
Exact Comparison of Fixed Priority and EDF Scheduling
based on Speedup Factors for both Pre-emptive and Non-pre-emptive Paradigms

Robert I. Davis1,2, Alan Burns1, Sanjoy Baruah3, Thomas Rothvoß4, Laurent George5, Oliver Gettings1

1Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK.
2AOSTE Team, INRIA Paris-Rocquencourt, France.

3Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-317, Carolina, USA.
4Department of Mathematics, University of Washington, USA.

5Universite Paris-Est, LIGM, ESIEE Paris
rob.davis@york.ac.uk, alan.burns@york.ac.uk, baruah@cs.unc.edu, rothvoss@uw.edu, laurent.george@univ-mlv.fr

Abstract
This paper investigates the relative effectiveness of fixed

priority (FP) scheduling in a uniprocessor system compared
to Earliest Deadline First (EDF) scheduling. The
quantitative metric used in this comparison is the processor
speedup factor, defined as the factor by which processor
speed needs to increase to ensure that any task set that is
schedulable according to EDF can be scheduled using fixed
priorities. In the pre-emptive case, exact speedup factors
are known for sporadic task sets with implicit or
constrained deadlines. In this paper, we derive exact
speedup factors for both pre-emptive and non-pre-emptive
fixed priority scheduling of arbitrary deadline sporadic task
sets. We also show that the exact speedup factor for the pre-
emptive case holds when tasks share resources according to
the Stack Resource Policy / Deadline Floor Protocol.

Keyword
Fixed Priority; Earliest Deadline First; Scheduling; Sub-

optimality; Resource Augmentation; Speedup factor; Pre-
emptive; Non-pre-emptive; Uniprocessor.

1. Introduction
In this paper, we investigate the largest factor by which

the processing speed of a uniprocessor needs to be
increased, to ensure that any task set that was previously
schedulable according to an optimal scheduling algorithm,
such as EDF, is schedulable according to fixed priority
scheduling. We refer to this resource augmentation factor as
the processor speedup factor (Kalyanasundaram and Pruhs
1995).

1.1. Pre-emptive scheduling
Liu and Layland (1973) considered fixed priority pre-

emptive (FP-P) scheduling of synchronous1 task sets
comprising independent periodic tasks, with bounded
execution times, and deadlines equal to their periods. We
refer to such task sets as implicit-deadline task sets. Liu and

1 A task set is synchronous if all of its tasks share a common release time.

Layland (1973) showed that rate monotonic priority
ordering (RMPO) is the optimal fixed priority assignment
policy for implicit-deadline task sets, and that using RMPO,
FP-P can schedule any implicit-deadline task set that has a
total utilisation 693.0)2ln(U . Liu and Layland (1973)
also showed that Earliest Deadline First (EDF-P) is an
optimal dynamic priority pre-emptive scheduling algorithm
for implicit-deadline task sets, and that EDF-P can schedule
any such task set that has a total utilisation 1U .

Dertouzos (1974) showed that EDF-P is an optimal
uniprocessor scheduling algorithm, in the sense that if a
valid schedule exists for a task set, then the schedule
produced by EDF-P will also meet all deadlines (Least
Laxity First is another such optimal algorithm (Mok 1983)).

Research into real-time scheduling during the 1980s and
early 1990s focused on lifting many of the restrictions of the
Liu and Layland task model. Task arrivals were permitted to
be sporadic, with known minimal inter-arrival times, (still
referred to as periods), and task deadlines were permitted to
be less than or equal to their periods (so called constrained
deadlines) or less than, equal to, or greater than their periods
(so called arbitrary deadlines).

Leung and Whitehead (1982) showed that Deadline
Monotonic2 Priority Ordering (DMPO) is the optimal fixed
priority ordering for constrained-deadline task sets. Exact
schedulability tests for FP-P scheduling of constrained-
deadline task sets were introduced by Joseph and Pandya
(1986), Lehoczky et al. (1988), and Audsley et al. (1993).

Lehoczky (1990) showed that DMPO is not optimal for
task sets with arbitrary deadlines; however, an optimal
priority ordering for such task sets can be determined in at
most 2/)1(nn task schedulability tests using the Optimal
Priority Assignment (OPA) algorithm3 given by Audsley
(1991, 2001). Exact schedulability tests for task sets with
arbitrary deadlines were developed by Lehoczky (1990),
and Tindell et al. (1994).

2 Deadline monotonic priority ordering assigns priorities in order of task
deadlines, such that the task with the shortest deadline is given the highest
priority.
3 This algorithm is optimal in the sense that it finds a schedulable priority
ordering whenever such an ordering exists.

Exact schedulability tests for constrained and arbitrary-
deadline task sets scheduled using Earliest Deadline First
pre-emptive scheduling (EDF-P) were introduced by Baruah
et al. (1990a, 1990b). Subsequently, exact tests for EDF-P
have been developed by George and Hermant (2009) and
Zhang and Burns (2009) that are more efficient in practice.

1.2. Resource sharing
In pre-emptive systems, concurrency control protocols are
required to ensure that jobs access shared resources in
mutual exclusion, otherwise data corruption, or erroneous
behaviour of hardware devices could ensue. A number of
concurrency control protocols have been developed, these
include the Priority Inheritance Protocol (PIP) and the
Priority Ceiling Protocol (PCP) (Sha et al. 1990) originally
developed for FP-P scheduling and the Stack Resource
Policy (SRP) (Baker, 1991), which is applicable to both FP-
P and EDF-P scheduling. Baker (1991) initially provided a
sufficient schedulability test for EDF-P and SRP. Later,
Spuri (1996) modified the exact test for EDF-P scheduling
to account for resource locking under SRP.

Exact tests for FP-P scheduling with either PCP or SRP
where introduced by Audsley et al. (1993) for constrained
deadline task sets, and Tindell et al. (1994) for arbitrary
deadline task sets. Bletsas and Audsley (2006) showed that
for FP-P scheduling with resource accesses according to
PCP or SRP, DMPO is optimal for tasks with constrained
deadlines, and the OPA algorithm is optimal for tasks with
arbitrary deadlines. (Note, here, optimality is with respect to
a task model where resource access times are known, but no
information is available about the phasing of resource
accesses within the tasks).

Baruah (2006) showed that EDF-P and SRP is optimal
in the weak sense that it can schedule any task set with
resource accesses for which a feasible work-conserving
schedule exists. (Again, optimality is with respect to a task
model where no information is available about the phasing
of resource accesses within the tasks).

Burns et al. (2014) introduced the Deadline Floor
inheritance Protocol (DFP), which is equivalent to SRP in
terms of schedulability, but has a simpler implementation.

1.3. Non-pre-emptive scheduling
Kim and Naghibdadeh (1980) and Jeffay et al. (1991)

gave exact schedulability tests for implicit-deadline task sets
under Earliest Deadline First non-pre-emptive (EDF-NP)
scheduling. These tests were extended by George et al.
(1996) to the general case of sporadic task sets with
arbitrary deadlines.

While EDF-P is an optimal uniprocessor scheduling
algorithm, in the non-pre-emptive case no work-conserving4

algorithm is optimal. This is because in general it is

4 An algorithm is work-conserving if it never idles the processor when
there is a job ready to execute.

necessary to insert idle time to achieve a feasible schedule.
The interested reader is referred to the work of George et al.
(1996) for examples of this behaviour. Howell and
Venkatrao (1995) showed that for non-concrete5 periodic
task sets, the problem of determining a feasible non-pre-
emptive schedule is NP hard. Further they showed that for
sporadic6, task sets no optimal on-line inserted idle time
algorithm can exist. In other words, clairvoyance is needed
to determine a feasible non-pre-emptive schedule.

While no work-conserving algorithm is optimal in the
strong sense that it can schedule any task set for which a
feasible non-pre-emptive schedule exists; George et al.
(1995) showed that EDF-NP is optimal in the weak sense
that it can schedule any task set for which a feasible work-
conserving, non-pre-emptive schedule exists. Hence we can
regard EDF-NP as an optimal work-conserving, non-pre-
emptive scheduling algorithm, for sporadic task sets.

For fixed priority non-pre-emptive (FP-NP) scheduling
of arbitrary-deadline task sets, George et al. (1996) derived
an exact schedulability test based on the approach of Tindell
et al. (1994) for the pre-emptive case. George et al. (1996)
showed that unlike in the pre-emptive case, DMPO is not
optimal for constrained-deadline task sets scheduled by FP-
NP. Further, they showed that the Optimal Priority
Assignment algorithm given by Audsley (1991) is
applicable, and can be used to determine an optimal priority
ordering for task sets with arbitrary-deadlines scheduled
using FP-NP.

Subsequent research by Bril et al. (2009) has refined
exact analysis of FP-NP, correcting issues of both
pessimism and optimism, and extending the schedulability
tests to co-operative scheduling where each task is made up
of a number of non-pre-emptive regions.

1.4. Sub-optimality and speedup factors
Combining the result of Dertouzos (1974) with the

results of Liu and Layland (1973), shows that the processor
speedup factor required to guarantee that FP-P scheduling
can schedule any implicit-deadline task set schedulable by
EDF-P is 44270.1)2ln(/1  .

