delay □

Example: Table 4 gives the values of α  computed by 
the RPA algorithm for the example set of messages, 
assuming the additional interference function given by 
Equation (13). 

Table 4: Computed values of αα (delay) 
 Message 

Priority A B C D E 
5 51 176 112 681 690 
4 186 311 247 960 - 
3 251 376 312 - - 
2 386 - 447 - - 
1 451 - - - - 

The robust priority ordering with this additional 
interference function is (A, C, B, D, E). With this robust 
priority ordering, the overall tolerance to additional 
interference is characterised by 376=α . In other 
words, all of the messages can tolerate a delay of at least 
376 bitτ . By comparison, using D-JMPO, (A, B, C, D, 
E), yields values of α  of (451, 441, 312, 746, 690), 
with message C able to tolerate a delay of at most 
312 bitτ . 

Although this metric could be viewed as an 
improvement over considering the number of errors 
tolerated, it has a number of drawbacks: Firstly, the 
delay tolerated by a message does not necessarily reflect 
the number of errors which it can tolerate. For example, 
if message C (with 1 byte of data) was assigned the 
highest priority, then it could tolerate 5 errors, whereas 



message A (with 8 bytes of data) can only tolerate 2 
errors when it is at the highest priority. Secondly, the 
probability of a message missing its deadline depends 
upon a number of other factors besides the delay that it 
can tolerate. These factors include: the delay an error 
can cause for a particular message and the time interval 
over which errors may impact the message. These 
factors are addressed in the next section. 

4.5. Minimising the probability of deadline 
failure 

We now modify the RPA algorithm for the purpose 
of determining a robust priority ordering such that 
message transmission has the smallest probability of 
deadline failure. 

The Probabilistic RPA algorithm, given below, 
computes the worst-case deadline failure probability 
(WCDFP) for each schedulable but unassigned message 
using the analysis of Broster et al (2002, 2005), and 
Broster (2003) given by Equations (8) and (9). It then 
assigns the schedulable message with the lowest 
WCDFP to that priority level. 

Probabilistic Robust Priority Assignment 
Algorithm 

for each priority level m, lowest first 
{ 

for each unassigned message M
{ 
  Compute the WCDFP of message M at  

  priority m
} 
if no messages are schedulable at   

 priority m
  return unschedulable 
else 
  assign the schedulable message with 

  the smallest WCDFP at priority m to 
  priority m
} 
return schedulable

Recall that in Equation (9), we use the notation 
)( failpm  to mean the WCDFP for the message at 

priority m. Similarly, let )( failp  be the WCDFP for any
message. Hence: 

))((max)( failpfailp mm∀=     (14) 

Theorem 3: If a schedulable priority ordering exists, 
then the Probabilistic RPA algorithm generates a 
priority ordering that has the minimum WCDFP for any
message ( )( failp ) of any feasible priority ordering. 

Proof of Theorem 3 follows the logic employed in the 
proof of Theorem 1. We note the following points: 
Shifting a message up in priority cannot: 

(i) decrease the maximum delay that the 
message can tolerate, 

(ii) increase the worst-case delay to the 

message caused by an error, nor 
(iii) increase the worst-case response time of the 

message for a given delay that was 
previously tolerated. 

Hence shifting a message up in priority cannot increase 
the WCDFP of the message. 

Proof: We assume (for contradiction) that there is an 
alternative priority ordering Q, which has a smaller 
WCDFP for any message ( )( failpQ ) than the priority 
ordering P found by the Probabilistic RPA algorithm; so 

)()( failpfailp PQ > . For the purposes of the proof, we 
will refer to this alternative priority ordering as nQ . We 
will iteratively transform nQ  into 1−nQ .. 1Q , where 1Q
is the same ordering as P. The transformation will be 
such that )()(1 failpfailp kk QQ ≥− , thus proving the 
theorem via the contradiction: )()( failpfailp QP ≥ . 
 We use k as an iteration count and also the priority 
level that we will transform. Thus k counts down from 
an initial value of n to 1. We note that as a result of the 
transformations, the messages at priority levels lower 
than k become the same in both kQ  and P, hence 1Q
and P represent the same priority ordering. 
 On iteration k, we transform priority ordering kQ  as 
follows: First we find the priority level i in kQ  of the 
message assigned to priority level k in P. We refer to 
this message as km , as we intend to assign it to priority 
level k. Note that as the messages of lower priority than 
k are the same in both kQ  and P, priority level i must be 
either higher than or equal to k. 

