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Abstract 
This paper investigates the relative effectiveness of fixed 

priority (FP) scheduling in a uniprocessor system compared 
to Earliest Deadline First (EDF) scheduling. The 
quantitative metric used in this comparison is the processor 
speedup factor, defined as the factor by which processor 
speed needs to increase to ensure that any task set that is 
schedulable according to EDF can be scheduled using fixed 
priorities. In the pre-emptive case, exact speedup factors 
are known for sporadic task sets with implicit or 
constrained deadlines. In this paper, we derive exact 
speedup factors for both pre-emptive and non-pre-emptive 
fixed priority scheduling of arbitrary deadline sporadic task 
sets. We also show that the exact speedup factor for the pre-
emptive case holds when tasks share resources according to 
the Stack Resource Policy / Deadline Floor Protocol. 
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1. Introduction 
In this paper, we investigate the largest factor by which 

the processing speed of a uniprocessor needs to be 
increased, to ensure that any task set that was previously 
schedulable according to an optimal scheduling algorithm, 
such as EDF, is schedulable according to fixed priority 
scheduling. We refer to this resource augmentation factor as 
the processor speedup factor (Kalyanasundaram and Pruhs 
1995).

1.1. Pre-emptive scheduling 
Liu and Layland (1973) considered fixed priority pre-

emptive (FP-P) scheduling of synchronous1 task sets 
comprising independent periodic tasks, with bounded 
execution times, and deadlines equal to their periods. We 
refer to such task sets as implicit-deadline task sets. Liu and 

1 A task set is synchronous if all of its tasks share a common release time.

Layland (1973) showed that rate monotonic priority 
ordering (RMPO) is the optimal fixed priority assignment 
policy for implicit-deadline task sets, and that using RMPO, 
FP-P can schedule any implicit-deadline task set that has a 
total utilisation 693.0)2ln( U . Liu and Layland (1973) 
also showed that Earliest Deadline First (EDF-P) is an 
optimal dynamic priority pre-emptive scheduling algorithm 
for implicit-deadline task sets, and that EDF-P can schedule 
any such task set that has a total utilisation 1U . 

Dertouzos (1974) showed that EDF-P is an optimal 
uniprocessor scheduling algorithm, in the sense that if a 
valid schedule exists for a task set, then the schedule 
produced by EDF-P will also meet all deadlines (Least 
Laxity First is another such optimal algorithm (Mok 1983)). 

Research into real-time scheduling during the 1980s and 
early 1990s focused on lifting many of the restrictions of the 
Liu and Layland task model. Task arrivals were permitted to 
be sporadic, with known minimal inter-arrival times, (still 
referred to as periods), and task deadlines were permitted to 
be less than or equal to their periods (so called constrained 
deadlines) or less than, equal to, or greater than their periods 
(so called arbitrary deadlines). 

Leung and Whitehead (1982) showed that Deadline 
Monotonic2 Priority Ordering (DMPO) is the optimal fixed 
priority ordering for constrained-deadline task sets. Exact 
schedulability tests for FP-P scheduling of constrained-
deadline task sets were introduced by Joseph and Pandya 
(1986), Lehoczky et al. (1988), and Audsley et al. (1993). 

Lehoczky (1990) showed that DMPO is not optimal for 
task sets with arbitrary deadlines; however, an optimal 
priority ordering for such task sets can be determined in at 
most 2/)1( nn  task schedulability tests using the Optimal 
Priority Assignment (OPA) algorithm3 given by Audsley 
(1991, 2001). Exact schedulability tests for task sets with 
arbitrary deadlines were developed by Lehoczky (1990), 
and Tindell et al. (1994). 

2 Deadline monotonic priority ordering assigns priorities in order of task 
deadlines, such that the task with the shortest deadline is given the highest 
priority.
3 This algorithm is optimal in the sense that it finds a schedulable priority 
ordering whenever such an ordering exists.



Exact schedulability tests for constrained and arbitrary-
deadline task sets scheduled using Earliest Deadline First 
pre-emptive scheduling (EDF-P) were introduced by Baruah 
et al. (1990a, 1990b). Subsequently, exact tests for EDF-P 
have been developed by George and Hermant (2009) and 
Zhang and Burns (2009) that are more efficient in practice. 

1.2. Resource sharing 
In pre-emptive systems, concurrency control protocols are 
required to ensure that jobs access shared resources in 
mutual exclusion, otherwise data corruption, or erroneous 
behaviour of hardware devices could ensue. A number of 
concurrency control protocols have been developed, these 
include the Priority Inheritance Protocol (PIP) and the 
Priority Ceiling Protocol (PCP) (Sha et al. 1990) originally 
developed for FP-P scheduling and the Stack Resource 
Policy (SRP) (Baker, 1991), which is applicable to both FP-
P and EDF-P scheduling. Baker (1991) initially provided a 
sufficient schedulability test for EDF-P and SRP. Later, 
Spuri (1996) modified the exact test for EDF-P scheduling 
to account for resource locking under SRP. 

Exact tests for FP-P scheduling with either PCP or SRP 
where introduced by Audsley et al. (1993) for constrained 
deadline task sets, and Tindell et al. (1994) for arbitrary 
deadline task sets. Bletsas and Audsley (2006) showed that 
for FP-P scheduling with resource accesses according to 
PCP or SRP, DMPO is optimal for tasks with constrained 
deadlines, and the OPA algorithm is optimal for tasks with 
arbitrary deadlines. (Note, here, optimality is with respect to 
a task model where resource access times are known, but no 
information is available about the phasing of resource 
accesses within the tasks). 

Baruah (2006) showed that EDF-P and SRP is optimal 
in the weak sense that it can schedule any task set with 
resource accesses for which a feasible work-conserving 
schedule exists. (Again, optimality is with respect to a task 
model where no information is available about the phasing 
of resource accesses within the tasks). 

Burns et al. (2014) introduced the Deadline Floor 
inheritance Protocol (DFP), which is equivalent to SRP in 
terms of schedulability, but has a simpler implementation. 

1.3. Non-pre-emptive scheduling 
Kim and Naghibdadeh (1980) and Jeffay et al. (1991) 

gave exact schedulability tests for implicit-deadline task sets 
under Earliest Deadline First non-pre-emptive (EDF-NP) 
scheduling. These tests were extended by George et al. 
(1996) to the general case of sporadic task sets with 
arbitrary deadlines. 

While EDF-P is an optimal uniprocessor scheduling 
algorithm, in the non-pre-emptive case no work-conserving4

algorithm is optimal. This is because in general it is 

4 An algorithm is work-conserving if it never idles the processor when 
there is a job ready to execute.

necessary to insert idle time to achieve a feasible schedule. 
The interested reader is referred to the work of George et al. 
(1996) for examples of this behaviour. Howell and 
Venkatrao (1995) showed that for non-concrete5 periodic 
task sets, the problem of determining a feasible non-pre-
emptive schedule is NP hard. Further they showed that for 
sporadic6, task sets no optimal on-line inserted idle time 
algorithm can exist. In other words, clairvoyance is needed 
to determine a feasible non-pre-emptive schedule. 

While no work-conserving algorithm is optimal in the 
strong sense that it can schedule any task set for which a 
feasible non-pre-emptive schedule exists;  George et al. 
(1995) showed that EDF-NP is optimal in the weak sense 
that it can schedule any task set for which a feasible work-
conserving, non-pre-emptive schedule exists. Hence we can 
regard EDF-NP as an optimal work-conserving, non-pre-
emptive scheduling algorithm, for sporadic task sets. 

For fixed priority non-pre-emptive (FP-NP) scheduling 
of arbitrary-deadline task sets, George et al. (1996) derived 
an exact schedulability test based on the approach of Tindell 
et al. (1994) for the pre-emptive case. George et al. (1996) 
showed that unlike in the pre-emptive case, DMPO is not 
optimal for constrained-deadline task sets scheduled by FP-
NP. Further, they showed that the Optimal Priority 
Assignment algorithm given by Audsley (1991) is 
applicable, and can be used to determine an optimal priority 
ordering for task sets with arbitrary-deadlines scheduled 
using FP-NP. 

Subsequent research by Bril et al. (2009) has refined 
exact analysis of FP-NP, correcting issues of both 
pessimism and optimism, and extending the schedulability 
tests to co-operative scheduling where each task is made up 
of a number of non-pre-emptive regions. 