Davis et al. (2009b) derived the exact speedup factor for
FP-P scheduling of constrained-deadline task sets;

76322.1/1  (where  is the mathematical constant
defined by the transcendental equation )/1ln(, hence,

0.567143 ).
Davis et al. (2009a, 2010) also provided preliminary

results giving upper and lower bounds on the speedup
factors for arbitrary deadline task sets in the pre-emptive
case (Davis et al. 2009a) and for implicit, constrained, and

5 A periodic task set is referred to as non-concrete if the times at which
each task is first released are unknown, also sometimes referred to as
having arbitrary phasing.
6 Sporadic task sets represent a generalisation of non-concrete periodic task
sets.

arbitrary deadline task sets in the non-pre-emptive case
(Davis et al. 2010)

This paper includes preliminary material from (Davis et
al. 2009a, 2010) which it builds upon. The main
contribution of the paper is the derivation of exact speedup
factors for arbitrary deadline task sets in both the pre-
emptive and non-pre-emptive cases.

1.5. Related work on average case sub-optimality
This paper examines the sub-optimality of fixed priority

scheduling in the worst-case, other research has examined
its behaviour in the average-case.

Lehoczky et al. (1989) introduced the breakdown
utilisation metric: A task set is randomly generated, and
then all task execution times are scaled until a deadline is
just missed. The utilisation of the scaled task set gives the
breakdown utilisation. Lehoczky et al. (1989) showed that
the average breakdown utilisation, for implicit-deadline task
sets of large cardinality under fixed priority pre-emptive
scheduling is approximately 88%, corresponding to a
penalty of approximately 12% of processing capacity with
respect to an optimal algorithm such as EDF-P.

Bini and Buttazzo (2005) showed that breakdown
utilisation suffers from a bias which tends to penalise fixed
priority scheduling by favouring task sets where the
utilisation of individual tasks is similar. Bini and Buttazzo
introduced the optimality degree metric, defined as the
number of task sets in a given domain that are schedulable
according to some algorithm A divided by the number that
are schedulable according to an optimal algorithm. Using
this metric, they showed that the penalty for using fixed
priority-pre-emptive scheduling for implicit-deadline task
sets is typically significantly lower than that assumed by
determining the average breakdown utilisation.

1.6. Organization
The remainder of the paper is organized as follows.

Section 2 describes the system model, terminology and
notation used. Section 3 recapitulates fixed priority and EDF
schedulability analysis for both pre-emptive and non-pre-
emptive cases.

In Section 4, we first derive an exact speedup factor for
FP-P scheduling of arbitrary deadline sporadic task sets for
the special case where Deadline Monotonic Priority
Ordering is used instead of an optimal priority assignment
policy. We then extend this result, proving that this exact
speedup factor is valid in the general pre-emptive case,
assuming arbitrary deadlines and optimal priority
assignment. Finally, we show that this result continues to
hold when tasks share resources according to the Stack
Resource Policy (Baker 1991).

In Section 5, we first derive upper and lower bounds on
the speedup factor for FP-NP scheduling of implicit,
constrained, and arbitrary deadline sporadic task sets. We

then prove what the exact speedup factor is in the general
non-pre-emptive case, assuming arbitrary deadlines and
optimal priority assignment.

Section 6 concludes with a summary and directions for
future work.

2. System model, terminology, and notation
In this paper, we consider the scheduling of a set of

sporadic tasks (or task set) on a uniprocessor system. Each
task set comprises a static set of n tasks)...(1 n , where n is
a positive integer. We assume that the index i of task i
also represents the task priority used in fixed priority
scheduling, hence 1 has the highest fixed-priority, and n
the lowest.

We use the notation)(ihp (and)(ilp) to mean the set of
tasks with priorities higher than (lower than) i, and the
notation)(ihep (and)(ilep) to mean the set of tasks with
priorities higher than or equal to (lower than or equal to) i.

Each task i is characterized by its bounded worst-case
execution time iC , minimum inter-arrival time or period

iT , and relative deadline iD . Each task i therefore gives
rise to a potentially infinite sequence of invocations (or
jobs), each of which has an execution time upper bounded
by iC , an arrival time at least iT after the arrival of its
previous invocation, and an absolute deadline that is iD
after its arrival.

In an implicit-deadline task set, all tasks have ii TD  .
In a constrained-deadline task set, all tasks have ii TD  ,
while in an arbitrary-deadline task set, task deadlines are
independent of their periods. The set of arbitrary-deadline
task sets is therefore a superset of the set of constrained-
deadline task sets, which is itself a superset of the set of
implicit deadline task sets.

The worst-case response time iR of a task i is given by
the longest possible time from release of the task until it
completes execution. Thus task i is schedulable if and
only if ii DR  , and a task set is schedulable if and only if

ii DRi  . The utilisation of a task i is given by its
execution time divided by its period (iU = iC / iT). The total
utilisation U, of a task set is the sum of the utilisations of all
of its tasks.

We assume a discrete time model with granularity  .
The following assumptions are made about the

behaviour of the tasks:
o The arrival times of the tasks are independent and

unknown a priori, hence the tasks may share a common
release time.

o Each task is released (i.e. becomes ready to execute) as
soon as it arrives.

o The tasks are independent and so cannot block each
other from executing by accessing mutually exclusive
shared resources, with the exception of the processor in
the case of non-pre-emptive scheduling.

o The tasks do not voluntarily suspend themselves.
A task is said to be ready if it has outstanding

computation awaiting execution by the processor.
Under the EDF-P scheduling algorithm, at any given

time the ready task invocation (job) with the earliest
absolute deadline is selected for execution by the processor.
In contrast, under FP-P scheduling, at any given time the
highest priority ready task is selected for execution by the
processor.

Similarly, under the EDF-NP scheduling algorithm, at
any time when a job completes or the processor is idle, then
the ready job with the earliest absolute deadline is selected
for execution by the processor. Under FP-NP scheduling, at
any time when a job completes or the processor is idle, then
the highest priority ready task is selected for execution by
the processor.

A task set is said to be schedulable with respect to some
scheduling algorithm and some system, if all valid
sequences of jobs that may be generated by the task set can
be scheduled on the system by the scheduling algorithm
without any missed deadlines.

A task set is said to be feasible with respect to a given
system if there exists some scheduling algorithm that can
schedule all possible sequences of jobs that may be
generated by the task set on that system without missing any
deadlines. A scheduling algorithm is said to be optimal with
respect to a system and a tasking model (e.g. implicit,
constrained, or arbitrary deadline sporadic tasks) if it can
schedule all of the task sets that comply with the tasking
model and are feasible on the system.

A schedulability test is termed sufficient, with respect to
a scheduling algorithm and system, if all of the task sets that
are deemed schedulable according to the test are in fact
schedulable on the system under the scheduling algorithm.
Similarly, a schedulability test is termed necessary, if all of
the task sets that are deemed unschedulable according to the
test are in fact unschedulable on the system under the
scheduling algorithm. A schedulability test that is both
sufficient and necessary is referred to as exact.

In fixed priority scheduling, a priority assignment policy
P is said to be optimal with respect to some class of task
sets (e.g. arbitrary-deadline), and some class of fixed
priority scheduling algorithm (e.g. pre-emptive) if all task
sets in the class that are schedulable under the scheduling
algorithm using some other priority ordering policy are also
schedulable using the priority assignment determined by
policy P.

The algorithm given by Audsley (1991, 2001)
reproduced below, is an optimal priority assignment
algorithm for arbitrary-deadline sporadic task sets in both
the pre-emptive and non-pre-emptive case.

for each priority level k, lowest first {
for each unassigned task  {

if( is schedulable at priority k with all
 other unassigned tasks assumed to have
 higher priorities) {
 assign  to priority k

break (continue outer loop)
 }
 }

return unschedulable
}
return schedulable

Algorithm 1: Optimal Priority Assignment (OPA)
Algorithm

2.1. Speedup factors and speedup optimal task sets
Definition 1: Let S be some arbitrary task set, now assume
that)(SA is the critical scaling factor, that is the
maximum factor by which the execution times of all of the
tasks in S can be scaled, such that the task set is schedulable
under algorithm A. Similarly, let)(SOPT be the maximum
scaling factor under an optimal algorithm of the same class
as A. The speedup factor)(Sf A for the task set is given by:

)(/)()(SSSf AOPTA  (1)
Definition 2: Let)(OPTf be the lowest processor speed
such that task set  is schedulable according to an optimal
scheduling algorithm of the same class7. Assume that

)(Af is similarly the lowest processor speed that will
schedule task set  using scheduling algorithm A. The
processor speedup factor Af for algorithm A is given by
the maximum increase in processor speed required over an
optimal algorithm of the same class for any task set  .

 )(/)(sup 


OPTAA fff (2)

where  ranges over all task sets.
For any scheduling algorithm A, we have 1Af , with
smaller values indicative of a more effective algorithm, and

1Af implying that A is an optimal algorithm.
Definition 3: A task set is said to be speedup-optimal with
respect to a scheduling algorithm A if it requires the
processor to be speeded up by the processor speedup factor
in order to be schedulable under algorithm A. Hence for a
speedup-optimal task set  , AOPTA fff )(/)(.
We note that in some cases, strictly speaking a speedup-
optimal task set as defined here may not exist; rather, there
is a family of task sets that get closer and closer to speedup
optimality as some parameter used in their definition
approaches infinity. Nevertheless, for brevity we abuse the
terminology somewhat and refer to speedup-optimal task
sets.

7 By a class of algorithm we mean for example pre-emptive scheduling
algorithms.

3. Schedulability analysis
We now recapitulate schedulability analysis for both

pre-emptive and non-pre-emptive, fixed priority and EDF
scheduling for sporadic task sets with arbitrary deadlines.

3.1. Schedulability analysis for FP-P
Analysis of fixed priority pre-emptive scheduling makes

use of the concept of a priority level-i busy period. This
term refers to a continuous period of time),[21 tt during
which jobs of tasks of priority i or higher, that were released
at the start of the busy period at 1t , or during the busy
period but strictly before its end at 2t , are either executing
or ready to execute.

