

Optimising Task Layout to Increase Schedulability via
Reduced Cache Related Pre-emption Delays

Will Lunniss1,3, Sebastian Altmeyer2, Robert I. Davis1

1Department of Computer Science
University of York

York, UK
{wl510,rob.davis}@york.ac.uk

2 Department of Computer Science
Saarland University

Saarbrücken, Germany
altmeyer@cs.uni-sb.de

3 Rapita Systems Ltd.
IT Center

York Science Park
York, UK

wlunniss@rapitasystems.com

ABSTRACT
Cache memories have been introduced into embedded systems to
prevent memory access times from becoming an unacceptable
performance bottleneck. For hard real-time systems, it is vital that
an accurate estimate of the worst-case response time for each task
can be determined. Memory and cache are split into blocks
containing instructions and data. During a pre-emption, blocks
from the pre-empting task can evict those of the pre-empted task.
When the pre-empted task is resumed, if it then has to re-load the
evicited blocks, cache related pre-emption delays (CRPD) are
introduced which then affect the worst-case response times of the
task. Because the position of code in memory determines where
the code will be placed in cache, different layouts result in
different CRPD and worst-case response times for tasks. We
introduce an approach that uses simulated annealing to find
layouts that minimise the CRPD incurred due to a pre-emption.
This in turn reduces the worst-case response times of tasks, which
increases the schedulability of the taskset. We use schedulability
analysis that captures whether a block will have to be re-loaded
after a pre-emption, to drive the algorithm towards a near optimal
solution. After explaining our approach, we present a number of
experiments which demonstrate its effectiveness for a number of
different system, task and cache configurations.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems - Real-time and embedded systems

Keywords
Cache Related Pre-emption Delay (CRPD), Task layout, Fixed
priroity pre-emptive scheduling, Response time analysis

1. INTRODUCTION
Over the past years, processor speeds have increased dramatically
leaving memory access times as a major performance bottleneck.
To bridge this ever increasing gap, caches have been introduced
between the processor and memory; however, they introduce
significant complexity when trying to verify timing properties of

the system.

Real-time systems, especially hard real-time systems, have very
stringent timing requirements and the worst-case response time of
each task must be known, or safely estimated. The worst-case
response time of a task is the longest possible time between the
task becoming ready to start and it finishing executing, including
the time that the task was unable to execute due to pre-emption or
busy hardware resources. In order for a system to be schedulable,
the response time of every task must be less than or equal to its
deadline.

While memory will contain a mixture of instructions and data,
caches can either be instruction only, data only or unified,
containing instructions and data. In this paper, we only consider
instruction caches. The instructions in memory and cache are
stored in blocks. The size of a block is almost always bigger than
the size of an instruction, for example, 4 instructions per block.
When the CPU executes an instruction, it first tries to fetch the
instruction from cache. If the block containing the instruction is in
cache, then a cache hit occurs. If the block is not in cache then a
cache miss occurs, and the block is fetched from the slower
memory and stored in the cache. In modern architectures, a cache
miss is an order of magnitude slower than a cache hit, it is
therefore highly desirable to minimise cache misses. In pre-
emptive multi-tasking systems, caches introduce additional cache
related pre-emption delays (CRPD) caused by the need to re-fetch
blocks belonging to the pre-empted task which were evicted from
cache by the pre-empting task.

As the position of code in memory affects where blocks are
positioned in cache, and therefore, which blocks they evict,
controlling and optimising the layout of code in memory can help
to reduce the CRPD. In this paper we present an approach that
uses simulated annealing (SA) to find new layouts for tasks that
helps to reduce the CRPD. We use cache aware schedulability
analysis to guide the SA towards an optimal layout. We assume
that tasks do not share any code, therefore altering the position of
tasks in memory, will not affect the worst-case execution time
(WCET) 1 of the task, just the worst-case response time due to
CRPD. The approach is evaluated using a case study based on real
code, and an empirical study based on synthetically generated
tasks.
This paper builds on the ideas of Gebhard and Altmeyer [16] who
used schedulability analysis to drive laying out tasks in order to
minimise cache conflicts. However, the analysis used in [16] was
not able to capture whether a block evicted from cache would
need to be reloaded, and therefore treated all blocks as equal. This

1 WCET of the task when executed non-pre-emptively

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.
RTNS '12, November 08 - 09 2012, Pont a Mousson, France
Copyright 2012 ACM 978-1-4503-1409-1/12/11…$15.00.

work uses the concept of useful cache blocks (UCBs) and evicting
cache blocks (ECBs) based on the work by Lee et al. [18]. ECBs
are blocks that may be loaded into cache by the task during its
execution. Out of the ECBs, some of them may also be UCBs,
which are blocks that are reused once they have been loaded into
cache, before potentially being evicted by the task, but not
counting evictions from other pre-empting tasks. If a UCB is
evicted by a pre-empting task, additional CRPD may be
introduced as the UCB may have to be re-loaded when it
otherwise would not have been. This work uses schedulability
analysis introduced by Altmeyer et al. [2], [3] which is able to use
the UCBs and ECBs to more accurately calculate the
schedulability of the taskset. This analysis is used to drive
simulated annealing (SA) towards an optimal task layout that
increases the schedulability of a taskset by reducing the CRPD
and hence the worst-case response time of tasks that would
otherwise miss their deadlines.

