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ABSTRACT
A key issue with Worst-Case Execution Time (WCET) anal-
yses is the evaluation of the tightness and soundness of the
results produced. In the absence of a ground truth, i.e. the
Actual WCET (AWCET), such evaluations rely on compar-
ison between di↵erent estimates or observed values.

In this paper, we introduce a framework for the evalua-
tion of measurement-based timing analyses. This framework
uses abstract models of synthetic tasks to provide realistic
execution time data as input to the analyses, while ensuring
that a corresponding AWCET can be computed. The ef-
fectiveness of the framework is demonstrated by evaluating
the impact of imperfect structural coverage on an existing
measurement-based probabilistic timing analysis.

1. INTRODUCTION
The primary requirement for any WCET analysis is that

the Computed WCET (CWCET) that it produces is sound,
i.e. upper bounds the Actual WCET (AWCET). Determin-
ing the AWCET for realistically complex systems requires in
the general case exhaustive testing [22], i.e. full state cov-
erage. Demonstrating the soundness of an analysis in this
context often relies on strong assumptions about the under-
lying system, such as the absence of timing anomalies [18].
A second requirement is the tightness of the CWCET, i.e.
the di↵erence between the CWCET and the AWCET. In the
absence of knowledge regarding the AWCET, most contri-
butions are restricted to comparisons with other CWCET
obtained through di↵erent techniques.

The High Watermark (HWM), the highest observed exe-
cution time, is sometimes used as a substitute for the AWCET,
as a baseline for comparison [19]. Lower CWCETs, closer
the HWM, are assumed to be tighter estimates [13]. With
the exception of simple systems, there is no guarantee that
the HWM constitutes appropriate grounds for comparison.
It is perfectly possible for a method, e.g. the original cache
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persistence analysis [21], to produce CWCET C1 lower than
another, e.g. the revised analysis [13], if the former estimate
C1 is optimistic, i.e. HWM < C1 < AWCET . Thus the ab-
sence of knowledge about the AWCET of a task impedes
evaluation of the soundness and tightness of timing anal-
yses. Measurement-based timing analyses require minimal
knowledge of the program (task) and the hardware plat-
form. Applied to a real system, they collect execution time
measurements (samples) and require guarantees on the con-
ditions under which these samples are collected, for exam-
ple full path coverage and representative input data. Given
these inputs, they determine a CWCET.
For the purposes of evaluating measurement-based timing

analyses against a precisely defined ground truth (i.e. a
known AWCET), one can safely abstract the platforms and
tasks used in the evaluation of such methods provided that
the samples fed into the analysis remain representative of
realistic timing behaviours.
In this paper, we introduce a framework for the evaluation

of measurement-based timing analyses. Instead of providing
timing measurements from a real platform running real tasks
for input into the analysis, this framework provides realis-
tic data from synthetic (abstract) tasks. The data used to
represent the execution times for the basic blocks of these
synthetic tasks are sampled from a real system thus ensur-
ing that they represent realistic timing behaviours. Through
restrictions on the abstract model used, the complexity of
AWCET computation for the synthetic tasks can be con-
trolled, and thus an AWCET can be computed providing a
ground truth against which the CWCET produced by the
measurement-based analyses can be compared.
We note that the framework does not provide an AWCET

for real tasks on a real platform, but rather an AWCET for
synthetic tasks, that is correct with respect to the realistic
timing data (samples) that the framework provides as inputs
for the analysis. As a proof of concept, we instantiate the
framework in a solution tailored to the requirements and as-
sumptions of an existing Measurement-Based Probabilistic
Timing Analysis (MBPTA) approach [8]. The contributions
of this paper are to:

• show that using this framework we can determine the
ground truth (AWCET and the set of execution time
profiles) for synthetic tasks;

• show that the realism of the generated measurements
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is not adversely a↵ected by our assumptions;

• show how the framework enables controlled experi-
ments that evaluate the impact on an existing ap-
proach [8] of unsatisfied path coverage assumptions.

The structure of the paper is as follows. We first intro-
duce a model of the execution time of a program in Section 2.
Section 3 instantiates that model and presents a MBPTA-
tailored framework to build programs, their AWCET and
execution times. We discuss and evaluate the representativ-
ity of this approach in Section 4. Section 4 also applies this
framework in a controlled experiment aimed at the valida-
tion of an existing WCET analysis. Section 5 positions this
contribution in relation to related work. Finally, Section 6
concludes with a summary and discussion of future work.

2. TEMPORAL EXECUTION MODEL
This section defines a model of the execution of a program

p on a platform h. Although the model can capture the def-
inition of concrete platforms, it is intended to reason about
simplified abstract platforms supporting tractable AWCET
computation. Section 3 instantiates and populates such an
abstract platform tailored to the evaluation of MBPTA.

A program is characterised by a finite set of paths through
its basic blocks. Each basic block is a sequence of instruc-
tion with a single entry and exit, located respectively at the
beginning and end of the block. In other words, execution of
a basic block proceeds in order through all its instructions.
A path is itself a finite sequence of instructions. We denote
a program p using its paths ⇧ and basic blocks B, p = h⇧, Bi.

The behaviour of a run through program p depends on
the initial state of the system and the executed basic blocks,
captured by a path in p. A platform is hence first charac-
terised by a finite set of possible states S exercised during
the execution of tasks. The outcomes of a basic block, in
terms of execution times and output states, also depend on-
the platform and the included features. We denote by (b, s)
the function that captures the outcomes of basic block b from
input state s. We denote a platform h using its states S and
outcome function , h = hS,i.
The finiteness of S, ⇧ and each path guarantees the ter-

mination of any program p. Without these conditions, tim-
ing analyses for the modelled platforms would be required
to solve the halting machine problem. The definition of a
state depends on the abstract platform and does not pre-
clude complex models. As an example, a multi-core archi-
tecture could be represented provided the definition of state
is complex enough to capture the whole state of the proces-
sor, and that of co-runners of the considered task.