For fixed priority pre-emptively scheduled systems,
where task deadlines are arbitrary, execution of one job of a
task may not necessarily be completed before the next job is
released. Hence a number of jobs of task i may be present
within a priority level-i busy period, with earlier jobs
delaying the execution of later ones.

Tindell (1994) showed that the worst-case scenario for
task i occurs following a critical instant where i is
released simultaneously with all higher priority tasks, and
subsequent releases of task i and higher priority tasks then
occur after the minimum permitted time intervals. The
length iL of this longest priority level-i busy period can be
found via the following fixed point iteration:

j
ihepj j

m
im

i C
T
LL 


















)(

1 (3)

Iteration starts with an initial value guaranteed to be no
larger than the minimum solution, for example ii CL 0 ,
and ends as soon as m

i
m
i LL 1 whereupon m

ii LL  . The
number of jobs P

iQ of task i in the busy period is given
by:














i

iP
i T

LQ (4)

In general it is necessary to compute the response times
of all jobs of a task i within the longest priority level-i
busy period in order to determine the task�s worst-case
response time. The completion time P

qiW , of the qth job
(where q = 0 is the first job) of task i , with respect to the
start of the busy period, is given by the following fixed
point iteration:



















)(

,1
,)1(

ihpj
j

j

m
qi

i
m
qi C

T
w

Cqw (5)

Iteration starts with an initial value 0
,qiw , typically

iqi Cqw)1(0
,  , and ends when either m

qi
m
qi ww ,

1
,  in

which case , 1
,,
 m

qi
P
qi wW or when ii

m
qi DqTw 1

, in which
case job q, and hence task i is unschedulable.

To find the worst-case response time of task i ,
completion times P

qiW , need to be calculated for jobs
1,...3,2,1,0  P

iQq . The worst-case response time of task

i is then given by:
)(max ,1...2,1,0 i

p
qiQq

P
i qTWR

i
  (6)

Task i is schedulable provided that i
P
i DR  .

Equations (5) and (6) give an exact schedulability test for
the FP-P scheduling of arbitrary-deadline task sets with any
fixed priority ordering.

A simpler sufficient rather than exact schedulability test
can be derived by considering the maximum amount of task
execution at priority i and higher released within an interval
of length iD starting with simultaneous arrival of all of the
tasks. If all of this execution can be completed by iD , then
this indicates that the length of the longest priority level-i
busy period is at most iD , and hence that all invocations of

i released in that busy period meet their deadlines, and so
i is schedulable. This sufficient schedulability test is given

by:

ij
ihepj j

i DC
T
D














)(

 (7)

3.2. Schedulability analysis for FP-NP
First, we introduce the concept of priority a ∆-critical

instant which is fundamental to analysis of FP-NP
scheduling.

A ∆-critical instant for a task i is where task i is
released simultaneously with all higher priority tasks, and
subsequent releases of task i and the higher priority tasks
occur after the minimum permitted time intervals. Further,
the minimum possible amount of time8 ∆ prior to this
simultaneous release, a lower priority task k is released,
and this task has the longest execution time of any such
lower priority task.

George et al. (1996) and Bril et al. (2009) showed that
for fixed priority non-pre-emptive scheduling, the longest
response time of a task i occurs for some job of that task
within the priority level-i busy period starting at a ∆-critical
instant. Lemma 3 in (Bril et al. 2009) states that the worst-
case length of a priority level-i busy period iA is given by
the minimum solution to the following fixed point iteration:

j
ihepj j

m
i

i
m
i C

T
ABA 


















)(

1 (8)

Iteration starts with an initial value 0
iA guaranteed to be no

larger than the minimum solution, for example ii CA 0 ,
and ends when m

i
m
i AA 1 whereupon m

ii AA  . Note, iB
is the longest time that task i and any higher priority tasks
can be blocked from executing by lower priority tasks, and
is given by:










 

ni

niC
B kilpki

0

)(max
)((9)

The number of jobs NP
iQ of task i in the busy period is

given by:

8 Recall, we assume discrete time, with granularity .














i

iNP
i T

AQ (10)

The start time NP
qiW , of the qth job (where q = 0 is the

first job) of task i measured with respected to the start of
the ∆-critical instant is given by the minimum solution to
the following fixed point iteration:
















 


)(

,1
,

ihpj
j

j

m
qi

ii
m
qi C

T
w

qCBw (11)

Iteration starts with an initial value 0
,qiw , typically

iiqi qCBw 0
, , and ends when either m

qi
m
qi ww ,

1
,  in which

case 1
,,
 m

qi
NP
qi wW , or when: iii

m
qi DqTCw 1

, in which
case job q , and hence task i is unschedulable.

To find the worst-case response time, the start times
NP
qiW , need to be calculated for jobs 1,...3,2,1,0  NP

iQq .
The worst-case response time of task i is then given by:

)(max ,1...2,1,0 ii
NP
qiQq

NP qTCWR NP
ii




 (12)

Task i is schedulable provided that i
NP
i DR  .

From (8), we can form the following simple sufficient
test for FP-NP scheduling of arbitrary-deadline task sets.
Each task i is schedulable provided that:

ik
ihepk k

i
i DC

T
DB 












 

)(
 (13)

If (13) holds, then this indicates that the solution to the fixed
point iteration of (8) must be iD . As the worst-case
length of a priority level-i busy period is then iD , it
follows that the worst-case response time iR of task i
must also be iD , and hence the task must be schedulable.

3.3. Schedulability analysis for EDF-P
The schedulability of an arbitrary-deadline task set under

EDF-P scheduling can be determined via the processor
demand bound function h(t) given below:

i

n

i i

i C
T

Dtth 




















 


1
1,0max)((14)

Baruah et al. (1990a, 1990b) showed that a task set is
schedulable under EDF-P if and only if 1U and a
quantity referred to as the processor LOAD is 1 where the
processor PLOAD (pre-emptive case) is given by:









 t
thLOAD

t

P)(max
0

 (15)

Further, they showed that if PLOAD 1 for all values of t
in the interval],0(L , where L is defined as follows, then the
task set is schedulable.




















 U
UDTDDDL ii

i
n 1

)(max...,max ,21 (16)

Note the length L of the interval that needs to be examined
is also limited to the length of the longest priority level-n
busy period. The only values of t that need to be checked in
the interval],0(L are those where PLOAD can change, i.e.

ii DkTti  for integer values of k.
Zhang and Burns (2009) used the fact that h(t) is

monotonically non-decreasing with respect to t as the basis
for a highly efficient exact schedulability test for EDF-P,
called QPA. The QPA algorithm is reproduced below.
QPA schedulability test for EDF-P: An arbitrary deadline
sporadic task set is schedulable according to EDF-P if and
only if 1U and the result of the following iterative
algorithm is min)(Dth  , where minD is the smallest
deadline of any of the tasks, and id is an absolute task
deadline, i.e. iii DkTdi  for integer values of k.

1 }|max{ Lddt ii 
2 while(min)()(Dthtth ) {
3 if(tth )()
4 {)(tht  }
5 else
6 { }|max{ tddt ii  }
7 }
8 if(min)(Dth ) task set is schedulable
9 else  task set is unschedulable

Algorithm 2: QPA algorithm for EDF-P

3.4. Schedulability analysis for EDF-NP
George et al. (1996) extended the schedulability test

embodied in (14) and (15) to the non-pre-emptive case
(EDF-NP scheduling) via the addition of a blocking factor
B(t).
















)(max0

)(max)(max
)(

...1

...1:

ini

iniitDi
Dt

DtC
tB i (17)

George et al. (1996) showed that an arbitrary-deadline
task set is schedulable under EDF-NP if and only if 1U
and the processor LOAD is 1 , where the processor

NPLOAD (non-pre-emptive case) is defined by:

1)()(max
0







 


 t

tBthLOAD
t

NP (18)

Further, they showed that if 1U , then the only values of t
that need to be checked are those in the interval],0(L that
correspond to times when)()(tBth  can change, i.e.

ii DkTti  for integer values of k, where L is the
length of the longest priority level-n busy period.

We observe that the value of)()(tBth  is
monotonically non-decreasing with respect to t. This
follows from the fact that)(tB can only decrease at times

nDDDt ,..., 21 , and at each of these times, the maximum
possible decrease is upper bounded by nCCC ,..., 21
respectively. At exactly those same times; however,)(th
increases by nCCC ,..., 21 , thus the sum)()(tBth  is
monotonically non-decreasing with respect to t. This
observation means that the same argument and logic used by
Zhang and Burns (2009) to derive QPA can be applied in
the non-pre-emptive case. Thus a QPA schedulability test
for task set scheduled using EDF-NP can be obtained

simply by replacing each occurrence of)(th in Algorithm 2
with)()(tBth  :

1 }|max{ Lddt ii 
2 while(min)()()()(DtBthttBth ) {
3 if(ttBth )()()
4 {)()(tBtht  }
5 else
6 { }|max{ tddt ii  }
7 }
8 if(min)()(DtBth ) task set is schedulable
9 else  task set is unschedulable

Algorithm 3: QPA algorithm for EDF-NP
The QPA tests for EDF-NP can also be derived as a special
case of the test with shared resources as described by Zhang
and Burns (2011).

4. Exact Speedup factor for FP-P
In this section, we derive the exact processor speedup

factor required for fixed priority pre-emptive scheduling of
arbitrary deadline task sets assuming optimal priority
assignment. First, we derive the exact speedup factor for the
(non-optimal) case where deadline monotonic priority
ordering (DMPO) is used in conjunction with arbitrary-
deadline task sets. The intuition behind these derivations is
provided via an example.