Figure 3: Transformation of priority order 

There are two cases to consider: 
1. Message km  is at priority k in both P and kQ , 

in which case no transformation is required on 
this iteration, and so 1−kQ  is identical to kQ . 

2. Message km  is at a higher priority i in kQ . In 
this case, we form priority ordering 1−kQ  by 
modifying kQ  as follows: Message km  is 
moved down in priority from priority level i to 
priority level k, and the messages at priority 
levels i+1 to k are all moved up one priority 
level (see Figure 3). 



Comparing the messages in priority order 1−kQ  with 
their counterparts in kQ . There are effectively four 
groups of messages to consider: 

1. ),( 1−kQihp : These messages are assigned the 
same priorities in both kQ  and 1−kQ  and so 
have the same WCDFPs. 

2. ),(),( 11 −− ∩ kk QilepQkhp : These messages 
retain the same partial order but are shifted up 
one priority level in 1−kQ  and so have 
WCDFPs that are no greater than they are in 

kQ . 
3. Message km , which is at priority level i in kQ

and at the lower priority level k in 1−kQ : We 
know, from the Probabilistic RPA algorithm, 
that km  at priority k, has a WCDFP no greater 
than the WCDFP of any of the messages in 

),( Pkhep , when they are assigned priority k. 
Now ),(),( PklpQklp k =  implies that 

),(),( PkhepQkhep k = , and so km  at priority 
k, has a WCDFP no greater than the WCDFP of 
the message at priority k in kQ . 

4. ),( 1−kQklp : These messages are assigned the 
same priorities in both kQ  and 1−kQ , and as 

),(),( 1 kk QkhepQkhep =− , they are subject to 
interference from the same set of higher 
priority messages, and so have the same 
WCDFPs in each case. 

For every message in 1−kQ , the above analysis identifies 
a message in kQ  which has a WCDFP that is the same 
or greater. Thus 1−kQ  has an overall WCDFP for any
message that is no greater than that of kQ , i.e. 

)()(1 failpfailp kk QQ ≥− . 
A total of n iterations of the above procedure (for 

values of k from n down to 1) are sufficient to transform 
any arbitrary priority ordering Q into the priority 
ordering P, generated by the Probabilistic RPA 
algorithm. Further, this transformation is achieved 
without any increase in the minimum WCDFP for any
message ( )( failp ), given by Equation (14) □

Example: We now apply the Probabilistic RPA 
algorithm to the example message set given in Table 2. 
Here, we assume that faults occur according to a Poisson 
arrival process with λ = 10 faults/s approximately 
equivalent to an error rate of 410−  errors/bit for a 
125Kbit/s bus. 

Table 5 gives the maximum number of faults 
tolerated, the response time (in ms) given that number of 
faults and the WCDFP for each message, as computed 
by the Probabilistic RPA algorithm. For example, at 
priority 5, message A can tolerate no errors, has a worst-
case response time of 5.366ms, and a WCDFP of 
5.20x10-2 (given, in this case, by the probability of no 
faults occurring in 5.366ms). Entries in the table marked 

�-� indicate that no value was computed by the 
algorithm, as the message had already been assigned a 
lower priority. 

Table 5: Computed values of αα, Rm|αα, WCDFP 
 Message 

Pri A B C D E 
5 0 

5.336 
5.20x10-2

1 
6.648 

2.03x10-3

0 
5.336 

5.20x10-2

4 
14.344 

2.88x10-7

4 
17.024 

4.90x10-7

4 1 
5.568 

1.41x10-3

1 
5.568 

1.41x10-3

1 
5.568 

1.41x10-3

- 5 
16.176 

9.83x10-9

3 1 
5.048 

1.15x10-3

2 
6.360 

3.50x10-5

1 
5.048 

1.15x10-3

- - 

2 2 
5.280 

1.85x10-5

- 2 
5.280 

1.85x10-5

- - 

1 2 
4.760 

1.27x10-5

- - - - 

We note that in the above example, when 
considering priority level 5, although both message E 
and message D could tolerate 4 errors, the fact that the 
errors would need to occur during a shorter response 
time of 14.344ms for message D compared to 17.024ms 
for message E, mean that message D has a lower 
probability of failure and is therefore assigned priority 5. 