1.4. Sub-optimality and speedup factors 
Combining the result of Dertouzos (1974) with the 

results of Liu and Layland (1973), shows that the processor 
speedup factor required to guarantee that FP-P scheduling 
can schedule any implicit-deadline task set schedulable by 
EDF-P is 44270.1)2ln(/1  . 

Davis et al. (2009b) derived the exact speedup factor for 
FP-P scheduling of constrained-deadline task sets; 

76322.1/1  (where   is the mathematical constant 
defined by the transcendental equation )/1ln( , hence, 

0.567143  ).  
Davis et al. (2009a, 2010) also provided preliminary 

results giving upper and lower bounds on the speedup 
factors for arbitrary deadline task sets in the pre-emptive 
case (Davis et al. 2009a) and for implicit, constrained, and 

5 A periodic task set is referred to as non-concrete if the times at which 
each task is first released are unknown, also sometimes referred to as 
having arbitrary phasing. 
6 Sporadic task sets represent a generalisation of non-concrete periodic task 
sets. 



arbitrary deadline task sets in the non-pre-emptive case 
(Davis et al. 2010) 

This paper includes preliminary material from (Davis et 
al. 2009a, 2010) which it builds upon. The main 
contribution of the paper is the derivation of exact speedup 
factors for arbitrary deadline task sets in both the pre-
emptive and non-pre-emptive cases. 

1.5. Related work on average case sub-optimality 
This paper examines the sub-optimality of fixed priority 

scheduling in the worst-case, other research has examined 
its behaviour in the average-case. 

Lehoczky et al. (1989) introduced the breakdown 
utilisation metric: A task set is randomly generated, and 
then all task execution times are scaled until a deadline is 
just missed. The utilisation of the scaled task set gives the 
breakdown utilisation. Lehoczky et al. (1989) showed that 
the average breakdown utilisation, for implicit-deadline task 
sets of large cardinality under fixed priority pre-emptive 
scheduling is approximately 88%, corresponding to a 
penalty of approximately 12% of processing capacity with 
respect to an optimal algorithm such as EDF-P. 

Bini and Buttazzo (2005) showed that breakdown 
utilisation suffers from a bias which tends to penalise fixed 
priority scheduling by favouring task sets where the 
utilisation of individual tasks is similar. Bini and Buttazzo 
introduced the optimality degree metric, defined as the 
number of task sets in a given domain that are schedulable 
according to some algorithm A divided by the number that 
are schedulable according to an optimal algorithm. Using 
this metric, they showed that the penalty for using fixed 
priority-pre-emptive scheduling for implicit-deadline task 
sets is typically significantly lower than that assumed by 
determining the average breakdown utilisation. 

1.6. Organization 
The remainder of the paper is organized as follows. 

Section 2 describes the system model, terminology and 
notation used. Section 3 recapitulates fixed priority and EDF 
schedulability analysis for both pre-emptive and non-pre-
emptive cases.  

In Section 4, we first derive an exact speedup factor for 
FP-P scheduling of arbitrary deadline sporadic task sets for 
the special case where Deadline Monotonic Priority 
Ordering is used instead of an optimal priority assignment 
policy. We then extend this result, proving that this exact 
speedup factor is valid in the general pre-emptive case, 
assuming arbitrary deadlines and optimal priority 
assignment. Finally, we show that this result continues to 
hold when tasks share resources according to the Stack 
Resource Policy (Baker 1991). 

In Section 5, we first derive upper and lower bounds on 
the speedup factor for FP-NP scheduling of implicit, 
constrained, and arbitrary deadline sporadic task sets. We 

then prove what the exact speedup factor is in the general 
non-pre-emptive case, assuming arbitrary deadlines and 
optimal priority assignment. 

Section 6 concludes with a summary and directions for 
future work. 

2. System model, terminology, and notation 
In this paper, we consider the scheduling of a set of 

sporadic tasks (or task set) on a uniprocessor system. Each 
task set comprises a static set of n tasks )...( 1 n , where n is 
a positive integer. We assume that the index i of task i
also represents the task priority used in fixed priority 
scheduling, hence 1  has the highest fixed-priority, and n
the lowest. 

We use the notation )(ihp  (and )(ilp ) to mean the set of 
tasks with priorities higher than (lower than) i, and the 
notation )(ihep  (and )(ilep ) to mean the set of tasks with 
priorities higher than or equal to (lower than or equal to) i. 

Each task i  is characterized by its bounded worst-case 
execution time iC , minimum inter-arrival time or period  

iT , and relative deadline iD . Each task i  therefore gives 
rise to a potentially infinite sequence of invocations (or 
jobs), each of which has an execution time upper bounded 
by iC , an arrival time at least iT  after the arrival of its 
previous invocation, and an absolute deadline that is iD
after its arrival.  

In an implicit-deadline task set, all tasks have ii TD  . 
In a constrained-deadline task set, all tasks have ii TD  , 
while in an arbitrary-deadline task set, task deadlines are 
independent of their periods. The set of arbitrary-deadline 
task sets is therefore a superset of the set of constrained-
deadline task sets, which is itself a superset of the set of 
implicit deadline task sets. 

The worst-case response time iR  of a task i is given by 
the longest possible time from release of the task until it 
completes execution. Thus task i  is schedulable if and 
only if ii DR  , and a task set is schedulable if and only if 

ii DRi  . The utilisation of a task i  is given by its 
execution time divided by its period ( iU = iC / iT ). The total 
utilisation U, of a task set is the sum of the utilisations of all 
of its tasks. 

We assume a discrete time model with granularity  . 
The following assumptions are made about the 

behaviour of the tasks: 
o The arrival times of the tasks are independent and 

unknown a priori, hence the tasks may share a common 
release time. 

o Each task is released (i.e. becomes ready to execute) as 
soon as it arrives. 

o The tasks are independent and so cannot block each 
other from executing by accessing mutually exclusive 
shared resources, with the exception of the processor in 
the case of non-pre-emptive scheduling. 

o The tasks do not voluntarily suspend themselves. 
A task is said to be ready if it has outstanding 



computation awaiting execution by the processor. 
Under the EDF-P scheduling algorithm, at any given 

time the ready task invocation (job) with the earliest 
absolute deadline is selected for execution by the processor. 
In contrast, under FP-P scheduling, at any given time the 
highest priority ready task is selected for execution by the 
processor. 

Similarly, under the EDF-NP scheduling algorithm, at 
any time when a job completes or the processor is idle, then 
the ready job with the earliest absolute deadline is selected 
for execution by the processor. Under FP-NP scheduling, at 
any time when a job completes or the processor is idle, then 
the highest priority ready task is selected for execution by 
the processor. 

A task set is said to be schedulable with respect to some 
scheduling algorithm and some system, if all valid 
sequences of jobs that may be generated by the task set can 
be scheduled on the system by the scheduling algorithm 
without any missed deadlines. 

A task set is said to be feasible with respect to a given 
system if there exists some scheduling algorithm that can 
schedule all possible sequences of jobs that may be 
generated by the task set on that system without missing any 
deadlines. A scheduling algorithm is said to be optimal with 
respect to a system and a tasking model (e.g. implicit, 
constrained, or arbitrary deadline sporadic tasks) if it can 
schedule all of the task sets that comply with the tasking 
model and are feasible on the system. 

A schedulability test is termed sufficient, with respect to 
a scheduling algorithm and system, if all of the task sets that 
are deemed schedulable according to the test are in fact 
schedulable on the system under the scheduling algorithm. 
Similarly, a schedulability test is termed necessary, if all of 
the task sets that are deemed unschedulable according to the 
test are in fact unschedulable on the system under the 
scheduling algorithm. A schedulability test that is both 
sufficient and necessary is referred to as exact. 

In fixed priority scheduling, a priority assignment policy 
P is said to be optimal with respect to some class of task 
sets (e.g. arbitrary-deadline), and some class of fixed 
priority scheduling algorithm (e.g. pre-emptive) if all task 
sets in the class that are schedulable under the scheduling 
algorithm using some other priority ordering policy are also 
schedulable using the priority assignment determined by 
policy P. 

