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Abstract—The OS scheduler’s memory and runtime overheads
form crucial design constraints for embedded systems imple-
mented on low-cost hardware platforms. Table-driven scheduling
can provide a high level of schedulability; however, it also
consumes significant amounts of memory. By contrast, effec-
tive non-preemptive scheduling policies, such as the non-work-
conserving Critical-Window EDF (CW-EDF), have low memory
usage, but substantial runtime overheads. This paper aims to
achieve efficient and effective non-preemptive scheduling by using
a First-In-First-Out (FIFO) scheduling policy combined with a
novel offset tuning technique. This technique enables the FIFO
policy to reproduce a given feasible schedule, such as that
followed by CW-EDF, resulting in a high level of schedulability,
combined with comparatively low runtime overheads. Further,
by using a small number of offsets per task, memory overheads
are also tightly constrained. The proposed solution is evaluated
in terms of runtime overhead, memory consumption, and schedu-
lability ratio, using a prototype implementation on an Arduino
board. This shows that FIFO with offset tuning can match the
schedulability ratio of CW-EDF, while typically exhibiting lower
scheduling overheads and memory consumption than the state-
of-the-art Offline Equivalence technique, which is based on Non-
Preemptive Fixed Priority (NP-FP) scheduling.

I. INTRODUCTION

Due to severe cost constraints, many embedded micropro-
cessors have relatively low processor speeds (e.g., 16MHz)
and only small amounts of memory (e.g., a few KiB of RAM).
Depending on their runtime and memory overheads, scheduling
algorithms that have a high schedulability ratio in theory may
not be viable on such platforms in practice. However, simple
but efficient scheduling algorithms with low overheads are also
insufficient if they cannot ensure that all deadlines are met.

In this paper, we aim to use the First-In-First-Out (FIFO)
scheduling policy (also known as First-Come-First-Served
(FCFS)), since it has very low runtime overheads. The key issue
with FIFO scheduling is that it does not take task deadlines into
account and so is ineffective at meeting time constraints [1].
To remedy this problem, we introduce a novel offset tuning
technique, which assigns a small number of offsets to each
task. This technique allows a FIFO scheduler to mimic a
given schedule produced by a much more effective (but also
much more heavy-weight) scheduling policy, such as the non-
preemptive, non-work-conserving Critical-Window EDF (CW-
EDF) [2]. As a result, we obtain the high levels of schedulability
provided by CW-EDF, while retaining the low runtime and
memory overheads of FIFO scheduling.

FIFO is a widely used scheduling policy that can easily be
implemented in hardware or software. With FIFO scheduling,
the order in which tasks are executed depends solely on their
release times. Thus FIFO scheduling guarantees non-preemptive
execution, which in turn improves timing predictability. Since
tasks are not preempted, both their worst-case execution times

(WCETs ) and their worst-case response times can be estimated
with a higher degree of accuracy. Further, exclusive access to
shared resources is assured, without the need to employ specific
mutual exclusion mechanisms. As a result, FIFO scheduling
reduces both design complexity and implementation overheads.

Further, FIFO scheduling is sustainable [3] w.r.t. a reduction
in execution times, i.e., if a task set is schedulable under the
FIFO policy when all jobs exhibit their WCETs, it remains
schedulable when some jobs require less execution time [1].
Other non-preemptive schedulers such as Fixed-Priority (NP-
FP), Earliest-Deadline-First (NP-EDF), CW-EDF [2], and
Precautious-RM [4] are not sustainable, although their schedu-
lability can be verified with a sustainable schedulability test [5].

Although it improves time predictability, plain FIFO sche-
duling exhibits a low schedulability ratio compared to other
non-preemptive policies such as NP-FP and NP-EDF. This is
because once a task enters the FIFO queue, its position in the
queue is not modified even if the next-released task is more
urgent. FIFO scheduling of a hard real-time system thus usually
implies severe under-utilization of the processing resource.

Since under the FIFO policy the execution order of pending
jobs remains fixed once they are released, the only way to
modify the resulting schedule is to modify the job release
times—for instance, by assigning an initial offset to each task,
as suggested by Altmeyer et al. [1].

The offset assignment problem for FIFO poses considerable
challenges. Firstly, it is NP-hard, since any general solution
could also be used to solve the non-preemptive scheduling
problem of periodic tasks, which is known to be NP-hard [6].
In addition, if offsets are not selected carefully, then they may
cause some workload to be carried into the next hyperperiod,
which drastically increases the length of the interval that
needs to be checked to determine schedulability. Further,
changing the offset of one task may change the alignment
of the releases of that task w.r.t. all other tasks, resulting in
a totally different, possibly infeasible schedule; this renders
purely greedy heuristics ineffective. Finally, for periodic task
sets with non-harmonic periods, it may not be feasible to find
a single offset per task that ensures schedulability.
This paper. The main contribution of this paper is the introduc-
tion of a novel offset tuning technique for the FIFO scheduling
policy that circumvents most of these challenges by enabling
FIFO scheduling to reproduce any given feasible schedule.
The technique allows tasks to have multiple offsets if that is
necessary to reproduce the reference schedule. Specifically,
each task has a pre-calculated set of offset and job identifier
pairs that indicate the job within the hyperperiod at which that
offset is first applied. To limit memory overheads, offset tuning
seeks to find a suitably small set of offsets for each task.
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Offset tuning involves deriving a Potential Offset Interval
(POI) for each job of a task such that any offset chosen from the
POI ensures that the resulting FIFO schedule is equivalent to
the given reference schedule. After finding POIs for each job of
a task within the hyperperiod, offset partitions are determined
for each task, i.e., partitions of consecutive jobs that may use
the same offset. In addition, two simple heuristics are also
considered for assigning a single offset to each task.

The proposed technique has several advantages: (i) for a
given feasible schedule, it always finds an offset assignment
that results in a feasible FIFO schedule, (ii) the resulting FIFO
schedule does not increase the response time or the completion
time of any job in comparison to the original schedule, and (iii)
offset tuning has polynomial-time computational complexity
w.r.t. the number of jobs in the hyperperiod.

To evaluate the efficiency of the solution, we implemented
FIFO scheduling with multiple offsets per task on an Arduino
board, and then compared it in terms of runtime and memory
overheads to other scheduling policies such as NP-FP, NP-EDF,
CW-EDF [2], and Offline Equivalence (OE) [7].
Related work. Offset assignment, with the goal of improv-
ing schedulability, has been suggested for preemptive fixed-
priority [8], EDF [9, 10], NP-FP [11], and NP-EDF [12]
scheduling, as well as for distributed systems [13]. It has
also been explored for specific domains such as automotive
runnables [14] and avionics AFDX networks [15]. None of
these works considered applying offsets to FIFO scheduling.