The robust priority ordering found for this example, 
was (A, C, B, E, D). With this priority ordering, the 
maximum WCDFP of any message is 3.5x10-5. By 
comparison, D-JMPO (A, B, C, D, E) yields a maximum 
WCDFP of 1.15x10-3. Stated otherwise, there is an 
upper bound on the probability of failure of any given 
message transmission of approximately 1 in 28,500 
when priorities are assigned according to the 
Probabilistic RPA algorithm, and 1 in 870 with D-JMPO 
- a factor of over 30 worse. 

Figure 4 plots the maximum WCDFP for the 
example set of messages, against the 120 different 
permutations of priority assignment, in lexicographical 
(dictionary) order: (A,B,C,D,E), (A,B,C,E,D), 
(A,B,D,C,E), (A,B,D,E,C), (A,B,E,C,D), (A,B,E,D,C), 
(A,C,B,D,E), (A,C,B,E,D) � Of these orderings, D-
JMPO is the 1st one generated and the robust priority 
ordering determined by the Probabilistic RPA algorithm 
is the 8th generated. The 120 priority orderings can be 
classified as follows: 

o 54 priorities orderings result in a high 
maximum WCDFP of approximately 0.05, 
corresponding to a failure rate of 1in 20. 

o 62 priority orderings, including D-JMPO, result 
in a maximum WCDFP in the range 0.002 to 
0.001, corresponding to failure rates between 1 
in 500 and 1 in 1000.  
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Figure 4: Maximum WCDFP for different priority orderings 
o Just 4 priority orderings are robust. The 

maximum WCDFP for these priority orderings 
is 3.5x10-5, corresponding to a failure rate of 1 
in 28,500. 

This example shows how robust priority ordering of 
CAN messages can significantly reduce the worst-case 
deadline failure probability. Further it serves to illustrate 
that �deadline minus jitter� monotonic priority 
assignment, commonly used to assign priorities to CAN 
messages, is not necessarily the most robust priority 
ordering to use. 

We note that �deadline minus jitter� monotonic 
priority ordering (D-JMPO) is a robust priority ordering 
for systems where D-JMPO is the optimal priority 
ordering when additional interference is not considered 
(Davis and Burns, 2007). However, D-JMPO is not the 
optimal priority ordering for CAN (as shown by Davis 
et al. (2007) and the Appendix) due to the non-pre-
emptive nature of message transmission. 

4.6. Experimental investigation 
In this section, we investigate how often the 

Probabilistic RPA algorithm improves upon D-JMPO in 
terms of the maximum WCDFP for a set of CAN 
messages. 

To explore this question, we generated random sets 
of messages. Each message set contained 8 messages, 
each with 1 to 8 bytes of data. The number of data bytes 
was chosen from a uniform random distribution. 
Message periods were chosen from the range 2.5ms to 
20ms, in steps of 0.25ms, again according to a uniform 
random distribution. Message deadlines were set equal 
to their periods and message jitter set to zero. In each 
case, a 125 Kbit/s network, standard 11-bit identifiers, 
and 8 data-byte background messages were assumed. 

In calculating WCDFPs, faults were assumed to 
occur according to a Poisson arrival process with λ = 10 

faults/s. We determined the schedulability and 
maximum WCDFP for the message sets using D-JMPO 
and compared the results to those obtained using the 
Probabilistic RPA algorithm. 

In total, 10,000 message sets were generated; 1,000 
for each of ten 5% utilisation bands, starting at 50-55% 
and finishing at 95-100%. 

Figure 5 plots, for each utilisation level, the 
percentage of message sets that were schedulable 
according to each priority assignment policy, along with 
the percentage of message sets where the maximum 
WCDFP differed depending on the priority assignment 
policy used. 
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Figure 5: 
Line 3 in Figure 5 shows that typically 20-30% of 

schedulable message sets at each utilisation level have a 
maximum WCDFP that is strictly smaller with priorities 



assigned according to the Probabilistic RPA algorithm, 
than with D-JMPO. 