1.1 Related Work
There are a number of approaches for dealing with caches in pre-
emptive multitasking systems. One of these approaches is cache
locking. Cache locking is used to lock the cache which prevents
blocks from being evicted. The aim of the algorithms used is to
find an optimal selection of blocks to be locked into cache. There
are two main approaches, static cache locking, and dynamic cache
locking. Static cache locking loads some initial content into the
cache, and then locks it for the remainder of the systems’
execution. For both approaches, the challenge is deciding what to
lock into cache, and when. Campoy et al. in 2001 [12] used a
genetic algorithm while Puaut et al. in 2002 [22] used a greedy
algorithm to select cache contents. Both algorithms performed
similarly [13] with the genetic algorithm performing slightly
better. Static cache locking is however only really suitable for
systems with a small number of frequently called procedures that
can all be locked into cache at once. An alternative is dynamic
cache locking which locks a defined cache contents into the cache
at a number of different points, usually at the start of each task,
and after pre-emption. This increases the predictability of the
system, and facilitates more accurate WCET and worst-case
response time estimation. Campoy et al. in 2002 [11] adapted
their genetic algorithm from [12] to work with dynamic cache
locking as did Arnaud and Puaut in 2006 [4] for their greedy
algorithm from [22]. In more recent work, Liu et al. used
execution flow graphs and trees that they solved using ILP [20]
for static and dynamic cache locking. They again found that
dynamic cache locking performs better than static cache locking
when the cache is relatively small compared to the size of the
code; however, dynamic cache locking is still not optimal. If for
example a task is pre-empted when it has nearly finished
executing, analysis such as [11] assumes that the pre-empted
tasks’ entire cache contents must be reloaded as it does not
account for that fact that the task may at that stage only need to
access a small percentage of the blocks.

A different approach is to limit pre-emption. Bertogna in 2011 [7]
used fixed pre-emption points (FPP) based on Burns’ work in
1994 [9] to limit pre-emption to known points in a task,
facilitating the calculation of the CRPD at these known points;
however, the possible pre-emption points need to be defined
which makes the approach somewhat manual. Additionally,
because the analysis assumes the entire cache is invalidated, the
estimated CRPD can still be overly pessimistic.

Code positioning techniques rearrange the code in memory to
improve cache performance. Lokuciejewski et al. in 2008 [21]
applied procedure positioning to reduce the WCET for systems
with cache. They placed procedures on the worst-case path that
call each other frequently close together to reduce conflicts. Falk
et al. [15] recently used block and procedure positioning based on
cache conflict graphs to reduce the WCET estimate. Unlike
previous work, they accounted for the cache configuration
including the associativity, size and replacement policy. In
contrast to the work in this paper, all of these techniques only
consider single tasks without pre-emption.

Gebhard and Altmeyer [16] in 2007 used schedulability analysis
to evaluate different layouts. They performed their analysis on a
pre-emptive multi-tasking system with the goal of preventing pre-
empting tasks from evicting the pre-empted task’s blocks from
cache by positioning whole tasks contiguously in memory. The
layouts were evaluated using a cost function that estimates the
number of conflicts caused by a pre-emption. This uses
information about the tasks’ position in memory and the cache
configuration to determine where the tasks are placed in the
cache, and hence whether there is a potential for conflict. It also
takes into account the lifespan of blocks due to the replacement
policy. However, all of the tasks’ ECBs are effectively treated as
UCBs. Therefore, the cost is proportional to the number of blocks
belonging to the pre-empted task that reside in the same locations
as the pre-empting tasks’ blocks. The new layouts resulted in up
to a 50% decrease in the number of cache misses; however, the
number of cache misses did not correlate directly with the values
returned by the cost function. This was because no consideration
was given to the actual code inside the tasks and all the tasks’
ECBs were treated as UCBs. If the actual UCBs are positioned so
that they are safe from eviction, then the overall number of misses
can potentially be reduced significantly more than when the
blocks are positioned to minimise the total number of evictions.
This is the aim of the approach presented in this paper.

1.2 Organisation
The remainder of this paper is organised as follows. Section 2
introduces the system model, terminology and notation. Section 3
details CRPD aware schedulability analysis while section 4
explains why different layouts cause different numbers of cache
conflicts. Section 5 details our approach to finding improved task
layouts. Section 6 presents the case study and section 7 presents
the experiments based on synthetically generated tasksets. Finally,
section 8 concludes with a summary and directions for future
work.

2. SYSTEM MODEL, TERMINOLOGY
AND NOTATION
In this section we describe the system model terminology and
notation used in the remainder of the paper.

It is assumed that fixed priority pre-emptive scheduling is used on
a single processor. Each taskset contains a fixed number of tasks
(τ1..τn) with unique fixed priorities. The priority of task τi, is i,
where a priority of 1 is the highest and n is the lowest. Each task,
τi, has a deadline Di, WCET Ci, minimum inter-arrival time or
period Ti and release jitter Ji. Tasks have constrained deadlines,
i.e. the deadline of each task is less than or equal to its period.
Each task has a utilisation Ui, where Ui = Ci / Ti. Each task can
also have a blocking time Bi which is the time that the task is
blocked from executing because it is waiting for access to a
shared resource other than the processor. To determine which

tasks can pre-empt each other, the following sets are used. hp(i)
and lp(i) are the sets of tasks with higher and lower priorities than
task τi, and hep(i) and lep(i) are the sets containing tasks with
higher or equal and lower or equal priorities to task τi.
Additionally, aff(i,j) = hep(i) ∩ lp(j) is used to represents all of the
tasks that may be pre-empted by task τj and have at least the
priority of task τi. Finally, each task τi has a set UCBi of UCBs,
and a set ECBi of ECBs, represented by a set of integers. If for
example, task τ1 contains 4 ECBs located in cache sets 1 to 4 and
cache sets 2 and 4 are also UCBs, this would be represented using
ECB1 = {1,2,3,4} and UCB1 = {2,4}.

It is assumed that the cache is direct mapped and that tasks do not
share any code. Finally it is assumed that there is no intermediate
virtual memory layer, i.e. the position of tasks in the linked
executable fully determines their position in memory and cache.