Schedulability analyses of offset-free task sets, where any
arbitrary offset can be assigned to a task, have been presented
by Goossens et al. [16] and Grenier et al. [17]. These analyses,
however, do not easily generalize to tasks with multiple offsets
and are pessimistic for task sets with known fixed offsets.

Schedulability analysis for FIFO scheduling was first pre-
sented by George and Minet [18], who focused on distributed
systems with sporadic tasks. Later, Altmeyer et al. [1] consid-
ered a sufficient schedulability test for uniprocessor systems
and periodic tasks with offsets. They proposed a random
offset assignment, i.e., offsets are chosen randomly until an
assignment satisfies the schedulability conditions. However,
this approach does not scale well if the task set has a high
utilization or if it consists of a large number of tasks.

To the best of our knowledge, the work of Altmeyer et al.
[1] is the only prior work that considers FIFO schedulability
analysis with offsets and provides an offset assignment solution.
The approach presented in this paper improves upon Altmeyer
et al.’s work in the following ways: (i) it guarantees schedula-
bility provided that a feasible schedule is known for the task
set and (ii) the offset tuning method forces FIFO to generate
the same job ordering as the reference schedule, ensuring that
compliance with any precedence constraints is preserved.

In previous work [7], we presented OE for systems with
limited memory that do not have sufficient space to store a
complete scheduling table. OE is a technique for reproducing
an offline scheduling table at runtime with the help of a low-
overhead online scheduling algorithm such as NP-FP. At design
time, it pre-calculates a set of differences by comparing the

scheduling table with the schedule produced by the online
scheduler, and organizes this data into two categories: idle
intervals and priority inversions. The former is then used to
force the underlying NP-FP scheduler to leave the processor idle
even if there are pending tasks, and the latter is used to force
it to schedule a lower-priority task rather than a higher-priority
one. Similar to the work on OE, in this paper we provide an
efficient scheduling technique that reproduces an equivalent
schedule at runtime. However, while OE uses differential data
with an NP-FP scheduler, in this paper we exploit the periodicity
of the tasks and adjust the release times via offsets to obtain
the desired schedule using a FIFO scheduler. Our evaluation
shows that FIFO scheduling with offset tuning achieves equally
high schedulability and low runtime overheads as OE at lower
memory costs for most (but not all) task sets.

Organization. Sec. II presents the system model and Sec. III
motivates the approach. Sec. IV introduces the offset tuning
technique and its properties. Sec. V reports on an empirical
evaluation of an Arduino-based proof-of-concept implementa-
tion. Sec. VI provides an in-depth example to further illustrate
the approach. Finally, Sec. VII concludes.

II. SYSTEM MODEL AND NOTATION

We consider the problem of scheduling a set of independent
non-preemptive tasks τ = {τ1, τ2, . . . , τn} on a uniprocessor
using FIFO scheduling. Each task τi is characterized by its pe-
riod Ti, relative deadline Di, best-case execution time (BCET)
Cmin

i , and WCET Cmax
i . We assume constrained deadlines

(Di ≤ Ti). All parameters are integer multiples of the system
clock and tasks are indexed such that D1 ≤ D2 ≤ . . . ≤ Dn.
If two tasks are released at the same time, we assume that
ties are broken based on task indices, i.e., a task with a lower
index enters the queue before a task with a higher index1.

System utilization is given by U =
∑n

i=1 ui, where ui =
Cmax

i /Ti is the utilization of task τi. The hyperperiod is the
least common multiple of the task periods. We use mi to denote
the number of jobs of task τi in a hyperperiod. The kth job of
task τi is denoted by Ji,k and has execution time Ci,k, which
is an a priori unknown value from the range [Cmin

i , Cmax
i ].

A job with execution time Ci,k ∈ [Cmin
i , Cmax

i ] that starts its
execution at time t uses the processor in the interval [t, t+Ci,k).

A job Ji,k is released at time ri,k = (k − 1) · Ti + oi,k,
where oi,k is the offset of the task at its kth release. The value
of the offset is always relative to the original release time of
the task denoted by r0i,k = (k − 1) · Ti. We use oi to denote
the offset of τi if it has only one offset.

III. MOTIVATIONS AND CHALLENGES

The example in Fig. 1-(a) shows a FIFO schedule in which
all offsets are 0. In this example, the second job of τ2 misses
its deadline as it does not have a chance to be scheduled before
time 20, when the first jobs of all other tasks as well as the
second job of τ1 have finished. Since the execution order of

1According to George and Minet [18], FIFO with deadline-monotonic tie-
breaks is optimal for the class of uniprocessor FIFO scheduling algorithms.
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Fig. 1. Different schedules for three tasks with parameters T1 = 10, C1 = 3,
T2 = 12, C2 = 6, T3 = 60, and C3 = 8 with implicit deadlines: (a) a FIFO
schedule for synchronous releases, (b) a CW-EDF schedule for synchronous
releases, (c) a FIFO schedule with o1 = o2 = 0 and o3 = 19, and (d) an
NP-FP schedule with rate-monotonic priorities and offsets similar to (c).

jobs does not change once they are released, an urgent job
such as J2,1 has to wait until all prior jobs complete.

The example in Fig. 1-(a) cannot be scheduled with any work-
conserving non-preemptive scheduling algorithm (including
FIFO, NP-FP, and NP-EDF) if tasks are released synchronously.
However, if the processor is left idle in the interval [9, 10),
then it is possible to schedule the task set without deadline
misses, as shown in Fig. 1-(b). This schedule is generated
by CW-EDF, one of the recently developed online non-work-
conserving scheduling algorithms [2] in which the job-ordering
policy (such as EDF) is augmented by an idle-time insertion
policy (IIP). Whenever CW-EDF is activated, the job ordering
policy finds the earliest-deadline pending job, and then the IIP
decides whether to schedule that job or to leave the processor
idle until a higher-priority job is released. The decisions of
CW-EDF’s IIP are made by considering a small set of jobs
that will be released in the future, i.e., the next job of each
non-pending task. The algorithm then calculates the latest start
time, which is the latest time at which one of these jobs must
commence execution if no deadline is to be missed. If the
current highest-priority job can finish its execution by this
latest start time, then it is scheduled; otherwise, the algorithm
leaves the processor idle until a higher-priority job is released.

Inspired by the CW-EDF schedule in Fig. 1-(b), we assign
the following set of offsets to the tasks: o1 = o2 = 0 and
o3 = 19. Using these offsets, FIFO scheduling is able to meet
all deadlines as shown in Fig. 1-(c). Moreover, this task set

with the given offsets is not schedulable by NP-FP (with rate-
monotonic priorities) as illustrated in Fig. 1-(d) because NP-FP
prioritizes J1,4 over J2,3. In conclusion, appropriately chosen
offsets can improve FIFO schedulability even in cases where
existing classic real-time policies such as NP-FP fail to meet
all deadlines.

