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Abstract—This paper describes the motivation, design,
analysis and implementation of a new protocol for critical
wireless communication called AirTight. Wireless
communication has become a crucial part of the infrastructure
of many cyber-physical applications. Many of these applications
are real-time and also mixed-criticality, in that they have
components/subsystems with different consequences of failure.
Wireless communication is inevitably subject to levels of
external interference. In this paper we represent this
interference using a criticality-aware fault model; for each level
of interference in the fault model we guarantee the timing
behaviour of the protocol (i.e. we guarantee that packet
deadlines are satisfied for certainly levels of criticality).
Although a new protocol, AirTight is built upon existing
standards such as IEEE 802.15.4. A prototype implementation
and protocol-accurate simulator, which are also built upon
existing technologies, demonstrate the effectiveness and
functionality of the protocol.

I. INTRODUCTION

Many Cyber-Phyical systems (CPS) require some form of

wireless communication and contain components/subsystems

of different levels of criticality. In this paper we derive,

implement and evaluate a new wireless protocol (which we

call AirTight) that supports time-critical communication. The

particular properties of mixed criticality systems has led to

the definition of criticality-aware protocols and analysis for

Network-on-Chip (NoC) [6], [19] and CAN [5]; here we

extend this work to cater for wireless communication.

Unfortunately no existing complete protocol gives the right

level of support for event- and time-based communications

that have hard deadlines for packet delivery (see related work

in Section III). AirTight is a new protocol that is built upon

the physical and MAC layers of IEEE 802.15.4, a standard

for wireless personal area networks (WPANs), widely used

as the basis of protocols such as ZigBee and WirelessHART.

With wireless communication, it is not realistic to only

require that deadlines are met when there are no faults.

Rather, as in other considerations of fault tolerance, we

require that certain levels of performance are delivered when

the likelihood and severity of fault(s) is bounded by what is

referred to as a fault model. We assume that the physical

layer of the protocol incorporates the usual methods of

increasing resilience (for example spectrum spreading), and

we therefore focus on faults than manifest themselves as

unacknowledged frame transmissions at the MAC layer.

In this paper the analysis developed for AirTight allows

deadlines to be guaranteed at various levels of service,

corresponding to the severity of the fault model and the level

of service required by the criticality assigned to the packet

being guaranteed. Different fault models can be applied; the

basic behaviour of AirTight is not dependent upon any

particular fault model.

In the next section we discuss the requirements for which

AirTight was defined. We also give an overview of the

protocol and define some necessary terms. In Section III we

consider related work. Section IV describes the fault model

employed. Section V completes the description of the

AirTight protocol, and its analysis is given in Section VI.

The construction of the necessary slot table in addressed in

Section VII. An illustrative example is provided in Section

VIII. A prototype implementation and protocol-accurate

simulator are described in Sections IX and X, these are used

to undertake a number of representative experiments, as

covered in Section XI. Finally, conclusions are presented in

Section XII.

II. REQUIREMENTS FOR, AND OVERVIEW OF, AIRTIGHT

We assume the CPS consists of a distributed system of

nodes that can each perform any combination of executing

tasks, producing/consuming data from sensors/tasks, and

relaying data packets to and from other nodes. There may be

a range of communication media within the CPS; here we

focus on the use of wireless technology. The required

wireless network protocol is assumed to have the following

properties (most of them inherited from the parent standard

IEEE 802.15.4):

• Peer-to-peer packet-switching communication between

tasks/nodes is the normal use of the network. Packets

are sent from a node to the next as one or more frames.

Each successful frame transmission is always

acknowledged by the receiver through the transmission

of a short ACK frame.

• Multi-hop routing is required due to the limited

transmission range of each node, meaning that some

packets are unable to be sent directly to their

destination.

• Buffers exist on each node to store frames in transit

(the size of the buffers required on each node can be

determined during the off-line scheduling process).

• The nodes have their clocks synchronised so the

maximum drift between any two clocks is at most

Terror.

• Nodes have line power, so energy efficiency/battery life

is not a limiting concern.



• Multiple frequency bands (channels) are available in

IEEE 802.15.4 (up to 16 in the 2.4GHz band) and the

standard is designed so that interference from one

channel to another is negligible. A node can only use

one channel at a time.

• Node communications are represented by two graphs: the

communications graph and the interference graph:

– The communications graph C: if there is an edge

from A → B in C, then the two nodes can

communicate directly. This is required to be a

symmetric graph due to the necessity for an

acknowledgement to be returned to the sender, so

A → B implies B → A.

– The interference graph I: if there is an edge from

A → B in I, then a transmission from A will prevent

B from receiving a frame from any node other than

A on that channel at that time.

It is assumed that the packets to be communicated have tight

timing constraints (i.e. deadlines). We also require that the

system supports applications of different levels of criticality.

We will, in this paper, assume just two criticality levels, high

(HI) and low (LO). The main distinction between these levels

is the number and duration of faults that they must tolerate

(see Section IV).

The distributed CPS consists of N nodes (n0 to nN−1).

Each node generates a set of packet flows (or flows), τi,

defined by:

• Period, Ti; the minimum time between packets.

• Capacity, Ci; the packet’s maximum size.

• Criticality Level, Li; a static parameter of the flow.

• Deadline, Di; assumed initially to be no greater than Ti.

• Destination, Desi; packets are assumed to be peer-to-peer

so there is a single destination for each flow.

• Source, Sori; there is an implicit source for each flow.

As part of the local scheduling, each flow is assigned a unique

priority, Pi.

We do not assume that the flows are purely periodic. This

implies that there must be some form of run-time scheduling.

