THE UNIVERSITYO]‘%% UNIVERSITY OF AMSTERDAM

Priority Assignment in Fixed Priority

Pre-emptive Systems with Varying
!'_ Context Switch Costs

Robert I. Davis!, Sebastian Altmeyer 2, Alan Burns!

1Real-Time Systems Research Group, University of York, UK
2University of Amsterdam (UvA), Amsterdam, Netherlands

THE UNIVERSITY of%rk UNIVERSITY OF AMSTERDAM

Motivation:
Temporal and Spatial Separation

= Separation is vitally important

» Safety standards (IEC61508, DO-178C, 1S026262) require that either all
applications are developed to the standard required for the highest
criticality application, or that independence between different applications
is demonstrated in both spatial and temporal domains

= Process and Thread model
= Each process has a separate memory address space
= Threads within a process share the same address space

= Enables spatial and temporal separation
= By mapping all tasks from a given application to a distinct process (one
process per application)
= Or by mapping all tasks of a given criticality level to a distinct process
(one process per criticality level)

[R.I. Davis, S. Altmeyer, A. Burns, "Mixed Criticality Systems with Varying Context Switch
Costs ". In proceedings IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS 2018) 11-13th Apr 2018]

THE UNIVERS]TY@‘W

Processes and Threads

-~

Process (application(s))

~

Thread (task)

Thread (task)

Thread (task)

S

Large context switch cost

-

Process (application(s))

\

Thread (task)

Small
context
switch cost

)

UNIVERSITY OF AMSTERDAM

Thread (task)

)

Thread (task)

S

Key point: Two very different context switch costs

Small
context
switch cost

a N
Address
Space
Ai
N /
a I
Address
Space
4
_ /

THE UNIVERSITY Of%ﬂ(UNIVERSITY OF AMSTERDAM

System Model

= Single processor

= Fixed priority pre-emptive scheduling (FPPS)
= Sporadic tasks
= Each task z,
= 7,— Period or minimum inter-arrival time (sporadic behaviour)
« D,— Constrained relative deadline
= C,— worst-case execution time

= Additionally
= Each task is mapped to an address space 4, (and process)

= When one task z; pre-empts another task z;
same address space (4; = 4;) implies a small context switch cost C*
change in address space (4; # 4,) implies a large context switch cost C¢

(Here costs are for switching from and later back to the pre-empted task)

THE UNIVERSITY Of%ﬂ(UNIVERSITY OF AMSTERDAM

Response Time Analysis for FPPS:
Simple Analysis

= Method
= Use large context switch cost CC for every pre-emption
= Equivalent to subsuming context switch times into WCET bounds
= Response time for task r;

. R@_ -]
B =0Ci+ CC — Z [T—‘ (CJ + C‘C}

Vjehp(i) ' 7

= Fixed point iteration (converges or ends when value exceeds D,)

THE UN]VERS]TY()]%T/{ UNIVERSITY OF AMSTERDAM

Response Time Analysis for FPPS:
Simple Analysis

= Example:
= Three tasks with parameters (Ci, Di, Ti, Li, A;)
T4 = (10,50,100, LO, A%)
e = (10,100,200, HI, A")
Tc = (200,265,300, LO, A")
= Further ¢ = 5 and C° =0

= Deadline Monotonic Priority Order (DMPO) is optimal
= With priority order{A. B,C} thenRc = 280 hence task set is not schedulable

= Part of schedule illustrating context switch costs

TA] / HI-criticality execution
B |]
¢ []

/ N

Large context switch cost LO-criticality execution
(every time) 6

THE UNIVERSITY 0)‘%% UNIVERSITY OF AMSTERDAM

Response Time Analysis for FPPS:
Refined Analysis

= Method

= Consider the set of tasks aff(i, j) = hep(i) nlp(j) that can be affected by
pre-emption by task z; during the response time of task
the priority of z; so they can

Priority . Tx
aff(i, j) {
T
un within its response ti

= Only get a large context switch cost for pre-emption by task, ere is
some task ¢, that can be pre-empted by task z; during the response time
of task z; that belongs to a different process and hence different address
space

Lower priority than z; so they
can be pre-empted by 7; At least

[€CC if3hcaf(i,j)|Ap £ A;
i =\ 5 otherwise

R;
: \' (_ v

Yiehpii)

THE UNIVERS]TYO]%rk UNIVERSITY OF AMSTERDAM

Response Time Analysis for FPPS:
Refined Analysis

= Example:
= Three tasks with parameters (C:, Di, T3, Li, Ai)
Ta = (10,50,100, LO, AL)
T = (10,100, 200, HI, AT)
Tc = (200,265,300, L0, AL)
Further c¢ = s and C° =0
Deadline Monotonic Priority Order (DMPO) is not optimal

With priority order{A., B.C} then R = 280 hence task set is not schedulable
With priority order {B, A,C} then R~ = 265 and task set is schedulable

= Part of schedule illustrating context switch costs

TA - B -
T8 " milll= TA m m
e — o IS —

Shared process and address
space implies small context
switch cost

8

THE UNIVERSITYO)%% UNIVERSITY OF AMSTERDAM

Response Time Analysis for FPPS:
Multiset Analysis

= See the RTAS 2018 paper for details of the multiset analysis

= Multiset analysis dominates the refined analysis

[R.I. Davis, S. Altmeyer, A. Burns, "Mixed Criticality Systems with Varying Context Switch
Costs ". In proceedings IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS 2018) 11-13th Apr 2018]

THE UNIVERSITY Of%rk UNIVERSITY OF AMSTERDAM

Open Problem:
Efficient Optimal Priority Assignment

= How to efficiently obtain an optimal priority assignment* with
respect to the refined analysis? (and with respect to the
multiset analysis?)