As mentioned earlier, changing the offset of one task may
lead to changes in the alignment of all jobs of that task w.r.t.
the other tasks. Thus, some offset assignments for a given task
may make other tasks unschedulable. For example, in Fig. 1-
(c), if o3 < 12 ∨ 20 < o3 ≤ 30 ∨ 33 < o3, then tasks τ1
or τ2 miss deadlines (assuming o1 = o2 = 0). In other words,
increasing or decreasing an offset may or may not maintain
schedulability, which makes for a challenging search space.

IV. OFFSET ASSIGNMENT

To obtain a fast and efficient offset assignment solution
for FIFO scheduling, rather than trying different offsets and
checking if those offsets guarantee schedulability [1], we start
from a known feasible schedule generated by a scheduling
algorithm that is highly effective for task sets without offsets,
such as CW-EDF. In the second step, we assign offsets in such
a way that the given schedule is reproduced by FIFO. Here,
reproducing a schedule means creating an equivalent schedule
that (i) has the same job ordering as the given reference
schedule and (ii) each job in the schedule finishes no later than
in the given schedule. Moreover, since one offset might not
suffice to guarantee schedulability, we assign multiple offsets
to a task when needed.

As the goal is to reproduce an equivalent schedule for a
given feasible schedule that is constructed without offsets, the
resulting FIFO schedule will not carry any work into the next
hyperperiod. Therefore, by design, there is never a need to
deal with multiple hyperperiods when checking schedulability.
Additionally, the new FIFO schedule not only respects the
absolute deadlines of all jobs, but may also reduce response
times w.r.t. the assigned offsets. For example, in Fig. 1-(c), the
response time of J3,1 drops to 8 since it executes immediately.

Importantly, the proposed solution does not require re-
considering the entire task set each time an offset is assigned.
This has practical implications: in many systems, designers
create a scheduling table using optimization techniques to
increase a system’s quality of service, control performance, or
to respect precedence constraints. Thus, regenerating a feasible
schedule that satisfies all constraints and optimization criteria
may be quite challenging and time consuming. These extra
costs are avoided altogether by our algorithm since the offsets
that it assigns do not alter the original schedule.

In the rest of this section, we explain the main ideas and
introduce pre-requisite definitions and concepts (Sec. IV-A).
The offset tuning algorithm is presented in Sec. IV-B, followed
by a proof of its correctness and other properties in Sec. IV-C.
Finally, Sec. IV-D introduces two simple heuristic solutions
for assigning only a single offset to each task.
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Fig. 2. POIs for three tasks with parameters T1 = 10, C1 = 2, T2 = 12,
C2 = 6, T3 = 30, C3 = 8, implicit deadlines, and fixed execution costs (i.e.,
no runtime execution time variation): (a) a given schedule without offsets and
(b) a FIFO schedule with o1 = o2 = 0 and o3 = 18.

A. Solution Idea and Definitions

Recall that released jobs are never reordered under FIFO
scheduling. We use this property to reproduce a schedule that
is equivalent to a given feasible schedule while aiming to
minimize the number of offsets assigned to each task.

Definition 1. A schedule S1 is S2-equivalent if and only if the
two schedules contain the same set of jobs and

∀Ji,j : Si,j(S1) ≤ Si,j(S2), and (1)

@Ji,j , Jx,y : Sx,y(S1) < Si,j(S1) ∧ Sx,y(S2) > Si,j(S2), (2)

where Si,j(Sk) is the start time of Ji,j in Sk for k ∈ {1, 2}.

Condition (1) ensures that the finish time of any job in
S1 is not later than in S2, and Condition (2) ensures that
these two schedules have the same job ordering. If these two
conditions hold and non-negative offsets are used to build S1,
then each job in S1 meets its deadline provided that S2 is
feasible. Definition 1 is sufficient to guarantee schedulability
while allowing for some flexibility in assigning offsets.

Since the FIFO policy executes jobs according to their release
order, as long as the release order is respected, we can assign
any offset to a particular job. For example, consider the schedule
in Fig. 2-(a), where there are two jobs of τ3 in the hyperperiod.
Any offset in the range [12, 18] can be used for J3,1 because
then FIFO scheduling guarantees that J3,1 will be scheduled
after J2,2. Similarly, the same property holds in the interval
[10, 14] for J3,2 since then J3,2 is scheduled after J1,5. (Recall
that ties are broken based on task indices.) We call these
intervals potential offset intervals and define them as follows.

Definition 2. Given a schedule S , an interval Ii,j = [Isi,j , I
e
i,j ]

is a potential offset interval (POI) for a job Ji,j if and only
if (i) 0 ≤ Isi,j ≤ Iei,j ≤ Si,j(S) and (ii) the resulting FIFO
schedule is S-equivalent for any oi,j ∈ Ii,j .

If an offset is not selected from a POI, the resulting schedule
may be completely different from the original one, as shown

Fig. 3. A set of POIs and their intersections. The horizontal axis is the relative
time for a valid offset for the task and the vertical axis shows the POIs of
jobs Ji,1–Ji,6 from top to bottom.

in Fig. 2-(b). In this example, we have o3 = 18, which is in
the POI of J3,1, but not in the POI of J3,2 in Fig. 2-(a). This
assignment creates a different schedule that results in a deadline
miss, and pushes some workload into the next hyperperiod. To
avoid such deviations from the original schedule, we assign
multiple offsets to a task when necessary.

To minimize the number of offsets required for each task,
and hence the amount of memory required for the scheduler,
we find the minimum number of offset partitions, i.e., groups
of neighboring jobs of a task that can use the same offset. Each
offset partition comprises an offset value and a job for which
the offset is first applied to the task. Once an offset is applied,
it is used for all subsequent jobs of the task until the next
offset is applied. Next, we formally define an offset partition.

Definition 3. A set of jobs gi,k = {Ji,j , Ji,j+1, . . . ,Ji,z} is an
offset partition for a task τi iff ωi,k 6= ∅, where

ωi,k =

z⋂
l=j

Ii,l. (3)

The start time of ωi,k, denoted by ωs
i,k, is the first permissible

offset for all jobs in the partition. This offset is applied to task
τi starting at time r0i,j = (j − 1) · Ti, where Ji,j is the first
job in the offset partition (i.e., the job with the lowest index).
Example. Fig. 3 shows a set of POIs of neighboring jobs. The
POIs are shown from top to bottom and their relative start and
finish times are indicated on the horizontal axis. One solution
that minimizes the number of offset partitions is {Ji,1, Ji,2},
{Ji,3, Ji,4, Ji,5}, and {Ji,6}. Even if we group Ji,5 with Ji,6
rather than Ji,4, the number of partitions remains the same.