However, we do not expect that centralised access control, or

token passing protocols can deliver the performance required

by a modern CPS. Any protocol that requires significant

overhead to agree on the next packet to send is unlikely to

meet strict timing requirements. The alternative of a fully

table-driven time-triggered protocol lacks the flexibility

needed to support event-triggered and adaptive applications.

AirTight is designed to balance efficiency and flexibility.

At the system level, its media access control is table-driven,

but at the node level it uses criticality-aware priority-based

frame scheduling. The protocol is based around repeating slot

tables which, in time, define the activities of each node – either

transmission or reception on that channel, or null meaning no

usage. The slot (or scheduling) table (ST) consists of a series

of slots. Each slot is assigned to a node and can be used by that

node to send a single data frame. The slot also accommodates

the ACK frame of the respective receiver.

At each node, local scheduling decisions are made to

manage the use of the node’s slot allocation. We employ a

fixed-priority scheme (although this is not fundamental to

AirTight). A set of FIFO queues (buffers), one per priority

level, are used to hold the frames that need to be transmitted.

Each flow has a unique priority and hence a specific buffer.

The frames from the same flow are stored in the buffer in

FIFO order. Whenever the node has a slot available, it

transmits the first frame in the highest priority non-empty

buffer. If an ACK is received the frame is removed from the

buffer; if no ACK is received, then the frame remains in the

buffer and is a candidate for transmission when the next

available slot for that node becomes available.

AirTight is thus a two level protocol. A collection of slot

tables defines the usage of the wireless media. Each slot in a

table defines whether the node can transmit in that slot (and on

which channel if more than one channel is used), or whether

it should listen in that slot (and on which channel), or whether

it is off-duty. The collection of tables reflects the properties

of the communication and interference graphs. So, within the

same channel, two nodes may, in effect, be allocated the same

slot if the interference graph fulfils specific properties with

regards to senders and receivers [16]. The protocol is described

in detail in Section V.

The fundamental time unit of AirTight is the duration (S)

of a slot – the time it takes to communicate a single frame

of data and receive an ACK for that frame. In our prototype

implementation (see Section IX) a slot length of 10ms has

been achieved, although a longer slot was used in experiments

to aid collection of measurement data. All parameters of the

application, the communication media and the environment

(e.g. Ti, Ci, Di, table length, fault models, etc.) are expressed

as an integer number of slot times. We assume that clock drift

is insignificant when compare to the slot duration: Terror � S.

A. An Avionics Use-case

An aircraft engine is a harsh environment for electronics

and wireless communication in that there are a lot of moving

mechanical parts generating both interference and attenuating

radio signals. Wireless sensors have two distinct advantages:

the sensors can be put deep inside the engine where it is

infeasible to have cabling; and it removes the weight and

maintenance of cabling. The difficulty of maintenance may

also mean the designer may want to fit a number of replicas

so replacement is not necessary. Current engines have a

significant number of sensors (more than 10). With a shift

towards more intelligent control and monitoring this number

will grow. External to the engine there are a number of

controlled interference sources, e.g. from the rest of the

aircraft, and un-controlled interference sources, e.g.

high-intensity radiated fields including lightning, mobile

phones, laptops etc. This leads to complex fault behaviour

that cannot be fully defined at design time. We therefore

utilise a collection of fault models (one per criticality level)

that are, in themselves, bounded.



Finally, a number of parts of the overall aircraft system

(and logical support equipment on the ground) may want to

use wireless communications and as such the aircraft engine

should be designed to share the same parts of the spectrum

(e.g. two nodes concurrently wanting to send messages to

different destinations) especially as the whole aircraft could

have hundreds if not thousands of sensors.

A good example of the potential deployment of a wireless

communication media is within an aircraft engine for the

purposes of active health monitoring [33]. Figure 1 shows

the communication graph for a 25-node wireless network

inspired by a possible engine monitoring system; it is clear

that the topology of this example is a 5-node subsystem

repeated 5 times. We will use this 5-node subsystem to

illustrate the analysis associated with AirTight, and will

validate it using a prototype network of 5 IEEE

802.15.4-compliant nodes. We will then use a

protocol-accurate simulator to evaluate AirTight’s

performance and scalability over the complete 25-node

network. In total this network has 55 packet flows mapped to

the 25 nodes; 25 of these flows are defined to be of

HI-criticality and 30 of LO-criticality.
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Fig. 1. Communication Graph of a 25 node Health Monitoring System

III. RELATED WORK

In this section we consider wireless protocols that have been

designed to give time predictable behaviour, and protocols that

take into account mixed criticality. For information on more

general purpose protocols the interested reader may follow the

links from [25].

A. General Real-Time Protocols

WirelessHART [15] was developed as an extension of the

HART protocol [14] designed for wired communications in

industrial automation and process control scenarios. The

WirelessHART protocol extensions were intended to allow

mobile devices to attain the capabilities of HART networks.

WirelessHART employs a time-division multiple access

(TDMA) based MAC layer, with multi-hop routes centrally

planned and allocated by a sink which operates as a gateway

between the wireless network and external access network. A

similar TDMA approach is advocated by FireFly [24], [26].

One notable aspect of WirelessHART is the avoidance of

spatial reuse throughout the network, with only one

simultaneous transmission allowed at any time. Although

frequency reuse is permitted through the simultaneous use of

multiple channels, simultaneous transmissions on any one

channel are disallowed [29]. This avoids the problem of

detecting interference patterns and allows the network to be

stabilised, but limits scalability and restricts the viable range

of the network. In addition, alternative routes are required in

WirelessHART for redundant data transmission. By

comparison, our current work focuses entirely on avoiding

faults via temporal retransmission; that is, holding

transmissions within buffers and making repeated

transmissions of any failed transmission after a delay. We

note that the avionics use case described earlier has little

opportunity for exploiting spacial redundancy.