4.1. Speedup Factor Example
The following simple example illustrating the concept

of processor speedup factor defined in section 2.1.
Consider the arbitrary-deadline task set S comprising the

two tasks defined in Table 1. The parameters of these tasks
appear to have some unusual values; however, this is
because they have been chosen so that the task set is just
schedulable according to EDF-P, yet requires a speedup
factor of 1.8 in order to be schedulable according to FP-P
scheduling with priorities according to DMPO, which it
should be noted is not optimal in this case.

Table 1: Example Task set
Task iC iT iD

1 1.8 2 16
2 14.4  17

We now show that task set S is schedulable according to
EDF-P. Under EDF-P scheduling, the processor demand
bound function)(th for task set S is the sum of the
processor demand bound functions),(1th and),(2th for
tasks 1 and 2 respectively, where),(ith  is the processor
demand bound at time t for a single task i , given below:

i
i

i
i C

T
Dtth 


















 
 1,0max),( (19)

Thus:

















 


 168.18.1

2
16

160
),(1 tt

t
th  (20)

as   yxyx //  , we have:

















 168.1

2
)16(8.1

160
),(1 tt

t
th  (21)

Similarly, the processor demand bound function for task 2
is:













174.14
170

),(2 t
t

th  (22)

Recall that any arbitrary-deadline task set is schedulable
according to EDF-P, provided that:

1)(max 







 t
thLOAD

t

P (23)

Now, given the following:
(i) The value of)(th at times 16t , 17t , and

18t are 1.8, 16.2 and 18 respectively.
(ii) From (20) and (22) the value of tth /)(at time

18t is 1. Further, from (21) and (22) an upper
bound on tth /)(at time 18t is also 1.

(iii) From (21), the rate of increase of the upper bound
on tth /)(for 18t is 0.9.

It follows that the maximum value of tth /)(occurs at time
18t . The processor LOAD of task set S is therefore 1,

indicating that the task set is just schedulable according to
EDF-P.

We now consider the schedulability of task set S when
scheduled according to FP-P scheduling, with priorities
assigned according to DMPO, on a processor that has been
speeded up by a factor of 1.8. The parameters of the task set
on this faster processor are given in Table 2. We refer to this
task set as V.

Table 2: Example Task set
Task iC iT iD

1 1 2 16
2 8  17

Figure 1 illustrates the execution of task set V under FP-P
scheduling, assuming a synchronous arrival sequence.

Figure 1: FP-P Schedule
We note that the worst-case response time of task 1 is 1

and that of task 2 is 16. Task set V is only just schedulable
under fixed priority pre-emptive scheduling, using DMPO.
Any reduction in processor speed would result in the task
set being unschedulable. The processor speedup factor
required is therefore 1.8.

4.2. Exact Speedup Factor for FP-P Scheduling
with Deadline Monotonic Priority Ordering

We now derive the exact processor speedup factor
required for the case where DMPO is used in conjunction
with arbitrary-deadline task sets. Recall that DMPO is not
optimal in this case (Lehoczky 1990); nevertheless, FP-P
scheduling using DMPO is a simple combination of
scheduling algorithm and priority assignment policy that is
used in many real-time systems.
Lemma 1: An upper bound on the processor speedup factor
for FP-P scheduling of arbitrary-deadline task sets using
DMPO is 2.
Proof: Let S be any task set that is schedulable on a
processor of unit speed according to an optimal scheduling
policy such as EDF-P.

 For each task k , in S, consider the processor demand
bound during an interval of length kD2 . As task set S is
schedulable according to EDF-P, it follows that:

ki

n

i i

ik DC
T

DD
21

2
,0max

1



















 


 (24)

Next, consider task set S scheduled according to FP-P
scheduling on a processor of twice the speed using DMPO.
DMPO implies that ki DDki  .

From Equation (24) above, assuming a processor of
twice the speed, and discarding the contribution from all
tasks of lower priority than k we have:

ki

k

i i

ik DC
T

DD



















 
1

1
2

,0max (25)

As    xx 1 and ki DDki  then:

ki

k

i i

k DC
T
D










1

 (26)

Equation (26) is recognisable as the sufficient
schedulability test for task k in an arbitrary-deadline task
set S, scheduled under fixed priority pre-emptive scheduling
(see (7) in section 3.1). Repeating the above argument for
each task k in S proves that the task set is schedulable on a
processor of speed 2 under fixed priority pre-emptive
scheduling using DMPO 
Theorem 1: An exact bound on the processor speedup
factor for FP-P scheduling of arbitrary-deadline task sets
using DMPO is 2.
Proof: Consider task set V with the following parameters on
a processor of speed f :

1 : kC 2/11  , kT /11  , 11 D
2 : 2/12 C , 2T , kD 2/112 

where k is a positive integer, and task 1 has a higher
priority than task 2 i.e. DMPO. The execution of task set V
under FP-P scheduling is illustrated in Figure 2. (Note the
similarity to the task set used as an example in section 4.1).

D2D1

0 1
1+1/2k

Task 1

Task 2

1/k
1/2k

T1 2T1 3T1

Figure 2: FP-P Schedule
We observe that with FP-P scheduling, any increase in

the execution time of either task will cause task 2 to miss
its first deadline following simultaneous release of the two
tasks.

We now consider the execution of task set V under EDF-
P on a processor of unit speed. Let task set S be formed
from task set V by increasing the execution times of tasks

1 and 2 by a scaling factor f to form tasks 1  and 2  ,
thus accounting for the reduction in processor speed.

We observe that 2f is an upper bound on the
maximum scaling factor that could possibly result in a
schedulable task set under EDF-P as this scaling factor
results in task 1  having a utilisation of 100%.

Under EDF-P scheduling, the processor demand bound
function)(th for task set S is the sum of the processor
demand bound functions),(1 th and),(2 th for tasks 1 
and 2  respectively.














 


 1
2)/1(

)/1(1
10

),(1 t
k
f

k
kt

t
th  (27)

as   yxyx //  , we have the following upper bound:











 1

22
)1(

10
),(1 t

k
ftf

t
th  (28)

Similarly, the processor demand bound function for task 2 
is:









)2/1(12/
)2/1(10

),(2 ktf
kt

th  (29)

Recall that any arbitrary-deadline task set is schedulable
according to EDF-P, provided that:

1)(max 







 t
thLOAD

t

P (30)

Now, given the following:
(i) The value of tth /)(at time 1t is kf 2/ .
(ii) An upper bound, from (28) and (29), on the value of

tth /)(at time)2/1(1 kt  is:

))2/1(1(
)2/()2/)(1))2/1(1(()2/(

))2/1(1(
))2/1(1(

k
kffkf

k
kh








))2/1((2
))2/3((





k
kf (31)

(iii) The rate of increase of the upper bound on tth /)(for
)2/1(1 kt  is 2/f (from (28)).

Then for values of 2f , the maximum value of the upper
bound on tth /)(occurs at time kt 2/11 , therefore:

2))2/1((2
))2/3(()(max

lim
f

k
kf

t
th k

t
















 (32)

From (32), the minimum value for the processor LOAD is
achieved in the limit as k , and this value is 2/f .
From Equation (32), for k , task set V is schedulable
according to EDF-P when its task execution times are scaled
up by a factor of 2f to form task set S. Hence task set S
requires a processor speedup factor of 2 in order to be
schedulable under FP-P scheduling with priorities in
DMPO. As the processor speedup factor for FP-P
scheduling of arbitrary-deadline task sets using DMPO is
also upper bounded by 2 (Lemma 1), the exact processor
speedup factor is 2 
Corollary 1: Task set S defined in the proof of Theorem 1
(with k), is a speedup-optimal task set for FP-P
scheduling of arbitrary-deadline task sets using DMPO.

It is interesting to note that this speedup-optimal task set
(requiring the largest speedup factor), includes a task 1 ,
with a deadline much larger than its infinitesimal period,
and a task 2 , with a deadline much smaller than its infinite
period.

4.3. Exact Speedup Factor for FP-P Scheduling
using Optimal Priority Assignment

We now prove that the exact speedup factor for fixed
priority pre-emptive scheduling of arbitrary deadline task
sets, assuming optimal priority assignment is also 2. We do
so by showing that this value is obtained for both upper and
lower bounds on the speedup factor.
Theorem 2: An upper bound on the processor speedup
factor for FP-P scheduling of arbitrary-deadline task sets
using an optimal priority assignment algorithm is 2.
Proof: Follows directly from the fact that using an optimal
priority assignment algorithm, FP-P scheduling can
schedule any task set that is schedulable using DMPO.
Hence the processor speedup factor required can be no
greater with optimal priority assignment than the exact
processor speedup factor given by Theorem 1 for DMPO 

Theorem 3: The exact processor speedup factor for FP-P
scheduling of arbitrary-deadline task sets using an optimal
priority assignment algorithm is 2.
Proof: Consider task set S comprising 1k tasks (where

1k) with the following parameters on a processor of
speed 1:

1 to k : 1iC , kkDi  22 , kTi 2
1k : 2

1 kCk  , 2
1 2kDk  , 1kT

(This task set is illustrated in Figure 3 for a relatively small
value of k).