The algorithm given by Audsley (1991, 2001) 
reproduced below, is an optimal priority assignment 
algorithm for arbitrary-deadline sporadic task sets in both 
the pre-emptive and non-pre-emptive case. 

for each priority level k, lowest first { 
for each unassigned task  { 

if( is schedulable at priority k with all 
   other unassigned tasks assumed to have 
   higher priorities) { 
   assign  to priority k

break (continue outer loop) 
  } 
 } 

return unschedulable 
} 
return schedulable

Algorithm 1: Optimal Priority Assignment (OPA) 
Algorithm 

2.1. Speedup factors and speedup optimal task sets 
Definition 1: Let S be some arbitrary task set, now assume 
that )(SA  is the critical scaling factor, that is the 
maximum factor by which the execution times of all of the 
tasks in S can be scaled, such that the task set is schedulable 
under algorithm A. Similarly, let )(SOPT  be the maximum 
scaling factor under an optimal algorithm of the same class 
as A. The speedup factor )(Sf A for the task set is given by: 

)(/)()( SSSf AOPTA       (1) 
Definition 2: Let )(OPTf  be the lowest processor speed 
such that task set   is schedulable according to an optimal 
scheduling algorithm of the same class7. Assume that 

)(Af  is similarly the lowest processor speed that will 
schedule task set   using scheduling algorithm A. The 
processor speedup factor Af  for algorithm A is given by 
the maximum increase in processor speed required over an 
optimal algorithm of the same class for any task set  . 

 )(/)(sup 


OPTAA fff     (2) 

where   ranges over all task sets. 
For any scheduling algorithm A, we have 1Af , with 
smaller values indicative of a more effective algorithm, and 

1Af  implying that A is an optimal algorithm. 
Definition 3: A task set is said to be speedup-optimal with 
respect to a scheduling algorithm A if it requires the 
processor to be speeded up by the processor speedup factor 
in order to be schedulable under algorithm A. Hence for a 
speedup-optimal task set  , AOPTA fff  )(/)( . 
We note that in some cases, strictly speaking a speedup-
optimal task set as defined here may not exist; rather, there 
is a family of task sets that get closer and closer to speedup 
optimality as some parameter used in their definition 
approaches infinity. Nevertheless, for brevity we abuse the 
terminology somewhat and refer to speedup-optimal task 
sets. 

7 By a class of algorithm we mean for example pre-emptive scheduling 
algorithms. 



3. Schedulability analysis 
We now recapitulate schedulability analysis for both 

pre-emptive and non-pre-emptive, fixed priority and EDF 
scheduling for sporadic task sets with arbitrary deadlines. 

3.1. Schedulability analysis for FP-P 
Analysis of fixed priority pre-emptive scheduling makes 

use of the concept of a priority level-i busy period. This 
term refers to a continuous period of time ),[ 21 tt  during 
which jobs of tasks of priority i or higher, that were released 
at the start of the busy period at 1t , or during the busy 
period but strictly before its end at 2t , are either executing 
or ready to execute. 

For fixed priority pre-emptively scheduled systems, 
where task deadlines are arbitrary, execution of one job of a 
task may not necessarily be completed before the next job is 
released. Hence a number of jobs of task i  may be present 
within a priority level-i busy period, with earlier jobs 
delaying the execution of later ones.  

Tindell (1994) showed that the worst-case scenario for 
task i  occurs following a critical instant where i  is 
released simultaneously with all higher priority tasks, and 
subsequent releases of task i  and higher priority tasks then 
occur after the minimum permitted time intervals. The 
length iL  of this longest priority level-i busy period can be 
found via the following fixed point iteration: 

j
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Iteration starts with an initial value guaranteed to be no 
larger than the minimum solution, for example ii CL 0 , 
and ends as soon as m

i
m
i LL 1  whereupon m

ii LL  . The 
number of jobs P

iQ  of task i  in the busy period is given 
by: 
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In general it is necessary to compute the response times 
of all jobs of a task i  within the longest priority level-i
busy period in order to determine the task�s worst-case 
response time. The completion time P

qiW ,  of the qth job 
(where q = 0 is the first job) of task i , with respect to the 
start of the busy period, is given by the following fixed 
point iteration: 
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Iteration starts with an initial value 0
,qiw , typically 

iqi Cqw )1(0
,  , and ends when either m

qi
m
qi ww ,

1
,   in 

which case , 1
,,
 m

qi
P
qi wW  or when ii

m
qi DqTw 1

,  in which 
case job q, and hence task i  is unschedulable. 

To find the worst-case response time of task i , 
completion times P

qiW ,  need to be calculated for jobs 
1,...3,2,1,0  P

iQq . The worst-case response time of task 

i  is then given by: 
)(max ,1...2,1,0 i

p
qiQq

P
i qTWR

i
      (6) 

Task i  is schedulable provided that i
P
i DR  . 

Equations (5) and (6) give an exact schedulability test for 
the FP-P scheduling of arbitrary-deadline task sets with any 
fixed priority ordering. 

A simpler sufficient rather than exact schedulability test 
can be derived by considering the maximum amount of task 
execution at priority i and higher released within an interval 
of length iD  starting with simultaneous arrival of all of the 
tasks. If all of this execution can be completed by iD , then 
this indicates that the length of the longest priority level-i
busy period is at most iD , and hence that all invocations of 

i  released in that busy period meet their deadlines, and so 
i  is schedulable. This sufficient schedulability test is given 

by:  
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ihepj j
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      (7) 

3.2. Schedulability analysis for FP-NP 
First, we introduce the concept of priority a ∆-critical 

instant which is fundamental to analysis of FP-NP 
scheduling. 

A ∆-critical instant for a task i  is where task i  is 
released simultaneously with all higher priority tasks, and 
subsequent releases of task i  and the higher priority tasks 
occur after the minimum permitted time intervals. Further, 
the minimum possible amount of time8 ∆ prior to this 
simultaneous release, a lower priority task k  is released, 
and this task has the longest execution time of any such 
lower priority task. 

George et al. (1996) and Bril et al. (2009) showed that 
for fixed priority non-pre-emptive scheduling, the longest 
response time of a task i  occurs for some job of that task 
within the priority level-i busy period starting at a ∆-critical 
instant. Lemma 3 in (Bril et al. 2009) states that the worst-
case length of a priority level-i busy period iA  is given by 
the minimum solution to the following fixed point iteration:  
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Iteration starts with an initial value 0
iA  guaranteed to be no 

larger than the minimum solution, for example ii CA 0 , 
and ends when m

i
m
i AA 1  whereupon m

ii AA  . Note, iB
is the longest time that task i  and any higher priority tasks 
can be blocked from executing by lower priority tasks, and 
is given by: 
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The number of jobs NP
iQ  of task i  in the busy period is 

given by: 

8 Recall, we assume discrete time, with granularity . 
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The start time NP
qiW ,  of the qth job (where q = 0 is the 

first job) of task i  measured with respected to the start of 
the ∆-critical instant is given by the minimum solution to 
the following fixed point iteration: 
















 


)(

,1
,

ihpj
j

j

m
qi

ii
m
qi C

T
w

qCBw   (11) 

Iteration starts with an initial value 0
,qiw , typically 

iiqi qCBw 0
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m
qi DqTCw 1

,  in which 
case job q , and hence task i  is unschedulable. 

To find the worst-case response time, the start times 
NP
qiW ,  need to be calculated for jobs 1,...3,2,1,0  NP

iQq . 
The worst-case response time of task i  is then given by: 

)(max ,1...2,1,0 ii
NP
qiQq

NP qTCWR NP
ii




  (12) 

Task i  is schedulable provided that i
NP
i DR  . 

From (8), we can form the following simple sufficient 
test for FP-NP scheduling of arbitrary-deadline task sets. 
Each task i  is schedulable provided that: 
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If (13) holds, then this indicates that the solution to the fixed 
point iteration of (8) must be iD . As the worst-case 
length of a priority level-i busy period is then iD , it 
follows that the worst-case response time iR  of task i
must also be iD , and hence the task must be schedulable. 