Saifullah [27] presents several approaches for scheduling

of multi-hop routing-centric wireless networks built upon

WirelessHART. Saifullah establishes that overall the wireless

scheduling problem is NP-hard, and then provides heuristics

to simplify the scheduling decisions. The first of these,

Conflict-Free Least-Laxity First (CLLF) [29] schedules

according to the laxity of the transmissions, that is the time

remaining until their deadlines. However, it guides the

scheduling process by focusing on conflicts, scheduling first

in hotspot areas in which conflicts are likely (e.g. around the

sink and congested frequently used devices). Flow set

evaluation results show that CLLF is several orders of

magnitude faster in determining schedulability than

exhaustive search, although run time does increase with

increased routing diversity. Saifullah et al. also present an

end-to-end delay analysis [30] for an application with fixed

priority flows, and extend this work to the case of graph

routing in [28].

A very different approach for broadcast wireless

communication is provided via Glossy [13], which attempts

to simultaneously achieve time synchronisation as well as

error tolerant communication via collaborative flooding of

data packets. If time synchronisation is sufficiently tight,

multiple nodes are able to receive packets and rebroadcast

them simultaneously. Glossy therefore uses spatial diversity

to compensate for any localised faults; it has been

successfully used as a primitive layer to build network

services such as LWB [12] and Blink [34]. However, the

drawbacks of Glossy include requirements for low-level

tuning of the code by inserting NOPs (no-operation opcodes)

to ensure correct timing. There are also security problems

such as the Arpeggio attack [17], in which an attacker is

able to hijack the flooding mechanism to broadcast attack

packets more widely.

B. Mixed Criticality Protocols and Applications

Several papers have focused on mixed criticality in WSNs

and CPSs. Alemayehu et al. [1] consider mixed-criticality

used for video transmission in a multimedia sensor network.

The paper uses different criticality levels for different

resolution video frames, to provide graceful degradation

under error by providing a low resolution alternative. They



focus on changing criticality in response to a reduction in

overall network bandwidth, and can discard data in response

to criticality and priority to improve overall performance. An

interesting contrast to our work is that the paper did not use

TDMA and a pure wireless topology but a hybrid

CSMA/CA over 802.11, yet still achieved end-to-end

response time reductions.

Shen et al. [31] present the PriorityMAC protocol. The

paper uses a concept of priority levels, but their definition

overlaps with criticality – the importance of reliable delivery

from the application perspective. It defines four traffic types

and requires windows at the start of every application

message for the two highest priority traffic levels to reserve

capacity. Nodes must listen to these windows and detect

them as clear if they wish to transmit the two highest

priority traffic types. This allows dynamic adjustments in

priority by allowing nodes with higher priority traffic to use

slots previously assigned to other nodes, but at the cost of

channel capacity reductions. Moreover, their analysis and

evaluation only considers average-case latencies and does not

provide a worst-case guarantee.

Jin et al. [21] considers delay analysis for WirelessHART

networks supporting mixed criticality under fixed priorities.

An interesting aspect of their model is that they assume a

global network criticality level, and a broadcast mechanism

to signal a criticality mode change similar to

WPMC-FLOOD [19] within a network-on-chip (NoC).

However, they do not specify any low level router behaviour

to achieve the change, merely assuming the change takes a

maximum defined time. It does not appear to use criticality

monotonic arbitration, instead assuming that the

LO-criticality flows are dropped rather than buffered, due to

the low memory of the devices.

StealRM [20] is an alternative protocol which provides

redundancy and is employed for HI-criticality flows, with the

transmissions of HI-criticality packets along two duplicate

routes to protect against interference or damage to one copy.

The algorithm centrally establishes schedules for both the

LO and HI-criticality flows, but allows nodes to make the

distributed decisions for transmission of HI-criticality in

place of a LO-criticality when required. This is done by

means of a clear channel assessment performed by the radio

before making every LO-criticality transmission, which

ensures that interference is avoided. Therefore, LO-criticality

packets may be destroyed when HI-criticality packets require

the resource, referred to as slot stealing. This approach is

similar to the approach of Shen et al. with

PriorityMAC [31], since it allows nodes to request additional

capacity dynamically.

Dimopoulos et al. [11] consider mixed criticality systems,

specifically for smart building infrastructure. One interesting

aspect they mention is the potential use of software defined

radios in the implementation of CPS, in order to present

more adaptability in the behaviour and protocols employed.

In nodes with more resources than conventional WSN motes

this may be a viable solution. They also consider mixed

criticality in wireless systems to require levels of

autonomous management in different regions, contrasting

with the implicitly centralised management and

routing-centric designs required for WirelessHART (and

assumed in the extensive scheduling studies performed

in [27]).

In summary, by comparison with the above approaches,

AirTight is the first mixed-criticality wireless protocol that

incorporates local scheduling decisions and which delivers

time-bounded performance that is sensitive to whatever fault

model is deemed appropriate for the system under

consideration.

IV. FAULT MODEL

A wireless network, even in a protected domain, will suffer

interference that will result in some packets being corrupted. A

predictable network can only be derived and analysed if there

is a bound on the level of interference suffered by each node in

the system. This bound is usually expressed as a fault model.