3. SCHEDULABILITY ANALYSIS WITH
CRPD
In this section, we summarise schedulability analysis for fixed
priority pre-emptive systems with CRPD, described in detail in
[2], [3].

Schedulability tests are used to determine if a taskset is
schedulable, i.e. all the tasks will meet their deadlines given the
worst-case pattern of arrivals and execution. For a given taskset,
the response time ܴ௜ for each task τi, can be calculated and
compared against the tasks’ deadline, Di. If every task in the
taskset meets its deadline, then the taskset is schedulable. The
equation used to calculate ܴ௜ is defined as [5]:

 ৢ৲
1+ߙ = ৓৲ + ৒৲ + ු ๒

ৢ৲
ߙ + ৚৲
৤৳ ๓

∀j∈hp(i)
৓৳ (1)

Equation (1) can be solved using fixed point iteration. Iteration
continues until either ৢ৲

1+ߙ > ৔৲ − ৚৲ in which case the task is
unschedulable, or until ৢ৲

1+ߙ = ৢ৲
ߙ in which case the task is

schedulable and has a worst-case response time of ৢ৲
 .ߙ

Note the convergence of (1) may be speeded up using the
techniques described in [14].

To account for the CRPD, a component γ୧,୨ is introduced which is
the cost associated with a pre-emption by task τj during the
response time of task τi. This is found by using the cost incurred
when reloading a block, the block reload time (BRT), multiplied
by the number of blocks which may need to be reloaded after a
pre-emption. Incorporating γ୧,୨ into (1) gives a revised equation
for ܴ௜ as [10]:

 ৢ৲ = ৓৲ + ৒৲ + ු ๒
ৢ৲ + ৚৲

৤৳ ๓
∀j∈hp(i)

ම৓৳ + γi,jඹ (2)

A number of different methods can be used to compute 	γ୧,୨ as
described by Altmeyer et al in [2], which we will now summarise.
The UCB Union method [23] accounts for the effects of nested
pre-emption by assuming that the UCBs of task τi, as well as the
UCBs of tasks with priorities higher than that of τi but lower than
that of τj could all be evicted by τj:

 γi,j
UCB−U = BRT ∙

||
||
|

๪ ෛ UCBk
∀k∈aff(i,j) ๫

∩ ECBj
||
||
|
 (3)

The alternative ECB-Union method [2] accounts for nested pre-
emptions by assuming that when task τj pre-empts some task τk

within the response time of task τi, task τj may already have itself
been pre-empted by all higher priority tasks:

γi,j
ECB−U =

 BRT ∙ max
∀k∈aff (i,j)๰||

||
|
UCBk ∩๪ ෛ ECBh

h∈hp(j)∪{j} ๫||
||
|

๱
 (4)

As the two methods are incomparable, the smallest response time
can be taken. This is because if at least one of the approaches
deems a taskset schedulable, then it is schedulable. Giving the
definition of the combined approach [2] as:

 ৢ৲ = minමৢ৲
৥৓৒−৥ ,ৢ৲

৕৓৒−৥ඹ (5)

The approach used in this paper is Altmeyer et al. combined
multiset approach [3]. It is similar to the combined approach
described above and a full derivation and descriptions is presented
in [3]. This approach combines the UCB-Union multiset method
with the ECB-Union multiset method. These methods build upon
and remove some of the pessimism found in the ECB-Union and
UCB-Union methods due to nested pre-emptions.

4. CACHE CONFLICTS AND IMPROVED
LAYOUTS
In this section, we discuss cache conflicts, how they can be
reduced by appropriate task layouts, and how the effectiveness of
different layouts can be compared.

Tasks are stored in memory and then loaded into cache when
needed. As the size of the cache is usually smaller than the size of
the memory and in some cases the size of the tasks, blocks from
one task will often be mapped to the same location as blocks from
other tasks. During a pre-emption, CRPD is introduced when the
ECBs from the pre-empting task evict UCBs belonging to the pre-
empted task(s). It is therefore desirable to organise tasks in
memory, so that when they are loaded into cache, the UCBs of
lower priority tasks do not share the same locations in cache as the
ECBs of higher priority tasks that can pre-empt them. This is
particularly important with respect to the ECBs of high priority
tasks with relatively short periods that may pre-empt numerous
times. In most cases it is not possible to completely avoid such
mappings to the same location in cache. Nevertheless, layouts can
be found that increase the schedulability of the taskset.

4.1 Example Layouts
Figure 1 shows how five tasks ordered by priority could be laid
out in cache. Task τ1 has the highest priority, so its UCBs can
never be evicted as it cannot be pre-empted. Task τ2 and τ3’s
UCBs are safe from eviction as they are not mapped to the same
location in cache as higher priority task’s ECBs. However, task
τ4’s UCBs could be evicted by task τ1, and τ5’s UCBs could be
evicted by task τ1, τ2 or τ4.

4.2 Comparing Layouts
The aim of this work is to find a layout for a given taskset that
results in the taskset being schedulable. Good layouts reduce the
CRPDs experienced by those tasks that are close to missing their
deadlines. The code itself is not modified, only the start positions
of each task in memory. This is implemented by controlling the
linker.

Figure 1 - Example layout showing how the position of tasks
in cache affects whether their UCBs could be evicted during

pre-emption

In order to evaluate different layouts for a taskset, a schedulability
test can be used. A taskset has a fixed utilisation defined by the
execution times and periods of the tasks, so a schedulability test
can only check if the taskset is, or is not schedulable with a given
layout. This boolean result is not enough information to
distinguish between layouts that result in the taskset being only
just schedulable, and better layouts that are robust to changes in
the processor speed or task execution times. We therefore use the
breakdown utilisation [19] of the taskset as an indicator of the
quality of the layout. Scaling the deadlines and periods of the
tasks simulates slowing down or speeding up the speed of the
CPU and memory. Using this technique, the breakdown
utilisation, the point at which the taskset becomes unschedulable,
can be found for each layout. This gives a numerical value that
can be used to compare layouts for each taskset.

