
Response Time Upper Bounds
for Fixed Priority Real-Time

Systems

Robert Davis and Alan Burns
Real-Time Systems Research Group

University of York

Outline
 Background and motivation

 Why are we interested in response time upper bounds?
 Recap on standard analysis

 System model and Response Time Analysis
 Response time upper bound

 Derivation
 Application to pre-emptive, co-operative, and non pre-

emptive scheduling problems
 Empirical investigations

 Comparison with other simple schedulability tests
 Summary and conclusions

Background
 Fixed priority scheduling

 Widely used in real-time embedded systems:
 electronic control units and communications networks in

automobiles, digital set-top boxes, medical systems, space
systems, and mobile phones.

 Supported by nearly all commercial RTOS
 Supported by schedulability analysis

 Response Time Analysis exists for system models with
broad scope

 blocking, release jitter, arbitrary deadlines etc.
 co-operative and non-pre-emptive scheduling

 Exact analysis has pseudo-polynomial complexity
 Can almost always be used to determine schedulability of

industrial scale systems in reasonable time, despite
theoretical complexity results

Motivation
 Why are we interested in Response Time Upper

Bounds?
 Improve practical efficiency of exact schedulability test

 Check on a task-by-task basis if schedulable according to
upper bound

 Only compute exact response time for a task when upper
bound > deadline

 Typical tasksets, majority of tasks are easily schedulable, so
using an upper bound can result in significant
improvements in efficiency
[R.I. Davis, A. Zabos, and A. Burns, �Efficient Exact
Schedulability Tests for Fixed Priority Pre-emptive Systems�
IEEE Transactions on Computers September 2008 (Vol. 57,
No. 9) pp. 1261-1276]

Motivation
 Other uses of Response Time Upper Bounds?

 Can be used when complexity / execution time of exact
response time analysis is a limitation

 Interactive system design tools
 Sensitivity analysis requires results of large numbers of

schedulability test be available in HCI timescales

 System optimisation via search
 Using simulated annealing / GAs with schedulability as a

cost function

 Dynamic systems
 Online admission of new tasks / applications with stringent

start-up constraints

System Model
 Single processor

 Static set of n tasks τi
 Fixed Priority Scheduling

 Task parameters
 Worst-case execution time Ci
 Sporadic/periodic arrivals: minimum inter-arrival time Ti
 Arbitrary Deadlines Di≤Ti, Di>Ti
 Blocking factor Bi
 Release jitter Ji, from arrival to release
 Worst-case response time Ri, from release to completion

 Independent arrival times
 Potential for simultaneous release

System Model
 Task scheduling

 Pre-emptive
 Co-operative / Non-pre-emptive

 Final non-pre-emptive section Fi ≤Ci

 Blocking
 Access to mutually exclusive shared resources according

to the Stack Resource Policy (SRP) � [Baker 1991]
 Blocking factor Bi

 Longest time a lower priority task can execute at priority i
or higher due to SRP or non-pre-emptive sections

Terminology
 Priority i busy period

 Time interval during which the processor is busy executing at priority
i or higher until it completes some computation C at priority i

 Priority i occupied period
 Time interval during which the processor is busy executing at priority

i or higher until it has completed some computation C at priority i
and is available to continue executing computation at priority i

1 2 1 3 1

1,2,3 1 1 1

1

Priority level-2 busy period

Priority level-2 occupied period

Response time analysis: recap
 Pre-emptive scheduling

 General model, arbitrary deadlines, release jitter, blocking etc.
 Determine length of multiple busy periods starting at a critical

instant, extending to completion of qth invocation of task τi

 Response time given by
 Start with
 Iterate until or
 Worst-case response time

 Check values of q until an invocation completes before the next release

 Schedulable if

∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+++=

)(

1)(
)1()(

ihpj
j

j

j
n
i

ii
n
i C

T
Jqw

CqBqw

iii CqBqw)1()(0 ++=
)()(1 qwqw n

i
n
i =+

iii
n
i JDqTqw −>−+)(1

i
n
ii qTqwqR −= +)()(1

))((max iiqi qTqwR −= ∀

iii JDR −≤

Response time analysis: recap
 Non-pre-emptive scheduling

 Determine length of multiple occupied periods starting at
critical instant, extending to time at which the qth invocation can
start its final non-pre-emptable section

 Response time given by
 Start with

 Iterate until or

 Worst-case response time
 Number of invocations to check related to number of invocations Q in

the busy period for pre-emptive scheduling

 Schedulable if iii JDR −≤

j
ihpj j

j
n
i

iii
n
i C

T
Jqv

FCqBqv ∑
∈∀

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ +
+−++=

)(

1 1
)(

)1()(

iiii FCqBqv −++=)1()(0

)()(1 qvqv n
i

n
i =+

iiii
n
i JDqTFqv −>−++)(1

ii
n
ii qTFqvqR −+= +)()(1

))((max 1..1,0 iiiQqi qTFqvR
i

−+= −=

Derivation of the Upper Bound
 Approach

 Method introduced by Bini & Baruah 2007
 Idea is to derive an upper bound on interference

from each high priority task assuming that it is the only
task in the system

 Use these upper bounds on interference to determine an
upper bound on task response time