If the level of interference is no worse than that implied by the

fault model then temporal guarantees can be made. The quality

of the fault model can itself be modelled using a probabilistic

estimate of the likelihood of exceeding a given fault severity

during, say, an hour of operation [7]. With mixed-criticality

systems the required quality will vary with criticality; so for

a LO-criticality transmission the fault model may bound the

number of deadlines misses to be no more than 1 in 1,000,

for a HI-criticality transmission this number may be extended

to 1 in 1,000,000.

In general a node will suffer interference from a number

of different sources. Each source will produce a pattern of

interference. Moreover, in a geographically spread network

each node will experience different levels of interference

from different sources. To model a particular node’s (nk)

level of interference we need a fault load function, Fk. This

function, when given an interval of duration t, will return the

level of interference assumed by the fault model for this

node at criticality level, L; i.e. the function is defined as

Fk(L, t). As the basic time unit in the analysis model is the

duration, S, of a single slot, both t and Fk are represented as

an integer multiple of S.

We note that the fault model is always assumed to be more

severe for HI-criticality packets than for LO-criticality packets.

Hence we require that:

∀t, ∀nk : Fk(HI, t) ≥ Fk(LO, t)

The function Fk can be decomposed into a combination of

fault load functions (fk) for each of the w sources of

interference:

Fk(L, t) = GL{f
1
k (L, t), f

2
k (L, t), . . . , f

w
k (L, t)}

where GL is a criticality-specific application-defined means of

combining the different sources of interference.

So, for example, for LO-criticality packets GLO may be

defined to be the MAX operator, and hence at this criticality



level the node is assumed to only suffer interference from

one source at a time – but the maximum possible single level

is used to define Fk. For HI-criticality packets GHI may be

defined to be the SUM operator, and hence all sources are

assumed to contribute their maximum levels – a situation that

may be impossible as interference is not cumulative.

The most straightforward way of representing a single

source of interference fk is via a duration and a frequency.

So a single corruption could cause a blackout for duration

b(L), with the minimum time between faults: T b(L). Note

these parameters are functions of criticality level and are

measured in units of S. A single source of interference

could, for instance, be modelled by b(LO) = 4,

T b(LO) = 100, b(HI) = 6, T b(HI) = 80: for LO-criticality

transmissions this interference is assumed to last up to 4

units of time and repeat every 100 units; but for

HI-criticality transmissions a more severe view is taken, the

blackout can last 6 units of time and repeat every 80 units.

For an actual deployment of AirTight various signal

processing schemes (for example Fourier Analysis) are

available that allow the overall interference experienced at a

node to be decomposed into component sources defined by

these two parameters. These are statistical methods and

hence the parameters derived are a functions of the level of

confidence required. Higher levels of criticality will require

higher levels of confidence and hence more conservative

parameters will be obtained.

In this paper we do not address further this analysis of

actual interference, rather we assume that by the time an

implementation requires analysis the necessary fault load

functions have been obtained. All that the analysis requires

is that Fk(L, t) is defined for all t and for each criticality

level contained in the system.

V. THE AIRTIGHT PROTOCOL

In general a wireless network can be characterised by a

number of properties:

• Single-hop or multi-hop (i.e. is the communications graph

fully connected?).

• Single-domain or multi-domain (i.e. is the interference

graph fully connected?).

• Single-channel or multi-channel.

In this first paper on AirTight we focus on multi-hop,

single-domain, single-channel networks. With a single-

domain, single-channel network, assuming that all nodes

listen in all slots, a single table specifying which node may

transmit in each slot is sufficient to define the behaviour of

all nodes. The extension to multi-domain does not introduce

any fundamental issues, but requires the construction of

multiple tables. We also assume that the allocation of tasks

and sensors/actuators to nodes has already been undertaken

and hence that the sets of packet flows (and their

destinations) for each node are fixed and known.

The protocol has three main phases:

1) The construction of the slot table. This is derived from

the requirements of all the packet flows on all the nodes.

The table is communicated to all nodes during system

initialisation.

2) The run-time local scheduling of flows. Each node will,

independently, make use of the slots allocated to it. This

will take account of priorities, errors, and

re-transmissions.

3) An adaptive system will, over time, look to modify the

slot table – for example there could be free slots that

nodes compete for, or unused slots that are reallocated,

or potentially the complete table could change due to a

system mode change.

In this paper, and the prototype implementation, a simple

heuristic is used to construct the table, and the third phase

(adaptation) is left for future work.

Analysis is used on each node to check for packet flow

schedulability. This requires knowledge of the slot table;

however, the structure of the slot table is itself a function of

the schedulability of all nodes. In Section VI we first derive

analysis, assuming a known slot table, and then show how

the slot table can be constructed with a simple heuristic. In

future work we intend to make use of a search-based

algorithm (e.g. a genetic algorithm or simulated annealing)

to: construct near-optimal slot table layouts, cover all

required routing decisions, and cater for multi-domain and

multi-channel systems.

A schedulable AirTight network behaves as follows:

• If there are no faults experienced by the system then all

packets will meet their deadlines.

• If the faults experienced by the system are no worse than

that implied by the LO-criticality fault model then all

packets will meet their deadlines.

• If the faults experienced by the system are no worse than

that implied by the HI-criticality fault model then all HI-

criticality packets will meet their deadlines.

• If the faults experienced by the system are worse than

that implied by the HI-criticality fault model then each

node will apply a best-effort approach. The faults are

deemed to be beyond the level at which guarantees can

be provided.