Figure 3: FP-P Schedule
Consider the feasibility of task set S under FP-P. Applying
Audsley�s OPA algorithm, we must first find a task that is
schedulable at the lowest priority level. If we place any one
of the k tasks labelled 1 to k at the lowest priority, then
the response time of the first job of that task is given by:

)1(
2

1 21 











 k

k
RkR

m
im

i (33)

which converges to 12 2  kk . This can be seen by first
considering a schedule only including tasks 1 to 1k . In
such a schedule, in each interval of length k2 there is
sufficient space for additional processing of 1k . By the
end of 1k such intervals (i.e. by time kk 22 2 ), then the
additional processing that could be accommodated is

12 k . Hence to accommodate blocking of 2k from task
1k , and execute the jobs of tasks 1 to 1k subsequently

released at kk 22 2  requires a further k units of time.
Finally, the first job of task k completes at 12 2  kk .

Alternatively, with task 1k at the lowest priority, we
have:

k
k

RkR
m
km

k











 

 2
121

1 (34)

which converges to 22k , hence 1k just meets its
deadline. (Note we only need examine the response time of
the first job of task 1k since task 1k has a constrained
deadline). Thus the OPA algorithm is forced to place task

1k at the lowest priority. It is easy to see that the
remaining tasks (which are identical) are schedulable at the
higher priority levels, since the length of the priority level-k
busy period is simply k and ends before the next release (at
2k) of any task.

Given that task 1k completes at its deadline, it is clear
that the processor cannot be slowed down by any factor and
the task set remain schedulable using FP-P with optimal
priority assignment. Note that the utilisation of the task set
is 0.5.

Next, consider the schedulability of task set S under
EDF-P on a processor of speed:

2

2

2
2/3

k
kks 

 (35)

Under EDF-P scheduling, the processor demand bound

function)(th for task set S is the sum of the processor
demand bound functions)...,(1 kth  and),(1kth  for
tasks 1 to k and task 1k respectively.































 


 kkt
s
k

k
kkt

kkt
th k 2

2

2

1 21
2

)2(
20

)...,( (36)

as   yxyx //  , we have the following upper bound on
)...,(1 kth  :











 kkt

s
k

ks
kktk

kkt
th k 2

2

2

1 2
)2(

))2((
20

)...,( (37)

The processor demand bound function for task 1k is:










 2

2

2

1 2

20
),(

kt
s

k
kt

th k (38)

Recall that any arbitrary-deadline task set is schedulable
according to EDF-P, provided that:

1)(max
0









 t
thLOAD

t
P (39)

Given the following:
(i) The value of tth /)(at time kkt  22 is:

1
2/322

2
)2)(2/3(

2.
222

2








kk
k

kkkk
kk

st
k (40)

(ii) An upper bound, from (37) and (38), on the value of
tth /)(at time 22kt  is:

12/32



st

kk (41)

(iii) The rate of increase of the upper bound on tth /)(for
22kt  is as follow (from (37)):

1
)2/3(2

2
2
1

2

2





kk
k

s
 (42)

Then the maximum value of the upper bound on tth /)(
occurs at time 22kt  , and is equal to 1, hence task set S is
schedulable on a processor of speed s under EDF-P.

In the limit, as k then 2/1s and thus task set
S requires a processor speedup factor of 2 in order to be
schedulable under FP-P with optimal priority assignment.

Since the upper bound on the speedup factor required
by FP-P to schedule any task set that is schedulable under
EDF-P is 2 (from Theorem 2) and we have shown that there
exists a task set that requires that speedup factor, then the
exact value of the speedup factor is 2. 

4.4. Exact Speedup Factor for FP-P Scheduling
with Shared Resources

Previously, we considered the processor speedup factor
required such that any feasible arbitrary-deadline task set,
that was schedulable under an optimal algorithm such as
EDF-P, could be guaranteed to be schedulable using FP-P

scheduling. We now consider how changes to the task
model, allowing tasks to access mutually exclusive shared
resources according to the Stack Resource Policy (SRP)
(Baker 1991), or to execute critical sections non-pre-
emptively, affect the processor speedup factor required. (We
note that the Deadline Floor inheritance Protocol (DFP)
(Burns et al. 2014) for EDF has the same schedulability
conditions as SRP, and hence our results also apply to
comparisons between FP+SRP and EDF+DFP).

Recall that EDF-P + SRP is only optimal in the weak
sense, that is with respect to work conserving scheduling
algorithms (Baruah 2006), see section 1.2. We now
determine the processor speedup factor required such that an
arbitrary-deadline task set that is deemed schedulable by
EDF-P + SRP according to the schedulability test given in
(43) below, is guaranteed to be schedulable under FP-P +
SRP scheduling using DMPO and hence also schedulable
using optimal priority assignment.

We assume the same basic task model described in
section 2; however, we relax the restriction on task
independence. We assume that each task k may access
shared resources in mutual exclusion according to the Stack
Resource Policy (Baker 1991). We define)(' tB to be the
maximum time for which any task A with relative deadline

tDA  may hold a resource needed by any other task B
with relative deadline tDB  .

Under fixed priority scheduling, the blocking factor kB'
for priority level k, is given by the maximum time for which
a task of priority lower than k can access a resource that is
shared with a task of priority k or higher.

Note in this section we use)(' tB and kB' (as distinct
from)(tB and kB) to distinguish blocking due to shared
resources rather than non-pre-emptive scheduling.

A sufficient condition for task set schedulability under
EDF + SRP was given by Spuri (1996):

1)()('max
0







 

 t
thtB

t
 (43)

where)(th is the processor demand bound function given
by (14). Spuri (1996) showed that the only values of t that
need to be checked are those corresponding to task
deadlines within a synchronous busy period starting at time
t = 0.

With FP-P + SRP, the sufficient schedulability test for
each task k in an arbitrary-deadline task set, given by (7)
can be extended to include the blocking factor as follows:

ki
khepi i

k
k DC

T
D

B 







 
)(

' (44)

Lemma 2: An upper bound on the processor speedup factor
required such that FP-P + SRP scheduling, using DMPO can
schedule any arbitrary-deadline task set deemed schedulable
under EDF-P + SRP by (43), is 2.
Proof: Follows a similar approach to the proof of Lemma 1.
Let S be any task set that is schedulable according to (43) on

a processor of unit speed under EDF + SRP.
For each task k , in S, consider the processor demand

bound and blocking factor for an interval of length kD2 . As
task set S is schedulable according to EDF+SRP, it follows
that:

ki

n

i i

ik
k DC

T
DD

DB 21
2

,0max)2('
1

































 



 (45)

Next, consider task set S scheduled according to FP-P
scheduling on a processor of twice the speed using DMPO.
DMPO implies that ki DDki  .

From (45) above, assuming a processor of twice the
speed, and separating out the contribution from all tasks of
lower priority than k we have:



















 
 


i

klpi i

ik
k C

T
DD

DB
)(

1
2

,0max)2('

ki
khepi i

ik DC
T

DD



















 
)(

1
2

,0max (46)

As the tasks are in DMPO, we note that all of the tasks with
priorities lower than k (i.e. in)(klp) have deadlines kD .
We now consider just the first and second terms in (46).
Observe that the contribution to the second term from every
task i in)(klp with ki DD 2 is zero. Further, the
contribution from each task i with kik DDD 2 is iC .
From the definition of)(' tB it follows that the sum of the
first two terms in (46) is kB' .

k
DDklpi

ik BCDB
ki

')2('
2)(

 


 (47)

Substituting kB' in place of the first two terms in (46), and
noting for the third term that    xx 1 and

ki DDkhepi )(we obtain:

ki
khepi i

k
k DC

T
D

B 







 
)(

' (48)

Equation (48) is identical to (44); the sufficient
schedulability test for task k in an arbitrary-deadline task
set S, scheduled under FP-P + SRP. Repeating the above
argument for each task k in S proves that the task set is
schedulable on a processor of speed 2 under FP-P + SRP
scheduling using DMPO. 
Theorem 4: An exact bound on the processor speedup
factor required such that FP-P + SRP scheduling, using
DMPO can schedule any arbitrary-deadline task set deemed
schedulable under EDF-P + SRP by (43), is 2.
Proof: Follows directly from Lemma 2 and the proof of
Theorem 1 which shows that a speedup factor of 2 is
necessary even without mutually exclusive resource access.

Theorem 5: An exact bound on the processor speedup
factor required such that FP-P + SRP scheduling, using
optimal priority assignment can schedule any arbitrary-

deadline task set deemed schedulable under EDF-P + SRP
by (43), is 2.
Proof: Follows directly from Theorem 4, the fact that FP-P
with optimal priority assignment dominates FP-P with
DMPO, and the proof of Theorem 3 which shows that a
speedup factor of 2 is necessary even without mutually
exclusive resource access. 

5. Speedup factors for FP-NP
In this section, we derive upper and lower bounds on the

processor speedup factor required for FP-NP scheduling
using optimal priority assignment (Audsley 1991, 2001).
These bounds are valid for sporadic and non-concrete9

periodic task sets with implicit-, constrained-, and arbitrary-
deadlines. Note that when we refer to the processor speedup
factor for FP-NP scheduling, we mean as compared to EDF-
NP, an optimal (in the weak sense (George et al. 1995)),
work-conserving non-pre-emptive scheduling algorithm. We
then derive an exact speedup factor valid for task sets with
arbitrary deadlines.

First we present an example.

5.1. Speedup Factor Example
In the non-pre-emptive case, the concept of a speedup

factor for a given task set S can be illustrated by means of
the following example. Consider the task set S comprising
the tasks defined in Table 3, with priorities assigned in the
order that the tasks appear in the table (i.e. A has the
highest priority, and D the lowest).

Table 3: Example Task set
Task iC ii TD 

A 1 6
B 1 7
C 1 8
D 3 

The worst-case arrival pattern for tasks A , B , and C
under FP-NP scheduling is shown in Figure 4. Note the 1st

job of each task is shaded in grey, while the 2nd job of each
task is un-shaded.