3.3. Schedulability analysis for EDF-P 
The schedulability of an arbitrary-deadline task set under 

EDF-P scheduling can be determined via the processor 
demand bound function h(t) given below:  
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Baruah et al. (1990a, 1990b) showed that a task set is 
schedulable under EDF-P if and only if 1U  and a 
quantity referred to as the processor LOAD is 1  where the 
processor PLOAD  (pre-emptive case) is given by: 



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 t
thLOAD

t

P )(max
0

    (15) 

Further, they showed that if PLOAD 1  for all values of t
in the interval ],0( L , where L is defined as follows, then the 
task set is schedulable. 
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Note the length L of the interval that needs to be examined 
is also limited to the length of the longest priority level-n
busy period. The only values of t that need to be checked in 
the interval ],0( L  are those where PLOAD can change, i.e. 

ii DkTti   for integer values of k. 
Zhang and Burns (2009) used the fact that h(t) is 

monotonically non-decreasing with respect to t as the basis 
for a highly efficient exact schedulability test for EDF-P, 
called QPA. The QPA algorithm is reproduced below. 
QPA schedulability test for EDF-P: An arbitrary deadline 
sporadic task set is schedulable according to EDF-P if and 
only if 1U  and the result of the following iterative 
algorithm is min)( Dth  , where minD  is the smallest 
deadline of any of the tasks, and id  is an absolute task 
deadline, i.e. iii DkTdi   for integer values of k. 

1 }|max{ Lddt ii 
2 while( min)()( Dthtth  ) { 
3  if( tth )( ) 
4   { )(tht   } 
5  else  
6   { }|max{ tddt ii   } 
7 } 
8 if( min)( Dth  ) task set is schedulable 
9 else   task set is unschedulable 

Algorithm 2: QPA algorithm for EDF-P 

3.4. Schedulability analysis for EDF-NP 
George et al. (1996) extended the schedulability test 

embodied in (14) and (15) to the non-pre-emptive case 
(EDF-NP scheduling) via the addition of a blocking factor 
B(t). 
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George et al. (1996) showed that an arbitrary-deadline 
task set is schedulable under EDF-NP if and only if 1U
and the processor LOAD is 1 , where the processor 

NPLOAD  (non-pre-emptive case) is defined by: 

1)()(max
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Further, they showed that if 1U , then the only values of t
that need to be checked are those in the interval ],0( L  that 
correspond to times when )()( tBth   can change, i.e. 

ii DkTti   for integer values of k, where L is the 
length of the longest priority level-n busy period. 

We observe that the value of )()( tBth   is 
monotonically non-decreasing with respect to t. This 
follows from the fact that )(tB  can only decrease at times 

nDDDt ,..., 21 , and at each of these times, the maximum 
possible decrease is upper bounded by nCCC ,..., 21
respectively. At exactly those same times; however, )(th
increases by nCCC ,..., 21 , thus the sum )()( tBth   is 
monotonically non-decreasing with respect to t. This 
observation means that the same argument and logic used by 
Zhang and Burns (2009) to derive QPA can be applied in 
the non-pre-emptive case. Thus a QPA schedulability test 
for task set scheduled using EDF-NP can be obtained 



simply by replacing each occurrence of )(th  in Algorithm 2 
with )()( tBth  : 

1 }|max{ Lddt ii 
2 while( min)()()()( DtBthttBth  ) { 
3  if( ttBth  )()( ) 
4   { )()( tBtht   } 
5  else  
6   { }|max{ tddt ii   } 
7 } 
8 if( min)()( DtBth  ) task set is schedulable 
9 else   task set is unschedulable 

Algorithm 3: QPA algorithm for EDF-NP 
The QPA tests for EDF-NP can also be derived as a special 
case of the test with shared resources as described by Zhang 
and Burns (2011). 

4. Exact Speedup factor for FP-P 
In this section, we derive the exact processor speedup 

factor required for fixed priority pre-emptive scheduling of 
arbitrary deadline task sets assuming optimal priority 
assignment. First, we derive the exact speedup factor for the 
(non-optimal) case where deadline monotonic priority 
ordering (DMPO) is used in conjunction with arbitrary-
deadline task sets. The intuition behind these derivations is 
provided via an example. 

4.1. Speedup Factor Example 
The following simple example illustrating the concept 

of processor speedup factor defined in section 2.1. 
Consider the arbitrary-deadline task set S comprising the 

two tasks defined in Table 1. The parameters of these tasks 
appear to have some unusual values; however, this is 
because they have been chosen so that the task set is just 
schedulable according to EDF-P, yet requires a speedup 
factor of 1.8 in order to be schedulable according to FP-P 
scheduling with priorities according to DMPO, which it 
should be noted is not optimal in this case. 

Table 1: Example Task set 
Task iC iT iD

1  1.8 2 16 
2 14.4  17 

We now show that task set S is schedulable according to 
EDF-P. Under EDF-P scheduling, the processor demand 
bound function )(th  for task set S is the sum of the 
processor demand bound functions ),( 1th  and ),( 2th  for 
tasks 1  and 2  respectively, where ),( ith  is the processor 
demand bound at time t for a single task i , given below: 
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Thus: 
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as   yxyx //  , we have:  
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Similarly, the processor demand bound function for task 2
is: 
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Recall that any arbitrary-deadline task set is schedulable 
according to EDF-P, provided that: 
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Now, given the following: 
(i) The value of )(th  at times 16t , 17t , and 

18t  are 1.8, 16.2 and 18 respectively. 
(ii) From (20) and (22) the value of tth /)(  at time 

18t  is 1. Further, from (21) and (22) an upper 
bound on tth /)(  at time 18t  is also 1. 

(iii) From (21), the rate of increase of the upper bound 
on tth /)(  for 18t  is 0.9. 

It follows that the maximum value of tth /)(  occurs at time 
18t . The processor LOAD of task set S is therefore 1, 

indicating that the task set is just schedulable according to 
EDF-P. 

We now consider the schedulability of task set S when 
scheduled according to FP-P scheduling, with priorities 
assigned according to DMPO, on a processor that has been 
speeded up by a factor of 1.8. The parameters of the task set 
on this faster processor are given in Table 2. We refer to this 
task set as V. 

Table 2: Example Task set 
Task iC iT iD

1  1 2 16 
2 8  17 

Figure 1 illustrates the execution of task set V under FP-P 
scheduling, assuming a synchronous arrival sequence. 

Figure 1: FP-P Schedule 
We note that the worst-case response time of task 1  is 1 



and that of task 2  is 16. Task set V is only just schedulable 
under fixed priority pre-emptive scheduling, using DMPO. 
Any reduction in processor speed would result in the task 
set being unschedulable. The processor speedup factor 
required is therefore 1.8. 

4.2. Exact Speedup Factor for FP-P Scheduling 
with Deadline Monotonic Priority Ordering 

We now derive the exact processor speedup factor 
required for the case where DMPO is used in conjunction 
with arbitrary-deadline task sets. Recall that DMPO is not 
optimal in this case (Lehoczky 1990); nevertheless, FP-P 
scheduling using DMPO is a simple combination of 
scheduling algorithm and priority assignment policy that is 
used in many real-time systems. 
Lemma 1: An upper bound on the processor speedup factor 
for FP-P scheduling of arbitrary-deadline task sets using 
DMPO is 2. 
Proof: Let S be any task set that is schedulable on a 
processor of unit speed according to an optimal scheduling 
policy such as EDF-P. 

 For each task k , in S, consider the processor demand 
bound during an interval of length kD2 . As task set S is 
schedulable according to EDF-P, it follows that:  
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Next, consider task set S scheduled according to FP-P 
scheduling on a processor of twice the speed using DMPO. 
DMPO implies that ki DDki  . 

From Equation (24) above, assuming a processor of 
twice the speed, and discarding the contribution from all 
tasks of lower priority than k we have: 
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As    xx 1  and ki DDki   then: 
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Equation (26) is recognisable as the sufficient 
schedulability test for task k  in an arbitrary-deadline task 
set S, scheduled under fixed priority pre-emptive scheduling 
(see (7) in section 3.1). Repeating the above argument for 
each task k  in S proves that the task set is schedulable on a 
processor of speed 2 under fixed priority pre-emptive 
scheduling using DMPO 
Theorem 1: An exact bound on the processor speedup 
factor for FP-P scheduling of arbitrary-deadline task sets 
using DMPO is 2. 
Proof: Consider task set V with the following parameters on 
a processor of speed f : 

1 : kC 2/11  , kT /11  , 11 D
2 : 2/12 C , 2T , kD 2/112 

where k is a positive integer, and task 1  has a higher 
priority than task 2  i.e. DMPO. The execution of task set V
under FP-P scheduling is illustrated in Figure 2. (Note the 
similarity to the task set used as an example in section 4.1). 

D2D1

0 1
1+1/2k

Task 1

Task 2

1/k
1/2k

T1 2T1 3T1

Figure 2: FP-P Schedule 
We observe that with FP-P scheduling, any increase in 

the execution time of either task will cause task 2  to miss 
its first deadline following simultaneous release of the two 
tasks. 

