
On the Compatibility of Exact Schedulability Tests for Global Fixed Priority Pre-
emptive Scheduling with Audsley’s Optimal Priority Assignment Algorithm

Robert I. Davis1,2, Marko Bertogna3, Vincenzo Bonifaci4

1Real-Time Systems Research Group, Department of Computer Science, University of York, UK.
2Inria, Paris-Rocquencourt, France.

3University of Modena and Reggio Emilia, Italy.
4Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” (IASI-CNR), Rome, Italy. Email:

rob.davis@york.ac.uk, marko.bertogna@unimore.it, vincenzo.bonifaci@iasi.cnr.it

Abstract
Audsley’s Optimal Priority Assignment (OPA) algorithm
can be applied to multiprocessor scheduling provided that
three conditions hold with respect to the schedulability
tests used. In this short paper, we prove that no exact test
for global fixed priority pre-emptive scheduling of
sporadic tasks can be compatible with Audsley’s
algorithm, and hence the OPA algorithm cannot be used to
obtain an optimal priority assignment for such systems.

1. Introduction
Davis and Burns (2009) proved an important result about
the applicability of Audsley�s Optimal Priority
Assignment (OPA) algorithm (Audsley; 1991, 2001). They
showed that three simple Conditions are both sufficient
and necessary for Audsley�s algorithm to provide optimal
priority assignment with respect to a given schedulability
test. Davis and Burns (2011a) used the three Conditions to
categorise schedulability tests for global fixed priority pre-
emptive scheduling on identical multiprocessors according
to their compatibility or otherwise with Audsley�s OPA
algorithm. They showed that the following schedulability
tests are compatible with OPA:
o Deadline Analysis (DA test) of Bertogna et al. (2009).
o Improved DA-LC test (Davis and Burns, 2011a) based

on the RTA-LC test � see below.
o Response Time test of Andersson and Jonsson (2000).
While the following tests are incompatible:
o Response time analysis (RTA test) of Bertogna and

Cirinei (2007).
o Improved response time analysis (RTA-LC test) with

limited carry-in of Guan et al. (2009).
In Theorem 5 of their paper, Davis and Burns (2011a)
showed via a counter example, that any exact test for
global fixed priority pre-emptive scheduling of periodic
task sets, such as those given by Cucu and Goossens
(2006, 2007) is also incompatible with Audsley�s OPA
algorithm. In this short paper, we extend that result,
proving that any exact test for global fixed priority pre-
emptive scheduling of sporadic task sets, such as those
given by Baker and Cirinei (2007), and Bonifaci and
Marchetti-Spaccamela (2012), is also incompatible with
Audsley�s OPA algorithm.

2. System model, terminology and notation
The system comprises a static set of n tasks that are

scheduled to execute on m identical processors. Before the
tasks can be scheduled, a priority assignment policy is
used to assign a unique static priority i, from 1 to n (where
n is the lowest priority) to each task.

We assume that each task gives rise to a potentially
infinite sequence of jobs. Each job may arrive at any time
once a minimum inter-arrival time has elapsed since the
arrival of the previous job of the same task.

Each task i is characterised by: its relative deadline
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . A task�s worst-case response
time iR is defined as the longest time from a job of the
task arriving to it completing execution. We make no
assumptions about the relationship between the deadlines
and the periods of the tasks (i.e. task deadlines may be
arbitrary).

At any given time, the scheduler selects the m highest
priority tasks with ready jobs to execute on the m
processors. (In the case of tasks with arbitrary deadlines,
jobs of the same task are executed sequentially in order of
arrival). The tasks are assumed to be independent and so a
job of one task cannot be blocked from executing by a job
of another task other than due to contention for the
processors. Further, it is assumed that once a job starts to
execute it will not voluntarily suspend itself. Intra-task
parallelism is not permitted; hence, at any given time, each
job may execute on at most one processor. As a result of
pre-emption and subsequent resumption, a job may
however migrate from one processor to another. The cost
of pre-emption, migration, and the run-time operation of
the scheduler is assumed to be subsumed into the worst-
case execution time of each task.

In systems using global fixed priority scheduling, it is
useful to separate the two concepts of priority assignment
and schedulability testing. The priority assignment
problem is one of determining the relative priority
ordering of a set of tasks. Given a set of tasks with some
priority ordering, then the schedulability testing problem
involves determining if the tasks are all schedulable with
that priority ordering.

A schedulability test S can be classified as follows.
Test S is said to be sufficient if all of the priority ordered

sets of tasks that it deems schedulable are in fact
schedulable. Similarly, test S is said to be necessary if all
of the priority ordered sets of tasks that it deems
unschedulable are in fact unschedulable. Finally, test S is
referred to as exact if it is both sufficient and necessary.

