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Background
 Fixed priority scheduling

 Widely used in real-time embedded systems:
 electronic control units and communications networks in 

automobiles, digital set-top boxes, medical systems, space 
systems, and mobile phones.

 Supported by nearly all commercial RTOS
 Supported by schedulability analysis

 Response Time Analysis exists for system models with 
broad scope

 blocking, release jitter, arbitrary deadlines etc.
 co-operative and non-pre-emptive scheduling

 Exact analysis has pseudo-polynomial complexity
 Can almost always be used to determine schedulability of 

industrial scale systems in reasonable time, despite 
theoretical complexity results



Motivation
 Why are we interested in Response Time Upper 

Bounds?
 Improve practical efficiency of exact schedulability test

 Check on a task-by-task basis if schedulable according to 
upper bound

 Only compute exact response time for a task when upper 
bound > deadline

 Typical tasksets, majority of tasks are easily schedulable, so 
using an upper bound can result in significant 
improvements in efficiency
[R.I. Davis, A. Zabos, and A. Burns, �Efficient Exact 
Schedulability Tests for Fixed Priority Pre-emptive Systems�
IEEE Transactions on Computers September 2008 (Vol. 57, 
No. 9) pp. 1261-1276]



Motivation
 Other uses of Response Time Upper Bounds?

 Can be used when complexity / execution time of exact 
response time analysis is a limitation

 Interactive system design tools
 Sensitivity analysis requires results of large numbers of 

schedulability test be available in HCI timescales

 System optimisation via search
 Using simulated annealing / GAs with schedulability as a 

cost function

 Dynamic systems
 Online admission of new tasks / applications with stringent 

start-up constraints



System Model
 Single processor

 Static set of n tasks τi
 Fixed Priority Scheduling 

 Task parameters
 Worst-case execution time Ci
 Sporadic/periodic arrivals: minimum inter-arrival time Ti
 Arbitrary Deadlines Di≤Ti, Di>Ti
 Blocking factor Bi
 Release jitter Ji, from arrival to release
 Worst-case response time Ri, from release to completion

 Independent arrival times
 Potential for simultaneous release



System Model
 Task scheduling

 Pre-emptive
 Co-operative / Non-pre-emptive

 Final non-pre-emptive section Fi ≤Ci

 Blocking
 Access to mutually exclusive shared resources according 

to the Stack Resource Policy (SRP) � [Baker 1991] 
 Blocking factor Bi 

 Longest time a lower priority task can execute at priority i
or higher due to SRP or non-pre-emptive sections



Terminology
 Priority i busy period

 Time interval during which the processor is busy executing at priority 
i or higher until it completes some computation C at priority i

 Priority i occupied period
 Time interval during which the processor is busy executing at priority 

i or higher until it has completed some computation C at priority i
and is available to continue executing computation at priority i

1 2 1 3 1

1,2,3 1 1 1

1

Priority level-2 busy period

Priority level-2 occupied period



Response time analysis: recap
 Pre-emptive scheduling

 General model, arbitrary deadlines, release jitter, blocking etc.
 Determine length of multiple busy periods starting at a critical 

instant, extending to completion of qth invocation of task τi

 Response time given by
 Start with 
 Iterate until or
 Worst-case response time

 Check values of q until an invocation completes before the next release

 Schedulable if 
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Response time analysis: recap
 Non-pre-emptive scheduling

 Determine length of multiple occupied periods starting at 
critical instant, extending to time at which the qth invocation can 
start its final non-pre-emptable section

 Response time given by
 Start with 

 Iterate until or

 Worst-case response time
 Number of invocations to check related to number of invocations Q in 

the busy period for pre-emptive scheduling 
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Derivation of the Upper Bound
 Approach

 Method introduced by Bini & Baruah 2007
 Idea is to derive an upper bound on interference

from each high priority task assuming that it is the only
task in the system

 Use these upper bounds on interference to determine an 
upper bound on task response time 

 Extended here to
 Account for blocking and release jitter
 Cater for co-operative and non-pre-emptive scheduling 

(as well as the pre-emptive case)



Interference Upper Bound

hCj

Interference 

time

hCj

Time the processor spends 
executing a high priority 
task when it is the only 
task in the system

P(t,y)