Similarly, line 4 shows that typically 2-5% of 
schedulable message sets at each utilisation level have a 
maximum WCDFP that is more than an order of 
magnitude smaller with priorities assigned according to 
the Probabilistic RPA algorithm, than with D-JMPO. 

The overall results of this experimental investigation 
can be summarised as follows: 

o All of the message sets with utilisation below 
70% were schedulable with both priority 
assignment policies. 

o None of the 1,000 message sets with utilisation 
exceeding 95% were schedulable with either of 
the priority assignment policies. In total, 27% 
(2666 out of 10,000) of the message sets 
generated were not schedulable. 

o 6% (121 out of 2,000) of the messages sets with 
utilisation in the range 80-90% were schedulable 
with priorities assigned according to the 
Probabilistic RPA algorithm, but unschedulable 
with D-JMPO. 

o 25% (1802 out of 7,334) of the schedulable 
message sets had a lower maximum WCDFP 
with priorities assigned according to the 
Probabilistic RPA algorithm, than with D-
JMPO. 

o 3% (223 out of 7,334) of the schedulable 
message sets had a maximum WCDFP more 
than an order of magnitude smaller with 
priorities assigned according to the Probabilistic 
RPA algorithm, than with D-JMPO. 

Overall, this investigation showed that although D-
JMPO cannot be guaranteed to provide an optimal 
solution, it is a reasonable heuristic, which gives the 
most robust solution approximately 70-80% of the time.  

For a significant number of cases, 25% of the 
schedulable message sets in our randomised test; D-
JMPO is not the most robust priority ordering. In around 
3% of schedulable cases, D-JMPO gave a maximum 
WCDFP at least an order of magnitude higher than 
necessary, and for approximately 6% of schedulable 
message sets with utilisations between 80-90%, D-
JMPO did not result in a schedulable system. 

Finally, recall that both deadline monotonic priority 
ordering (DMPO) and rate monotonic priority ordering 
(RMPO) are special cases of D-JMPO. As the CAN 
messages in this experimental investigation had zero 
jitter, and deadlines equal to their periods, then the 
above results apply equally to rate monotonic and 
deadline monotonic priority orderings, neither of which 
are guaranteed to be optimal or robust priority orderings 
for CAN. 

5. Summary and conclusions 
In this paper, we showed how the Robust Priority 

Assignment algorithm could be adapted to the problem 
of providing a robust priority ordering for CAN 
messages that are subject to errors on the bus caused by 
Electromagnetic Interference. 

5.1. Contribution 
The major contributions of this work are as follows: 

• Adapting the Robust Priority Assignment algorithm 
to the problem of assigning priorities to CAN 
messages. We showed how the RPA algorithm 
could be used to provide priority orderings that: 

(i) maximize the number of faults 
tolerated, 

(ii) maximize the delay tolerated, 
(iii) minimise the probability of message 

deadline failure (Equation (14)). 
Of the three, we recommend (iii) as providing the 
most suitable approach to the problem of assigning 
priorities to CAN messages. 

• Proving that the Probabilistic RPA algorithm 
provides the most robust priority ordering possible 
in the sense that of all feasible priority orderings, it 
is the one with the minimum probability of message 
deadline failure (Equation (14)). 

• Showing that �deadline minus jitter� monotonic 
priority assignment, considered for many years to 
be optimal for CAN (Tindell and Burns, 1994; 
Tindell et al., 1994; Tindell et al., 1995), and widely 
used to assign priorities to CAN messages in 
commercial systems, does not necessarily result in 
the most robust priority ordering, nor does it always 
result in a schedulable priority ordering when one 
exists. 

• Showing that assigning priorities according to the 
Probabilistic RPA algorithm reduced the maximum 
probability of deadline failure in around 25% of 
cases, as compared to �deadline minus jitter� 
monotonic priority assignment. 

5.2. Conclusion 
The Probabilistic RPA algorithm ensures that the 
configuration of message identifiers chosen is robust to 
errors on the bus in a way that previous approaches 
using �deadline minus jitter� monotonic priority 
assignment suggested by Tindell and Burns (1994), and 
Tindell et al. (1994, 1995), or Audsley�s optimal priority 
assignment algorithm suggested by Davis et al. (2007), 
do not. Thus the Probabilistic Robust Priority 
Assignment algorithm is useful to engineers wishing to 
configure commercial CAN systems in a way that makes 
them as robust as possible to errors on the bus, without 
the need to switch to a higher baud rate, or to 
compromise functionality by omitting some messages or 
reducing their transmission rates. 