Let us first define the execution time of a path on a de-
terministic platform. On such platforms, the execution of
a basic block from a given input has a fixed execution time
and output state, formally: (b, s) 2 (N0 ⇥ S). Intuitively,
the execution time of a path ⇡ from input state s is the sum
of the contribution of the traversed blocks bi and states si:

ET (⇡, s, h) =
X

1ilen(⇡)

ti (1)

s0 = s (2)

(ti, si) = (bi, si�1) (3)

si captures the series of states traversed during the execution
of path ⇡. si is the output of the ith block bi in the path.

The worst-case execution time of a program p on a given
platform h, is defined as its longest execution time across
all possible runs, the valid combinations of paths and input
states:

WCET (p, h) = max⇡2⇧,s2S(ET (⇡, s, h)) (4)

2.1 Probabilistic execution time
Using a non-deterministic platform, e.g. including a ran-

dom replacement cache, introduces variability in the execu-
tion time of each basic block and, as a consequence, that of
the traversing paths. From the same input, a path does not
necessarily result in a single execution time but a distribu-
tion of execution times. The temporal behaviour of a path
is therefore best represented by an Execution Time Profile
(ETP), a probability mass function (PMF) which attaches
to each possible execution time its probability of occurrence.
We now extend the notion of execution time of a path from a
deterministic value, ET (⇡, s, h), to a probability distribution
pET (⇡, s, h).
We need to consider the impact of a non-deterministic

platform at the basic block level. The execution of a block b
from input s may result in multiple outcomes, combinations
of execution latencies and output states. We modify the
outcome function (b, s) to model the probability of a basic
block to have a specific output and cost, formally: (b, s) 2
PMF (N0 ⇥ S).

 captures potential correlations between the resulting
state and execution time. Consider as an example a sin-
gle cache with an evict-on-access randomised replacement
policy [9]. We access memory block m present in the in-
put cache. The access to m first results in the eviction of a
block, either m itself or another block. In the former case,
m is loaded back in the same cache line at the cost of a miss
and the output cache state is unchanged. The latter cases,
the access su↵ers a hit latency but a block has been evicted.
The access to m can only result in a hit latency if a block
other than m is evicted.
To formally define pET (⇡, s, h), we need to consider all

possible outcomes of the first block b1 in the path and their
impact on the following blocks of the path ⇡1. The weight
P0 of an outcome (t0, s0) is its occurrence probability:

pET (⇡, s, h) =
X

(t0,s0,P0)2(b1,s)

P0 ⇥ (t0 + pET (⇡1, s
0, h)) (5)

Where b1 is the first block in path ⇡ and ⇡1 is the remain-
der of the path after the execution of basic block b1. Assume
D is an execution time distribution. t0 +D adds t0, the con-
tribution of b1, to distribution D. The likelihood to get exe-
cution time t becomes (t0 +D)(t) = D(t� t0). P0 ⇥D weights
distribution D by probability P0, (P0⇥D)(t) = P0⇥D(t). The
sum of distributions, e.g. across outcomes of b1, sums up the
probability of t in all distributions, (D0+D)(t) = D(t)+D0(t).
The probabilistic worst-case execution time (pWCET) of

a program p, similarly to the deterministic WCET, must
upper-bound the execution time distribution of p across all
valid combinations of paths and input states. Figure 1 il-
lustrates this relation using the exceedance probability (1-
CDF, P[D � t]) of two di↵erent paths and a valid, but not
the tightest, pWCET. A distribution D upper-bounds an-
other D0 if the probability to exceed any execution time t
is higher in D than in D0 [15]. In other words, D is more
pessimistic than D0, D � D0 , 8t,P[D � t] � P[D0 � t].
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The actual pWCET of a program is the smallest upper-
bound across the ETP of all its runs. The notion of envelope
t of distributions captures this smallest upper-bound [14].
The envelope X tY of distributions X and Y is the smallest
distribution greater than both X and Y, 8Z,Z � X ^ Z �
Y ) Z � X t Y. Hence, we formally define pWCET (p, h):

pWCET (p, h) =
G

⇡2⇧,s2S

(pET (⇡, s, h)) (6)

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili
ty

pWCET
pET
pET

Figure 1: Relation between execution time of paths

and a valid program pWCET.

2.2 pET and deterministic platforms
Given the notion of probabilistic execution time, we now

consider how it applies in the context of deterministic archi-
tectures. As defined earlier, on a deterministic architecture
hd = hS,di, the execution of a basic block b from a given in-
put s produces a single outcome, d(b, s) = {(t, s, 1)}. This is
a more restricted, simpler model than the non-deterministic
one and the probabilistic execution time of a path (5) on a
deterministic platform simplifies to its execution time (1):

pET (⇡, s, hd) =
X

(t0,s0,P0)2d(b1,s)

P0 ⇥ (t0 + pET (⇡1, s
0, hd))

=
X

(t0,s0,P0)2{(t1,s1,1)}
P0 ⇥ (t0 + pET (⇡1, s

0, hd))

= t1 + pET (⇡1, s1, h
d)

pET (⇡, s, hd) = ET (⇡, s, hd) (7)