 Extended here to
 Account for blocking and release jitter
 Cater for co-operative and non-pre-emptive scheduling

(as well as the pre-emptive case)

Interference Upper Bound

hCj

Interference

time

hCj

Time the processor spends
executing a high priority
task when it is the only
task in the system

P(t,y)

Linear upper bound
on interference

Interference Upper Bound
 Determine number of invocations h that execute

consecutively from time t = 0
 Number of invocations released at t = 0 is
 Subsequent releases at times

for k = 1,2,3…
 Number of subsequent releases within the interval of

consecutive execution is given by the largest k :

 Hence:

⎣ ⎦ 1/ +jj TJ

⎣ ⎦() jjjjj TkJTTJ)1(1/ −+−+

⎣ ⎦() ≥−++ jjjj CkCTJ)1(1/ ⎣ ⎦() jjjjj TkJTTJ)1(1/ −+−+

⎣ ⎦ ⎣ ⎦jjjjj TJCTJk /)/(−−=

⎣ ⎦ 1)/(+−= jjj CTJh

Interference Upper Bound
 Point P(t,y)

 Interference upper bound:

 For all higher priority tasks:

)1()(jjjjj
UB
j UCJUtUtI −++=

))1(()(
)()()(

jj
ihpj

jj
ihpj

j
ihpj

UB
j UCJUUttI −++= ∑∑∑

∈∀∈∀∈∀

⎣ ⎦() jjjjjjj CCCTJChCy ++−=+= 1)/(

⎣ ⎦() jjjjjjjjj CJTCTJCJhTt +−+−=+−= 1)/(

Busy Period Upper Bound
 Busy Period Upper Bound on time for processor to

complete C execution at priority i
 Intersection of the lines:

 Theorem 1: is also an upper bound on the
occupied period for computation C at priority i

))1((
)()(

jj
ihpj

jj
ihpj

j UCJUUtCy −+++= ∑∑
∈∀∈∀

ty =

∑

∑

∈∀

∈∀

−

−++

=

)(

)(

1

))1((
)(

ihpj
j

jj
ihpj

jj
UB
i U

UCJUC
CO

)(COUB
i

Occupied Period Upper Bound
Interference

time

Bound = max interference
No further hp execution for
some non-zero time interval,
so processor can start further
execution at priority i at the
end of the interval OUB

Bound strictly > max
interference
Processor can start
further execution at
priority i before the
end of the interval OUB

Proof of Theorem 1:
Show that the processor is available to
execute further computation at priority i
at or before the end of the interval OUB

Response Time Upper Bound
 Pre-emptive case

 Occupied period upper bounds the pre-emptive busy
period

 Response time bound for each invocation
 Comparing response time bounds for different invocations

 Worst-case response time upper bound (first invocation)

∑

∑

∈∀

∈∀

−

−++++

=

)(

)(

1

))1(()1(
)(

ihpj
j

jj
ihpj

jjii
UB
i U

UCJUCqB
qW

0
1

)1()(

)(

≥
−

−=+−
∑
∈∀ ihpj

j

i
i

UB
i

UB
i U

CTqRqR

∑

∑

∈∀

∈∀

−

−+++

=

)(

)(

1

))1((

ihpj
j

jj
ihpj

jjii
UB
i U

UCJUCB
R

i
UB
i

UB
i qTqWqR −=)()(

Response Time Upper Bound
 Co-operative (and non-pre-emptive) case

 Upper bound on occupied time

 Bound for each invocation
 Comparing response times for different invocations:

 Worst-case response time upper bound (first invocation)

∑

∑

∈∀

∈∀

−

−++−++

=

)(

)(

1

))1(()1(
)(

ihpj
j

jj
ihpj

jjiii
UB
i U

UCJUFCqB
qV

0
1

)1()(

)(

≥
−

−=+−
∑
∈∀ ihpj

j

i
i

UB
i

UB
i U

CTqRqR

i

ihpj
j

jj
ihpj

jjiii
UB
i F

U

UCJUFCB
R +

−

−++−+

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((

ii
UB
i

UB
i qTFqVqR −+=)()(

Linear time sufficient test
 Closed form Response Time Upper bound

 Widely applicable to processor and network scheduling
 Arbitrary deadlines, blocking, release jitter
 Task scheduling