The concept of an optimal priority assignment policy
can be defined with respect to a schedulability test S:
Definition: Optimal priority assignment policy: A priority
assignment policy P is referred to as optimal with respect
to a schedulability test S and a given task model, if and
only if every set of tasks that is compliant with the task
model and is deemed schedulable by test S with some
priority assignment policy is also deemed schedulable by
test S using policy P.

We note that the above definition is applicable to both
sufficient (and not necessary) schedulability tests and
exact schedulability tests.

A schedulability test is said to be OPA-compatible, if
Audsley�s algorithm provides an optimal priority
assignment with respect to that test.

3. OPA-Compatibility of Exact Schedulability
Tests for Sporadic Tasks

Davis and Burns (2009, 2011a) showed that three
simple Conditions are both sufficient and necessary for
Audsley�s algorithm (see Algorithm 1 below) to provide
optimal priority assignment with respect to a given
schedulability test S. In other words to show that test S is
OPA-compatible. This is a powerful result since it enables
the OPA algorithm to be applied in a wide range of
scenarios, while lowering the burden of proof of optimality
to one of showing compliance with the three Conditions,
something that is typically easily proved or disproved.
for each priority level k, lowest first {
 for each unassigned task  {
 if( is schedulable according to test S
 at priority k with all other
 unassigned tasks assumed to have
 higher priorities) {
 assign  to priority k
 break (continue outer loop)
 }
 }
 return unschedulable
}
return schedulable

Algorithm 1: OPA Algorithm
The three Conditions are stated below. They refer to

properties or attributes of the tasks which make up the task
set. Task properties are referred to as independent if they
have no dependency on the priority assigned to the task.
For example in the sporadic task model used in this paper,
the worst-case execution time, deadline, and minimum
inter-arrival time are all independent properties of a task,
while the worst-case response time depends on the task�s
priority and so is a dependent property.

Condition 1: The schedulability of a task k may,
according to test S, depend on any independent properties
of tasks with priorities higher than k, but not on any
properties of those tasks that depend on their relative
priority ordering.
Condition 2: The schedulability of a task k may,
according to test S, depend on any independent properties
of tasks with priorities lower than k, but not on any
properties of those tasks that depend on their relative
priority ordering.
Condition 3: When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
test S, if it was previously schedulable at the lower
priority. (As a corollary, the task being assigned the lower
priority cannot become schedulable according to test S, if
it was previously unschedulable at the higher priority).
Theorem 1: Any exact test for global fixed priority pre-
emptive scheduling of sporadic task systems is
incompatible with Audsley�s OPA algorithm.
Proof: We prove the theorem via a counter example. It
suffices to show that for some sporadic task set, the
schedulability of the lowest priority task (according to an
exact test1) depends on the relative priority assignment of
the higher priority tasks. This shows that Condition 1
which has been shown to be a necessary condition for
OPA-compatibility by Davis and Burns (2011a) does not
hold.

The counter example uses a task set that was
introduced by Davis and Burns (2011a), and used there to
prove that any exact test for strictly periodic tasks
scheduled under global fixed priority pre-emptive
scheduling is not OPA-compatible.

We assume a dual processor system, and a task set
with 4 tasks labelled A, B, C, D. The task parameters are as
follows (worst-case execution time, deadline, minimum
inter-arrival time): task A (1,2,3), task B (1,2,3), task C
(2,4,4), task D (2,4,4). We prove the theorem by showing
that the priority order (A,B,C,D) is schedulable, whereas
the priority order (A,C,B,D) is not.

First we show that priority ordering (A,C,B,D) is not
schedulable. This is trivially done by examining the
schedule assuming that all tasks are released at time t=0
and re-released as soon as possible. In this case, task D
misses its deadline at time t=4 as shown in Figure 1 below.

Figure 1 unschedulable priority ordering (A,C,B,D)

1 Note all exact tests give the same result.

Now we consider the priority ordering (A,B,C,D). Since
there are two processors, the two highest priority tasks, A
and B, are trivially schedulable. Further, task C is easily
seen to be schedulable, since it is schedulable with task B
on one processor even if we assume that task A takes the
whole of the other processor. (The predictability of global
fixed priority pre-emptive scheduling (Ha and Liu, 1994)
means that task C remains schedulable for execution times
of task A less than 4). Note that task C is also schedulable
according to the sufficient RTA test of Bertogna and
Cirinei (2007)

To show that task D is also schedulable is more
difficult; however, since the example is a relatively simple
one, we can prove schedulability by an exhaustive method.
We note that if there is a deadline miss, then this must
necessarily occur within a busy interval. Here, a busy
interval is defined as a contiguous time interval during
which there is pending workload (i.e. remaining execution
of a task) that was released at the start of the interval, or
during the interval, but not including workload that is
released at the end of the interval. Further, the start of a
busy interval corresponds to a time when at least one task
is released and there was no pending workload released
prior to that time. Hence, by definition, no execution
released before the start of a busy interval can possibly
interfere with execution within that interval.