3. SYNTHETIC TASK MODEL
We now present an experimental framework tailored to

the evaluation of a number of important claims, notably the
impact bias in execution time samples fed to measurement-
based probabilistic timing analyses (MBPTA). Depending
on the assessment and analysis method under evaluation,
the considered model should obey di↵erent properties. In
this scenario, MBPTA is a black box analysis and, pro-
vided sources of variability are either upper-bounded or ran-
domised on the target platform, predicts the pWCET for
the paths exercised by the samples fed to the analysis. This
evaluation requires a baseline for comparison, an AWCET,
to evaluate the soundness and the tightness of the method
under normal and biased conditions. Computing the exact
pWCET of a task is in the general case intractable. Instead,
we rely on the controlled generation of synthetic tasks.
Our approach is outlined in Figure 2. We generate Ab-

stract Syntax Trees (AST) from a parametrised program
model, i.e. a definition of the possible paths between blocks.
The combination of a temporal model and observations on
a concrete platform defines an abstract platform, eh = heS, ei,

Config

Program
model AST Temporal

model

Observed
BBMs

Timed
AST

Exact
pWCET

Model
simulator

Time
sample

Time
sample

Figure 2: Illustration of the di↵erent steps involved

in synthetic task and sample generation.

one that allows for an assessment of the robustness of the
method. Temporal information, based on observations on
a ‘real’ program, is then attached to the AST to produce a
synthetic task for which the pWCET can be computed. The
measurement-based analysis then uses samples built from
controlled simulations of the synthetic tasks. We employ
simplification of the program and temporal model to bring
down the complexity of exact pWCET computation meth-
ods to a tractable level. Complexity is further controlled
in the task synthesis process by parameters which limit the
size of the set of paths in the AST.
In the following, we first introduce the independent block

temporal model (Section 3.1) and the process used to col-
lect observations at the block level (Section 3.2). Section 3.3
presents the AST generation step. The simulation of a syn-
thetic task is discussed in Section 3.4. Finally, Section 3.5
describes the rationale behind e�cient pWCET computa-
tion for synthetic tasks.

3.1 Independent block model
The temporal model of a platform captures the impact

of a block as a function of its input state (see Section 2).
The definition of the platform state is hence tightly cou-
pled to the complexity of a model and impacts the di�culty
of computing tight pWCET estimates. The construction of
a temporal model can be approached in many ways, from
an arbitrary execution model to exert properties of interest
or using an abstraction of the features in a platform. Al-
ternatively, observed behaviours can be matched against a
simplified state for the observed platform. The latter case
builds upon realistic data but requires the availability on the
platform of information beyond timings. As an example, the
state can discriminate timings based on the reuse distance
of memory blocks, i.e. the distance between two accesses
to the same block. As observed in static probabilistic tim-
ing analyses [1], the reuse distance is an important factor,
although not the only one, in the contribution of caches to
the execution time of basic blocks.
We first consider a simple model where each basic block b

is assumed to have a single Execution Time Profile (ETPb)
giving the PMF for the execution time of the block. This
e↵ectively abstracts the e↵ect of prior history and input
state on the temporal contribution of a basic block. The be-
haviour of a block is independent of the behaviour of other
or prior blocks in the program. The result is a stateless
abstract platform eh = heS, ei:

eS = ;, e(b, s) = e(b) (8)

A basic block having no impact on the state of the system,
the output and temporal contributions of a basic block are
uncorrelated. Therefore, the outcome of the execution of b
only depends on its ETPb:

e(b) = {(t, ;,P|(t,P) 2 ETPb} (9)

MBPTA approaches advocate the use of architectures where
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the temporal contribution of sources of variability are either
upper-bounded or randomised during analysis. As demon-
strated for random-replacement caches [9], these do not guar-
antee the ETP observed at the access or basic block level are
independent, i.e. una↵ected by prior accesses. As a first step
in this study, we remove observed dependencies and show
the representativity of the model is not impacted. The re-
sulting model is an ideal case for the application of MBPTA
approaches; the ETP of a path is e↵ectively a combination
of random events, modelled by the ETP of its basic blocks.

Note that the model exhibits properties inherent to the
temporal contribution of tasks. The selected path and the
ETP of its composing blocks contribute to the temporal dis-
tribution and variability of paths. Each potentially using
widely di↵erent distributions. We evaluate the impact on
accuracy of the independent block model in Section 4.

3.2 Gathering Basic Block Measurements
The proposed model relies on the availability for each ba-

sic block b of a matching ETPb. To build such an ETP,
we collect representative data, Basic Block Measurements
(BBM), at the block level on a concrete application. Our
prototypes use the Valgrind instrumentation framework 1

and the FFmpeg 2 application. The process first builds a
control flow graph (CFG) of the instrumented application.
The Cachegrind tool in Valgrind simulates the behaviour
of the cache, hits and misses, and collects profiles of each
traversed block. The collected profiles are then converted
into execution time distributions to be used in the synthetic
tasks. The di↵erent steps are illustrated in Figure 3. Suc-
cessive iterations of the selected FFmpeg primitive, one per
frame in the input feed, guarantees the collection of a large
number of profiles under di↵erent inputs.

Figure 3: Illustration of the di↵erent steps involved

in Valgrind-based sample collection.

Valgrind is a dynamic instrumentation framework tailored
to support the development of analysis tools. Compared to
more full-fledged simulators, the Valgrind solution has little
deployment overhead. It supports instrumentation of any
binary and input running on the host machine, including
full system support. This eases and quickens the genera-
tion of numerous test samples, allowing for a large collection
of BBM to synthesise tasks. Default tools further provide
instrumentation focused on the collection of cache hit/miss
profiles instead of costly full processor simulation. This eases
understanding the sources of variability in the BBM.