Following the behaviour of mixed criticality task

scheduling [4], three modes of operation are defined. Each

node is, independently, in either LO-criticality, HI-criticality

or Best-Effort mode. In the LO-criticality mode all of the

node’s packets are sent and they are delivered by their

deadlines. If the LO-criticality fault model is exceeded, then

the node moves to HI-criticality mode. In this mode,

LO-criticality packets are abandoned (or moved to local

background priority); however, all HI-criticality packets are

still delivered by their deadlines. If the HI-criticality fault

model is exceeded, then the node moves to Best-Effort

mode. At any time that the output buffer of the node is

empty the node can return to LO-criticality mode. (This is

equivalent to the return to LO-criticality mode on an

idle-tick in task scheduling).



A. Jitter Elimination

Usually with distributed systems it is assumed that the

packets inherit significant release jitter from the variability in

the completion times of the tasks that generate them. This

jitter can then be factored into the response-time analysis [3].

Here we apply a protocol that eliminates release jitter whilst

not extending the worst-case overall (i.e. end-to-end)

response-time [10]. Release jitter is eliminated by the

following protocol which is applied to all frames of all

packets. For clarity we describe its application to a single

frame f of a single packet flow τi. The time q when frame f

of the first packet of packet flow τi is received by node nk is

recorded. When at a later time t the node receives frame f

of the next packet of the same packet flow, then: (i) if

t ≥ q+ Ti, then the frame is immediately eligible for onward

transmission by nk and q is set to t; (ii) if t < q + Ti, then

the frame is held (i.e. delayed) and is not eligible for further

transmission along its route by nk until time q + Ti is

reached. At that point q is set to q + Ti. The same process is

repeated for subsequent frames f of all packets of that flow.

This protocol also applies to frames “received” by the source

node from the sending task, with the initial maximum jitter

due to the sending task (i.e. its worst-case response time)

deducted from the end-to-end deadline. The effect of the

protocol is to eliminate the interference effects of jitter, and

thereby improve schedulability.

VI. AIRTIGHT ANALYSIS

The starting point for the analysis of a complete system is a

set of packet flows with Destination and Source nodes directly

linked in the communications graph. In other words, all routing

requirements have been met by the addition of intermediate

flows passing between connected nodes (we revisit this issue

as part of the slot table construction heuristic – see Section

VII). We also assume local priorities have been assigned to

all packet flows (an optimal assignment can be obtained by

applying Audsley’s algorithm [2]).

For any particular phase of the analysis the slot table is

known. It has duration TSL (measured in slots). Each node

has one or more slots within the table; let this allocation be

represented by ai We have (note, as before, N is the number

of nodes in the system):∑
j∈N

aj = TSL

The required analysis is obtained from adapting three

schemes/notions:

• Modelling the impact of faults by a fault load

function(Fk(L, t)), which gives the maximum number

of failed slots for criticality level L in time t for node

nk.

• Basic fixed-priority analysis for mixed-criticality task

scheduling – using the AMC approach [4].

• Modelling the supply function (S(X)), the maximum

time which the slot table can take to supply X slots to

the node.

A. AMC Analysis for AirTight

The AMC analysis for a collection of tasks exploits the

fact that the load on the system is lighter during the

LO-criticality mode, and the fact that LO-criticality tasks are

dropped once the system transitions to HI-criticality mode.

With task scheduling the load is less in the LO-criticality

mode as tasks have smaller worst-case execution time

estimates in that mode [32]. When analysing packet flows,

this is not the case (although the model could easily be

extended to include this). Rather it is the fault load that is

lower in the LO-criticality mode. This allows us to define

response-time analysis for each packet flow, τi on node nk.

In the LO-criticality mode:

Ri(LO) = Ci +Fk(LO,Ri(LO)) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj

(1)

where hp(i) is the set of all local (i.e. also transmitted by

node nk on part of their route) flows with priority higher than

that of τi.

In the HI-criticality mode:

Ri(HI) = Ci + Fk(HI,Ri(HI)) +

∑
τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj +

∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck (2)

where hpH(i) is the set of local HI-criticality packet flows

with priority higher than that of flow τi; and hpL(i) is the set

of local LO-criticality packet flows with priority higher than

that of flow τi. Note Ri(HI) is only defined for packet flows

of HI-criticality.

B. Sufficient Analysis for AirTight

The above analysis assumes that the required resources (the

slots of the slot table) are always available for the node under

investigation. This is a valid assumption for tasks executing

on a single processor, since the processor is always available.

With AirTight the slots are not as readily available. Indeed, as

few as one in TSL slots may be all that is available for the node

under investigation. We therefore represent the availability of

slots as a supply function: Sk(X), which provides an upper

bound on the time it will take for X slots to be available for

node nk. Equation (1) is now split into two parts:

X = Ci +Fk(LO,Sk(X)) +
∑

j∈hp(i)

⌈
Sk(X)

Tj

⌉
Cj (3)

with

Ri(LO) = Sk(X) (4)

The equations are solved via fixed point iteration in the

usual way, starting with an initial value of X of Ci. Iteration

continues until either the value of X converges, in which

case Ri(LO) gives the worse-case response-time, or Ri(LO)
exceeds Di, in which case the packet flow is not schedulable.



Similarly equation (2) becomes

X = Ci + Fk(HI, Sk(X)) +
∑

τj∈hpH(i)

⌈
Sk(X)

Tj

⌉
Cj+

∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck (5)

with

Ri(HI) = Sk(X) (6)

An example of the application of this analysis is given in

Section VIII.

A number of different formulas for Sk(X) are possible.

When node nk has only one slot in the table (ak = 1) then it

must be assumed that the worst-case possible phasing between

this slot and the packet flow under consideration occurs. This

implies that a frame of the packet flow arrives just after the slot

has been assigned to a lower priority packet, or indeed a null

or background packet is assigned. Hence there is a ‘blocking

time’ of 1 slot. Minor clock drift is also accommodated within

this blocking term.