5. OPTIMISING TASK LAYOUT USING
SIMULATED ANEALING
In this section we describe the changes that we made to the task
layout during each iteration of the SA algorithm, the number of
iterations that the algorithm when through before terminating, and
the criteria that we used when deciding whether to accept a layout.

We used a SA algorithm to find improved task layouts as it allows
a close to optimal solution to be found in a reasonable number of
iterations. Given an initial layout, changes are made and evaluated
over a number of iterations. In the initial layout the tasks are laid
out one after another with no gaps in-between them. The tasks are
in priority order, with the highest priority task first.

During each iteration of the SA algorithm, one of the following
changes to the current layout is chosen at random and then
evaluated:

 Swap near – swaps two neighbouring tasks by picking a
random task x from tasks 1->X-1 where X is the number of
task. This is based on the order of tasks in memory, rather
than their priorities, i.e. task 1 is first in memory, followed
by task 2. Once task x is picked, it is swapped with task x+1.

 Swap far – swaps two randomly chosen tasks. These tasks
are usually not adjacent in memory, but they can be. These
two tasks are swapped and if necessary, the start positions of
the tasks in between them are adjusted. This effectively shifts
the start positions in memory of all of the tasks in-between
the two chosen tasks by the difference in the size of the two
tasks.

 Random gap – adds a gap between two adjacent tasks in
memory by up to ±half cache size based on a random value.
Tasks cannot overlap in memory, but if a gap already exists,
it can be reduced. If the gap between tasks becomes greater
than the size of the cache, it is reduced so as not to waste
space. This is because for a direct mapped cache, the position
in cache is calculated by taking the position in memory
modulo the size of the cache. If a task with a gap after it is
swapped with another task, its gap is maintained, i.e. the gap
is moved with the task.

Changes are made to the layout of tasks in memory, and then
mapped to their cache layout for evaluation. The breakdown
utilisation of the taskset is then evaluated for each layout
generated by the SA. A binary search can be used to find the
breakdown utilisation. The binary search starts with a maximum
utilisation of 1 and a minimum utilisation of 0 and terminates
once the minimum value is within 0.01 of the maximum. After
each change to the utilisation, the schedulability analysis is re-run,
and the process repeats until the breakdown utilisation is found for
the layout. The optimum layout is the layout which has the highest
breakdown utilisation.

An initial temperature, temp, of 100 is defined for the SA, and
after every iteration, it is reduced by multiplying it by a cooling
rate of 0.98 until it reaches the target temperature of 0.05. While
the temperature is high, the algorithm is more open to negative
changes, which are required to escape local minima. The start and
end values were chosen to balance accepting negative changes,
and the cooling rate was chosen to give enough generations for
the algorithm to find a near optimal solution, without having an
excessive number of iterations. The total number of iterations
based on the initial and end temperature and cooling rate is 377
per taskset. The exception to this rule is that if the SA finds a
layout with a breakdown utilisation of 1, it will terminate early.
This is because the utilisation cannot be higher than 1 for a single
core processor, and so the SA algorithm can stop having found an
optimal solution.

If the change in breakdown utilisation, ∆BU, from the last
iteration is positive then the layout is always accepted. If the
change is negative, then the layout may still be accepted based on
how negative a change it is and the temperature. The probability
of accepting a negative change, Paccpt neg ∆ is defined as:

 Paccept neg ∆ = e Δ BU
temp (6)

5.1 Memory Limitations
To limit increases in the amount of memory required due to gaps
introduced between tasks, the algorithm can also factor in how
much free space may be introduced when finding the memory
layout. If this is above the amount specified for the experiment,
then the new layout will be rejected and will not be evaluated by
the schedulability test.

6. CASE STUDY
In this section we describe the results of a case study used to
evaluate the task layouts produced by the SA algorithm. This case
study is the same one used in Altmeyer et al [2] to evaluate
methods for analysing CRPD in [2] and later used in [3] for the
same purpose. The case study comprises a number of tasks from

the Mälardalen benchmark suite2 [17]. While these tasks do not
represent a real taskset, they do represent typical code found in
real-time systems. For each task, the derived WCET, ECBs and
UCBs are taken from [1] and are shown in Table 1. The system
was then setup to model an ARM7 processor3 clocked at 10MHz
with a 2KB direct-mapped instruction cache with a line size of 8
Bytes giving 256 cache sets, 4 Byte instructions, and a block
reload time of 8μs.

The taskset was created by assigning periods and implicit
deadlines such that all 15 tasks had equal utilisation. The periods
were generated by multiplying the execution times by a constant c
such that Ti = c Ci for all tasks. For example, c = 15 gave a
utilisation of 1.0 and c = 30 gave a utilisation of 0.5. Tasks were
assigned priorities in deadline monotonic priority order.

We compared the following layouts:
 SA – The layout with the highest breakdown utilisation as

found by the SA algorithm with an allowed memory
overhead of 0% (adding a random gap between tasks was not
allowed).

 Sequential ordered by priority (SeqPO) – Lays out tasks one
after another with no gaps in-between them. Tasks are in
priority order, with the highest priority task first. This is the
starting layout for the SA.

 Random – 1000 different random tasks orderings in memory
are evaluated and the average BU for them is used.

 CS[i]=0 – Aligns the start of every task to the first cache set.
This is almost always the worst possible layout, especially
when UCBs are grouped at the start of the task. Note the
CS[i]=0 layout has no restriction on how much memory it
can use.

For comparison, the analysis is also performed on the taskset with
the pre-emption cost ignored.