FFmpeg is a multimedia transcoding library and includes
a command line implementation. We instrumented the lat-
ter, focusing on the video decoding procedure. FFmpeg is
one of the pieces of currently available software for which
it is possible to assess the impact of using di↵erent input
test vectors on the software being analysed. Indeed, each
frame constitutes an input, and each video file is an oppor-

1http://www.valgrind.org
2http://↵mpeg.org

tunity to gather ‘real’ deployment data of the application
with a di↵erent input vector. The widespread availability of
video files allows for massive amounts of data. In contrast,
popular real-time benchmark suites, e.g. TACLeBench 3 or
Mälardalen 4, tend to rely on a fixed set of inputs, o↵ering
no variation.
Instrumentation collects the memory addresses accessed

by successive calls to the h.264 video frame decoding primi-
tive and simulates their cache behaviour through the Cache-
grind tool. The resulting cache hits and misses across the
memory hierarchy are used to estimate the temporal be-
haviour of each call to the function. We modified Cachegrind
to support the evict-on-miss random replacement policy [9]
and to construct of the CFG of the instrumented program.
The caches and traversed execution paths are the main

sources of execution time variability. The input of the FFm-
peg application impacts the path followed during the execu-
tion of the task, and as such the behaviour of subsequent
basic blocks. Given a basic block, the observed BBM is as-
sumed to capture that block’s temporal behaviour and the
transposition of a BBM to an ETPb is direct. This approach
supports the independent block model by providing realis-
tic ETPs, abstracting itself from the concrete e↵ects of the
history of execution on the cache. This in turns allows for
a simple computation of the exact pWCET of a program.
The BBM may in practice only capture an estimate of the
execution time distribution of the corresponding basic block
but the realism of the captured low-level distributions is not
a↵ected (see Section 4).

3.3 Program synthesis
As per our execution model, a program is represented by

a set of paths ⇧, where each path is a finite sequence of basic
blocks. Although it would be possible to randomly gener-
ate a number of arbitrary sequences of basic blocks, this
is unlikely to result in representative program constructs.
Furthermore, the size of the program representation would
increase with the number of paths. We instead rely on a
compact representation using AST. This section presents the
considered structure and generation process.
Our prototype program generator synthesises AST from

random combinations of sequence, for, conditional, and
block nodes. Each type of node represents a common syn-
tactic construct and possible paths between its blocks. AST
further provide for a simplified reasoning on the worst-case
execution time of a node as opposed to more free form repre-
sentations such as control flow graphs which accept arbitrary
transitions between basic blocks. The lack of expressiveness
of AST, in terms of possible constructs or infeasible paths,
can be circumvented by introducing new types of nodes, or
duplicating part of the sub-trees, e.g. to remove a now in-
feasible path. This comes at an increase in the complexity
of the structure.
Starting from the root of the tree, we randomly select

a node type and create the appropriate node. The gen-
erator repeats the process for each of the children of the
newly created node, selecting a node type, creating the node
and its children. To control the size of the generated trees,
the maximum width and depth of the tree are parametrised
and enforced through restrictions on the maximum autho-

3http://www.tacle.knossosnet.gr/activities/taclebench
4http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
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rised nesting and maximum width of sequence and con-

ditional nodes. Loop bounds are also randomly selected
within parametrised ranges.

Figure 4 (and the corresponding Algorithm 1) illustrates
the resulting structure. Semantically, conditions are eval-
uated in order (from left to right, b{10} then b{11} in
switch{9}) until either one is true and the corresponding
branch is executed, or the default one, if any, is executed
(e.g. b{7} is the default branch in ifelse{5}). Sequences,
such as switch{9}; ifthen{3}, similarly execute their chil-
dren in order. The loop for{12} iterates exactly 19 times,
over the sequence b{13}; b{14} in Figure 4. The loop con-
dition b{13} is executed again at the end of the loop.

ifelse{0}

b{1}

b{17} switch{9} ifthen{3}

b{10} b{11} for{12} 
 Iter: 19

b{15} b{16} b{13} b{14}

b{4}

ifelse{5}

b{6} b{7}

b{8}

Figure 4: Example of a randomly generated AST

including nested conditionals and a loop construct.

Algorithm 1 Pseudo code for Figure 4 AST.

/* ifelse{0} */
if b{1} then

b{17}
else

/* switch{9} */
if b{10} then

b{15}
else if b{11} then

b{16}
else

for i 2 1..19 /* b{13} */ do

b{14}
/* ifthen{3} */
if b{4} then

/* ifelse{5} */
if b{6} then

b{8}
else

b{7}

3.4 Simulation of a synthetic task
The simulation of a synthetic task enables the collection of

execution time measurements. The resulting samples can be
fed into measurement-based timing analyses. The execution
of a task starts from its root node and progresses forward
as per the semantic of the encountered node. The execution
time of each encountered basic block b is picked at random

according to its ETPb. The sum of execution times picked
across all traversed blocks provides an execution time for
that run. Upon a conditional node, a decision is required
to progress. The model does not enforce the selection of
a specific branch, or a path. We defer the selection of the
path executed during a run of the task to a sampling strat-
egy. The sampling strategies can, as an example, allocate
a selection probability to each path or define an ordering
between paths executed in successive runs. The selected
strategy depends on the claim under evaluation.