We now consider the execution of task set V under EDF-
P on a processor of unit speed. Let task set S be formed 
from task set V by increasing the execution times of tasks 

1  and 2  by a scaling factor f  to form tasks 1   and 2  , 
thus accounting for the reduction in processor speed. 

We observe that 2f  is an upper bound on the 
maximum scaling factor that could possibly result in a 
schedulable task set under EDF-P as this scaling factor 
results in task 1   having a utilisation of 100%. 

Under EDF-P scheduling, the processor demand bound 
function )(th  for task set S is the sum of the processor 
demand bound functions ),( 1 th  and ),( 2 th  for tasks 1 
and 2   respectively. 
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as   yxyx //  , we have the following upper bound:  
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Similarly, the processor demand bound function for task 2 
is: 
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Recall that any arbitrary-deadline task set is schedulable 
according to EDF-P, provided that: 
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Now, given the following: 
(i) The value of tth /)(  at time 1t  is kf 2/ .  
(ii) An upper bound, from (28) and (29), on the value of 

tth /)(  at time )2/1(1 kt   is: 
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(iii) The rate of increase of the upper bound on tth /)(  for 
)2/1(1 kt   is 2/f  (from (28)). 

Then for values of 2f , the maximum value of the upper 
bound on tth /)(  occurs at time kt 2/11 , therefore: 
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From (32), the minimum value for the processor LOAD is 
achieved in the limit as k , and this value is 2/f . 
From Equation (32), for k , task set V is schedulable 
according to EDF-P when its task execution times are scaled 
up by a factor of 2f  to form task set S. Hence task set S
requires a processor speedup factor of 2 in order to be 
schedulable under FP-P scheduling with priorities in 
DMPO. As the processor speedup factor for FP-P 
scheduling of arbitrary-deadline task sets using DMPO is 
also upper bounded by 2 (Lemma 1), the exact processor 
speedup factor is 2 
Corollary 1: Task set S defined in the proof of Theorem 1 
(with k ), is a speedup-optimal task set for FP-P 
scheduling of arbitrary-deadline task sets using DMPO. 

It is interesting to note that this speedup-optimal task set 
(requiring the largest speedup factor), includes a task 1 , 
with a deadline much larger than its infinitesimal period, 
and a task 2 , with a deadline much smaller than its infinite 
period. 

4.3. Exact Speedup Factor for FP-P Scheduling 
using Optimal Priority Assignment 

We now prove that the exact speedup factor for fixed 
priority pre-emptive scheduling of arbitrary deadline task 
sets, assuming optimal priority assignment is also 2. We do 
so by showing that this value is obtained for both upper and 
lower bounds on the speedup factor. 
Theorem 2: An upper bound on the processor speedup 
factor for FP-P scheduling of arbitrary-deadline task sets 
using an optimal priority assignment algorithm is 2. 
Proof: Follows directly from the fact that using an optimal 
priority assignment algorithm, FP-P scheduling can 
schedule any task set that is schedulable using DMPO. 
Hence the processor speedup factor required can be no 
greater with optimal priority assignment than the exact 
processor speedup factor given by Theorem 1 for DMPO 

Theorem 3: The exact processor speedup factor for FP-P 
scheduling of arbitrary-deadline task sets using an optimal 
priority assignment algorithm is 2. 
Proof: Consider task set S comprising 1k  tasks (where 

1k ) with the following parameters on a processor of 
speed 1: 

1  to k : 1iC , kkDi  22 , kTi 2
1k : 2

1 kCk  , 2
1 2kDk  , 1kT

(This task set is illustrated in Figure 3 for a relatively small 
value of k). 

Figure 3: FP-P Schedule 
Consider the feasibility of task set S under FP-P. Applying 
Audsley�s OPA algorithm, we must first find a task that is 
schedulable at the lowest priority level. If we place any one 
of the k tasks labelled 1  to k  at the lowest priority, then 
the response time of the first job of that task is given by: 
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which converges to 12 2  kk . This can be seen by first 
considering a schedule only including tasks 1  to 1k . In 
such a schedule, in each interval of length k2  there is 
sufficient space for additional processing of 1k . By the 
end of 1k  such intervals (i.e. by time kk 22 2  ), then the 
additional processing that could be accommodated is  

12 k . Hence to accommodate blocking of 2k  from task 
1k , and execute the jobs of tasks 1  to 1k  subsequently 

released at kk 22 2  requires a further k  units of time. 
Finally, the first job of task k  completes at 12 2  kk . 

Alternatively, with task 1k  at the lowest priority, we 
have: 
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which converges to 22k , hence 1k  just meets its 
deadline. (Note we only need examine the response time of 
the first job of task 1k  since task 1k  has a constrained 
deadline). Thus the OPA algorithm is forced to place task 

1k  at the lowest priority. It is easy to see that the 
remaining tasks (which are identical) are schedulable at the 
higher priority levels, since the length of the priority level-k
busy period is simply k and ends before the next release (at 
2k) of any task. 

Given that task 1k  completes at its deadline, it is clear 
that the processor cannot be slowed down by any factor and 
the task set remain schedulable using FP-P with optimal 
priority assignment. Note that the utilisation of the task set 
is 0.5. 

Next, consider the schedulability of task set S under 
EDF-P on a processor of speed: 
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Under EDF-P scheduling, the processor demand bound 



function )(th  for task set S is the sum of the processor 
demand bound functions )...,( 1 kth   and ),( 1kth   for 
tasks 1  to k   and task 1k  respectively. 
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as   yxyx //  , we have the following upper bound on 
)...,( 1 kth  :  
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The processor demand bound function for task 1k  is: 
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Recall that any arbitrary-deadline task set is schedulable 
according to EDF-P, provided that: 
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Given the following: 
(i) The value of tth /)(  at time kkt  22  is: 
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(ii) An upper bound, from (37) and (38), on the value of 
tth /)(  at time 22kt   is: 
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(iii) The rate of increase of the upper bound on tth /)(  for 
22kt   is as follow (from (37)): 
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Then the maximum value of the upper bound on tth /)(
occurs at time 22kt  , and is equal to 1, hence task set S is 
schedulable on a processor of speed s under EDF-P. 

In the limit, as k  then 2/1s  and thus task set 
S requires a processor speedup factor of 2 in order to be 
schedulable under FP-P with optimal priority assignment. 

Since the upper bound on the speedup factor required 
by FP-P to schedule any task set that is schedulable under 
EDF-P is 2 (from Theorem 2) and we have shown that there 
exists a task set that requires that speedup factor, then the 
exact value of the speedup factor is 2. 

4.4. Exact Speedup Factor for FP-P Scheduling 
with Shared Resources 

Previously, we considered the processor speedup factor 
required such that any feasible arbitrary-deadline task set, 
that was schedulable under an optimal algorithm such as 
EDF-P, could be guaranteed to be schedulable using FP-P 

scheduling. We now consider how changes to the task 
model, allowing tasks to access mutually exclusive shared 
resources according to the Stack Resource Policy (SRP) 
(Baker 1991), or to execute critical sections non-pre-
emptively, affect the processor speedup factor required. (We 
note that the Deadline Floor inheritance Protocol (DFP) 
(Burns et al. 2014) for EDF has the same schedulability 
conditions as SRP, and hence our results also apply to 
comparisons between FP+SRP and EDF+DFP). 

Recall that EDF-P + SRP is only optimal in the weak 
sense, that is with respect to work conserving scheduling 
algorithms (Baruah 2006), see section 1.2. We now 
determine the processor speedup factor required such that an 
arbitrary-deadline task set that is deemed schedulable by 
EDF-P + SRP according to the schedulability test given in 
(43) below, is guaranteed to be schedulable under FP-P + 
SRP scheduling using DMPO and hence also schedulable 
using optimal priority assignment. 

We assume the same basic task model described in 
section 2; however, we relax the restriction on task 
independence. We assume that each task k  may access 
shared resources in mutual exclusion according to the Stack 
Resource Policy (Baker 1991). We define )(' tB  to be the 
maximum time for which any task A  with relative deadline 

tDA   may hold a resource needed by any other task B
with relative deadline tDB  . 

Under fixed priority scheduling, the blocking factor kB'
for priority level k, is given by the maximum time for which 
a task of priority lower than k can access a resource that is 
shared with a task of priority k or higher. 