To assign offsets to a task, each of its jobs must be assigned
to exactly one offset partition. Let Gi = {gi,1, gi,2, . . . , gi,W }
denote the offset partitions of task τi, where W = |Gi|. We
seek to minimize the number of offset partitions, and hence
we require Gi to satisfy the following condition:

W⋃
j=1

gi,j = {Ji,1, . . . , Ji,mi
} ∧ ∀j, ωi,j ∩ ωi,j+1 = ∅. (4)

B. Offset Tuning Technique

As the first step of creating an S-equivalent FIFO schedule,
we introduce necessary and sufficient conditions under which
FIFO scheduling maintains a specific order among two jobs.

Lemma 1. FIFO schedules Jx,y directly before Ji,j iff

rx,y < ri,j ∨
(
rx,y = ri,j ∧ x < i

)
and (5)
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@Jp,q :
(
rx,y ≤ rp,q < ri,j

)
∨
(
rp,q = ri,j ∧ p < i

)
. (6)

Proof. If (5) and (6) hold, Ji,j will be the job that is released
after Jx,y (or if there are other jobs released concurrently with
Ji,j , then it has the lowest index among them). Thus Ji,j will
be scheduled after Jx,y since it will be the next job in the
queue. If (5) or (6) do not hold, then either Ji,j is released
earlier than Jx,y or another job Jp,q is released before Ji,j and
after Jx,y . In either case, Ji,j cannot directly succeed Jx,y .

There is a cyclic dependency between offset assignment for
one task and finding the POIs of the other tasks. As evident in
Lemma 1, job order in a FIFO schedule depends solely on the
release times of the jobs, which in turn is affected by the choice
of offsets. For instance, consider the example in Fig. 4. In this
example, the order of original release times is different from
the job execution order since job Jx,y is scheduled after Jp,q
while r0x,y < r0p,q. To create an S-equivalent FIFO schedule,
a new release time (and offset) must be assigned to Jx,y , say,
r1x,y . However, while trying to minimize the number of offsets
for task τx, we may end up assigning another offset, say, r2x,y
to Jx,y. In both cases, r1x,y and r2x,y affect the POI of Ji,j ,
which causes a cyclic dependency between offset assignment
for Jx,y and the POI of Ji,j .

To break this cyclic dependency, we process tasks sequen-
tially in deadline-monotonic order. Namely, first the offsets
of all jobs of τ1 are assigned assuming that all jobs of all
other tasks will be released at their starting times in the given
reference schedule S. This process continues until all tasks
have been assigned their offsets as shown in Algorithm 1.

In the first step (line 1 of Algorithm 1), a set of initial release
times is assigned to the jobs such that the release time of each
job is equal to its start time in the given schedule, i.e.,

∀i, j, ri,j = Si,j(S). (7)

Then the algorithm finds the POI of each job Ji,j of task τi
in line 7, using the following equations:

Isi,j =


0, Ri,j = ∅
max{0,max{Ri,j}+ 1− r0i,j}, Ri,j 6= ∅ ∧ i < x,

max{0,max{Ri,j} − r0i,j}, otherwise,
(8)

Iei,j = Si,j(S)− r0i,j , (9)

where Ri,j is the set of release times earlier than ri,j , i.e.,

Ri,j = {rx,y | rx,y ≤ ri,j}. (10)

Note that Isi,j reflects the tie-breaking rule for FIFO and
hence does not allow job Ji,j to be released at rx,y if a tie
would be resolved in its favor rather than one of the jobs that
must be scheduled before Ji,j .

Algorithm 1 uses a greedy approach to find the minimum
number of offset partitions. It starts by assigning the whole
interval of the first POI to a temporary variable ω. Then it

Fig. 4. A schedule in which the job release and execution orders differ.

keeps track of the intersection of POIs of neighboring jobs in
ω through lines 8 and 9. At the point when a recently obtained
POI does not intersect with ω (lines 11 to 14), Algorithm 1
adds all of the previous jobs with intersecting POIs to a new
offset partition called g. Accordingly, it assigns the current
ω as their intersection (line 11) and the start time of interval
ω, denoted by ωs, as their offset. Knowing their offset, the
algorithm updates their release times in line 12, and then it
prepares for the next offset partition by resetting ω to Ii,j and
assigning the indicator of the starting job of the next offset
partition to j in lines 13 and 14, respectively.

After the for-loop in lines 6 to 16 of Algorithm 1, there
might still be some jobs that are not yet stored as an offset
partition. Lines 17 and 18 create the last offset partition and
update the release times of the remaining jobs accordingly. The
release time of a job Ji,x using offset ωs is given by:

ri,x = (x− 1) · Ti + ωs. (11)

The computational complexity of Algorithm 1 is
O(M logM), where M is the total number of jobs in the
hyperperiod, due to the sorting step in line 1. Since the
algorithm processes each job only once, the cost of the for-loop
in lines 2 to 19 is reduced to the cost of finding the POI of
the job plus updating its release time. Since the release times
are sorted, finding the POI (in line 7) can be done in constant
time if each job stores the index of its release time in r, which
allows it to access the previous element in r in one operation.
Updating the release time of each job can also be done in
O(logM) as it requires deletion from and insertion into a
sorted queue. Consequently, lines 2 to 19 have O(M logM)
computational complexity as well.

C. Proof of Correctness and Other Properties

In order to prove that the FIFO schedule resulting from the
offsets assigned by Algorithm 1 is S-equivalent, we show that
at any step in the algorithm, the release time values that are
kept in r guarantee an S-equivalent FIFO schedule. Thus, as
the algorithm reduces the number of offset partitions, it does
not affect the equivalency of the two schedules.

Lemma 2. The initial release times r defined by Equation (7)
create an S-equivalent FIFO schedule.

Proof. Recall that Equation (7) defines a job’s release time to
be equal to its start time in the reference schedule. Since the
reference schedule is feasible, only at most one job is scheduled
at any time. The initial release times will therefore have the
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Algorithm 1: Offset Tuning Algorithm
Input : Task set τ and a feasible reference schedule S
Output : The set of offset partitions for all tasks

1 r ← assign the initial release times using Equation (7)
and sort in ascending order;

2 for i = 1 to n do
3 Gi ← ∅;
4 k ← 1;
5 ω ← [0, H];
6 for j = 1 to mi do
7 Ii,j ← [Isi,j , I

e
i,j ] from Equations (8) and (9);

8 if ω ∩ Ii,j 6= ∅ then
9 ω ← ω ∩ Ii,j ;

10 else
11 Add offset partition g = {Ji,k, . . . , Ji,j−1}

with interval ω and offset ωs to Gi;
12 Update r for jobs Ji,k to Ji,j−1 using (11);
13 k ← j;
14 ω ← Ii,j ;
15 end
16 end
17 Add offset partition g = {Ji,k, . . . , Ji,mi} with

interval ω and offset ωs to Gi;
18 Update r for jobs Ji,k to Ji,mi

using (11);
19 end

same order as the corresponding start times in the reference
schedule. Consequently, both conditions of Definition 1 are
satisfied.