3.5 pWCET in the independent block model
An AST represents syntactic structures of a program as

nodes in the tree. The execution time of a node is a simple
function of the temporal behaviour of its children. This is
the approach followed by tree-based (p)WCET computation
approaches [17, 4]. The WCET of a task is represented as
an expression of the WCET of its basic blocks, i.e. leaves in
the tree. This expression captures the WCET of each node
as the maximum of the execution time of all its paths. As
an example, the WCET of a conditional node is that of its
longest branch, including the execution time of conditions
leading to the execution of that branch.
Tree-based WCET computation approaches rely on sim-

ple operations on execution times. However, this requires
knowledge of an upper-bound of the temporal behaviour of
each basic block. Block-level analyses can produce such ex-
ecution times valid irrespective of the incoming path. The
pessimism of the analysis introduced at the block level is
reflected at the program level. In the independent block
model, the ETPb of a basic block naturally fits those con-
straints. It is a single execution time distribution valid ir-
respective of the paths followed to block b. The principles
of tree-based WCET analyses can be applied to e�ciently
compute the actual pWCET of a program in the indepen-
dent block model. We now show the ETP of di↵erent blocks
can be added using the convolution operator (⌦) and max-
imised by the envelope (t) one.
Let us first consider the computation of the probabilis-

tic execution time of a path ⇡. As described in the general
case (5), it is a combination of the ETP of its composing
blocks while propagating the state of the platform. The ab-
stract platform in the independent block model is stateless.
As a consequence, we can specialise the definition of proba-
bilistic execution time in (5) to our abstract platform:

pET (⇡, s,eh) = gpET (⇡) (10)

With b1 denoting the first basic block in path ⇡ and ⇡1
the remainder of path ⇡ after the execution of b1, we have:

gpET (⇡) =

0

@
X

(t0,P0)2ETP
b1

P0 ⇥ (t0 + gpET (⇡1))

1

A

The likelihood gpET (⇡)(t) that path ⇡ has an execution
time t is a sum of weighted distributions over ETPb1. From
the combinations rules in Section 2, it can be simplified as:

gpET (⇡)(t) =
X

(t0,P0)2ETP
b1

P0 ⇥ (t0 + gpET (⇡1))(t) (11)

=
X

(t0,P0)2ETP
b1

P0 ⇥ gpET (⇡1)(t� t0)

gpET (⇡)(t) =
X

(t0,P0)2ETP
b1

ETPb1(t
0)⇥ gpET (⇡1)(t� t0)
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Obviously, if a basic block b1 (respectively path ⇡1) can-
not result in an execution time of t0 (respectively t � t0), it
has an occurrence probability of 0 in ETPb1 ( gpET (⇡0)). We
can indi↵erently define gpET (⇡)(t) over all possible execution
times or only those in ETPb1:

gpET (⇡)(t) =
+1X

t0=�1
ETPb1(t

0)⇥ gpET (⇡1)(t� t0) (12)

= (ETPb1 ⌦ gpET (⇡1))(t)

In other words, the probabilistic execution time of any
path ⇡ is the convolution (⌦) of the ETPs of its composing
blocks: gpET (⇡) =

N
0<ilen(⇡) ETPb

i

The convolution of two execution time distributions X and
Y adds weighted execution times from a distribution to the
other (12). Execution times are by definition positive or null
values. Hence, the likelihood to exceed an execution time t
is lower in execution time distribution X alone than in its
convolution with execution time distribution Y, P[X ⌦ Y �
t] � P[X � t]. The convolved distribution is greater than
the original, (X ⌦ Y) � X . This is also intuitively proved by
induction, from the smallest execution time t in X (or Y).
Another consequence is the distributivity of the envelope t
and convolution ⌦ operators, a relation similar to that of
the max and + operators on positive integers:

(D ⌦ X ) t (D ⌦ Y) = D ⌦ (X t Y) (13)

pWCET computation at the node level

The pWCET of a program is the envelope of the execution
time distributions of all possible outgoing paths (6). To each
type of node n is attached a di↵erent semantic; the type of
a node n defines the set of paths ⇧n it generates from its
children. We now define the pWCET of a node n in our
model, ^pWCET (n). The pWCET of a program p is then
defined as the pWCET of its root:

pWCET (p) = ^pWCET (root(p)) (14)

=
G

⇡2⇧
root(p)

( gpET (⇡))

If n is a block, there is only one single path in ⇧n, through
basic block n, ⇧n = {(n)}. The temporal behaviour of b is
captured by the platform in the matching ETPn:

^pWCET (n) = ETPn (15)

If n is a sequence of nodes, n1;n2; ...;nK , its children are
executed in order. The paths followed in each node are in-
dependent. The execution of a specific path in child ni has
no impact on the behaviour of node ni+1. All combina-
tions between paths of nodes n1 to nK must be considered,
⇧n = ⇧n1 ⇥ ...⇥⇧nK :

^pWCET (n) =
G

⇡2⇧
n

gpET (⇡) (16)

=
G

(⇡1,...,⇡
K

)2⇧
n

⇣
gpET (⇡1)⌦ ...⌦ gpET (⇡K )

⌘

From (13) then (14), we have:

^pWCET (n) (17)

=

0

@
G

⇡12⇧
n1

gpET (⇡1)

1

A⌦ ...⌦

0

@
G

⇡
K

2⇧
nK

gpET (⇡K )

1

A

= ^pWCET (n1)⌦ ...⌦ ^pWCET (nK )

If n is a conditional, after the execution of a condition
(e.g. b{10} in Algorithm 1), either the corresponding branch
(b{15}) is executed or the next condition (b{12}) is evalu-
ated. After the last condition fails, the default branch d is
executed instead. We denote ⇧n

c
i

the set of paths originating
from condition ci in conditional n, i.e. paths starting in ci
through the branch or the next condition. ⇧c

i

denotes the
set of paths within condition ci. ri is the branch executed if
ci is verified, and d the default branch in the conditional:

⇧n = ⇧n
c0 (18)

⇧n
c
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K

⇥ (⇧r
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[⇧n
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)

Hence, the pWCET of conditional node n is:

^pWCET (n) = ^pWCET (n0) (19)