If no internal structure for the table is known then a

sufficient model for the supply function is

Sk(X) = 1 +

⌈
X

ak

⌉
TSL

So, for example, if the table is of length of six and a node

has one slot within the table, then the supply function returns

7 for S(1), 13 for S(2) and so on. Similarly if the node has

two slots in the table, then its conservative supply function

is S(1) = S(2) = 7, S(3) = S(4) = 13. If the internal

structure of the table is known, then a less pessimistic estimate

is possible. For example, the two slots cannot both come at the

end of the table, so an improvement is S(1) = 6, S(2) = 7,

S(3) = 12, S(4) = 13 etc. Moreover, if the table is known to

have allocated the two slots to positions (1 and 4, or 2 and 5, or

3 and 6) then the supply function becomes: S(1) = 4, S(2) =
7, S(3) = 10 etc. This latter supply function dominates the

more pessimistic ones discussed above, since it provides the

same number of available slots in the same or less time, for

any number of required slots.

C. Priority Assignment

Each node has a separate priority-ordered output buffer for

its frames. An optimal priority ordering for this buffer can

be obtained by applying Audsley’s algorithm [2]. The

applicability of this algorithm comes directly from the fact

that the scheduling scheme being applied is equivalent

(indeed identical) to that employed in mixed-criticality task

scheduling.

VII. SLOT TABLE CONSTRUCTION

In this section we describe a simple heuristic for

constructing an appropriate slot table; however, first the issue

of packet routing must be considered. In general routing

must be addressed as part of the mapping of an application

to the available hardware. Here we again take a simpler

approach.

1) The shortest route between Source and Destination is

chosen (an arbitrary choice is made if there is more

than one route with the same length).

2) The deadline of the packet is partitioned between each

hop of the route, and priorities assigned by applying

Audsley’s algorithm [2].

3) Response times are computed for each hop and summed

to obtain the end-to-end response-time that is then

compared with the end-to-end deadline.

4) Initially the packet deadline is divided equally between

the hops, if any hop is unschedulable (i.e. R > D) its

deadline is increased (to R, but not exceeding T ) (while

others are decreased when R < D ).

Clearly this is a non-optimal approach. Although the

heuristic does account for ‘busy’ nodes by allowing them to

have more slots in the table (see below). As indicated earlier,

under future work we aim to explore the use of a

search-based algorithm to deal with routing, table

construction, non-interfering flows and multiple channels.

The purpose of the current paper is to give a definition of

the protocol, the derivation of its enabling analysis and argue

for the feasibility of the protocol via a complete

proof-of-concept prototype.

The following steps are undertaken to construct a slot table.

Here we aim to derive a small slot table (ST) that delivers

schedulability for all nodes. (Note, we do not claim that the

size of the slot table is necessarily minimized).

1) Collect the set of flow requirements for each node.

2) Add multi-hop routing flows where appropriate.

3) Initiate the slot table to have length TST = N , where N

is the number of nodes in the system.

4) Assuming each node has one slot in the table of length

N , check for local schedulability of all nodes. If any node

is not locally schedulable, compute how many extra slots

that node would require in the table.

5) Extend the size of the table to accommodate these extra

slots.

6) Repeat the schedulability test for all nodes with the longer

table.

7) Repeat this process (testing and extending the table)

until either all nodes are schedulable with the new table

size, or the table keeps growing until ‘unschedulability’

is declared if the table grows to beyond the

hyper-period of all the flows.

VIII. ILLUSTRATIVE EXAMPLE

In this section we analyse a simple five node example

which is motivated by the subsystem identified in the

avionics use case (as illustrated in Figure 1). The 5 nodes

(which are the central group in Figure 1) are depicted in

Figure 2 and form a star topology: n1, n2 ↔ n0 ↔ n3, n4.

So n0 can communicate directly with all nodes; but n1, for

example, can only communicate with n2 and n0, and not



with n3 or n4. However, we assume conservatively that the

interference graph of the system is complete such that all

nodes may potentially interfere with each other, even though

they may be out of range for intelligible communication.

Therefore, we do not allow node n1 to transmit to n2 at the

same time as n3 transmits to n4. We use periods and

deadlines that are 1/5 of those of the larger example as this

allows the tightness of the analysis to be illustrated in this

section. It also means that the full 25 node example is

obviously schedulable if this subsystem is.
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Fig. 2. Diagram of the nodes and communicating packet flows

There are nine end-to-end packet flows of two criticality

types. Two packet flows must be routed through n0; these are

accommodated by simply, for this example of the analysis,

dividing the deadline in two. This results in eleven packet

flows that are given in Table I (where P is the local priority,

with 1 being the highest)

For this simple example we assume a single source of

interference; the fault model is defined as follows:

1) For b = 5 and T b = 100, all deadlines must be met

2) For b = 15 and T b = 100, the deadlines of all

HI-criticality flows must be met

3) For b > 15 and any T b < 100, best effort – send

HI-criticality packets when possible, perhaps using a

secondary parameter (importance) to order local access.

If we start with a table of length 5 with all nodes having

a single slot then n1, n2, n3, and n4 are schedulable, but n0

is not. However, if the table length is increased to 6 with n0

having two slots then all nodes are schedulable. Worst-case

response times are given in Table I. These invariably occur

following faults of the worst possible magnitude (as defined

by the fault model). Note that no assumptions have been made

about where in the table any node’s particular slot(s) actually

are positioned. We use a simple formulation of the analysis,

the supply function for all nodes apart from n0 is 1 in 7, 2 in

13, 3 in 19 etc. For n0 it is 2 in 7, 4 in 13, 6 in 19, 8 in 25,

10 in 31 and 12 in 37.