Next, we show that the intervals obtained in line 7 are valid
POI intervals, and then we extend Lemma 2 to the release
times that are updated throughout the algorithm.

Lemma 3. If r contains release times that guarantee an S-
equivalent FIFO schedule, then Equations (8) and (9) create
a valid POI.

Proof. We start with Condition (i) of Definition 2. The two
boundary conditions 0 ≤ Isi,j and Iei,j ≤ Si,j(S) are trivially
satisfied. Since by Equation (10) only jobs with release times
earlier than ri,j are selected, we have max{Ri,j} ≤ ri,j ≤
Si,j(S), and hence Isi,j ≤ Iei,j .

Next, we prove that Condition (ii) of Definition 2 is satisfied
by showing that the resulting FIFO schedule will be S-
equivalent for any oi,j ∈ Ii,j . Since Iei,j ≤ Si,j(S), the
resulting FIFO schedule satisfies Equation (1) in Definition 1
for any oi,j ≤ Iei,j . For Equation (2), we must show that

∀oi,j , @Jx,y, Si,j(S) < Sx,y(S) ∧ (rx,y < oi,j ∨

(rx,y = oi,j ∧ x < i)), (12)

otherwise a job Jx,y exists that a FIFO scheduler will run
before Ji,j , which would violate the S-equivalency of the
schedule.

Without loss of generality, we prove (12) holds for the largest
value that oi,j can assume, i.e., oi,j = Iei,j = Si,j(S). From
Lemma 2, we know that the initial release time of Jx,y is not
smaller than Si,j(S). Thus, if the release time of job Jx,y has
not been changed by the algorithm yet, Equation (12) is already
satisfied. Otherwise, if rx,y has been changed once already,
which happens only if x < i, then the minimal value that it
assumes must come from its POI, as defined by Equation (8).
Since x < i, job Jx,y will win the tie if it is released at time
Si,j(S), and hence Isx,y is at least ri,j = Si,j(S) + 1.

Theorem 1. Algorithm 1 yields offsets that create an S-
equivalent FIFO schedule.

Proof. Since by Lemma 2 the initial release times assigned
in line 1 already satisfy the claim, it is sufficient to show
that whenever an offset is updated through lines 12 or 18, the
resulting FIFO schedule will still be S-equivalent. By Lemma 3,
the interval obtained in line 7 is a valid POI, which means that
regardless of the chosen offsets, it guarantees an S-equivalent
schedule as long as the given set of release times guarantee
such a schedule. Since the starting release times (line 1) create
an S-equivalent schedule, any chosen offset from Ii,j will also
guarantee the same property for the next set of release times
as determined in lines 12 and 18.

Next, we discuss some properties of Algorithm 1, beginning
with the fact that it creates the minimum number of offset
partitions for a given set of POIs.

Theorem 2. Algorithm 1 creates the minimum number of offset
partitions for each task τi w.r.t. the given initial release times r.

Proof. By strong induction on the number of jobs of τi that
have been partitioned so far. The base case is trivial since a
single job can form only one partition. The induction hypothesis
is that Algorithm 1 assigns the minimum number of offset
partitions to jobs Ji,1 to Ji,k for all k, 1 ≤ k ≤ j. The induction
step is to show that Algorithm 1 assigns all jobs Ji,1, . . . , Ji,j+1

to the minimum number of offset partitions. The proof has
three cases according to the relationship between Ii,j+1 and ω:
(i) Ii,j+1∩Ii,j = ∅, (ii) Ii,j+1∩ω 6= ∅, and (iii) Ii,j+1∩Ii,j 6=
∅ ∧ Ii,j+1 ∩ ω = ∅.

Case (i): In this case, the algorithm assigns a new offset
partition to Ji,j+1, and hence it increases the current number
of offset partitions by one. However, because Ii,j+1 ∩ Ii,j = ∅,
it is not possible to use the same offset for both Ji,j and Ji,j+1

and Ji,j+1 must be added to a new partition anyway. Since,
according to the induction hypothesis, the algorithm generates
the minimum number of offset partitions for Ji,1 to Ji,j , even
after adding Ji,j+1 and increasing the number of partitions by
one, the number of offset partitions remains minimal.

Case (ii): In this case, the algorithm adds Ji,j+1 to the same
partition that Ji,j resides in, and hence it does not increase
the number of partitions. Consequently, it still maintains the
minimum number of partitions due to the induction hypothesis.

Case (iii): In this case, the algorithm increases the number of
offset partitions by one. Let K denote the number of partitions.
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We show that no partitioning of jobs Ji,1 to Ji,j+1 exists such
that there are fewer offset partitions than K. The only way to
not add a new partition for Ji,j+1 is to group it with some other
neighboring jobs starting from Ji,j . However, since ω∩Ii,j+1 =
∅, there exists at least one job Ji,x such that Ii,x ∩ Ii,j+1 = ∅,
as otherwise ω would intersect with Ii,j+1. Since Ji,x does not
intersect with Ii,j+1, it cannot be in the same offset partition
with Ji,j+1. Thus, jobs that precede Ji,x cannot be in the same
partition as the jobs after Ji,x. According to the induction
assumption, Algorithm 1 creates the minimum number of offset
partitions for jobs from Ji,1 to Ji,x, which is K − 1 (recall
that the algorithm assigns job Ji,j+1 to a new partition and
hence has K partitions for jobs Ji,1, . . . , Ji,j+1). Thus, even
if Ji,j+1 is grouped with prior jobs that have intersecting POIs
with Ii,j+1, there remain K offset partitions.

Although Algorithm 1 minimizes the number of offsets for
a given set of release times r, one should note that it is not
optimal in the general case when only the schedule is provided
as input. Finding the globally minimal number of offsets needed
to reproduce a given schedule remains an open problem.

D. Special Case: Single Offset Assignment

Each task τi will require only one offset if the POIs obtained
from Algorithm 1 satisfy the following condition:

∀i,
mi⋂
j=1

Ii,j 6= ∅. (13)

The following corollary summarizes this observation.

Corollary 1. Task set τ is feasible under FIFO scheduling
using only one offset per task if there exists a schedule S for
which the POIs obtained from Algorithm 1 satisfy (13).