^pWCET (nK ) = ^pWCET (cK )⌦
⇣

^pWCET (rK ) t ^pWCET (d)
⌘

^pWCET (ni) =
G

⇡2⇧n

c

i

gpET (⇡)

= ^pWCET (ci)⌦
⇣

^pWCET (ri) t ^pWCET (ni+1)
⌘

If n is a loop, its execution is a sequence of i iterations
through the loop condition and body, respectively nh and nb.
The set of paths captured by n is ⇧n = (⇧nh ⇥⇧nb)

i ⇥⇧nh,
including the last execution of the loop condition nh. From
the definition (16) of the pWCET of sequence, we derive:

^pWCET (n) =
G

⇡2⇧
n

gpET (⇡) (20)

= ^pWCET (nh)⌦ ^pWCET (nb)⌦ ...⌦ ^pWCET (nh)

As the convolution operation is commutative, we can re-
order the operations such that the pWCET of the condition
and body of the loop only need to be computed once:

^pWCET (n) = ( ^pWCET (nh))
(i+1) ⌦ ( ^pWCET (nb))

i (21)

The power operation on distributions uses the convolution
operator and e�cient computation decomposes the power
operation into the convolution and memoization of smaller
exponents, i.e. caching the results of lengthy calculations
so that they may be re-used when required again. (i + 1)
on the loop condition refers to the i iterations of the loop
and the final evaluation of the condition. The use of a less
constrained semantic on loops, where the loop may iterate
less than the loop bound, does not change this equation.
Any additional iteration adds to the execution time of the
loop and therefore contributes to its worst-case execution
time.

4. EVALUATION
In this section, we evaluate the proposed approach and

the independent block model. First, we investigate the re-
alism of the independent block model, that is any precision
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loss induced by abstracting the state of the observed plat-
form from the temporal model and assuming completeness of
the BBM. We then evaluate a state-of-the-art measurement-
based probabilistic timing analysis [8] using programs gener-
ated for our abstract platform. For the sake of consistency,
the two sets of experiments use the same experimental con-
ditions detailed below.

The cache hierarchy in Cachegrind features two, 64KB,
2-way L1 cache, for data and instruction, and a 256KB, 8-
way unified L2 cache. All caches use the same 64B line size.
The evict-on-miss random replacement policy is assumed in
all levels of the cache hierarchy. We collect hits and misses
data for each cache. The conversion from hits and misses
to timings assumes access latencies of 1, 10 and 100 cycles
respectively for the L1, L2 caches and main memory. This
approach factors in the number of instructions in a block
as each instruction takes at least 1 cycle (if it hits in the
instruction L1 cache).

The program synthesis is also constrained. Conditions
in loop and conditional nodes are restricted to simple ba-
sic blocks. The allocation of the BBM for an observed basic
block to the ETP of a synthetic one, only pairs observed
and synthetic blocks with similar structural constraints. In
particular, the generator distinguishes blocks within loops,
blocks within simple loops whose body comprises a single
path, and dominators of the AST exit, whose execution is
guaranteed in each run. Additional generation parameters,
described in Table 1, ensure the generation of small appli-
cations with varied structures. Note that once the desired
nesting level is reached, only basic blocks can be generated.

Table 1: Parameters from program synthesis.

block

Weight 20
sequence

Weight 5
Max. width 4
conditional

Weight 1 condition, with default 5
Weight N conditions 1
Max. width 4
loop

Weight 11
Iter range (2, 16)
Max. Nesting 3

The complexity of the convolution (⌦) and envelope (t)
operations is tied to the size of the manipulated distribu-
tions. Given distributions X and Y each with N elements,
the complexity of the general convolution operation, X ⌦ Y,
is O(N2) and X ⌦Y may hold up to N2 entries. As the com-
putation of the pWCET of a program progresses, the size of
the manipulated distribution increases. Although more ef-
ficient implementation of the discrete convolution operation
exist, e.g. FFT-based discrete circular convolutions [6], they
rely on padding the input distributions, thus increasing the
memory requirements of the algorithm for widespread dis-
tributions. E�cient sparse convolution algorithms [2] may
require knowledge on the size of input distribution.

We rely on Lossy compression [12], as proposed in the
context of static probabilistic timing analyses, to reduce
the cost of the computation of AWCET of synthetic pro-
grams. Execution times whose occurrence probability falls
beneath a selected threshold (10�17), matching the desired

exceedance probability for the task, are soundly removed.
Their probability is accumulated in the largest value in the
distribution. Compression results in a slight loss in tight-
ness, but improves the computation time of the pWCET
analysis. Similarly, we use resampling [16] to bound the
complexity of the envelope and convolution operations (up
to 16000 entries per distribution). Resampling merges the
occurrence probability of consecutive entries in the distribu-
tion into the largest one.
The input vectors to the FFmpeg application are listed

in Table 2. All video files were obtained from the Internet
Archive movies collection. To ensure a similar frame size in
all cases, our observations used the 512KBMPEG4 encoding
of each source file. We only collect BBM over the first 8000
frames of each movie.

Table 2: Considered input vectors.