Figure 4: FP-NP schedule
Now consider the maximum factor by which the

9 Recall that a periodic task set is referred to as non-concrete if the times at
which each task is first released are unknown.

execution times of the tasks can be scaled and the task set
remain schedulable according to FP-NP. This factor is

 )5/6()(SNPFP (i.e. a value infinitesimally less than
6/5).

Figure 5 shows the FP-NP schedule for the scaled task
set. Scaling by any larger factor, for example, a factor equal
to 6/5 would result in the first job of task C being unable
to start executing before the 2nd job of task A is released at
time t = 6. It would then be further delayed by the 2nd job of
task B , and hence fail to meet its deadline at time t = 8. In
fact, there is no priority ordering which results in task set S,
scaled by a factor of 6/5, being schedulable. This can be
seen by considering the behaviour of the optimal priority
assignment algorithm. While task D is schedulable at the
lowest priority, and can therefore be assigned priority 4,
none of the other tasks are schedulable at priority 3.

Figure 5: FP-NP schedule, maximal scaling

Figure 6: EDF-NP schedule, maximal scaling
With EDF-NP scheduling, the maximum scaling factor

commensurate with task set S remaining schedulable is
6/8)( SNPEDF . Under EDF-NP, the first job of task

C has a later absolute deadline than the first jobs of tasks
A and B , and therefore executes after those jobs and after

the first job of D which is released at time t . The
first job of task C is not however delayed by the 2nd jobs
of tasks A and B , as these jobs have later absolute
deadlines. With a scaling factor of 8/6, the first job of task

C just completes by its deadline (see Figure 6). Further
analysis is required to prove that the scaled task set is
schedulable under EDF-NP; however, as the priority level 3
busy period ends at 12t , we need only check all deadlines
in the interval [0, 12] to show schedulability. Note, Figure 6
shows the ∆-critical instant for tasks A , B , C , and all
deadlines are met in the interval [0, 12]. Further, task D is
trivially schedulable as it has an infinite deadline, and the
task set utilisation is less than 1.

Using (2), the speedup factor for the task set given in
Table 3 is)(Sf NPFP = (8/6)/(6/5)  = )36/40(=

)9/10((i.e. a value infinitesimally larger than 10/9). In the
next section, we generalise this example and show how task
sets with a similar structure but with a large number of tasks
require a much larger speedup factor.

5.2. Lower bound speedup factor for FP-NP
In this section, we derive a lower bound on the processor

speedup factor required for FP-NP scheduling using optimal
priority assignment (Audsley 1991, 2001). This lower
bound is valid for sporadic and non-concrete periodic task
sets with implicit-, constrained-, and arbitrary-deadlines. In
the next section, we derive an upper bound with the same
scope.

To derive a lower bound, we need only select a single
task set and determine the required speedup factor for that
task set. The task set S that we use is a generalisation of the
task set used as an example in the previous section. In this
case, there are n tasks, with the parameters given in Table 4.
Tasks 1 to 1n are represented by i in the first row of
the table. All of these tasks have the same small execution
time X , and related periods/deadlines. Further, all of
the tasks have periods equal to their deadlines, so this is an
implicit-deadline task set. Task n has an execution time of

X , where X is a free variable that we can alter to
maximise the required speedup factor.

Table 4: Task parameters
Task iC ii TD 

i
)1(

1



n


)1(
)1(1





n
iX

n X 
The execution of task set S under FP-NP is depicted in
Figure 7 below. Note, jobs of task 1n are marked with an
 .

Figure 7: FP-NP schedule

Figure 8: FP-NP schedule, maximal scaling
Lemma 3: The maximum factor)(SNPFP by which the
execution times of the tasks in task set S (Table 4) can be
scaled and the task set remain schedulable according to FP-
NP is given by:






 











 1
1

1)(
0


X

XSNPFP (49)

Figure 8 depicts the FP-NP schedule for the scaled task set.
Proof: Scaling by a factor equal to)1/()1( XX
would result in the first job of task 1n being unable to
start executing before the 2nd job of task 1 is released at
time Xt  1 It would then be further delayed by the 2nd

jobs of tasks 1 to 2n , and hence fail to meet its deadline
at time  Xt 2 . In fact, there is no priority ordering
which results in task set S, scaled by a factor of

)1/()1( XX , being schedulable. This can be seen by
considering the behaviour of the optimal priority assignment
algorithm (Algorithm 1), given the scaled task set: Task n
is schedulable at the lowest priority, and can therefore be
assigned that priority. However, considering the remaining
tasks in turn, none of them are schedulable at priority 1n .
Task 1 is not schedulable at priority 1n , as its 1st job
would miss its deadline at Xt  1 . Task 2 is not
schedulable at priority 1n , as its 1st job is then unable to
start before the 2nd job of task 1 arrives, and so misses its
deadline at  Xt 1 . In general, with a scaling factor of

)1/()1( XX , for each task with index i from 2 to
1n , assuming that task i is assigned priority 1n ,

ensures that the 1st job of task i is unable to start before
the 2nd job of task 1i arrives, and so the 1st job of task i
misses its deadline.

By contrast, with a scaling factor of
)1/()1(XX , task 1n is schedulable at priority

1n , as it is able to start executing just prior to the arrival
of the 2nd job of 1 at Xt  1 . Further, with this scaling
factor, all of the other tasks are schedulable with priorities
assigned according to their indices (i.e. DMPO). This can be
seen by checking the deadlines of all jobs up to the end of
the priority level 1n busy period, which occurs at:















X

XXt A

1
)1()2((50)

As 12)1(2 DXt A  , the priority level 1n busy period
comprises the 1st job of task n and the 1st and 2nd jobs of
tasks 1 to 1n . All of these are schedulable (see Figure 8).
The priority level-n busy period is of similar length, and

hence task n is trivially schedulable given its infinite
deadline 
Lemma 4: The maximum factor)(SNPEDF by which the
execution times of the tasks in task set S (Table 4) can be
scaled and the task set remain schedulable according to
EDF-NP is given by:

 )/1()(SNPEDF (51)

Proof: There are two key conditions which limit the
maximum scaling factor under EDF-FP (otherwise the task
set would become unschedulable):

1. The 1st jobs of all tasks must be complete by the
deadline of task 1n ,  XDn 21 .
2. Utilisation of the scaled task set must not exceed
100%.

Considering the first condition, we have:

X
XSNPEDF






1
2)( (52)

The utilisation of the un-scaled task set is given by the sum
of the utilisation of each task:

)
1
11(

1
)1(

11

1




 




n
iXn

U
n

i
 (53)

The RHS of Equation (53) is recognisable as the left
Riemann sum of the function 1/z, over the interval

)2,1[XX  , hence:












 






X
Xdz

z
U

X

X

n

1
2ln12

1

 (54)

Thus, considering the second condition, we have:














X
XSNPEDF

1
2ln/1)( (55)

As Equation (52) is monotonically non-increasing in X and
tends to 2 for small X, and Equation (55) is monotonically
non-decreasing in X and tends to 1/ln(2) for small X, then
the maximum value is obtained when the RHSs of
Equations (52) and (55) are equal, i.e. when:







X
XSNPEDF

1
2)( 











X
X

1
2ln/1 (56)

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sc
al

in
g

fa
ct

or

X

a1(X)
a2(X)

Figure 9: Constraints on the scaling factor as a
function of X

Figure 9 plots Equations (52) and (55) (labelled a1(X) and
a2(X) respectively) against X. As n , 0 , the
solution to Equation (56) is given by the intersection of the
lines plotted in Figure 9, thus  )/1()(SNPEDF

76322.1 , (where  is the mathematical constant defined
by the transcendental equation )/1ln(, hence,

0.567143 ). Further,

310232.0
1

12






X (57)

We now show that task set S (Table 4) is schedulable
under EDF-NP, when scaled by a factor of

 )/1()(SNPEDF . Proof is made significantly easier
by the commonality between task set S and the speedup-
optimal task set V for the constrained-deadline case of FP-P
scheduling, described by Davis et al. (2009b) in Theorem 2
of that paper. In fact, tasks 1 to 1n are identical in these
two task sets, only task n differs. In task set V, the
parameters of task n are: XCn  , XDn  2 , and

nT , whereas in task set S, the parameters of task n
are:  XCn , and  nn TD Theorem 4 given in the
paper by Davis et al. (2009b) proves that task set V is
schedulable under EDF-P when scaled by a factor of /1 .
Hence for task set V,

1)(max 







 t
thLOAD

t
P (58)

We make use of this result to show that task set S, scaled
by a factor of )/1(is schedulable under EDF-NP. As
tasks 1 to 1n are identical, their contribution to the
processor demand bound)(th is the same for any time t.
We now compare the contribution from task n in each
case. In the pre-emptive case, (task set V), n contributes to

)(th as follows:









)2(/

)2(00
)(

XtX
Xt

thP
n (59)

whereas, in the non-pre-emptive case, (task set S), n
contributes only to the blocking factor:

0)/()(  tXtB (60)
Recall that in the non-pre-emptive case, a task set is
schedulable provided that 1U and:

1)()(max 





 


 t

tBthLOAD
t

NP (61)

Comparing (58) and (61), and the contributions of task n
in each case ((59) and (60)), it follows that (61) holds for all
values of)2(Xt  for task set S scaled by a factor of

)/1(. This is because, for all values of)2(Xt  the
value of ttBth /))()(( is the same as that for task set V,
assuming both task sets are scaled by the same factor. To
prove the schedulability of task set S scaled by a factor of