Next, we introduce two simple heuristics to assign only one
offset to each task for systems that are not able to modify task
offsets at runtime. The first heuristic, called first start time
(FST), assigns the start time of the first job of a task in the
given schedule S as its offset, i.e.,

oi = Si,1(S)− r0i,1. (14)

The second heuristic, called first offset partition (FOP),
assigns a value derived from the first offset partition generated
by Algorithm 1 to all jobs of that task. Namely, it stops
searching for other offsets for a task in Algorithm 1 as soon as
the first offset is found. In Sec. V we evaluate the effectiveness
of using the offsets obtained by FST and FOP heuristics for
FIFO, NP-FP, and NP-EDF.

E. Support for Sporadic Tasks

The proposed offset-assignment solution extends to sporadic
tasks if each of those tasks is encapsulated in a polling server
(i.e., if the task is executed only when the server is scheduled).
Our approach trivially supports periodic polling servers since
it is oblivious to the type of job being scheduled. Hence, given
the budget and period of a polling server (supporting a sporadic
task), our analysis can easily find appropriate offsets.

V. EMPIRICAL EVALUATION

We conducted experiments to answer two main questions:
(i) Are the runtime and memory requirements of our offset
tuning technique practical? (ii) How efficient are our offset
assignment heuristics in improving schedulability?

A. Runtime Experiments on an Arduino Mega 2560 Platform

To evaluate the overhead of our solution, we implemented it
on an Arduino Mega 2560 board with an ATMega2560 RISC
microcontroller clocked at 16 MHz with 256 KiB Flash mem-
ory, an 8 KiB SRAM, and no cache memory. We considered six
scheduling algorithms: online CW-EDF [2], NP-EDF, NP-FP,
Table-Driven scheduling (TD), Online Equivalence (OE) [7],
and our proposed FIFO scheduler that uses multiple offsets
generated by Algorithm 1 (FIFO-OT). Our implementation2 is
freely available online under a liberal open-source license.

We compare against TD, OE, and CW-EDF for the following
reasons. CW-EDF has a high success rate in scheduling non-
preemptive tasks. TD has the lowest overhead as it is a simple
dispatcher that performs only a table lookup. Further, OE has
the same objective as the solution proposed in this paper since
it is also a technique to reproduce an offline schedule at runtime
with the help of a low overhead online scheduling algorithm
such as NP-FP. OE requires two types of data entries to be
stored: idle intervals and priority inversions, which are needed
to force the underlying NP-FP scheduler to leave the processor
idle even if there are pending tasks and to schedule a lower-
priority task rather than a higher-priority one if necessary.

We reused implementations of CW-EDF, NP-FP, NP-EDF,
OE, and TD introduced in prior work [7]. These implementa-
tions are release-jitter free since job releases are handled as
part of the scheduler main loop (i.e., not via interrupts).

Our implementation of FIFO-OT uses two tables: one to
store all distinct offset values for the whole task set (the offset
table), and another to store all offset pairs for each task. Each
item in the latter table has a job ID and an index into the offset
table. In most cases, only a few distinct offsets were stored,
allowing us to use only two bytes to store an offset pair.

We have used scheduling tables produced by CW-EDF for
TD, OE, and the offset tuning algorithm. In prior experi-
ments [7], we observed that there is little difference in terms
of memory access overheads between RAM and flash; in this
experiment, we thus simply stored the required data for TD, OE,
and offsets in RAM. We used Arduino’s built-in micros() clock
with an accuracy of 8 microseconds to measure overheads.

We reused the experimental setup of our prior study [7]
and measured each scheduler’s overheads as a function of
the number of tasks n ∈ {3, 6, 9, 12}. In fact, we tested the
same task sets as used in [7] to allow for a direct comparison
between our FIFO-based solution and the prior scheduling
approaches. Here, we briefly summarize the experimental setup:
First, the periods were chosen from the range [1, 1000] (in
milliseconds) with a log-uniform distribution. Second, u1 was
uniformly selected from the range [0.01, 0.99], from which

2Available at http://people.mpi-sws.org/∼bbb/papers/details/rtas18/
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Fig. 5. Scheduling overheads for different scheduling algorithms. The results
of CW-EDF, NP-FP, NP-EDF, TD, and OE are reproduced from [7].

C1 was obtained. Third, for each remaining task we selected
Ci ∈ [0.001, 2(C1 − T1)] to ensure that each task satisfies a
necessary schedulability condition [19]. Any task set for which
we could not build a feasible CW-EDF schedule, or which
had more that 1,000 jobs in the hyperperiod was discarded (it
would not fit into the RAM). We generated 1,000 task sets for
each value of n, and executed each task set for 30 seconds
under each scheduler.

The minimum, maximum, and average scheduling overhead
observed for the different scheduling algorithms are presented
in Fig. 5. The largest growth in both the maximum and average
overhead is exhibited by CW-EDF, since it considers future
jobs to avoid deadline misses. This highlights the fact that CW-
EDF, despite the high schedulability levels that it achieves, is
not an ideal choice for severely resource-constrained systems.

TD exhibits the lowest overheads due to its constant-time
complexity. The average overhead of OE and FIFO-OT grows
slowly, yet it is very close to NP-FP and TD. This shows that
both of these solutions attain reasonable overheads in most
cases. However, note that the resolution of the available clock
is larger in magnitude than the observed minor differences.

As can be seen in Fig. 5, the OE exhibits a larger maximum
observed overhead than FIFO-OT and the overhead grows faster
than for FIFO-OT when the number of tasks increases. This
overhead is incurred at the end of each hyperperiod, where OE
needs to reset its internal index variables that keep track of
the irregular jobs and idle intervals. Although FIFO-OT must
also keep track of the current offset pair for each task, this
offset-pair index can be reset on a per-task basis when a task’s
last job in the hyperperiod is released; the overhead of resetting
these pointers is thus distributed across multiple job releases,
which avoids peaks in the overhead as observed with OE.

Fig. 6 shows the schedulability of NP-FP and FIFO without
offsets. (Since we discarded every task set that could not be
scheduled by CW-EDF, by design FIFO-OT, OE, and TD were
able to schedule all task sets, i.e., they all have a schedulability
ratio of 1.0 in this experiment.) We observe that low-overhead,
online scheduling policies such as NP-FP or FIFO (without
offsets) suffer a substantially lower schedulability ratio, e.g.,
only 21% of the task sets with 12 tasks could be scheduled
by NP-FP. In other words, neither NP-FP nor FIFO (without
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offsets) could guarantee the timing requirements of a large
proportion of the task sets, which renders them an unattractive
choice despite their low runtime overheads.

To provide a better picture of FIFO-OT’s typical overhead,
Fig. 7 shows the cumulative distribution function. Each data
point (x, y) in this diagram shows that y percent of the task sets
were scheduled with at most an overhead of x microseconds.
Fig. 7 shows that only a very small proportion of task sets
(less than 3%) exhibit overheads larger than 46 microseconds,
even when there are 12 task in the system.