To give an example of the analysis; consider τ5 which is

the lowest priority packet flow on node n0. It is a

HI-criticality flow but first its worst-case response-time in

the LO-criticality mode must be computed. Using equations

(3) and (4) we initially have X = 3 and R5(LO) = 13. Now

equation (3) becomes:

X = 3 + F5(LO, 13) +

⌈
13

26

⌉
1 +

⌈
13

64

⌉
1

Name From To Criticality T D C P R

τ1 n1 n2 LO 30 30 2 2 25
τ2 n1 n0 LO 26 13 1 1 13

τ3 n2 n0 HI 40 40 1 2 31
τ4 n2 n0 LO 13 13 1 1 13

τ5 n0 n4 HI 38 38 3 3 37
τ6 n0 n4 LO 26 13 1 1 13
τ7 n0 n1 HI 64 32 1 2 31

τ8 n3 n4 LO 32 14 1 1 13
τ9 n3 n0 HI 64 32 1 2 31
τ10 n3 n0 LO 32 32 2 3 31

τ11 n4 n0 HI 40 40 2 1 31
TABLE I

EXAMPLE, PARAMETERS AND RESPONSE-TIME CALCULATIONS

F5(LO, 13) is 2, since one table is corrupted within which

there are two slots, hence X becomes 7 and R5(LO) = 25.

At this point, iteration has converged, as the value of X does

not change when 13 is replaced by 25.

To compute R5(HI) we can start with a value of 25 so

equation (5) becomes:

X = 3 + F5(HI, 25) +

⌈
25

26

⌉
1 +

⌈
25

64

⌉
1

The fault load, F5(HI, 25) is now 6 (three tables corrupted),

so X = 11 and R5(HI) = 37. Another iteration gives:

X = 3 + F5(HI, 37) +

⌈
25

26

⌉
1 +

⌈
37

64

⌉
1

which is again 11; so R5(HI) has converged to 37. Note the

interval for interference from the LO-criticality packet flow

τ6 is capped at 25, which is the response-time of τ5 in LO-

criticality mode (i.e. R5(LO)).
This example is used as the basis for the experiments

undertaken on the prototype implementation of AirTight

described in Section IX. In the prototype one slot per table

was required for clock synchronisation. To keep the table

size at 6, all the packet flows on node 0 would need to be

schedulable with an allocation of only 1 in 5, but as

illustrated above, an allocation of 1 in 5 is not sufficient (it

requires 2 in 6). However, a simple modification to the

example (extending τ5’s period and deadline to 55) does

deliver a schedulable node with an allocation of 1 in 6. In

this case, R6 and R7 remain unchanged (at 13 and 31

respectively), but R5 is now 55.

IX. PROTOTYPE IMPLEMENTATION OF AIRTIGHT

The prototype CPS implementation is based on IEEE

802.15.4-compliant node hardware (the Iris XM-2110 nodes

[18] manufactured by Crossbow Technology) and the

TinyOS version 2 operating system [22] as obtained from the

development repository in July 2017 [9]. This section

describes the decisions we made to implement the protocol

services defined in Section V.

The core of the MAC services are built on several TinyOS

components from the tinyos-contrib repository [8]. Firstly,

the Slotter, SlotterControl and FrameConfiguration interfaces,

and GenericSlotter components are used to implement the



timeslot management service. The prototype implementation

of the time synchronisation service uses one of the table

slots to transmit a beacon frame, but this is an

implementation decision and not a fundamental requirement

for the protocol. For the application described in Section

VIII, the slot table is 6 slots long; slot 1 is designated for

time synchronisation (via a broadcast beacon frame) and the

remaining 5 slots for AirTight application data. The Iris node

RF230 radio transceiver can provide, to a transmitting node,

a hardware acknowledgement of frames received correctly by

the recipient node, which we used to implement the

acknowledged frame delivery service.

The prototyped application is as described in Section VIII,

although it is modified to operate with five data slots in the

table, with the change of τ5’s period and deadline to 55 as

described in the last paragraph of Section VIII.

The prototype implements the node criticality level

management service, and its interaction with the

priority-based frame scheduler, according to the following

rules:

M0 The counter of ACK failures, for the node, is

initialised to zero. The node’s mode is initialised to

LO-criticality.

M1 Every time a node fails to receive an

acknowledgement for a transmission, its failed

ACK counter is incremented.

M2 When the failed ACK counter reaches a predefined

value (which is 2 in the experiments described

below), the criticality mode flag of the transmitting

node is set to HI-criticality mode. On transitioning

to the HI-criticality mode, the contents of

LO-criticality buffers are discarded/flushed.

M3 While in the HI-criticality mode, newly arriving LO-

criticality transmission requests (for the transmission

of new packets) are ignored.

M4 While in the LO-criticality mode, the highest priority

frame is selected for transmission when there is a slot

available.

M5 While in the HI-criticality mode, the highest priority

HI-criticality frame is selected for transmission.

M6 The node returns to its LO-criticality mode when all

its HI-criticality buffers are empty. The ACK failure

counter is also reset to zero.

M7 If the failed ACK counter reaches a second

predefined value (which is 4 in the experiments

described below) then the system is deemed to have

moved beyond its HI-criticality fault model – in

this situation the prototype implementation flushes

all buffers and resets the ACK count to zero and

the node mode to LO-criticality.