)/1(, it remains only to show that 1/))()(( ttBth for
all values of t in the interval))2(,0[X . Here, we need
only check values of t that correspond to task deadlines. As

11 22 DXDn  , this amounts to checking the 1st

deadline of each of the 1n highest priority tasks. At each
of these deadlines iD , we have:

1
11,0max1)(

1

1 






























 









 






nT
DDDh

n

k k

ki
i (62)

as ii TDki  , and ki DD 2 it follows that:

1
1)(














n
iDh i (63)

Hence the scaled task set is schedulable provided that, i
from 1 to 1n ,)()(iii DBDhD  that is:



























1
1

1
11

n
iX

n
iX (64)

Substituting for)1/()2()/1(XX    and
)1/(1  n , and rearranging, we have:

































11

12)1(
1
11

n
iX

n
XX

n
iX (65)

which simplifies to:

0
)1(1

2
1
11 2 











n

i
n

i
n
i (66)

and then to:

0
)1(1

2
2 







n
i

n
in (67)

For 2n , the first term in inequality (67) is non-negative
i from 1 to 2n , while the second term is always

positive. Further, for 1 ni , the first and second terms
cancel out, thus the inequality holds i from 1 to 1n .
Task set S is therefore schedulable according to EDF-NP
when scaled by a factor of )/1(. 
Theorem 6: A lower bound on the speedup factor required

for FP-NP scheduling of an implicit-deadline task set is:









 


)/1(

1
)/1(

)(
)(

S
Sf NPFP

NPEDF
NPFP


 (68)

Proof: Follows from Lemmas 3 and 4 and the definition of
the speedup factor (Definition 1). 
Corollary 3: We observe that as task set S is an implicit-
deadline task set, and all implicit-deadline task sets are also
constrained-deadline and arbitrary-deadline task sets, the
lower bound of Theorem 6 applies to all three classes of task
set.

5.3. Upper bound speedup factor for FP-NP
In this section, we derive an upper bound on the speedup

factor required for FP-NP scheduling of arbitrary-deadline
sporadic and non-concrete periodic task sets.
Theorem 7: An upper bound on the processor speedup
factor required such that FP-NP scheduling, using optimal
priority assignment can schedule any arbitrary-deadline
sporadic or non-concrete periodic task set schedulable under
EDF-NP according to (18), is 2.
Proof: Let S be any task set that is schedulable according to
(18) on a processor of unit speed under EDF-NP. For each
task k , in S, consider the processor demand bound and
blocking factor for an interval of length kD2 . As task set S
is schedulable according to EDF-NP, it follows that:

ki

n

i i

ik
k DC

T
DD

DB 21
2

,0max)2(
1

































 




 (69)

Next, consider task set S scheduled according to FP-NP
scheduling on a processor of twice the speed using DMPO.
DMPO implies that ki DDki  .

From (69) above, assuming speed 2, and separating out
the contribution from all tasks of lower or equal priority to k
we have:



















 
 


i

klpi i

ik
k C

T
DDDB

)(
1

2
,0max)2(

ki
khepi i

ik DC
T

DD



















 
)(

1
2

,0max (70)

As the tasks are in DMPO, we note that all of the tasks with
lower priority than k (i.e. in)(klep) have deadlines kD .

We now consider just the first and second terms in (70).
Observe that the contribution to the second term from every
task i in)(klep with ki DD 2 is zero. Further, there is a
contribution from each task i with kik DDD 2 of at
least iC . From the definition of)(tB (17), the definition of

kB (9), and the fact that the tasks are in DMPO, it follows
that the sum of the first two terms in Equation (70) are

kB , the blocking factor for FP-NP scheduling:

k
DDDi
i

i
i

ki

DDi
BC

otherwise
DDifC

kikki








 





 2:2: 0

)(max2)(
max

where









 

nk

nkC
B i

klpik
0

)(max
)((71)

Substituting kB for the first two terms in (70) and
transforming the third term by noting that    xx 1 and

ki DDkhpi )(we have:

ki
khepi i

k
k DC

T
D

B 







 

)(
 (72)

Equation (72) is identical to (13); the sufficient
schedulability test for task k in an arbitrary-deadline task
set S, scheduled under FP-NP. Repeating the above
argument for each task k in S therefore proves that the task
set is schedulable on a processor of speed 2 under FP-NP,
with DMPO. As optimal priority assignment for FP-NP can
schedule any task set that is schedulable using FP-NP with
DMPO. 
Corollary 4: We observe that as the upper bound in
Theorem 7 holds for arbitrary-deadline task sets, it must
also hold for implicit-deadline, and constrained-deadline
task sets.

5.4. Exact speedup factor for FP-NP for arbitrary
deadline task sets

In this section, we derive the exact speedup factor
required for FP-NP scheduling of arbitrary-deadline
sporadic and non-concrete periodic task sets.
Theorem 8: The exact processor speedup factor required
such that FP-NP scheduling, using optimal priority
assignment can schedule any arbitrary-deadline sporadic or
non-concrete periodic task set schedulable under EDF-NP
according to (18), is 2.
Proof: We prove the theorem using a task set V derived
from task set S used in the proof of Theorem 3. We split the
final task of task set S into 2k identical tasks each with an
execution time of 1. Thus the task set V comprises kk 2

tasks with the following parameters on a processor of speed
s = 1:

1 to k : 1iC , kkDi  22 , kTi 2
1k to 2kk

 : 1jC , 22kD j  , jT
Without loss of generality, we assume that the minimum
processing time (e.g. a processor clock cycle) is given
by 1 .

We now consider the schedulability of task set V under
FP-NP scheduling assuming optimal priority assignment.
Applying Audsley�s OPA algorithm, we find that none of
the tasks labelled 1 to k are schedulable at the lowest
priority, since following synchronous release, the processor
is occupied by higher priority tasks for an interval of time

kkt  22 , hence the deadline of any such task would be
reached before it was able to start executing.

By contrast, any of the 2k tasks labelled 1k to 2kk


is schedulable at the lowest priority level since the longest

possible busy period (at the lowest priority level) is of
length 22k , which is equal to the deadline of those tasks.
Since tasks 1 to k are schedulable at the highest k priority
levels with k having a worst-case response time of k, then
the task set is schedulable with the tasks in the priority order
given by their indices. (We note that other schedulable
priority orders exist, but all require that one of the tasks with
deadline 22k has the lowest priority).

Given that task 2kk
 completes at its deadline, it is

clear that the processor cannot be slowed down by any
factor and the task set remain schedulable using FP-NP with
optimal priority assignment.

Next, consider the schedulability of task set S under
EDF-NP on a processor of speed:

2

2

2
2/3

k
kks 

 (73)

Recall that to prove schedulability under EDF-NP, we must
show that:

1)()(max
0







 


 t

tBthLOAD
t

NP (74)

Since 1 and all tasks have 1iC , then from (17)
t 0)(tB . Further, since tasks 1k to 2kk

 were
obtained by decomposing the final task in task set S in the
proof of Theorem 3 (pre-emptive case) into 2k tasks with
unit execution times with the same deadlines and periods,
then it follows that)(th is identical to that for task set S in
the pre-emptive case. Thus from the proof of Theorem 3 we
have 1/)(tth and hence (74) holds and so task set V is
also schedulable on a processor of speed s under EDF-NP.
(Intuitively this is the case since the pre-emptive schedule
for task set S and the non-pre-emptive schedule for task set
V are equivalent).

In the limit, as k then 2/1s and thus task set
V requires a processor speedup factor of 2 in order to be
schedulable under FP-NP with optimal priority assignment.

Since the upper bound on the speedup factor required
by FP-NP to schedule any task set that is schedulable under
EDF-NP is 2 (from Theorem 7) and we have shown that
there exists a task set that requires this speedup factor, then
the exact value of the speedup factor is 2 

6. Conclusions and future work
We have examined the relative effectiveness of fixed

priority and EDF scheduling, in both pre-emptive and non-
pre-emptive cases. Our metric for measuring the relative
effectiveness of fixed priority scheduling is a resource
augmentation factor known as the processor speedup factor.
In this case, the processor speedup factor is defined as the
minimum amount by which the processor needs to be
speeded up so that any task set that is schedulable by EDF-P
(EDF-NP) scheduling is schedulable according to FP-P (FP-
NP) scheduling using an optimal priority assignment policy.

Table 5 summarizes the new state-of-the-art in terms of

analytical results regarding the speedup factors for FP-P and
FP-NP scheduling. In the pre-emptive case, FP-P scheduling
is compared to EDF-P which is an optimal pre-emptive
uniprocessor scheduling algorithm. In the non-pre-emptive
case, FP-NP is compared to EDF-NP which is an optimal
(in the weak sense (George et al., 1995)), work-conserving
non-pre-emptive scheduling algorithm.

Table 5: Fixed priority scheduling speedup factors
Pre-emptive Non-pre-emptive

Task set
constraints

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Implicit-
deadline

)2ln(/1
1.44269

 )/1(
1.76322 2

Constrained-
deadline

/1
1.76322

 )/1(
1.76322 2

Arbitrary-
deadline 2 2

The major contributions of this paper (highlighted in
bold in the above table) are in proving that:
(i) The exact processor speedup factor for fixed priority

pre-emptive scheduling of sporadic or non-concrete
periodic task sets with arbitrary deadlines and optimal
priority assignment is 2.

(ii) The above result holds when tasks may access resources
in mutual exclusion according to the Stack Resource
Policy (Baker, 1991) (i.e. FP-P +SRP v. EDF-P +SRP)
or the Deadline Floor inheritance Protocol (DFP)
(Burns et al. 2014) (i.e. FP-P +SRP v. EDF-P +DFP).