5.3. Extensions and Future work 
In many systems, it is possible to classify CAN 

messages according to their importance as well as their 
deadlines, for example, in an automotive application, 
messages containing data to switch the brakes lights 
on/off, raise/lower the windows might be considered 
more important than messages containing data that 
adjusts the volume/tuning of the radio. In this case, 
messages could be grouped according to importance and 
the Robust Priority Assignment algorithm modified so 
that at each priority level it selects, from the lowest 
importance group containing a schedulable message, the 
message with the minimum WCDFP. This would have 
the effect of minimising the overall WCDFP for the 
most important group of messages. 

The problem of bi-criteria or multi-criteria 
optimisation, for example, minimising the maximum 
WCDFP for the most important group of messages, then 
minimising the maximum WCDFP of the next most 
important group of messages and so on, is beyond the 
scope of this paper, however it is an interesting area for 
future research. 
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Appendix 
George et al. (1996) state the following theorem for 

non-pre-emptive fixed priority scheduling (assuming no 
jitter): 

“Theorem 16: 
Deadline monotonic priority order is an optimal 

priority assignment for periodic or sporadic task sets 
with ii TD ≤ and ji DD ≥ ⇒ ji CC ≥ ”. 

In many commercial CAN systems, all messages 
carry the maximum 8 bytes of data as a way of 
ameliorating the large overheads of the control fields 
and 15-bit CRC. If correct, the above theorem would 
indicate that DMPO (or more likely D-JMPO6) was the 
optimal priority assignment policy to use in such 
systems. 

The proof given by George et al. (1996), assumes 
that “as i∀ , ii TD ≤  the worst-case response time of 
any task is found in its first instance”; however this 
assumption was shown to be false by Davis et al. (2007). 
They noted that “the proof is undermined; however the 
theorem may or may not still be true”. 

The following counter-example resolves this 
question, showing that Theorem 16 in (George et al., 
1996) is in fact false. Hence DMPO is not optimal for 

6 If correct, the proof given in (George et al., 1996) could be extended 
to the case where messages have non-zero jitter. 

fixed priority non-pre-emptive systems with ii TD ≤ and
ji DD ≥ ⇒ ji CC ≥ . In fact, the counter-example also 

shows that it is also not optimal for the interesting case 
where ji CCji =∀ , . 

The parameters of the counter-example message set 
are given in Table 6 below. The total bus utilisation is 
93.6%. 

Table 6: Message parameters 
Message Period 

(ms) 
Deadline 
(ms) 

Number 
of bits 

TX time 
(ms) 

A 2.5 2.5 125 1.0 
B 4.0 3.0 125 1.0 
C 3.5 3.25 125 1.0 

Assuming DMPO, the worst-case response times of 
the three messages (computed via the exact analysis 
given by Davis et al. (2007)) are AR =2.0ms, 

BR =3.0ms, and CR =3.5ms. The worst-case response 
time of message C occurs for the second invocation of 
the message within the busy period, as shown in Figure 
6. The response time for this invocation is 3.5ms, 
exceeding its deadline of 3.25ms. 

Figure 6: DMPO unschedulable 
With the alternative priority ordering; A, C, B, all 

three messages can meet their deadlines in the worst-
case. The busy period for the lowest priority message 
(now B) is shown in Figure 7. 

Figure 7: Alternative priority ordering: 
schedulable 

The worst-case response times of the three messages, 
in this case are: AR =2.0ms, BR =3.0ms, and 

CR =3.0ms. 
This set of messages is unschedulable with DMPO, 

but schedulable with an alternative priority assignment, 
thus proving that Theorem 16 from (George et al., 1996) 
is false. 

Summary 
The simple counter-example given in this appendix 

serves to illustrate that DMPO/D-JMPO is not optimal 



for even the simplest of CAN systems (three messages, 
with deadlines less than or equal to their periods, zero 
jitter, and the same transmission times). When 
configuring commercial CAN systems, it is important to 
use an appropriate method of assigning priorities to 
CAN messages. We recommend the use of the Robust 
Priority Assignment algorithm described in the main 
body of this paper. 
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