Table 1. WCET and number of UCBs and ECBs for a
selection of tasks from the Mälardalen benchmark suite

 WCET #UCBs #ECBs
bs 445 5 35
minmax 504 9 79
fac 1252 4 24
fibcall 1351 5 24
insertsort 6573 10 41
loop3 13449 4 817
select 17088 15 151
qsort-exam 22146 15 170
fir 29160 9 105
sqrt 39962 14 477
ns 43319 13 64
qurt 214076 14 484
crc 290782 14 144
matmult 742585 23 100
bsort100 1567222 35 62

The results showing the breakdown utilisation for each layout are
given in Table 2. Here, the layout obtained via SA provides a
significant increase in the breakdown utilisation over that obtained
by SeqPO. Trying 1000 random task orderings did give a slightly
better result than the SA algorithm in this case, but at the expense
of trying over twice as many layouts.

2 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
3 http://www.arm.com/products/processors/classic/arm7/index.php

Table 2. Breakdown utilisation for the taskset in Table 1

 Breakdown utilisation
No pre-emption cost 0.9844
SA 0.876
SeqPO 0.698
Random (min, average, max) 0.526,0.685, 0.882
CS[i]=0 0.527

The actual layout selected by the SA for the case study is shown
in Figure 2. The tasks are ordered by priority.

Figure 2. Layout of the tasks in cache chosen by the SA for the
task set in Table 1

Note that because task τ6 (loop3) is bigger than the number of
cache sets, its ECBs can evict the UCBs of all the lower priority
tasks so evictions were inevitable. Nevertheless, the SA algorithm
still improved upon the SeqPO which is shown in Figure 3. The
layout generated by the SA algorithm has a larger number of
UCBs in conflict compared to the SeqPO layout; however, despite
this it improves taskset schedulability. This is because of how the
UCBs are organised. In the layout generated by the SA algorithm,
the UCBs of lower priority tasks are evicted less often than they
are in the SeqPO layout. This is due to the fact that high priority
tasks, especially, tasks τ1 to τ5, have much shorter periods than
the lowest priority tasks and therefore can pre-empt them many
times.

Figure 3. Layout of the tasks in using SeqPO for the task set in
Table 1

Figure 4 shows a graph of the total CRPD for each task for the
layout chosen by the SA algorithm and for the SeqPO layout at
the breakdown utilisation for SeqPO. It can be seen that the SA
algorithm minimises the CRPD for the low priority tasks which
are close to missing their deadlines, at the expense of the higher
priority tasks which are not.

4 The no pre-emption cost value differs from [2] due to a minor
error in the computation of this value in [2]

Figure 4. Graph showing the total CRPD/task for the task set

in Table 1

7. EXPERIMENTAL EVALUTATION
In addition to the case study, in this section we describe the results
of experiments aimed at evaluating the performance of the SA
algorithm in terms of the quality of the layouts it produces for
synthetically generated tasksets, controlled by a random seed for
repeatability.

In these experiments, the UUnifast algorithm [8] was used to
calculate the utilisation, Ui of each task so that the task utilisations
added up to the desired utilisation level for the taskset. Task
periods Ti, were generated at random between 5ms and 500ms
according to a log-uniform distribution. From this, Ci was
calculated as:

 ৓৲ = ৥৲৤৲ (7)

As implicit deadlines were used, ৔৲ = ৤৲.

UCBs were distributed through each task. Figure 5 shows two
different distributions of UCBs.
A) Consolidates all of the UCBs into a single block at the start

of the task.
B) Groups the UCBs into blocks throughout the task.

Distribution A is a special case where the number of groups
is 1 and the starting position is fixed to 0.

Figure 5. Two different distributions of UCBs throughout a

task.

Distribution A is not representative of real code, therefore the
majority of the experiments were done using distribution B.

For distribution B, the UUnifast algorithm was used to generate a
random distribution of UCBs throughout the tasks. This required
two parameters, the number of UCBs, and the number of groups
of UCBs. The number of UCBs for each task was found by
multiplying the UCB percentage by the number of ECBs. The
UCB percentage for each task was based on a random number
between 0 and a maximum UCB percentage specified for the
experiment.

The number of UCB groups used was a random number between
1 and the given maximum number of UCB groups. Because
UUnifast returns floating point numbers for the number of blocks
in each UCB group, the number of blocks was rounded down to
the nearest whole number with the remainder carried forward and
added to the next group. The final group of UCBs then had either
0 or 1 extra block added on the end. In some cases, the final
number of UCB groups was less than the number given to
UUnifast. This happened when the number of UCBs in a group
was less than 1.0 or the number of blocks in a gap between UCBs
was less than 1.0.

UUnifast was first used to generate the size of the groups of
UCBs. It was then run again to generate the gaps between the
groups of UCBs, at which point the UCBs were then laid out
using a random starting position.

Finding an improved layout for a taskset with 10 tasks took
roughly 1-2 minutes using a single thread on a processor running
at 2.3GHz. As we wanted to evaluate our algorithm against a large
number of tasksets, we split the tasksets up and ran them in
parallel over four 8 core 2.3GHz processors.

7.1 Baseline Experiments
A number of experiments were run in order to investigate the
quality of the task layouts produced by the SA for different cache
and task configurations. These experiments looked at varying the
following parameters:

 Distribution of UCBs
 Maximum number of UCB groups when using

distribution B
 Maximum UCB percentage
 Cache utilisation
 Number of cache sets
 Number of tasks
 Allowed memory overhead

Cache utilisation describes the ratio of the total size of the tasks,
to the size of the cache. A cache utilisation of 1 means that the
tasks fit exactly in the cache, whereas a cache utilisation of 5,
means the total size of the tasks is 5 times the size of the cache.