We consider all possible patterns of execution that can
occur within a busy interval. To aid in the examination of
these patterns, we use the notation (v,w,x,y) to indicate the
release time of the first job of tasks A, B, C, and D
respectively relative to the start of the busy interval.
Further, we use the notation �>x� to mean all values greater
than x. For example (0,1,0,2) means that task A and task C
were released at the start of the interval (at t=0), task B
was released at t=1, and task D at t=2. We systematically
cover all possible distinct combinations of release times
within a single busy interval. For each combination, we
give the length of the busy interval. In all cases, we find
that the job(s) of task D are schedulable. We note that as
there are two processors and the parameters of tasks A and
B are identical, then there is an equivalence between the
schedules produced (i.e. tasks A and B are
interchangeable), hence the schedule produced for release
times (v,w,x,y) is the same as that for (w,v,x,y) with the
task labels A and B swapped around; thus task D executes
at identical times in the two cases. This allows us to
eliminate all equivalent combinations (i.e. showing that
task D is schedulable for (0,1,x,y) implies that it is
schedulable for (1,0,x,y) etc.).

In the following table we give all of the distinct
combinations (not including the equivalent cases
mentioned above), with additional notes provided where
appropriate. Where we indicate �Trivial’ we mean that the
busy interval ends before the first job of task D is actually
released.

In determining the different combinations, note we
only need consider initial release offsets for tasks A and B
of 0, 1, or 2. This is because their minimum inter-arrival
time is 3, hence any larger offset would allow an
additional release at t=0 which is guaranteed to make the
scenario harder to schedule and equates to one of the
combinations listed. The combinations are grouped
together where the resulting schedule within the busy
interval is the same.

Combinations Busy interval
(0,0,0,0), (0,0,0,1),
(0,0,1,0)

3

(0,0,0,2), (0,0,2,0) Extended cases
(0,0,>0,>0), 1 Trivial
(0,0,>2,0), 3
(0,0,0,>2), 3 Trivial
(0,1,0,0),(0,1,0,1) 4
(0,1,1,0) 3
(0,1>0,>0) 1 Trivial
(0,1,0,>1) 2 Trivial
(0,1,>1,0) 2
(0,2,0,0), (0,2,0,1) 3
(0,2,1,0) 3
(0,2,>0,>0) 1 Trivial
(0,2,0,>1) 2 Trivial
(0,2,>1,0) 2
(1,1,0,0) 3
(1,1,1,0), (1,1,2,0) 4
(1,1,0,1), (1,1,0,2) 4
(1,1,>0,>0) 0 Trivial
(1,1,>2,0) 3
(1,1,0,>2) 3 Trivial
(1,2,0,0) 3
(1,2,0,1) 4
(1,2,1,0) 4
(1,2,>0,>0) 0 Trivial
(1,2,0,>1) 2 Trivial
(1,2,>1,0) 2
(2,2,0,0) 3
(2,2,1,0) 4
(2,2,0,1) 4
(2,2,>0,>0) 0 Trivial
(2,2,0,>1) 2 Trivial
(2,2,>1,0) 2

As noted in the table, the extended cases are (0,0,0,2)
and (0,0,2,0) in all other cases, the busy period ends after
the time given in the table, irrespective of any valid
subsequent release of another job of any of the tasks.

We now look at the extended cases. Figure 2
illustrates the schedule for (0,0,0,2) assuming that the
second jobs of tasks A and B are both released at time t=3.
Here, the busy interval extends to t=6. If instead the
second job of task A or B (or both) is released later, then
the busy interval would end at t=4. In all cases the job of
task D meets its deadline (at t=6).

Figure 2: Extended cases: (0,0,0,2)
Similar behaviour can be observed for the schedule

corresponding to (0,0,2,0), see Figure 3 below. Assuming
that the second jobs of tasks A and B are both released at
time t=3, then the first job of task D meets its deadline at
t=4 and the second job easily meets its deadline at t=8. If
the release of either (or both) of the second jobs of tasks A
or B were postponed, then the busy interval would end at
t=4. Alternatively, if release of the second job of task D
occurred any later, the busy interval would end at t=5.