A. Scenario and Data Gathering

Five nodes are configured as standard nodes to implement

the AirTight protocol. One of the participating nodes (node 0)

is connected to a computer (see Figure 3), while the remaining

nodes receive their power either through onboard batteries or
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Fig. 3. Logical network structure for the experiments, showing monitoring
node M and computer C

USB power via a programming board.

In order to gather necessary experimental data, an external

node is connected as a monitoring node. This node operates

in snooping mode which permits it to observe all the packets

transmitted throughout the network. This monitoring node is

entirely passive; it does not participate in data transmission

via the AirTight protocol described in this paper, but merely

listens constantly to the channel and records all of the

AirTight packets observed. This is used during the

experiments to collect performance statistics. During

protocol operation, nodes maintain a running 16-bit counter

of their slot number, and record both the slot number when

each packet is generated, and the slot number of its

transmission. This allows the response time of the received

packets to be determined on the monitoring computer.

X. SIMULATION

In order to perform more extensive and controlled

performance assessments for AirTight, an abstract simulation

model of the protocol was developed. The simulator is a

discrete-event simulator similar in concept to [23] which

models the generation of application data, protocol rules and

the transmission of individual frames across the network.

The simulator provides a time slotted MAC protocol layer

arranged in a repeating slot table similar to that described in

Section IX. Although time synchronisation is not required

due to the absence of any clock drift, one slot is also

reserved to time synchronisation for consistency with the

prototype implementation. Faults can be injected of varying

length and periodicity, allowing the behaviour of the protocol

under faults to be tested. The simulator provides a simple

channel model with either guaranteed delivery between

connected nodes, or discarding of the packets, depending on

the fault model in use during an experiment.

For the simulated flow set and topology, two alternatives

are available. The 5-node, 11-flow case as described in

Section IX-A is simulated in the same configurations as the

implementation. A larger case study was also created,

consisting of five repeated copies of the standard topology,

as depicted earlier in Figure 1.

XI. EXPERIMENTATION

To perform an experiment, first the system nodes are

programmed with the appropriate settings; for example: node



ID, slot configuration, and the parameters for their active

packet flows. Then the listener node is activated and

connected over USB. The listener node monitors the network

in snooping mode, and the connected computer processes

this information to produce the results, such as the flow

latency between injection and transmission and the number

of LO criticality flows which were discarded due to the

protocol rules.

The results in the case with no explicit fault injection are

presented in Figure 4. The background bars indicate the

worst-case response-time of each packet flow as derived by

the analysis given in Section VIII. The scatter plots indicate

for each flow the distribution of timings (in slots) between

injection by the application and transmission for each flow.

The results are broken down first by per flow ID and, second

by the number of retransmissions for each packet. The HI

and LO criticality flows are grouped together. The data in

Figure 4 is obtained from a single (though typical)

experimental run lasting 5 hours.

Fig. 4. Timing results with no deliberately injected faults (office environment)

The most important observation is that under these

conditions, all HI-criticality and LO-criticality transmission

times are below their analytically computed response time

bounds. It is notable that even without the intentional

injection of faults, occasionally some HI-criticality packets

experienced multiple retransmissions. This occurs because of

the office environment in which the experiments were

undertaken. The frequency band used was subject to

interference from wireless access points and other network

users, thus some retransmissions were required as part of

normal system operation. Although all transmitted flows met

their deadlines, some LO-criticality flows were dropped (as

the protocol requires in order to ensure the HI-criticality

flow can have up to three re-tries). In the experiment

reported in Figure 4 the six LO-criticality flows (1, 2, 4, 6,

8, and 10) have 0.19%, 0.34%, 0.90%, 3.88%, 0.21% and

0.83% of their flows dropped.

The simulation results in the presence of the controlled

injection of faults are illustrated here showing simulated

performance of the larger 25 node example in the presence

of various levels of faults. These graphs contain less data per

flow as there as now 55 flows.

As the 25 node system is in essence composed of 5 copies

of the subsystem analysed earlier (though with periods and

deadlines 5 times greater than those give in Table I), the

analysis indicates that a slots table of length 30 delivers a

schedulable system. Each simulation lasted for the

hyper-period of the 55 flows (several hours of real-time,

simulation time approximately 20 seconds).

We noted that in the presence of a single table fault

repeated no closer than every 500 slots, all LO-criticality

flows meet their deadlines and are within the analytically

calculated response times, and all flows are delivered. In the

presence of longer faults of up to 3 tables in duration (see

Figure 5) some of the LO-criticality transmissions have to be

discarded in order to meet the deadlines of the HI-criticality

packets, although for the transmitted packets, all the

deadlines are met. This is illustrated in Figure 5. In all,

17.18% of the LO-criticality flows were dropped.

Fig. 5. Simulation – Faults within the HI-criticality Fault Model

XII. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated the feasibility of a

protocol for wireless communication that is intended for use

in time-critical cyber-physical systems. Various levels of

faults (both in duration and frequency) are characterised

within a fault model. Packet flows themselves are

characterised by their criticality (as well as the usual

parameters of deadline, size and minimum inter-arrival time).

At run-time, performance is guaranteed in the sense that

criticality and fault model are combined to give assurances

of the form: if the faults experience by the system are below

a certain level (as defined in the fault model) then all packets

at or above a specified criticality level will be delivered by

their deadlines.

The proposed AirTight protocol is motivated and defined in

this paper, analysis is derived and a prototype implementation

and protocol-accurate simulator are described. Experiments on

the prototype and simulator demonstrate the feasibility of the

protocol in practice and provide evidence of the soundness

(and tightness) of the analysis.
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