Unless otherwise stated, the parameters were fixed to the
following default values during the experiments:
 Allowed memory overhead was fixed to 0% (adding a

random gap between tasks was not allowed)
 10 tasks per taskset
 1000 tasksets per experiment.
 Cache size of 512 sets
 Cache utilisation of 5
 Maximum UCB percentage of 30%
 UCBs distributed using distribution B with a maximum of 5

groups

The case study used a single taskset and therefore, 1000 random
layouts were tried and averaged out. As the synthetically
generated experiments used a large number of tasksets, only one
random layout per taskset was used. Any bias by using one
random layout per taskset is then averaged out over the large
number of tasksets.

The first experiment investigates the quality of the task layouts
produced by the SA algorithm compared to the other layouts.
Figure 6 shows results for distribution B. This graphs shows the
number of schedulable tasksets vs. utilisation for no pre-emption

cost, SA, SeqPO, random and CS[i]=0. Note that the lines on the
graphs are in the same order as they are in the key. The graphs are
best viewed online in colour.

Figure 6. Schedulable tasksets vs Utilisation for UCB
distribution B with a maximum of 5 groups of UCBs.

It can be seen that aligning all tasks at a the start of the cache,
CS[i]=0, results in the worst performance. SeqPO and random
were very similar, and the layout generated by the SA algorithm
resulted in the highest success rate when accounting for pre-
emption costs. Table 3 shows the weighted schedulability
measures, described next in subsection 7.2, for the baseline
experiment using distribution A and B. The table shows that
distribution A results in a larger number of tasksets being
schedulable at higher utilisations than distribution B for all taskset
layouts (except no pre-emption cost which is not affected by the
UCB distribution). This is expected as it is much harder to layout
tasks with the more realistic fragmented distribution B in a way
that reduces conflicts between the ECBs of high priority tasks and
the UCBs of the lower priority tasks. Nevertheless, in both cases
the SA algorithm was able to improve the weighted measure of
0.581 and 0.377 for SeqPO to 0.665 and 0.465. This is a
significant improvement as can be seen in Figure 6.

Table 3. Weighted schedulability measures for the baseline
experiments

 Distribution A Distribution B
No pre-emption cost 0.859 0.859
SA 0.665 0.465
SeqPO 0.581 0.377
Random 0.578 0.379
CS[i]=0 0.475 0.347

7.2 Weighted Schedulability
Evaluating all combinations of different task parameters is not
possible. Therefore, the majority of our experiments focused on
varying one parameter at a time. To present these results,
weighted schedulability measures [6] are used. This allows a
graph to be drawn which shows the weighted schedulability,
Wl (p), for each method used to obtain a layout l as a function of
parameter p. For each value of p, this measure combines the data
for all of the generated tasksets τ for all of a set of equally spaced
utilisation levels, where the taskset utilisation is based on no pre-
emption cost. The schedulability test returns a binary result of 1 or

0 for each layout at each utilisation level. If this result is given by
Sl (τ,p), and u(τ) is the utilisation of taskset τ, then:

 ১৵(৹) = ึු৾(τ) ∙ ৣ৵(τ	,৹)
∀τ	

ื / ු৾(τ)
∀౸

 (8)

The benefit of using a weighted schedulability measure is that it
reduces a 3-dimensional plot to 2 dimensions. Individual results
are weighted by taskset utilisation to reflect the higher value
placed on being able to schedule higher utilisation tasksets.

7.3 Weighted Schedulability Experiments
For these weighted schedulability experiments, we used 100
tasksets, rather than 1000 tasksets at each utilisation level.

The second experiment varies the maximum number of UCB
groups. As explained in section 7, the actual number of UCB
groups is chosen at random between 1 and the maximum. Figure 7
show the impact on the schedulability of the tasksets. For small
numbers of UCB groups, the weighted measure is slightly higher
as the tasks are easier to layout in a way that reduces conflicts
between the ECBs of pre-empting tasks and the UCBs of pre-
empted tasks. This is because the UCBs are less fragmented. As
the number of groups increased, the weighted measure levels off
and the SA algorithm continued to perform well in terms of the
quality of the layouts it produced. The weighted measure does not
decrease as the number of UCB groups becomes very large
because the UCBs effectively become uniformly spread
throughout the ECBs of each task, and so the CRPD becomes
dependent only on how the ECBs are laid out.

The third experiment investigates the effect the maximum UCB
percentage has on schedulability. The maximum UCB percentage
was varied from 0% to 100%, and the results are shown in Figure
8. As expected, when the maximum UCB percentage is 0%, the
layout has no effect on the schedulability of the taskset and all of
the weighted measures are equal to the no pre-emption cost
measure. This is because there are no UCBs to be evicted, which
leads to zero CRPD. As the maximum UCB percentage increases,
the SA algorithm is able to find improved layouts with respect to
the SeqPO layout which increases the schedulability of the
taskset. When the maximum UCB percentage gets very high
(>90%), there are so many UCBs that there is little that can be
done to the layout to improve the schedulability of the taskset.

Figure 7. Varying the number of maximum number of UCB
groups from 1 to 20

Figure 8. Varying the maximum UCB percentage from 0% to
100%

The fourth experiment investigates varying the cache utilisation,
the results of which are shown in Figure 9. A cache utilisation of 1
represents all the tasks fitting into the cache, therefore any layout
which does not include gaps between tasks is the best layout. This
is why CS[i]=0 does not have the same weighted measure, as it
introduces gaps. As the cache utilisation increases, the weighted
measure decreases for all layouts with the layouts generated by
the SA algorithm giving improved results up until a cache
utilisation of 10.

Figure 9. Varying the cache utilisation from 1 to 10

The fifth experiment investigates varying the number of cache
sets, as shown in Figure 10. When varying the number of cache
sets, the layouts generated by the SA algorithm performed well as
the number of cache sets increased. For a given cache utilisation
and BRT, as the number of cache sets increases, the impact of a
pre-emption can increase as the number of evicted blocks
increases. This is what causes the weighted measures to decrease
until 2048 cache sets when almost all the tasksets become
unschedulable at most utilisations when accounting for pre-
emption costs.