Id Title
nosf Nosferatu, eine Symphonie des Grauens (1922)
kung Return of the Kung Fu dragon (1976)
plan Plan 9 from Outer Space (1959)
phop The Phantom of the Opera (1925)

4.1 Does the framework produces realistic ex-
ecution time traces ?

In this section, we evaluate the realism of the proposed
approach. In particular, we observe the impact of the state-
independence and completeness assumptions on the observed
BBM and paths. To that end, we collect end-to-end timing
measurements of the frame decoding process on the FFm-
peg application, alongside a list of traversed basic blocks for
each observation. This provides an observed execution time
distribution.
We match the observed distribution against a synthetic

one. The synthetic distribution is constructed by simulat-
ing each of the observed paths using our model, that is ex-
ecution times are generated as the sum of values randomly
picked inside the ETP of the traversed blocks. The ETP of
each block is built from all its occurrences across observed
paths. The simulated and observed distributions are built
in each case using the same input vector (identified by its
id in Table 2). For the sake of brevity, we only present the
1-CDF for the phop and plan input vectors respectively in
Figures 5 and 6. The framework behaves similarly for phop
and nosf on one hand, and plan and kung on the other.
As illustrated in Figures 5 and 6, the synthetic execution

time distribution, obtained through simulation in our model
of the observed paths, exhibits a similar shape to the ob-
served one. Variations due to changes in the input vector
are reflected upon the exercised path and, as a consequence,
both the observed and simulated distributions. The two
distributions are very close. In the worst-case phop, the ma-
jority of simulated runs are within 10% of their observed
counterparts. Conservative assumptions during the conver-
sion of observed block-level cache profiles to ETPs, explain
the increase in execution time of the simulations over the
observations in Figure 5. This occurs when the number of
memory operations within a basic block, as reported by the
instrumentation framework, is not constant.
Variability on the observed platform is tied to both the

observed path and the behaviour of the randomised cache
hierarchy. The experiment traverses the same paths, i.e.
sequence of basic blocks, in both simulations and observa-
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Figure 5: Simulated and observed execution time

distributions for the phop input vector.
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Figure 6: Simulated and observed execution time

distributions for the plan input vector.

tions. The di↵erence between the two distributions comes
from di↵erences in the execution time picked in each basic
block. These results underline the adequacy of our assump-
tions, the realism of the BBM and the importance of the
path in the variability of execution time beyond history of
execution. The observed execution time at the block level
in turn is indeed impacted by the prior sequence of accesses
and the replacement policy. The use of the random pol-
icy implies that, barring guaranteed hits, each access has
a miss probability impacted by prior hits and misses. Dif-
ferent sequences of addresses with similar probabilistic be-
haviours can therefore have similar impact on the execution
of a block. As compared to deterministic policies, such as
LRU, there is also less of a threshold e↵ect where a single
additional access in the history can turn a guaranteed hit
into a miss.

4.2 Robustness of MBPTA
The following section presents a controlled experiment for

the evaluation of timing analyses based on Extreme Value
Theory (EVT), i.e. MBPTA using hardware and software
customised for the purpose. In the original contribution [8],
MBPTA was been described as producing valid pWCET es-
timates only for those paths exercised by the execution time
samples fed to the method. To understand the importance of
this requirement, we evaluate the robustness of the method
in presence of path-related bias in the samples fed to the
analysis. This is but one example of many claims that could
be evaluated as part of a certification case for MBPTA [11].

To assess the soundness and precision of the analysis re-
quires the knowledge of the AWCET of a task. The use
of a simple temporal model, the independent block model,
allows such a computation. Only results of interest are pre-
sented in the following, to illustrate general trends or spe-
cial cases. The framework indeed allows for the generation
of copious configurations of synthetic tasks along with the
attached ground truth, an AWCET and controlled samples
of execution times (see Section 3).
To build sets of synthetic execution time samples, a sam-

ple strategy must be considered. The execution time of a run
is obtained by randomly picking execution times in the ETPs
of the traversed blocks. Di↵erent strategies can provide dif-
ferent levels of control over the set of basic blocks, paths or
execution times covered by a given sample. Our strategy
decides the outcome of each encountered conditional node
at random. loop always take the maximum number of it-
erations. All outcomes, branches in the condition, have the
same weight. This e↵ectively executes a random path, but
allows for a good coverage of the basic blocks in a simple
AST. To support the introduction of bias towards specific
parts of the program, we introduce the notion of blacklisted
nodes in the sampling strategy. The strategy only picks
paths among the ones which traverse no blacklisted nodes.
We use a set of 100 randomly generated tasks. For each,

we generate two samples of 8000 runs and apply MBPTA to
predict the pWCET of the synthetic task. Only tasks with a
sensible number of paths (less than 8000) are kept during the
generation process, ensuring our baseline configuration can
fulfil the requirements of MBPTA in terms of path coverage.
Under these conditions, the sampling strategy consistently
provides a good coverage of paths.
To introduce bias in the samples fed to the analysis, sam-

ples are collected with an increasing number of randomly
blacklisted blocks. The process only selects those blocks that
do not dominate the exit of the task, i.e. blocks whose exe-
cution is not mandatory in every run. Each sample is then
fed to MBPTA to predict the pWCET of the task. To allow
for a comparison across all tasks, we read o↵ the predicted
pWCET at exceedance probability 10�9 and normalise it
over the exact value at the same probability.
Figure 7 presents the result of those experiments as a box

and whisker plot. For each experiment, i.e. number of blocks
ignored in a task, the box (dashed blue) captures the first
(25%), third quartiles (75%) and median (red line, 50%) of
the normalised predictions across the di↵erent samples. If
su�cient data is available, the whiskers (black dash) repre-
sent the 9th and 91st percentiles. Orange diamonds mark
outliers. We also consider in Figure 8 the random removal
of nodes instead of leaves in the AST. Complete subtrees
may as a result be ignored by the sampling process.
We first focus on cases where all paths are are captured

by the analysed sampled (the leftmost entry of Figure 7
and 8). Both have been obtained under the same conditions
and produce similar results in terms of soundness. When
all paths are covered, only a marginal number of generated
tasks were found unfit for analysis through MBPTA, failing
the minimum run test.
The omission of random blocks, leaves within the AST,

bears little e↵ect on the behaviour of the analysis as il-
lustrated in Figure 7. If the removal decreases the num-
ber of sampled paths, since the blacklisted blocks are non-
mandatory the remaining paths are similar to the removed
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Figure 7: Precision at 10�9
of the MBPTA-predicted

pWCET with an increasing number of blacklisted

blocks.
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Figure 8: Precision at 10�9
of the MBPTA-predicted

pWCET with an increasing number of blacklisted

nodes.