B. Experiments on Automotive Benchmark Task Sets

In this experiment, we assessed the schedulability ratio of
FIFO scheduling and NP-FP (with rate-monotonic priorities)
with and without offsets. In all our schedulability experiments,
NP-FP and NP-EDF performed identically; we hence focus
only on NP-FP.

As explained in Sec. IV-C, the offset tuning method results
by design in a feasible FIFO schedule. For other heuristic offset
assignment methods as well as the NP-FP algorithm, we use a
recently introduced exact schedulability test [5]. In the cases
of NP-FP and NP-EDF with multiple offsets, to avoid dealing
with large feasibility intervals, we added a restriction to force
the analysis to reject task sets that carry workload into the
next hyperperiod, based on the rationale that no upper bounds
are known on the length of the interval that must be checked
to determine schedulability if tasks have multiple offsets.
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To evaluate the schedulability of the FST and FOP offset as-
signment heuristics, we used a simulation-based schedulability
test in which the resulting task set is scheduled by FIFO for two
hyperperiods plus the maximum offset [20]. This test is exact
since FIFO is sustainable w.r.t. reductions in the execution time
of the tasks and since we assume a jitter-free system.

As a baseline, we included the classic response-time analysis
for NP-FP of Davis et al. [21]. The randomized offset
assignment method proposed in [1] was ineffective at finding
feasible offsets and we hence omit it from further consideration.

We relied on an automotive benchmark provided by Bosch
GmbH [22] to inform our task-set generation method. In
Kramer et al.’s benchmark [22], each task is a sequence
of runnables that are called sequentially. All runnables in
a task have the same period, and all periods are chosen
from {1, 2, 5, 10, 20, 50, 100, 200, 1000} milliseconds. Kramer
et al. [22] provide information on how to generate the BCETs
and WCETs of runnables with a given period.

Similar to the experimental setup reported in [5], to generate
a task set with utilization U , we first generated random
runnables until the total utilization reached U . We then packed
runnables with the same period into tasks. To avoid creating
infeasible task sets (that do not pass the necessary schedulability
condition [19]), we selected a threshold uniformly at random
from (0, 2(T1 − Cmax

1 )], and then aggregated runnables until
we reached that threshold. This was repeated until no runnables
remained. All tasks were given implicit deadlines. In total, we
generated 1,000 task sets for each value of U from 0.1 to 0.9
in steps of 0.1.

Fig. 8 reports the observed schedulability ratio. We draw
the following observations: (i) without using offsets, FIFO has
a dismal schedulability ratio in comparison with NP-FP (less
than 3% for U ≥ 0.4); (ii) since FIFO with the offset tuning
technique can reproduce any given schedule, FIFO with offset
tuning can perform as well as any other policy; (iii) FIFO with
offset tuning has a 60% higher schedulability ratio for U = 0.9
than FIFO with a single offset assignment using either the
FST or the FOP heuristic; and (iv) even though there is a drop
in schedulability using FST and FOP, both of these heuristic
methods are able to schedule more than 90% of the task sets
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Fig. 9. The number of offsets assigned by the offset tuning algorithm:
(a) the cumulative distribution function of offsets per task, (b) the cumulative
distribution function of distinct offset values per task set, and (c) the average
number of offsets and distinct offset values per task set.

when U ≤ 0.7. Previously, such a schedulability ratio was only
achieved using non-work-conserving scheduling algorithms
such as CW-EDF or table-driven scheduling.

Next, we report the number of offsets assigned by offset
tuning, per task and per task set. The cumulative distribution
function of the number of offsets per task and the number of
distinct offsets per task set are shown in Fig. 9-(a) and Fig. 9-
(b), respectively. The average number of offsets (and distinct
offsets) required for each task set are shown in Fig. 9-(c). From
these diagrams we draw the following conclusions: (i) only a
small proportion of the tasks in a task set require more than
4 offsets, (ii) even though a task set may require more than
200 offsets, only a small number of distinct offset values are
shared between the tasks. Moreover, none of the task sets in
our experiment required more than 14 distinct offsets (from
Fig. 9-(b)), therefore, an index to an offset table that stores all
distinct offset values requires only 4 bits.

We observed that many jobs of the same task share the same
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offset, and that the same offsets often repeat in cycles. The
reason is that tasks with short periods (and many jobs in the
hyperperiod) do not usually need an offset, since they must
be scheduled as soon as possible. Hence, offsets are primarily
used for tasks with longer periods (and fewer jobs) in order to
either create an idle-interval or to order tasks in the schedule.
Thus, typically only a small subset of tasks requires offsets.

C. Memory Requirements for Offset Tuning

We compared the size (in bytes) of the tables required for
TD, OE, and FIFO-OT. In our implementation, table entries
for TD and OE require 6 bytes each [7]. For the offset tuning
technique, we first store the offset table, where each distinct
offset value requires 3 bytes, and then store a list of offset
pairs (each 2 bytes), including a job ID (12 bits) and an index
into the offset table (4 bits).

In this experiment, the same task sets as previously discussed
in Sec. V-B were used. As Fig. 10 shows, offset tuning requires
at most 100 bytes for more than 80% of the task sets, while
OE requires up to 500 bytes and TD requires 12 KiB to cover
the same fraction. However, for a few task sets in the tail of the
distribution, both OE and offset tuning require about 1.5 KiB.

Fig. 11 shows the memory requirement of FIFO with offset
tuning and OE as a function of task set utilization. While OE
is more efficient for very low-utilization task sets, offset tuning
can efficiently reduce the memory consumption for medium-
and high-utilization task sets, i.e., U ≥ 0.4. To provide an
additional perspective, Fig. 12 shows the memory requirement
of offset tuning and OE relative to TD. In our experiment, the
average memory consumption of TD was 10,380 bytes, while
it was 224 bytes for OE and 122 bytes for FIFO-OT.

OE is better for low-utilization tasks because it is based on
NP-FP, which naturally has a higher schedulability ratio than
than FIFO. Hence, it does not need to store any extra data
for task sets that are already schedulable by NP-FP. On the
other hand, FIFO-OT, which is based on FIFO, has to enforce
priorities via the use of offsets and hence needs to assign
offsets even for the task sets that are schedulable by NP-FP.
As the utilization increases, both OE and FIFO-OT need to
store extra data. However, since the offsets found by the tuning
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algorithm are frequently repeated, FIFO-OT is able to take
advantage of its offset table and represent the offsets with only
a few bits. This technique cannot be easily applied to OE since
OE’s irregularity tables do not exhibit much repetition.