Note in this section we use )(' tB  and kB'  (as distinct 
from )(tB  and kB ) to distinguish blocking due to shared 
resources rather than non-pre-emptive scheduling. 

A sufficient condition for task set schedulability under 
EDF + SRP was given by Spuri (1996): 
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where )(th  is the processor demand bound function given 
by (14). Spuri (1996) showed that the only values of t that 
need to be checked are those corresponding to task 
deadlines within a synchronous busy period starting at time
t = 0. 

With FP-P + SRP, the sufficient schedulability test for 
each task k  in an arbitrary-deadline task set, given by (7) 
can be extended to include the blocking factor as follows: 
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Lemma 2: An upper bound on the processor speedup factor 
required such that FP-P + SRP scheduling, using DMPO can 
schedule any arbitrary-deadline task set deemed schedulable 
under EDF-P + SRP by (43), is 2. 
Proof: Follows a similar approach to the proof of Lemma 1. 
Let S be any task set that is schedulable according to (43) on 



a processor of unit speed under EDF + SRP. 
For each task k , in S, consider the processor demand 

bound and blocking factor for an interval of length kD2 . As 
task set S is schedulable according to EDF+SRP, it follows 
that:  
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Next, consider task set S scheduled according to FP-P 
scheduling on a processor of twice the speed using DMPO. 
DMPO implies that ki DDki  . 

From (45) above, assuming a processor of twice the 
speed, and separating out the contribution from all tasks of 
lower priority than k we have: 
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As the tasks are in DMPO, we note that all of the tasks with 
priorities lower than k (i.e. in )(klp ) have deadlines kD . 
We now consider just the first and second terms in (46). 
Observe that the contribution to the second term from every 
task i  in )(klp  with ki DD 2  is zero. Further, the 
contribution from each task i  with kik DDD 2  is iC . 
From the definition of )(' tB  it follows that the sum of the 
first two terms in (46) is kB' . 
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Substituting kB'  in place of the first two terms in (46), and 
noting for the third term that    xx 1  and 

ki DDkhepi  )(  we obtain: 
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Equation (48) is identical to (44); the sufficient 
schedulability test for task k  in an arbitrary-deadline task 
set S, scheduled under FP-P + SRP. Repeating the above 
argument for each task k  in S proves that the task set is 
schedulable on a processor of speed 2 under FP-P + SRP 
scheduling using DMPO. 
Theorem 4: An exact bound on the processor speedup 
factor required such that FP-P + SRP scheduling, using 
DMPO can schedule any arbitrary-deadline task set deemed 
schedulable under EDF-P + SRP by (43), is 2. 
Proof: Follows directly from Lemma 2 and the proof of 
Theorem 1 which shows that a speedup factor of 2 is 
necessary even without mutually exclusive resource access. 

Theorem 5: An exact bound on the processor speedup 
factor required such that FP-P + SRP scheduling, using 
optimal priority assignment can schedule any arbitrary-

deadline task set deemed schedulable under EDF-P + SRP 
by (43), is 2. 
Proof: Follows directly from Theorem 4, the fact that FP-P 
with optimal priority assignment dominates FP-P with 
DMPO, and the proof of Theorem 3 which shows that a 
speedup factor of 2 is necessary even without mutually 
exclusive resource access. 

5. Speedup factors for FP-NP 
In this section, we derive upper and lower bounds on the 

processor speedup factor required for FP-NP scheduling 
using optimal priority assignment (Audsley 1991, 2001). 
These bounds are valid for sporadic and non-concrete9

periodic task sets with implicit-, constrained-, and arbitrary-
deadlines. Note that when we refer to the processor speedup 
factor for FP-NP scheduling, we mean as compared to EDF-
NP, an optimal (in the weak sense (George et al. 1995)), 
work-conserving non-pre-emptive scheduling algorithm. We 
then derive an exact speedup factor valid for task sets with 
arbitrary deadlines. 

First we present an example. 

5.1. Speedup Factor Example 
In the non-pre-emptive case, the concept of a speedup 

factor for a given task set S can be illustrated by means of 
the following example. Consider the task set S comprising 
the tasks defined in Table 3, with priorities assigned in the 
order that the tasks appear in the table (i.e. A  has the 
highest priority, and D  the lowest).  

Table 3: Example Task set 
Task iC ii TD 

A  1 6 
B  1 7 
C  1 8 
D 3 

The worst-case arrival pattern for tasks A , B , and C
under FP-NP scheduling is shown in Figure 4. Note the 1st

job of each task is shaded in grey, while the 2nd job of each 
task is un-shaded. 

Figure 4: FP-NP schedule 
Now consider the maximum factor by which the 

9 Recall that a periodic task set is referred to as non-concrete if the times at 
which each task is first released are unknown. 



execution times of the tasks can be scaled and the task set 
remain schedulable according to FP-NP. This factor is 

  )5/6()(SNPFP  (i.e. a value infinitesimally less than 
6/5). 

Figure 5 shows the FP-NP schedule for the scaled task 
set. Scaling by any larger factor, for example, a factor equal 
to 6/5 would result in the first job of task C  being unable 
to start executing before the 2nd job of task A  is released at 
time t = 6. It would then be further delayed by the 2nd job of 
task B , and hence fail to meet its deadline at time t = 8. In 
fact, there is no priority ordering which results in task set S, 
scaled by a factor of 6/5, being schedulable. This can be 
seen by considering the behaviour of the optimal priority 
assignment algorithm. While task D  is schedulable at the 
lowest priority, and can therefore be assigned priority 4, 
none of the other tasks are schedulable at priority 3. 

Figure 5: FP-NP schedule, maximal scaling

Figure 6: EDF-NP schedule, maximal scaling  
With EDF-NP scheduling, the maximum scaling factor 

commensurate with task set S remaining schedulable is 
6/8)(  SNPEDF . Under EDF-NP, the first job of task 

C  has a later absolute deadline than the first jobs of tasks 
A  and B , and therefore executes after those jobs and after 

the first job of D  which is released at time t . The 
first job of task C  is not however delayed by the 2nd jobs 
of tasks A  and B , as these jobs have later absolute 
deadlines. With a scaling factor of 8/6, the first job of task 

C  just completes by its deadline (see Figure 6). Further 
analysis is required to prove that the scaled task set is 
schedulable under EDF-NP; however, as the priority level 3 
busy period ends at 12t , we need only check all deadlines 
in the interval [0, 12] to show schedulability. Note, Figure 6 
shows the ∆-critical instant for tasks A , B , C , and all 
deadlines are met in the interval [0, 12]. Further, task D  is 
trivially schedulable as it has an infinite deadline, and the 
task set utilisation is less than 1. 

Using (2), the speedup factor for the task set given in 
Table 3 is )(Sf NPFP  = (8/6)/(6/5)   = )36/40(  = 

)9/10(  (i.e. a value infinitesimally larger than 10/9). In the 
next section, we generalise this example and show how task 
sets with a similar structure but with a large number of tasks 
require a much larger speedup factor. 

5.2. Lower bound speedup factor for FP-NP 
In this section, we derive a lower bound on the processor 

speedup factor required for FP-NP scheduling using optimal 
priority assignment (Audsley 1991, 2001). This lower 
bound is valid for sporadic and non-concrete periodic task 
sets with implicit-, constrained-, and arbitrary-deadlines. In 
the next section, we derive an upper bound with the same 
scope. 

To derive a lower bound, we need only select a single 
task set and determine the required speedup factor for that 
task set. The task set S that we use is a generalisation of the 
task set used as an example in the previous section. In this 
case, there are n tasks, with the parameters given in Table 4. 
Tasks 1  to 1n  are represented by i  in the first row of 
the table. All of these tasks have the same small execution 
time X , and related periods/deadlines. Further, all of 
the tasks have periods equal to their deadlines, so this is an 
implicit-deadline task set. Task n  has an execution time of 

X , where X is a free variable that we can alter to 
maximise the required speedup factor. 

Table 4: Task parameters 
Task iC ii TD 

i
)1(

1



n


)1(
)1(1





n
iX

n X 
The execution of task set S under FP-NP is depicted in 
Figure 7 below. Note, jobs of task 1n  are marked with an 
 . 