Figure 10. Varying the number of cache sets from 64 to 2048

The sixth experiment investigates the impact of the number of
tasks on the schedulability of the taskset. The results can be seen
in Figure 11. As the number of tasks increases, the number of
schedulable tasksets decreases as expected because of the
increased number of pre-emptions. After about 20 tasks, this
started to level out for all the layouts except for CS[i]=0. CS[i]=0
performs increasingly worse as the number of tasksets are
increased as it is lining all of the tasks up on top of each other in
the cache. The counter-intuitive result of the weighted measure
levelling off for SA, SeqPO and random is most likely due to the
fact that the cache utilisation was fixed, therefore as the number of
tasks increased, the size of the tasks decreased to a point where
they were relatively easy to layout.

Figure 11. Varying the number of tasks from 2-64 in powers

of 2

Finally, we investigated the distribution of CRPD per task for our
default values for different layouts. We found that it followed a
very similar pattern to the case study shown in section 6.

All of the experiments were run with three different memory
restrictions on the SA algorithm, (0%, 10% and 100%), but have
been presented with just 0%. This is because for the majority of
our results, letting the SA algorithm add gaps between tasks had
little effect. When changing the allowed memory overhead from

0% to 100%, the weighted measure for the baseline experiment
with distribution B only varied from 0.463 to 0.469. Because
these values are close, the lines on the graphs are not shown as
they are indistinguishable. This is due to a combination of factors
including the fact that the UCBs are scattered throughout the
tasks, and the high cache utilisation, which means there will
always be a large number of conflicts.

We therefore decided to compare the layouts produced by the SA
algorithm against a brute force approach of trying every
permutation of task ordering. As the majority of the computational
effort goes to evaluating a layout using the schedulability test, the
SA algorithm can be roughly compared against a brute force
approach based on the number of layouts it tries. Trying every
permutation results in 5040 (7!) different layouts, for 7 tasks,
compared to 377 layouts5 for the SA algorithm. While this is
reasonable for 7 tasksets, as the number of tasks, n, increases it
becomes increasingly prohibitive as there are n! different
permutations of task ordering.

Figure 12. Comparing the SA algorithm at swapping tasks

against a brute force approach of trying every permutation.

Figure 12 shows the results for 1000 tasksets normalised against
the starting SeqPO layout. The graph shows that while the SA
algorithm does not always find the best layout, it gets very close
in significantly less time.

8. SUMMARY AND CONCLUSIONS
The major contribution of this paper is using CRPD aware
schedulability analysis to drive a simple simulated annealing (SA)
algorithm towards a layout that increases the schedulability of a
taskset. This is important because the position of tasks in memory
affects the worst-case response time of the tasks due to CRPD.
While the SA algorithm did not always find the optimum solution,
it did find a near optimal solution. We built functionality into our
SA algorithm to add gaps between tasks in memory, but found
that this had little effect on the schedulability of tasksets for all
but the most trivial cases. The fact that adding gaps made little
difference is beneficial for a number of reasons. Firstly, the
search space is significantly reduced when just considering the
order of tasks. Secondly, it is easier to setup a linker to layout
tasks with not gaps in between them. This is also an important

5 See section 5 for an explanation of the SA algorithm, how many
iterations it goes through, and why.

practical point, in that it means that no additional memory space is
required.

When no gaps are added between tasks, we showed for 7 tasks
that the SA algorithm was able to find a near optimal ordering of
tasks, compared with a brute force approach which tried every
permutation.

Through a number of experiments, we showed that our approach
was able to find layouts that allowed the tasksets to be
schedulable at a higher utilisation level than other layouts,
specifically, the sequential layout with tasks ordered by priority
(SeqPO). Using the default values for the parameters used to
generate our synthetic tasksets, the layouts produced by the SA
algorithm achieved a weighted schedulability measure of 0.465,
compared to 0.377 for SeqPO. This is a significant difference as
shown in Figure 6.

This work is useful for a number of reasons. It can firstly be used
when optimising an unschedulable taskset. If a layout can be
found that makes the taskset schedulable then the problem is
solved. Even if the taskset is still not schedulable, the work
required to optimise the individual tasks and procedures to
achieve schedulability will have been reduced. Alternatively,
many embedded systems have stringent power usage
requirements. It may be that an improved layout can allow the
CPU and memory to be clocked at a lower frequency to reduce
power usage, while still maintaining the schedulability of the
taskset.

The work presented assumed a direct mapped cache, future work
could include extending it to N-way set associative caches with
the LRU replacement policy. Our work was performed at the task
level and an extension to it could be to split tasks up into
procedures and perform the same layout optimisations on the
individual procedures. This finer control of the code layout in
memory should help to further reduce CRPD.

We would also like to perform a more comprehensive case study
using real code from a multitasking application. This would allow
us to evaluate the algorithm on more realistically positioned
UCBs and ECBS. Finally, it would also be interesting to further
investigate whether adding spaces between tasks gives any benefit
for real code from large systems. If it can be proved that only
swapping the tasks is enough, then future algorithms can be
simplified to exploit that fact.

9. ACKNOWLEDGEMENTS
We would like to thank Antoine Colin for his help with the
implementation and experiment design.

This work was partially funded by the UK EPSRC through the
Engineering Doctorate Centre in Large-Scale Complex IT
Systems (EP/F501374/1), the UK EPSRC funded Tempo project
(EP/G055548/1), the Transregional Collaborative Research Center
AVACS of the German Research Council (DFG), and the
European Community's ARTEMIS Programme and UK
Technology Strategy Board, under ARTEMIS grant agreement n°
295371-2 CRAFTERS.