In conclusion, both OE and offset tuning require at most 10%
of the memory that is needed to store the whole scheduling
table. On average, OE and offset tuning consume less than 4%
of the memory required by table-driven scheduling. Further,
on average, the offset tuning approach requires only half of
the memory needed by OE.

D. Scheduler Code Size and Memory Footprint

For additional context, Fig. 13 reports the code size and static
memory footprint (i.e., global data structures other than tables)
of each scheduler realized in our prototype implementation
(described in Sec. V-A) when compiled with GCC version 4.9.2
and optimized for size (i.e., with -Os, the Arduino default).

As shown, OE and FIFO-OT have roughly equivalent flash
memory (i.e., code) and RAM (i.e., global data) footprints,
and both are significantly larger than TD. However, due to
the major savings in table size, OE and in particular FIFO-OT
offer substantial advantages in overall memory usage for all
but the most trivial task sets. Further code optimizations to
reduce memory footprints are possible; however, such micro-
optimizations are unlikely to change the overall trends.
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Fig. 13. Code size and static memory use (i.e., global data structures).

VI. WORKED EXAMPLE

To provide a more complete understanding of the proposed
method and compare it with OE, we present a worked example
using the task set shown in Table I. When pre-scheduled using
CW-EDF, the resulting feasible reference schedule consists of
981 jobs (i.e., one hyperperiod), and thus requires 5,886 bytes
of memory under table-driven scheduling.

OE needs to store 69 idle intervals to reproduce the CW-EDF
schedule, which at 6 bytes per idle interval equates to 414 bytes
of memory. Thus, OE needs only about 7% of the memory
required by table-driven scheduling. To understand where these
idle intervals are used, Fig. 14-(a) shows part of the schedule
generated by CW-EDF. Observe that OE needs a record of
the idle interval [1900, 2000] to force the underlying NP-FP
scheduler to not execute τ4 at time 1900, as this would cause
a deadline miss for the second job of τ1 released at time 2000.

Using the FIFO-OT approach, Algorithm 1 assigns only one
offset to each task, with the exception of τ6. Hence o1 = o2 =
o3 = 0, o4 = 2000, o5 = 5000, o7 = 6000, o8 = 8000, while
τ6 has twenty offset partitions: o6,1 = 6000, o6,2 = 5000,
o6,3 = 6000, o6,4 = 5000, . . . , o6,19 = 6000, and o6,20 =
5000. Note the alternating pattern of offsets for τ6, with odd-
numbered jobs assigned an offset of 6000, and even-numbered
jobs an offset of 5000. As shown in Fig. 15, the second job of
τ6 does not need to wait for a job of τ5 to finish because J5,2
already completes its execution at time 47600. Consequently,
the even-numbered jobs of τ6 can start relatively earlier than
the odd-numbered jobs.

For the example task set given in Table I, the total number of
distinct offset values is five (i.e., {0, 2000, 5000, 6000, 8000})
and there are in total 27 offset pairs. Thus, FIFO-OT requires
15 bytes for the offset table and 54 bytes for the offset pairs,
giving a total table size of 69 bytes, which is only 1.2% of
the memory required by table-driven scheduling, and 16.7%
of that needed by OE.

An interesting observation is that the task set remains
schedulable even if task τ6 is assigned only one fixed offset,
i.e., o6 = 6000. In other words, even when using just one
offset per task, this task set is feasible under FIFO scheduling;
however, the resulting schedule is then no longer equivalent to
the reference schedule produced by CW-EDF. This observation

TABLE I
EXAMPLE TASK SET WITH 70% UTILIZATION (TIMES IN MICROSECONDS)

Task Period WCET Utilization Jobs
τ1 2,000 200 0.1 500
τ2 5,000 200 0.04 200
τ3 10,000 1,500 0.15 100
τ4 10,000 3,000 0.3 100
τ5 20,000 2,000 0.1 50
τ6 50,000 100 0.02 20
τ7 100,000 700 0.07 10
τ8 1,000,000 1,000 0.01 1

60002000 4000 8000 10000

τ2

τ3

5000
τ1

(a) CW-EDF schedule

(b) FIFO-OT schedule

τ4

τ5

τ6

τ7

τ8

60002000 4000 8000 10000

τ2

τ3

5000
τ1

τ4

τ5

τ6

τ7

τ8

Idle: [1900, 2000]

Fig. 14. Schedule of the task set in Table I for time window [0, 10000]:
(a) CW-EDF schedule and (b) FIFO-OT schedule.

shows that the memory consumption of FIFO-OT can be
reduced even further if the goal is just to keep the task set
schedulable (i.e., if the job-execution order does not have
to be preserved). We plan to investigate the potential for
improvements along these lines in future work.

VII. CONCLUSION

In this paper, we introduced a novel offset tuning technique
that finds a small set of release offsets which enable the FIFO
scheduling policy to reproduce a given feasible non-preemptive
schedule at runtime. This technique is based on identifying the
potential offset intervals (POIs) of a task, from which any offset
assignment will guarantee a FIFO schedule that is equivalent
to the reference schedule.

An evaluation based on an automotive benchmark showed
that our solution provides a major improvement in FIFO
schedulability with only a small number of offsets needed
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Fig. 15. FIFO-OT schedule of the example task set in Table I for time
window [50000, 56000]. Task T5 is omitted from this excerpt since job J5,2
executes during [45600, 47600] and job J5,3 is released only at time 65000.

per task set when given a reference schedule produced by CW-
EDF. Interestingly, the offsets derived for FIFO scheduling also
improve the schedulability under NP-FP and NP-EDF (Fig. 8).

Our prototype implementation on an Arduino board demon-
strated that FIFO scheduling with support for multiple offsets
incurs substantially lower runtime overheads than the non-work
conserving CW-EDF scheduling algorithm used to generate the
reference schedules. It also exhibits lower runtime overheads
than the state-of-the-art Offline Equivalence [7] approach.

Furthermore, the overall memory consumption of FIFO-
OT is far below that of table-driven scheduling (i.e., in our
experiments, we observed FIFO-OT tables to be at most
10%, and on average only 1%, the size of TD tables) and it
requires, on average, only half as much memory as the Offline
Equivalence (OE) technique. Specifically, in our experiments,
the average memory requirement of scheduling tables was
10 KiB for each task set, FIFO-OT and OE required on average
only 122 and 224 bytes of memory, respectively. The overall
scheduler footprint of FIFO-OT in terms of code size plus
global data structures is also slightly smaller than that of OE.

In future work, it will be interesting to try to find the overall
minimum number of offsets across all tasks, and to extend the
solution to systems with release jitter. In addition, we plan
to study time-sensitive networks in which FIFO queues are
used in intermediate switches and routers. Given the paths
of periodic messages, we expect that it will be possible to
reduce interference on intermediate links to improve both
schedulability and end-to-end response times.
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