Figure 7: FP-NP schedule  



Figure 8: FP-NP schedule, maximal scaling
Lemma 3: The maximum factor )(SNPFP  by which the 
execution times of the tasks in task set S (Table 4) can be 
scaled and the task set remain schedulable according to FP-
NP is given by: 
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Figure 8 depicts the FP-NP schedule for the scaled task set. 
Proof: Scaling by a factor equal to )1/()1(  XX
would result in the first job of task 1n  being unable to 
start executing before the 2nd job of task 1  is released at 
time Xt  1  It would then be further delayed by the 2nd

jobs of tasks 1  to 2n , and hence fail to meet its deadline 
at time  Xt 2 . In fact, there is no priority ordering 
which results in task set S, scaled by a factor of 

)1/()1(  XX , being schedulable. This can be seen by 
considering the behaviour of the optimal priority assignment 
algorithm (Algorithm 1), given the scaled task set: Task n
is schedulable at the lowest priority, and can therefore be 
assigned that priority. However, considering the remaining 
tasks in turn, none of them are schedulable at priority 1n . 
Task 1  is not schedulable at priority 1n , as its 1st job 
would miss its deadline at Xt  1 . Task 2  is not 
schedulable at priority 1n , as its 1st job is then unable to 
start before the 2nd job of task 1  arrives, and so misses its 
deadline at  Xt 1 . In general, with a scaling factor of 

)1/()1(  XX , for each task with index i from 2 to 
1n , assuming that task i  is assigned priority 1n , 

ensures that the 1st job of task i  is unable to start before 
the 2nd job of task 1i  arrives, and so the 1st job of task i
misses its deadline. 

By contrast, with a scaling factor of 
 )1/()1( XX , task 1n  is schedulable at priority 

1n , as it is able to start executing just prior to the arrival 
of the 2nd job of 1  at Xt  1 . Further, with this scaling 
factor, all of the other tasks are schedulable with priorities 
assigned according to their indices (i.e. DMPO). This can be 
seen by checking the deadlines of all jobs up to the end of 
the priority level 1n busy period, which occurs at: 
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As 12)1(2 DXt A  , the priority level 1n  busy period 
comprises the 1st job of task n  and the 1st and 2nd jobs of 
tasks 1  to 1n . All of these are schedulable (see Figure 8). 
The priority level-n busy period is of similar length, and 

hence task n  is trivially schedulable given its infinite 
deadline 
Lemma 4: The maximum factor )(SNPEDF  by which the 
execution times of the tasks in task set S (Table 4) can be 
scaled and the task set remain schedulable according to 
EDF-NP is given by: 

  )/1()(SNPEDF      (51) 

Proof: There are two key conditions which limit the 
maximum scaling factor under EDF-FP (otherwise the task 
set would become unschedulable): 

1. The 1st jobs of all tasks must be complete by the 
deadline of task 1n ,  XDn 21 . 
2. Utilisation of the scaled task set must not exceed 
100%. 

Considering the first condition, we have: 
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The utilisation of the un-scaled task set is given by the sum 
of the utilisation of each task: 
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The RHS of Equation (53) is recognisable as the left 
Riemann sum of the function 1/z, over the interval 

)2,1[ XX  , hence: 
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Thus, considering the second condition, we have: 
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As Equation (52) is monotonically non-increasing in X and 
tends to 2 for small X, and Equation (55) is monotonically 
non-decreasing in X and tends to 1/ln(2) for small X, then 
the maximum value is obtained when the RHSs of 
Equations (52) and (55) are equal, i.e. when: 
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Figure 9: Constraints on the scaling factor as a 
function of X

Figure 9 plots Equations (52) and (55) (labelled a1(X) and 
a2(X) respectively) against X. As n , 0 , the 
solution to Equation (56) is given by the intersection of the 
lines plotted in Figure 9, thus   )/1()(SNPEDF

76322.1 , (where   is the mathematical constant defined 
by the transcendental equation )/1ln( , hence, 

0.567143  ). Further, 
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We now show that task set S (Table 4) is schedulable 
under EDF-NP, when scaled by a factor of 

  )/1()(SNPEDF . Proof is made significantly easier 
by the commonality between task set S and the speedup-
optimal task set V for the constrained-deadline case of FP-P 
scheduling, described by Davis et al. (2009b) in Theorem 2 
of that paper. In fact, tasks 1  to 1n  are identical in these 
two task sets, only task n  differs. In task set V, the 
parameters of task n  are:  XCn  , XDn  2 , and 

nT , whereas in task set S, the parameters of task n
are:  XCn , and  nn TD  Theorem 4 given in the 
paper by Davis et al. (2009b) proves that task set V is 
schedulable under EDF-P when scaled by a factor of /1 . 
Hence for task set V, 
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We make use of this result to show that task set S, scaled 
by a factor of )/1(  is schedulable under EDF-NP. As 
tasks 1  to 1n  are identical, their contribution to the 
processor demand bound )(th  is the same for any time t. 
We now compare the contribution from task n  in each 
case. In the pre-emptive case, (task set V), n  contributes to 

)(th  as follows: 
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whereas, in the non-pre-emptive case, (task set S), n
contributes only to the blocking factor: 

0)/()(   tXtB       (60) 
Recall that in the non-pre-emptive case, a task set is 
schedulable provided that 1U  and: 
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Comparing (58) and (61), and the contributions of task n
in each case ((59) and (60)), it follows that (61) holds for all 
values of )2( Xt   for task set S scaled by a factor of 

)/1( . This is because, for all values of )2( Xt   the 
value of ttBth /))()((   is the same as that for task set V, 
assuming both task sets are scaled by the same factor. To 
prove the schedulability of task set S scaled by a factor of 

)/1( , it remains only to show that 1/))()((  ttBth  for 
all values of t in the interval ))2(,0[ X . Here, we need 
only check values of t that correspond to task deadlines. As 

11 22 DXDn  , this amounts to checking the 1st

deadline of each of the 1n  highest priority tasks. At each 
of these deadlines iD , we have: 
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as ii TDki  ,  and ki DD 2 it follows that: 
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Hence the scaled task set is schedulable provided that, i
from 1 to 1n , )()( iii DBDhD   that is: 
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Substituting for )1/()2()/1( XX     and 
)1/(1  n , and rearranging, we have: 

































11

12)1(
1
11

n
iX

n
XX

n
iX   (65) 

which simplifies to: 
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and then to: 
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For 2n , the first term in inequality (67) is non-negative 
i  from 1 to 2n , while the second term is always 

positive. Further, for 1 ni , the first and second terms 
cancel out, thus the inequality holds i  from 1 to 1n . 
Task set S is therefore schedulable according to EDF-NP 
when scaled by a factor of )/1( . 
Theorem 6: A lower bound on the speedup factor required 



for FP-NP scheduling of an implicit-deadline task set is: 
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Proof: Follows from Lemmas 3 and 4 and the definition of 
the speedup factor (Definition 1). 
Corollary 3: We observe that as task set S is an implicit-
deadline task set, and all implicit-deadline task sets are also 
constrained-deadline and arbitrary-deadline task sets, the 
lower bound of Theorem 6 applies to all three classes of task 
set. 

5.3. Upper bound speedup factor for FP-NP 
In this section, we derive an upper bound on the speedup 

factor required for FP-NP scheduling of arbitrary-deadline 
sporadic and non-concrete periodic task sets. 
Theorem 7: An upper bound on the processor speedup 
factor required such that FP-NP scheduling, using optimal 
priority assignment can schedule any arbitrary-deadline 
sporadic or non-concrete periodic task set schedulable under 
EDF-NP according to (18), is 2. 
Proof: Let S be any task set that is schedulable according to 
(18) on a processor of unit speed under EDF-NP. For each 
task k , in S, consider the processor demand bound and 
blocking factor for an interval of length kD2 . As task set S
is schedulable according to EDF-NP, it follows that:  
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Next, consider task set S scheduled according to FP-NP 
scheduling on a processor of twice the speed using DMPO. 
DMPO implies that ki DDki  . 

From (69) above, assuming speed 2, and separating out 
the contribution from all tasks of lower or equal priority to k
we have: 
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As the tasks are in DMPO, we note that all of the tasks with 
lower priority than k (i.e. in )(klep ) have deadlines kD . 