ones traversing alternative blocks nested in the same struc-
tures. When the removal is more local, as is the case when
nodes are omitted in Figure 8, the focus on a more con-
sistent set of paths reduces the overall span of predicted
values. However, the loss of program coverage also degrades
the soundness of the predicted results. Note that in later
stages some of the exposed variability could be argued to
be the result of randomised task parameters as well. As an
example, between 6 and 8 omitted nodes in Figure 7, less
samples are available as few tasks o↵er enough candidates
for omission without removing all feasible paths.

The path coverage requirement is in practice di�cult to
achieve, even using reasonably-sized samples we had to re-
ject 3 out of 5 generated tasks to ensure the practicality of
the requirement. In our experiments, when this requirement
was satisfied, MBPTA produced sound estimates. There is
a reasonable argument that a less restrictive, more refined
condition can be constructed biased towards the coverage of
specific paths, e.g. the worst-case inducing ones as in prob-
abilistic static analyses [14], can be constructed. This may
alleviate the need for full path coverage while still ensuring
sound results. Coverage of the basic blocks in the program
is not a strong requirement provided the omitted blocks are
spread across the program, i.e. similar alternatives are cov-
ered.

5. RELATED WORK
Static WCET analysis techniques [10, 5, 22] rely on the

definition of abstract models of the analysed platform to
estimate its temporal behaviour. As an example, abstract
interpretation-based cache analyses [10] capture an upper-
bound of the cache state before every basic block in the ap-
plication. This provides guarantees on the absence or pres-
ence of blocks in the cache. More precise approaches [5] rely
on more costly models, e.g. to distinguish di↵erent contexts
and timings for a same basic block. Existing computation
techniques provide ground for the definition of various ab-
stract platforms. Our framework is however ill-suited to the
evaluation of static analyses. To evaluate an analysis using
a given model, would require a more precise model to define
an evaluation platform. If exact pWCET computation us-
ing the latter is tractable, it is a likely replacement for the
original analysis.
Measurement-based WCET analyses [4, 8] on the other

hand rely on measurements obtained from the target plat-
form to derive WCET estimates. Some approaches rely on
the collection of supplemental information, e.g. the struc-
ture of the observed program [4], to cover unobserved config-
urations. On the other hand, black box approaches [8] may
rely on compliant hardware to ensure the observed platform
upper-bounds the deployed one. MBPTA [8] relies on non-
deterministic architectures. The behaviour of a task is then
estimated through extrapolation of the tail of the observed
execution time distribution. The quality of the collected
samples is therefore of prime importance.
The expression of the execution time of a program as a

transition system between states of the platform is a nat-
ural process. It allows the definition of the behaviour of a
platform at a low, instruction-level granularity [20]. This
model was notably used to lay down a classification of tim-
ing anomalies [18]. The transition system model also o↵ers
a generic solution for the computation of the WCET of a
task, through a collecting semantics exploring all possible
states [7].

6. CONCLUSIONS
The main contribution of this paper is the introduction of

a framework for the evaluation of measurement-based timing
analyses. Instead of providing timing measurements from a
real platform running real tasks for input into the analysis,
this framework provides realistic data from synthetic (ab-
stract) tasks. This allows a corresponding AWCET to be
computed, enabling the soundness and tightness of the tim-
ing analysis results to be evaluated.
We applied this approach defining a simple independent

block model, where basic block measurements from a real
system were used to populate realistic ETPs for the basic
blocks in synthetic tasks. (Execution time variability under
this model is mostly due to the exercised path). Our eval-
uation, targeted at platforms with caches with a random
replacement policy, showed that the proposed model pro-
duces realistic outputs when compared to timing data for
the original task running on the real platform. Further, we
evaluated the soundness and tightness of MBPTA, exploring
the e↵ects of bias in terms of missing input data (omitted
blocks and nodes in the task’s AST).
Our experiments showed that (as expected) a lack of path

coverage, due to unobserved nodes in the AST, deteriorates
the soundness of the analysis. When applicable and with
full path coverage, the results produced by MBPTA were
found to be sound, and reasonably tight w.r.t. the ground
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truth computed by the framework.
One avenue for future research is to investigate the cov-

erage needed by MBPTA to ensure that sound results are
obtained. Our evaluation mostly focuses on the impact of
randomised bias on the soundness and tightness of the re-
sulting temporal estimates. More controlled forms of bias,
as an example towards the best or worst-case paths could be
considered. Bias can also manifest as the occurrence of de-
pendencies between runs of the task, e.g. if successive runs
operate in the same operation mode. The sampling strategy
used in our evaluation e↵ectively randomises the executed
path selection, di↵erent strategies could be implemented to
introduce and evaluate the impact of di↵erent forms of de-
pendencies between consecutive runs.

Future work should also consider the introduction of dif-
ferent temporal models, in particular including dependen-
cies between blocks of a task. Copulas have been considered
in previous work to represent such dependencies [3] but re-
quire knowledge of the execution time distributions of basic
blocks. This information is available as part of the tem-
poral model, e.g. from basic block measurements. More
focused models could allow for the evaluation of MBPTA in
the presence of timing anomalies, through control of their
occurrences on an abstract platform. Some control should
also help in ensuring the computation of the exact pWCET
of the synthetic tasks remain tractable.
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