Linear upper bound 
on interference



Interference Upper Bound
 Determine number of invocations h that execute 

consecutively from time t = 0 
 Number of invocations released at t = 0 is 
 Subsequent releases at times

for k = 1,2,3…
 Number of subsequent releases within the interval of 

consecutive execution is given by the largest k :

 Hence: 
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Interference Upper Bound
 Point P(t,y)

 Interference upper bound:

 For all higher priority tasks:
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Busy Period Upper Bound
 Busy Period Upper Bound on time for processor to 

complete C execution at priority i
 Intersection of the lines:

 Theorem 1: is also an upper bound on the 
occupied period for computation C at priority i
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Occupied Period Upper Bound
Interference 

time

Bound = max interference
No further hp execution for 
some non-zero time interval, 
so processor can start further 
execution at priority i at the 
end of the interval OUB

Bound strictly > max 
interference
Processor can start 
further execution at 
priority i before the 
end of the interval OUB

Proof of Theorem 1:
Show that the processor is available to 
execute further computation at priority i 
at or before the end of the interval OUB



Response Time Upper Bound
 Pre-emptive case

 Occupied period upper bounds the pre-emptive busy 
period 

 Response time bound for each invocation
 Comparing response time bounds for different invocations

 Worst-case response time upper bound (first invocation)
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Response Time Upper Bound
 Co-operative (and non-pre-emptive) case

 Upper bound on occupied time 

 Bound for each invocation
 Comparing response times for different invocations:

 Worst-case response time upper bound (first invocation)
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Linear time sufficient test
 Closed form Response Time Upper bound

 Widely applicable to processor and network scheduling
 Arbitrary deadlines, blocking, release jitter 
 Task scheduling

 Pre-emptive: Fi = 0, 
 Co-operative: 0 <  Fi < Ci
 Non-pre-emptive Fi = Ci

 Via incremental summation, highest priority first, can 
determine schedulability of n tasks in O(n) time
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Response Time Upper Bound
 Example taskset



Empirical investigation
 Compares Response Time Upper bound with

 Exact response time analysis
 Sufficient tests

 Utilisation based test (Liu & Layland 1973)
 RBound (Lauzac et al. & Buttazzo 2003)
 Hyperbolic bound (Bini et al. 2003)

 Sufficient tests adapted to cater for arbitrary deadlines, 
blocking, and release jitter
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Experiments
 Varied:

 Number M of orders of magnitude ranges used for task 
period selection (1-5, default = 2)

 E.g. for M=3 task periods chosen from 3 ranges [100-1000, 
1000-10,000, 10,000-100,000] 

 Utilisation (5% � 95%, default 60%) 
 Deadlines (0.05 � 0.95 of period, default = period, )
 Blocking factors (0.5 � 9.5 of execution time, default =0)
 Release jitter (0.05 � 0.95 of period, default =0)

 10,000 tasksets for each x-axis point on graphs
 Taskset cardinality = 24



Expt 1: Range of task periods
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Expt 2: Deadline : period ratio
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Expt 3: Jitter : period ratio
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Expt 4: Blocking : ET ratio

0%

20%

40%

60%

80%

100%

120%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Blocking / Execution Time Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s 
sc

he
du

la
bl

e Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, U = 60%, D = T, J = 0)



Expt 5: All parameters varied
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Expt 6: Tasks schedulable
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Summary and conclusions
 Derived a response time upper bound

 Based on the idea of a linear bound on interference
 Extended scope to a general system model supporting

 Blocking, release jitter (and arbitrary deadlines)

 Shown that the bound can be applied to pre-emptive, co-
operative, and non-pre-emptive scheduling

 Single closed form upper bound applicable to a wide 
range of real-time systems and networks
 Forms a linear time sufficient schedulability test 

 O(n) time for n tasks

 Can be used to significantly improve the efficiency of 
exact response time analysis in practical applications
 Used on a task-by-task basis; only perform exact 

calculation when sufficient test fails



Summary and conclusions
 Other uses of the Response Time Upper Bound

 Online admission tests
 With stringent time constraints on start-up

 Interactive system design tools
 Response Time Upper Bound is continuous and 

differentiable w.r.t. parameters
 No nasty surprises: small increase / decrease in a 

parameter cannot cause a sudden large increase in the 
response time upper bound

 System optimisation via search (future research)
 Early stage of search; find region of interest in search 

space using continuous upper bounds
 Use exact analysis to find solution



Questions?
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The End
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