We now consider just the first and second terms in (70). 
Observe that the contribution to the second term from every 
task i  in )(klep  with ki DD 2  is zero. Further, there is a 
contribution from each task i  with kik DDD 2  of at 
least iC . From the definition of )(tB  (17), the definition of 

kB  (9), and the fact that the tasks are in DMPO, it follows 
that the sum of the first two terms in Equation (70) are  

kB , the blocking factor for FP-NP scheduling: 
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Substituting kB  for the first two terms in (70) and 
transforming the third term by noting that    xx 1  and 

ki DDkhpi  )(  we have: 
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Equation (72) is identical to (13); the sufficient 
schedulability test for task k  in an arbitrary-deadline task 
set S, scheduled under FP-NP. Repeating the above 
argument for each task k  in S therefore proves that the task 
set is schedulable on a processor of speed 2 under FP-NP, 
with DMPO. As optimal priority assignment for FP-NP can 
schedule any task set that is schedulable using FP-NP with 
DMPO. 
Corollary 4: We observe that as the upper bound in 
Theorem 7 holds for arbitrary-deadline task sets, it must 
also hold for implicit-deadline, and constrained-deadline 
task sets. 

5.4. Exact speedup factor for FP-NP for arbitrary 
deadline task sets 

In this section, we derive the exact speedup factor 
required for FP-NP scheduling of arbitrary-deadline 
sporadic and non-concrete periodic task sets. 
Theorem 8: The exact processor speedup factor required 
such that FP-NP scheduling, using optimal priority 
assignment can schedule any arbitrary-deadline sporadic or 
non-concrete periodic task set schedulable under EDF-NP 
according to (18), is 2. 
Proof: We prove the theorem using a task set V derived 
from task set S used in the proof of Theorem 3. We split the 
final task of task set S into 2k  identical tasks each with an 
execution time of 1. Thus the task set V comprises kk 2

tasks with the following parameters on a processor of speed 
s = 1: 

1  to k : 1iC , kkDi  22 , kTi 2
1k  to 2kk

 : 1jC , 22kD j  , jT
Without loss of generality, we assume that the minimum 
processing time (e.g. a processor clock cycle) is given 
by 1 . 

We now consider the schedulability of task set V under 
FP-NP scheduling assuming optimal priority assignment. 
Applying Audsley�s OPA algorithm, we find that none of 
the tasks labelled 1  to k  are schedulable at the lowest 
priority, since following synchronous release, the processor 
is occupied by higher priority tasks for an interval of time 

kkt  22 , hence the deadline of any such task would be 
reached before it was able to start executing. 

By contrast, any of the 2k  tasks labelled 1k  to 2kk


is schedulable at the lowest priority level since the longest 



possible busy period (at the lowest priority level) is of 
length 22k , which is equal to the deadline of those tasks. 
Since tasks 1  to k  are schedulable at the highest k priority 
levels with k  having a worst-case response time of k, then 
the task set is schedulable with the tasks in the priority order 
given by their indices. (We note that other schedulable 
priority orders exist, but all require that one of the tasks with 
deadline 22k  has the lowest priority).  

Given that task 2kk
  completes at its deadline, it is 

clear that the processor cannot be slowed down by any 
factor and the task set remain schedulable using FP-NP with 
optimal priority assignment. 

Next, consider the schedulability of task set S under 
EDF-NP on a processor of speed: 

2

2

2
2/3

k
kks 

        (73) 

Recall that to prove schedulability under EDF-NP, we must 
show that: 
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Since 1  and all tasks have 1iC , then from (17) 
t 0)( tB . Further, since tasks 1k  to 2kk

  were 
obtained by decomposing the final task in task set S in the 
proof of Theorem 3 (pre-emptive case) into 2k  tasks with 
unit execution times with the same deadlines and periods, 
then it follows that )(th  is identical to that for task set S in 
the pre-emptive case. Thus from the proof of Theorem 3 we 
have 1/)( tth  and hence (74) holds and so task set V is 
also schedulable on a processor of speed s under EDF-NP. 
(Intuitively this is the case since the pre-emptive schedule 
for task set S and the non-pre-emptive schedule for task set 
V are equivalent). 

In the limit, as k  then 2/1s  and thus task set 
V requires a processor speedup factor of 2 in order to be 
schedulable under FP-NP with optimal priority assignment. 

Since the upper bound on the speedup factor required 
by FP-NP to schedule any task set that is schedulable under 
EDF-NP is 2 (from Theorem 7) and we have shown that 
there exists a task set that requires this speedup factor, then 
the exact value of the speedup factor is 2 

6. Conclusions and future work 
We have examined the relative effectiveness of fixed 

priority and EDF scheduling, in both pre-emptive and non-
pre-emptive cases. Our metric for measuring the relative 
effectiveness of fixed priority scheduling is a resource 
augmentation factor known as the processor speedup factor. 
In this case, the processor speedup factor is defined as the 
minimum amount by which the processor needs to be 
speeded up so that any task set that is schedulable by EDF-P 
(EDF-NP) scheduling is schedulable according to FP-P (FP-
NP) scheduling using an optimal priority assignment policy.  

Table 5 summarizes the new state-of-the-art in terms of 

analytical results regarding the speedup factors for FP-P and 
FP-NP scheduling. In the pre-emptive case, FP-P scheduling 
is compared to EDF-P which is an optimal pre-emptive 
uniprocessor scheduling algorithm. In the non-pre-emptive 
case, FP-NP is compared to EDF-NP which is an optimal 
(in the weak sense (George et al., 1995)), work-conserving 
non-pre-emptive scheduling algorithm. 

Table 5: Fixed priority scheduling speedup factors 
Pre-emptive Non-pre-emptive 

Task set 
constraints 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Implicit-
deadline 

)2ln(/1
1.44269 

 )/1(
1.76322 2 

Constrained-
deadline  

/1
1.76322 

 )/1(
1.76322 2 

Arbitrary-
deadline 2 2 

The major contributions of this paper (highlighted in 
bold in the above table) are in proving that: 
(i) The exact processor speedup factor for fixed priority 

pre-emptive scheduling of sporadic or non-concrete 
periodic task sets with arbitrary deadlines and optimal 
priority assignment is 2.  

(ii) The above result holds when tasks may access resources 
in mutual exclusion according to the Stack Resource 
Policy (Baker, 1991) (i.e. FP-P +SRP v. EDF-P +SRP) 
or the Deadline Floor inheritance Protocol (DFP) 
(Burns et al. 2014) (i.e. FP-P +SRP v. EDF-P +DFP). 

(iii) The exact processor speedup factor for fixed priority 
non-pre-emptive scheduling of sporadic or non-
concrete periodic task sets with arbitrary deadlines and 
optimal priority assignment is 2, when compared 
against non-pre-emptive EDF scheduling. 

(iv) The upper and lower bounds on the processor speedup 
factor for fixed priority non-pre-emptive scheduling of 
sporadic or non-concrete periodic task sets with implicit 
or constrained deadlines are  )/1(  1.76322, and 2 
respectively, when compared against non-pre-emptive 
EDF scheduling. 

Thekkilakattil et al. (2013) quantified the speedup factor 
required for any task set schedulable under pre-emptive 
EDF to be schedulable under non-pre-emptive EDF. They 
derived an upper bound of 4 for the case where the largest 
execution time is not greater than the smallest deadline. This 
result can be combined with our result for FP-NP v. EDF-
NP to give an upper bound of 8 on the speedup factor 
required for any task set schedulable under EDF-P to be 
schedulable under FP-NP, again assuming that the largest 
execution time is not greater than the smallest deadline. In 
future we aim to explore whether this bound can be 
tightened. 

The seminal work of Liu and Layland (1973) 
characterises the maximum performance penalty incurred 



when an implicit-deadline task set is scheduled using Rate-
Monotonic, fixed priority pre-emptive scheduling instead of 
an optimal algorithm such as EDF-P. Davis et al. (2009b) 
gave an analogous result for constrained-deadline task sets. 
The research in this paper completes the exact quantification 
of the sub-optimality of fixed priority pre-emptive 
scheduling by determining the maximum performance 
penalty incurred when arbitrary deadline task sets are 
scheduled using that policy instead of an optimal pre-
emptive scheduling algorithm such as EDF-P. 

6.1. Postscript 
As this article was going to press, further work on speedup 
factors for the case of FP-NP v. EDF-NP with implicit and 
constrained deadlines was published by von der Brüggen et 
al. (2015). They tightened the upper bounds in these cases 
from 2 to /1 1.76322. Combined with the results given 
in this paper, and those previously published by Davis et al. 
(2009, 2010), this completes the set of six exact speedup 
factors for FP-P v. EDF-P and FP-NP v. EDF-NP for 
implicit, constrained, and arbitrary deadline task sets. 
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