Figure 3: Extended cases: (0,0,2,0)

We have exhaustively covered every combination of
release times of the set of sporadic tasks that can produce a
distinct pattern or schedule within a busy interval
(including the equivalent cases where the labels for tasks A
and B are swapped). In all cases, task D was schedulable.
Hence with priority ordering (A,B,C,D), the task set is
schedulable. Since with priority ordering (A,C,B,D) task D
is unschedulable, this shows that the schedulability of task
D at the lowest priority level depends on the relative
priority ordering of the higher priority tasks. This result
contradicts Condition 1 which was proven necessary for
OPA compatibility by Davis and Burns (2011a) □

Note we also checked schedulability of the example
task set with the two priority orderings (A,B,C,D), and
(A,C,B,D) using an implementation of the exact
schedulability test given by Bonifaci and Marchetti-
Spaccamela (2012) confirming the above results.

Intuitively, it is clear that the example shows that the
OPA algorithm cannot be used, since it is impossible to
correctly determine the schedulability of task D2 at the
lowest priority without first knowing the relative priority
order of the other tasks.

4. Discussion
To prove Theorem 1 for the sporadic case, it is

necessary to prove the existence of a task set  with the
following two properties:
(i) There is a task X in task set  that is schedulable at

the lowest priority, according to an exact test,

2 Or task C, since they have the same parameters and so are
interchangeable.

with the n-1 higher priority tasks in some priority
order P.

(ii) Task X in task set  is not schedulable at the lowest
priority, according to an exact test, with the n-1
higher priority tasks in some other priority order
Q.

Theorem 5 of Davis and Burns (2011a) shows that there
exist periodic task sets where both these properties hold.
Since sporadic behaviour is a generalisation of periodic
behaviour, one might assume that Theorem 1 (of this
paper) follows directly from Theorem 5 of Davis and
Burns (2011a). However, this is not the case.

For global fixed priority scheduling, schedulability in
the sporadic case implies schedulability in the periodic
case, since sporadic task behaviour is a generalisation of
periodic task behaviour. However, unlike in the
uniprocessor case (Liu and Layland 1973) the converse
does not hold; even for synchronous periodic systems.
Schedulability in the periodic case does not imply
schedulability in the sporadic case. (This is demonstrated
by an example below). Hence, unschedulability in the
sporadic case does not imply unschedulability in the
periodic case. The converse of course holds:
unschedulability in the periodic case implies
unschedulability in the sporadic case. This means that
neither Theorem 1 in this paper (sporadic case) nor
Theorem 5 of Davis and Burns (2011a) (periodic case) can
be derived directly from the other. Considering properties
(i) and (ii) stated above, if both properties hold for task set
 and task X according to an exact test for sporadic
systems, then that implies (i) holds for any equivalent
periodic system; however, it tells us nothing about whether
(ii) holds in that case. Similarly, if both properties hold for
task set  and task X according to an exact test for
periodic systems, then that implies (ii) holds for the
equivalent sporadic system; but tells us nothing about
whether (i) holds in that case. Thus independent proofs are
needed for both the periodic case (Theorem 5 of Davis and
Burns (2011a)) and the sporadic case (Theorem 1 in this
paper).

We now provide a simple example which shows that
there exist task sets that are schedulable under global fixed
priority scheduling with synchronous periodic behaviour,
that are not schedulable with sporadic behaviour.

Lauzac et al. (1998) showed that due to the so called
critical instant effect, under global fixed priority
scheduling, a task does not necessarily have its worst-case
response time when released simultaneously with all
higher priority tasks. This happens because simultaneous
release may not be the scenario that results in all
processors being occupied by higher priority tasks for the
longest possible time during the interval over which the
task is active.

From the example given in section 4.6.2 of the survey
on multiprocessor scheduling by Davis and Burns (2011b),
we now construct task set which is trivially schedulable,

with synchronous periodic behaviour, but is not
schedulable with any priority ordering if it instead has
sporadic behaviour. We assume a dual processor system,
and a task set with 4 tasks labelled A, B, C, D. The task
parameters are as follows (worst-case execution time,
deadline, minimum inter-arrival time or period): task A
(2,2,8), task B (2,2,8), task C (4,6,8), task D (4,6,8). As a
periodic system with synchronous release of all tasks at
time t=0, the task set is schedulable with priority ordering
(A,B,C,D) as shown in Figure 4. However, as a sporadic
system, this task set is not schedulable with any priority
ordering. If either task C or D is given the highest or
second highest priority, then either task A or B (whichever
is given priority 3) would be unschedulable following a
synchronous release of all tasks. Since tasks A and B are
equivalent, as are tasks C and D, that only leaves priority
ordering (A,B,C,D) as a distinct possibility (all other
orderings either being unschedulable following
synchronous release or equivalent to it). This priority
ordering is not however schedulable if the release of task B
is delayed until time t=2, as shown in Figure 5.