 Pre-emptive: Fi = 0,
 Co-operative: 0 < Fi < Ci
 Non-pre-emptive Fi = Ci

 Via incremental summation, highest priority first, can
determine schedulability of n tasks in O(n) time

i

ihpj
j

jj
ihpj

jjiii
UB
i F

U

UCJUFCB
R +

−

−++−+

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((

ii
UB
i JDRi −≤∀

Response Time Upper Bound
 Example taskset

Empirical investigation
 Compares Response Time Upper bound with

 Exact response time analysis
 Sufficient tests

 Utilisation based test (Liu & Layland 1973)
 RBound (Lauzac et al. & Buttazzo 2003)
 Hyperbolic bound (Bini et al. 2003)

 Sufficient tests adapted to cater for arbitrary deadlines,
blocking, and release jitter

∑
−=

−≤
−

+
−
+

1..1

/1)12(
ij

i

jj

j

ii

ii i
JD

C
JD
BC

Experiments
 Varied:

 Number M of orders of magnitude ranges used for task
period selection (1-5, default = 2)

 E.g. for M=3 task periods chosen from 3 ranges [100-1000,
1000-10,000, 10,000-100,000]

 Utilisation (5% � 95%, default 60%)
 Deadlines (0.05 � 0.95 of period, default = period,)
 Blocking factors (0.5 � 9.5 of execution time, default =0)
 Release jitter (0.05 � 0.95 of period, default =0)

 10,000 tasksets for each x-axis point on graphs
 Taskset cardinality = 24

Expt 1: Range of task periods

0%

20%

40%

60%

80%

100%

120%

0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950

Utilisation

A
cc

ep
ta

nc
e

ra
tio

 (%
) M=1

M=2

M=3

M=4

M=5

Liu and
Layland

(Fixed parameters: D = T, B = 0, J = 0)

Expt 2: Deadline : period ratio

0%

20%

40%

60%

80%

100%

120%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Deadline / Period Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, U = 60%, B = 0, J = 0)

Expt 3: Jitter : period ratio

0%

20%

40%

60%

80%

100%

120%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Jitter / Period Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, U = 60%, D = T, B = 0)

Expt 4: Blocking : ET ratio

0%

20%

40%

60%

80%

100%

120%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Blocking / Execution Time Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, U = 60%, D = T, J = 0)

Expt 5: All parameters varied

0%

20%

40%

60%

80%

100%

120%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Fixed parameters: M = 2, Varied parameters: D = 0.5T to 1.0T, J = 0.5D to 1.0D, B = 0 to 1.0C)

Expt 6: Tasks schedulable

0%

20%

40%

60%

80%

100%

120%

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

Pe
rc

en
ta

ge
 o

f T
as

ks
 s

ch
ed

ul
ab

le

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

(Parameters as Expt. 1)

Majority of tasks deemed
schedulable by the upper
bound even at v. high
utilisation

Summary and conclusions
 Derived a response time upper bound

 Based on the idea of a linear bound on interference
 Extended scope to a general system model supporting

 Blocking, release jitter (and arbitrary deadlines)

 Shown that the bound can be applied to pre-emptive, co-
operative, and non-pre-emptive scheduling

 Single closed form upper bound applicable to a wide
range of real-time systems and networks
 Forms a linear time sufficient schedulability test

 O(n) time for n tasks

 Can be used to significantly improve the efficiency of
exact response time analysis in practical applications
 Used on a task-by-task basis; only perform exact

calculation when sufficient test fails

Summary and conclusions
 Other uses of the Response Time Upper Bound

 Online admission tests
 With stringent time constraints on start-up

 Interactive system design tools
 Response Time Upper Bound is continuous and

differentiable w.r.t. parameters
 No nasty surprises: small increase / decrease in a

parameter cannot cause a sudden large increase in the
response time upper bound

 System optimisation via search (future research)
 Early stage of search; find region of interest in search

space using continuous upper bounds
 Use exact analysis to find solution

Questions?

i

ihpj
j

jj
ihpj

jjiii
UB
i F

U

UCJUFCB
R +

−

−++−+

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((

The End

	Response Time Upper Bounds for Fixed Priority Real-Time Systems
	Outline
	Background
	Motivation
	Motivation
	System Model
	System Model
	Terminology
	Response time analysis: recap
	Response time analysis: recap
	Derivation of the Upper Bound
	Interference Upper Bound
	Interference Upper Bound
	Interference Upper Bound
	Busy Period Upper Bound
	Occupied Period Upper Bound
	Response Time Upper Bound
	Response Time Upper Bound
	Linear time sufficient test
	Response Time Upper Bound
	Empirical investigation
	Experiments
	Expt 1: Range of task periods
	Expt 2: Deadline : period ratio
	Expt 3: Jitter : period ratio
	Expt 4: Blocking : ET ratio
	Expt 5: All parameters varied
	Expt 6: Tasks schedulable
	Summary and conclusions
	Summary and conclusions
	Questions?
	The End