10. REFERENCES
[1] Altmeyer, S. and Burguière, C. Cache-related Preemption Delay via

Useful Cache Blocks: Survey and Redefinition. Journal of Systems
Architecture (2010).

[2] Altmeyer, S., Davis, R.I., and Maiza, C. Cache Related Pre-emption
Delay Aware Response Time Analysis for Fixed Priority Pre-emptive

Systems. In Proceedings of the 32nd IEEE Real-Time Systems
Symposium (RTSS) (Vienna, Austria 2011), 261-271.

[3] Altmeyer, S., Davis, R.I., and Maiza, C. Improved Cache Related
Pre-emption Delay Aware Response Time Analysis for Fixed Priority
Pre-emptive Systems. Real-Time Systems, 48, 5 (September 2012),
499-512.

[4] Arnaud, A. and Puaut, I. Dynamic Instruction Cache Locking in Hard
Real-Time Systems. In The 14th International Conference on Real-
Time and Network Systems (2006).

[5] Audsley, N. C., Burns, A., Richardson, M., and Wellings, A.J.
Applying new Scheduling Theory to Static Priority Preemptive
Scheduling. Software Engineering Journal, 8, 5 (1993), 284-292.

[6] Bastoni, A., Brandenburg, B., and Anderson, J. Cache-Related
Preemption and Migration Delays: Empirical Approximation and
Impact on Schedulability. In Proceedings of OSPERT (Brussels,
Belgum 2010), 33-44.

[7] Bertogna, M., Xhani, O., Marinoni, M., Esposito, F., and Buttazzo,
G. Optimal Selection of Preemption Points to Minimize Preemption
Overhead. In Proceedings of 23rd Euromicro Conference on Real-
Time Systems (ECRTS) (Porto, Portugal 2011), 217-227.

[8] Bini, E. and Buttazzo, G. Measuring the Performance of
Schedulability Tests. Real-Time Systems, 30, 1 (2005), 129-154.

[9] Burns, A. Preemptive Priority-Based Scheduling: An Appropriate
Engineering Approach. In Advances in Real-Time Systems. 1994.

[10] Busquets-Mataix, J. V., Serrano, J. J., Ors, R., Gil, P., and Wellings,
A. Adding Instruction Cache Effect to Schedulability Analysis of
Preemptive Real-Time Systems. In Proceedings of the 2nd IEEE
Real-Time Technology and Applications Symposium (RTAS) (1996),
204-212.

[11] Campoy, A. M., Ivars, A. P., and Busquets-Mataix, J. V. Dynamic
Use of Locking Caches in Multitask, Preemptive Real-Time Systems.
In Proceedings of the 15th Triennial World Congress of the
International Federation of Automatic Control (Barcelona 2002).

[12] Campoy, A. M., Ivars, A. P., and Busquets-Mataix, J. V. Static Use
of Locking Caches in Multitask Preemptive Real-Time Systems. In
Proceedings of the IEEE/IEE Real-Time Embedded Systems
Workshop (2001).

[13] Campoy, A. M., Puaut, I., Ivars, A. P., and Busquets-Mataix, J. V.
Cache Contents Selection for Statically-locked Instrction Caches: An
Algorithm Comparison. In Proceedings of the 17th Euromicro
Conference on Real-Time Systems (ECRTS) (Palma de Mallorca,
Balearic Islands, Spain 2005), 49-56.

[14] Davis, R. I., Zabos, A., and Burns, A. Efficient Exact Schedulability
Tests for Fixed Priority Real-Time Systems. IEEE Transactions on
Computers, 57, 9 (September 2008), 1261-1276.

[15] Falk, H. and Kotthaus, H. WCET-driven Cache-aware Code
Positioning. In Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded Systems
(CASES) (Taipei, Taiwan 2011), 145-154.

[16] Gebhard, G. and Altmeyer, S. Optimal Task Placement to Improve
Cache Performance. In Proceedings of the 7th ACM & IEEE
International Conference on Embedded Software (EMSOFT)
(Salzburg, Austria 2007), 259-268.

[17] Gustafsson, J., Betts, A., Ermedah, A., and Lisper, B. The Mälardalen
WCET benchmarks – past, present and future. In Proceedings of the
10th International Workshop on Worst-Case Execution Time
Analysis (WCET’2010) (Brussels, Belgium September 2010), 137-
147.

[18] Lee, C., Hahn, J., Seo, Y., Min, S., Ha, H., Hong, S., Park, C., Lee,
M., and Kim, C. Analysis of Cache-related Preemption Delay in
Fixed-priority Preemptive Scheduling. IEEE Transactions on
Computers, 47, 6 (June 1998), 700-713.

[19] Lehoczky, J. The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In Proceedings of the
10th Real Time Systems Symposium (RTSS) (Santa Monica,
California, USA 1989), 166-171.

[20] Liu, T., Li, M., and Xue, C.J. Instruction Cache Locking for Multi-
task Real-Time Embedded Systems. Real-Time Systems, 48, 2
(2011), 166-197.

[21] Lokuciejewski, P., Falk, H., and Marwedel, P. WCET-driven Cache-
based Procedure Positioning Optimizations. In Proceedings of the
20th Euromicro Conference on Real-Time Systems (ECRTS) (Prague,
Czech Republic 2008), 321-330.

[22] Puaut, I. and Decotigny, D. Low-complexity Algorithms for Static
Cache Locking in Multitasking Hard Real-Time Systems. In
Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS)
(2002), 114-123.

[23] Tan, Y. and Mooney, V. Timing Analysis for Preemptive
Multitasking Real-Time Systems with Caches. ACM Transactions on
Embedded Computing Systems (TECS), 6, 1 (February 2007).