*An optimal priority assignment is one that is schedulable whenever there
exists a schedulable priority assignment for the system

10

THE UNIVERSITY 0)‘%% UNIVERSITY OF AMSTERDAM

Audsley’s algorithm:
Optimal Priority Assignment (OPA)

for each priority level i, lowest first ({
for each unassigned task 7t {
if t© is schedulable at priority i
assuming that all unassigned tasks are
at higher priorities {
assign task T to priority level i
break (exit for loop)
}
}

if no tasks are schedulable at priority i {
return unschedulable

}
}

return schedulable

m(n+1)/2 schedulability tests rather than 7!
by exhaustively exploring all possible orderings

(e.g. for n=15, 120 schedulability tests compared to 1307674368000)

11

THE UNIVERSITY off/ork UNIVERSITY OF AMSTERDAM

Powerful idea as we have
said very little about the actual
schedulability test
hence broad applicability

OPA algorithm appli¢

= OPA algorithm provides optimal priori

priority ordering
Condition 2: Schedulabilif

[R.I. Dav P A. Burns "Improved Priority Assignment for Global Fixed Priority Pre-
emptive Scheduling in Multiprocessor Real-Time Systems”. Real-Time Systems,

(2011) Volume 47, Number 1, pages 1-40] "

THE UNIVERSITY ())‘W UNIVERSITY OF AMSTERDAM

7
Priority assignment toolbox: :@:
Techniques to explore #1 Y

= Task swapping
= Idea is to establish rules under which schedulability continues to hold
when we swap two specific tasks in the priority order (This is the basis of
many proofs of optimal priority orderings)
= Can then use those rules to transform any schedulable ordering into
another one with those tasks in a particular order without loss of
schedulability
= This might provide additional information / properties that hold for an
optimal priority ordering which can then be used to reduce the complexity
of finding it
= Hints and tips

« If we swap two tasks from the same process under what circumstances
would they both remain schedulable?

[R. I. Davis, L. Cucu-Grosjean, M. Bertogna, A. Burns, "A Review of Priority
Assignment in Real-Time Systems”. Journal of Systems Architecture (2016).]

13

THE UNIVERSITY af%r/(UNIVERSITY OF AMSTERDAM

NP
Priority assignment toolbox: :@:
Techniques to explore #2 U

= Results from research into Robust Priority Assignment

= Prior work on Robust Priority Assignment has shown that Deadline
Monotonic is the optimal priority order for tasks subject to an additional
interference function

= Additional interference function is very general — only has to be
monotonically non-decreasing with respect to lower priority levels and
increasing intervals over which interference is considered

= Hints and tips

= Perhaps it would be useful to consider a sub-set of tasks belonging to a
specific process and regard all other tasks as just an additional
interference function — we might then be able to show that Deadline
Monotonic partial order is optimal for the sub-set of tasks in each process
under the refined analysis?

[R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed Priority Real-Time
Systems”. In proceedings IEEE Real-Time Systems Symposium pp. 3-14. Tucson,

Arizona, USA. December 2007] 14

THE UNIVERSITY of//ork UNIVERSITY OF AMSTERDAM

NP
Priority assignment toolbox: :@:
Techniques to explore #3 W

= Sufficient test
» If a task is schedulable at the lowest (unassigned) priority assuming a
simple analysis (with all context switch costs assumed to be large) then it
MUST be schedulable at that level with the refined and multiset analysis
irrespective of the order of higher priority tasks

s Necessary test
« If a task is unschedulable at the lowest (unassigned) priority assuming a
simple analysis (with all context switch costs assumed to be small) then it
CANNQOT be schedulable at that level (with the set of higher priority tasks
unchanged) under refined or multiset analysis irrespective of the order of
higher priority tasks
= Hints and tips
= Can these tests help us to build an optimal priority ordering for the refined
analysis?

[R.I. Davis and A. Burns, “On Optimal Priority Assignment for Response Time

Analysis of Global Fixed Priority Pre-emptive Scheduling in Multiprocessor Hard Real-
Time Systems”. University of York, Department of Computer Science Technical

Report, YCS-2009-451, April 2010.] 15

THE UNIVERSITY Of%rk UNIVERSITY OF AMSTERDAM

Open Problems

= How to efficiently obtain an optimal priority assignment for the

refined analysis? (and for the multiset analysis?)
= For two processes?
= For multiple processes?

= How best to schedule tasks when there are two different
context switch costs (process-level and thread-level)?

= Fully pre-emptive scheduling has the disadvantage of a large humber of
context switches

= What about using non-preemptive scheduling or limited preemption
scheduling?

16

	Priority Assignment in Fixed Priority Pre-emptive Systems with Varying Context Switch Costs
	Motivation:�Temporal and Spatial Separation
	Processes and Threads
	System Model
	Response Time Analysis for FPPS:�Simple Analysis
	Response Time Analysis for FPPS:�Simple Analysis
	Response Time Analysis for FPPS:�Refined Analysis
	Response Time Analysis for FPPS:�Refined Analysis
	Response Time Analysis for FPPS:�Multiset Analysis
	Open Problem:�Efficient Optimal Priority Assignment
	Audsley’s algorithm:�Optimal Priority Assignment (OPA)
	OPA algorithm applicability
	Priority assignment toolbox:�Techniques to explore #1
	Priority assignment toolbox:�Techniques to explore #2
	Priority assignment toolbox:�Techniques to explore #3
	Open Problems