(iii) The exact processor speedup factor for fixed priority
non-pre-emptive scheduling of sporadic or non-
concrete periodic task sets with arbitrary deadlines and
optimal priority assignment is 2, when compared
against non-pre-emptive EDF scheduling.

(iv) The upper and lower bounds on the processor speedup
factor for fixed priority non-pre-emptive scheduling of
sporadic or non-concrete periodic task sets with implicit
or constrained deadlines are  )/1(1.76322, and 2
respectively, when compared against non-pre-emptive
EDF scheduling.

Thekkilakattil et al. (2013) quantified the speedup factor
required for any task set schedulable under pre-emptive
EDF to be schedulable under non-pre-emptive EDF. They
derived an upper bound of 4 for the case where the largest
execution time is not greater than the smallest deadline. This
result can be combined with our result for FP-NP v. EDF-
NP to give an upper bound of 8 on the speedup factor
required for any task set schedulable under EDF-P to be
schedulable under FP-NP, again assuming that the largest
execution time is not greater than the smallest deadline. In
future we aim to explore whether this bound can be
tightened.

The seminal work of Liu and Layland (1973)
characterises the maximum performance penalty incurred

when an implicit-deadline task set is scheduled using Rate-
Monotonic, fixed priority pre-emptive scheduling instead of
an optimal algorithm such as EDF-P. Davis et al. (2009b)
gave an analogous result for constrained-deadline task sets.
The research in this paper completes the exact quantification
of the sub-optimality of fixed priority pre-emptive
scheduling by determining the maximum performance
penalty incurred when arbitrary deadline task sets are
scheduled using that policy instead of an optimal pre-
emptive scheduling algorithm such as EDF-P.

6.1. Postscript
As this article was going to press, further work on speedup
factors for the case of FP-NP v. EDF-NP with implicit and
constrained deadlines was published by von der Brüggen et
al. (2015). They tightened the upper bounds in these cases
from 2 to /1 1.76322. Combined with the results given
in this paper, and those previously published by Davis et al.
(2009, 2010), this completes the set of six exact speedup
factors for FP-P v. EDF-P and FP-NP v. EDF-NP for
implicit, constrained, and arbitrary deadline task sets.

Acknowledgements
This work was funded in part by the EPSRC projects

TEMPO (EP/G055548/1) and MCC (EP/K011626/1).
EPSRC Research Data Management: No new primary data
was created during this study.

References
Audsley N.C. (1991) "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report YCS
164, Dept. Computer Science, University of York, UK.
Audsley N.C., Burns A., Richardson M., Wellings A.J. (1993)
�Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling�. Software Engineering Journal, 8(5), pages 284-292.
Audsley N.C. (2001) �On priority assignment in fixed priority
scheduling�, Information Processing Letters, 79(1): 39-44.
Baker T.P. (1991) �Stack-based Scheduling of Real-Time Processes.�
Real-Time Systems Journal (3)1, pages 67-100
Baruah S.K., Mok A.K., Rosier L.E. (1990a) �Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor�. In
Proceedings Real-Time Systems Symposium (RTSS), pages 182-190.
Baruah S.K., Rosier L.E., Howell R.R. (1990b) �Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic Real-
Time Tasks on one Processor�. Real-Time Systems, 2(4), pages 301-
324.
Baruah, S.K, (2006) �Resource sharing in edf-scheduled systems: A
closer look� In proceedings Real-Time Systems Symposium (RTSS),
pages 379-387.
Bini E., Buttazzo G.C. (2005) �Measuring the Performance of
Schedulability Tests�, Real-Time Systems 30 (1-2), pages 129-154.
Bletsas, K., Audsley, N. (2006).�Optimal priority assignment in the
presence of blocking� Information processing letters 99 (3), 83-86.
Bril, R.J., Lukkien, J.J., and Verhaegh, W.F. (2009) �Worst-case
response time analysis of real-time tasks under fixed-priority
scheduling with deferred pre-emption�. Real-Time Systems. 42, 1-3,
pages 63-119.

Burns, A.; Gutierrez, M.; Aldea Rivas, M.; Gonzalez Harbour, M.
(2014) "A Deadline-Floor Inheritance Protocol for EDF Scheduled
Embedded Real-Time Systems with Resource Sharing," IEEE
Transactions on Computers.
Davis R.I., Rothvoß T., Baruah S.K., Burns A. (2009b) �Exact
Quantification of the Sub-optimality of Uniprocessor Fixed Priority
Pre-emptive Scheduling.� Real-Time Systems, Volume 43, Number 3,
pages 211-258.
Davis, R.I., Rothvoß, T., Baruah, S.K., Burns, A. (2009a) �Quantifying
the Sub-optimality of Uniprocessor Fixed Priority Pre-emptive
Scheduling for Sporadic Task sets with Arbitrary Deadlines�. In
proceedings of Real-Time and Network Systems (RTNS), pages 23-31.
Davis R.I., George L., Courbin P. (2010) �Quantifying the Sub-
optimality of Uniprocessor Fixed Priority Non-Pre-emptive
Scheduling�. In proceedings of Real-Time and Network Systems
(RTNS), pages 1-10.
Dertouzos M.L. (1974) �Control Robotics: The Procedural Control of
Physical Processes�. In Proceedings of the IFIP congress, pages 807-
813.
Fisher, N., Baker, T. P., Baruah, S. (2006) �Algorithms for
Determining the Demand-Based Load of a Sporadic Task System�. In
Proceedings of Real-Time Computing Systems and Applications
(RTCSA), pages 135-146.
George, L., Hermant, J. (2009) �A norm approach for the Partitioned
EDF Scheduling of Sporadic Task Systems.� In Proceeding Euromicro
Conference on Real-Time Systems (ECRTS).
George, L., Rivierre, N., Spuri, M. (1996) �Preemptive and Non-
Preemptive Real-Time UniProcessor Scheduling�, INRIA Research
Report, No. 2966.
George, L., Muhlethaler, P., Rivierre, N. (1995) �Optimality and Non-
Preemptive Real-Time Scheduling Revisited,� Rapport de Recherche
RR-2516, INRIA, Le Chesnay Cedex, France.
S-F. Hwang R-S He (2006) �Improving real-parameter genetic
algorithm with simulated annealing for engineering problems�. Adv.
Eng. Softw. 37, 6 pages 406-418.
Howell, R.R., Venkatrao, M.K. (1995) �On non-preemptive scheduling
of recurring tasks using inserted idle time�, Information and
computation Journal, Vol. 117, Number 1.
K. Jeffay, D. F. Stanat, C. U. Martel (1991) �On Non-Preemptive
Scheduling of Periodic and Sporadic Tasks�, In Proceedings Real-
Time Systems Symposium (RTSS), pages 129-139.
Joseph M., Pandya P.K. (1986) �Finding Response Times in a Real-
time System�. The Computer Journal, 29(5), pages 390�395.
Kalyanasundaram B., Pruhs K. (1995) �Speed is as powerful as
clairvoyance�. In Proceedings of Symposium on Foundations of
Computer Science, pages 214-221.
Kim, Naghibdadeh (1980) �Prevention of task overruns in real-time
non-preemptive multiprogramming systems�, In proceedings of Perf.,
Assoc. Comp. Mach. pages 267-276.
Leung J.Y.-T., Whitehead J. (1982) "On the complexity of fixed-
priority scheduling of periodic real-time tasks". Performance
Evaluation, 2(4), pages 237-250.
Lehoczky J. (1990) �Fixed priority scheduling of periodic task sets
with arbitrary deadlines�. In Proceedings Real-Time Systems
Symposium (RTSS), pages 201�209.
Lehoczky J.P., Sha L., Ding Y. (1989) �The rate monotonic scheduling
algorithm: Exact characterization and average case behaviour�. In
Proceedings Real-Time Systems Symposium (RTSS), pages 166�171.
Liu C.L., Layland J.W. (1973) "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of the
ACM, 20(1) pages 46-61.

Liu, J.W.S. (2000) �Real-Time Systems� Prentice Hall, ISBN-10:
0130996513.
Mok A.K. (1983) �Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment,� Ph.D. Thesis,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachusetts.
L. Sha, R. Rajkumar, J. Lehoczky, (1990) �Priority inheritance
protocols: An approach to real-time synchronisation�. IEEE
Transactions on Computers 39, 9, pages 1175�1185.
Spuri, M. (1996) �Analysis of Deadline Scheduled Real-Time
Systems�. INRIA Technical Report No. 2772.
Thekkilakattil, A.; Dobrin, R.; Punnekkat, S. (2013) "Quantifying the
Sub-optimality of Non-preemptive Real-Time Scheduling," In
proceedings of Euromicro Conference on Real-Time Systems
(ECRTS), pages 113,122.
Tindell K.W., Burns A., Wellings A.J. (1994) �An extendible approach
for analyzing fixed priority hard real-time tasks�. Real-Time Systems.
Volume 6, Number 2, pages 133-151.
von der Brüggen, G., Chen, J.J., Huang, W-H., (2015) �Schedulability
and Optimization Analysis for Non-Preemptive Static Priority
Scheduling Based on Task Utilization and Blocking Factors� In
proceedings of Euromicro Conference on Real-Time Systems
(ECRTS)
Zhang F., Burns A. (2009) "Schedulability Analysis for Real-Time
Systems with EDF Scheduling," IEEE Transactions on Computers,
pages 1250-1258.
Zhang F., Burns, A. (2011) �Schedulability Analysis of EDF
Scheduled Embedded Real-Time Systems with Resource Sharing�.
ACM Transactions on Embedded Computing Systems 9, 4, Article 39.