Figure 4: Periodic synchronous release

Figure 5: Sporadic asynchronous release

5. Conclusions
In this short paper, which acts as an addendum to the

work of Davis and Burns (2011a), we proved in Theorem
1 that any exact test for global fixed priority pre-emptive
scheduling of sporadic task systems, such as those given
by Baker and Cirinei (2007) and Bonifaci and Marchetti-
Spaccamela (2012), is incompatible with Audsley�s OPA
algorithm. This complements the similar result in Theorem
5 of Davis and Burns (2011a), that any exact test for
global fixed priority pre-emptive scheduling of strictly
periodic task systems, such as those given Cucu and
Goossens (2006, 2007), is incompatible with Audsley�s
OPA algorithm.

For these exact tests, currently the only known optimal
priority assignment policy involves checking all n!
possible priority orderings. The complexity of these
optimal priority assignment problems, and thus whether
more efficient priority assignment policies exist for them,
remains an interesting open question.

Acknowledgements
This work was partially funded by the UK EPSRC

MCC project (EP/K011626/1), and the Inria International
Chair program.

References
N.C. Audsley (1991) "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report YCS
164, Dept. Computer Science, University of York, UK.
N.C. Audsley, (2001) �On priority assignment in fixed priority
scheduling�, Information Processing Letters, 79(1): 39-44.
B. Andersson, J. Jonsson (2000) �Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling�. In Proceedings
Real-Time Systems Symposium (RTSS) � Work-in-Progress Session.
T. P. Baker, M. Cirinei (2007) �Brute-force determination of
multiprocessor schedulability for sets of sporadic hard-deadline tasks�. In
Proceedings of the 11th international conference on Principles of
distributed systems (OPODIS).
V. Bonifaci, A. Marchetti-Spaccamela (2012) �Feasibility Analysis of
Sporadic Real-Time Multiprocessor Task Systems�, Algorithmica,
Volume 63, Issue 4, pp 763-780.
L. Cucu, J. Goossens (2006) "Feasibility Intervals for Fixed-Priority
Real-Time Scheduling on Uniform Multiprocessors", In Proceedings
Emerging Technologies and Factory Automation, (ETFA).
L. Cucu, J. Goossens (2007) "Feasibility Intervals for Multiprocessor
Fixed-Priority Scheduling of Arbitrary Deadline Periodic Systems ", In
Proceedings Design Automation and Test in Europe (DATE), pp. 1635-
1640.
M. Bertogna, M. Cirinei (2007) �Response Time Analysis for global
scheduled symmetric multiprocessor platforms�. proceedings Real-Time
Systems Symposium (RTSS), pp. 149-158.
M. Bertogna, M. Cirinei, G. Lipari (2009) �Schedulability analysis of
global scheduling algorithms on multiprocessor platforms�. IEEE
Transactions on Parallel and Distributed Systems, 20(4): 553-566.
R.I. Davis, A. Burns (2009) "Priority Assignment for Global Fixed
Priority Pre-emptive Scheduling in Multiprocessor Real-Time Systems�.
In proceedings 30th IEEE Real-Time Systems Symposium (RTSS'09) ,
pages 398-409.
R.I. Davis and A. Burns (2011a) "Improved Priority Assignment for
Global Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-
Time Systems�. Real-Time Systems, Vol. 47, No. 1, pp.1-40.
R.I. Davis and A. Burns (2011b) "A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems."ACM Computing Surveys, 43, 4,
Article 35.
N. Guan, M. Stigge, W.Yi, G. Yu, �New Response Time Bounds for
Fixed Priority Multiprocessor Scheduling�. In proceedings of the Real-
Time Systems Symposium, pp. 388-397, 2009.
R. Ha, J.W-S. Liu, �Validating timing constraints in multiprocessor and
distributed real-time systems�. In proceedings of the International
conference on Distributed Computing Systems, pp. 162�171, 1994.
S. Lauzac, R. Melhem, D. Mosse (1998) �Comparison of global and
partitioning schemes for scheduling rate monotonic tasks on a
multiprocessor�. In proceedings of the Euromicro Workshop on Real-
Time Systems, pp. 188�195.
C.L. Liu, J.W. Layland (1973) Scheduling algorithms for
multiprogramming in a hard-real-time environment, Journal of the ACM,
20(1): 46-61.

