
Analysis of Hierarchical
Fixed-Priority Pre-emptive

Scheduling

Robert Davis and Alan Burns
Real-Time Systems Research Group

University of York

Roadmap
 Motivation
 Hierarchical Scheduling Problem
 Response Time Analysis
 Empirical Investigation
 Conclusions

Motivation
 Automotive and Avionics applications
 Emerging trend: multiple applications on a

single processor
 Made possible by the advent of advanced high

performance microprocessors
 Driven by the desire for cost reductions and

functionality enhancement
 Strong requirement for temporal isolation, systems

must behave as if they were composed of multiple
microprocessors

System Model
 Multiple applications on a single processor

 Each application comprises multiple tasks
 A Server is used to schedule each application
 Server parameters:

 Priority, period (TS), capacity (CS)
 Each Server schedules a set of tasks
 Task parameters:

 Priority, period (Ti), deadline (Di), execution time (Ci).
 Worst-Case Response Time (Ri)

 Fixed Priority Pre-emptive Scheduling
 high level: server scheduling
 low level: task scheduling

Servers
 Periodic Server

 Invoked with a fixed period
 Tasks executed until the server’s capacity is

exhausted, then suspended until capacity
replenished at next period

 If no tasks ready, server’s capacity idled away
 Deferrable Server

 Similar to Periodic Server
 Server capacity deferred if no tasks ready, can be

used later in the period
 Any remaining capacity discarded at end of server

period

Servers (continued)
 Sporadic Server

 Differs from Periodic and Deferrable Servers:
Capacity only replenished once it has been used

 Capacity used at time t replenished at t+TS
 Worst-case interference due to Sporadic Server is

the same as a periodic task
 Complexity and overheads typically greater than

Periodic and Deferrable servers: keeping track of
replenishment times and amounts

Bound and Unbound Tasks
 “Bound” tasks

 Periodic task with a period an exact multiple of the
server’s period

 Always arrive coincident with release of the server
(replenishment of server capacity)

 Release jitter effectively zero
 No tasks can be bound to a Sporadic Server

 “Unbound” tasks
 All tasks that are not “bound”
 Tasks may be periodic, sporadic etc.
 Release jitter effectively TS-CS

Schedulability Analysis
 Using Response Time Analysis:

1. Determine scenario (critical instant) leading to
worst-case response time for a task

2. Calculate worst-case response time given critical
instant arrival pattern

3. Compare worst-case response time with task
deadline

Critical Instant

 Server capacity exhausted as early as possible then…
 Task of interest (if unbound) and all higher priority

unbound tasks released.
 Task of interest (if bound) and all higher priority bound

tasks released at the start of the server’s next period
along with the server.

 Subsequent server capacity available as late as possible
due to interference from higher priority servers

Ri (Unbound task)

TS
RS

Release of
unbound tasks Release of

bound tasks
Ri (Bound task)

Exact Analysis
 To determine response time:

1. Derive formula for the load Li (w) at priority i and
higher released in a busy period of length w.

2. Derive a formula for the length wi (L) of the
priority i busy period that finishes when the
server completes execution of the load L.

3. Combine the above formulae to form a
recurrence relation that can be solved to find the
worst-case response time of the task at priority
i.

Busy Period

 Three components:

TS - CS
RS

Busy Period

TS

Interference in the last server period
Load due to tasks executed by the server
‘Gaps’ in complete periods

Busy Period

Gaps in complete
server periods

Interference in final period

Task load j
ihpj j

i
ii C

T
JwCwL ∑

∈∀ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+=

)(
)(

()SS
S

i CT
C

wL
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
1)(

)(wI S

Interference
 Three models

1. (TS –CS) [Saewong 2002]
 Safe but pessimistic

2. (RS –CS)
 Removes much pessimism, but some

remains…
3. IS (w) Exact computation…

Exact worst-case Interference
HP servers
Task load
Unused Server
capacity

RS

TS

Busy Period

worst-case interference
from higher priority
servers in final period
given by: X

shpsX x

XS
S

S C
T

JT
C

wLw
wI ∑

∈∀

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

=
)(

1)(

)(

Response Time Computation

 Recurrence starts with
 ends when in which case

is the task’s worst case response time
alternatively, recurrence ends when in
which case the task is unschedulable

() X
shpsX x

XS
S

n
n

SS
S

n
nn C

T

JT
C
wLw

CT
C
wLwLw ∑

∈∀

+

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

)(

1

1)(

1)()(

)(10
SS

S

i
ii CT

C
CCw −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

n
i

n
i ww =+1

ii
n
i JDw −>+1

i
n
i Jw ++1

Example Analysis
 Simple system: Two Deferrable Servers

 Considers two highest priority tasks executed by
the lower priority server (full details in the paper)

 Unbound tasks:

 Bound tasks:
Exact response times 26 and 70 - reduced by TS – CS
w.r.t unbound tasks

Task Ci Ti Di Response Times Ri
(1) (2) (3) Exact

1 10 50 50 46 42 38
2 8 100 100 88 84 82

Empirical Investigation
 Plots minimum server utilisation required for

schedulable system against server period
 Compares effects of:

1. Server overheads
– Essential otherwise infinitesimal server period is optimal

2. Analysis methods
– Exact v. previously published approaches

3. Server Algorithms
– Periodic v. Deferrable Server

4. Bound v. Unbound tasks
– Advantages of synchronising server and task release

Server Overheads: Exact Analysis

Comparison of Analysis Methods

(T-C) Method
TS = 27
US = 29.63%

Exact Method
TS = 48
US = 22.92%

Comparison of Server Algorithms

Deferrable Server
TS = 42
US = 26.32%

Periodic Server
TS = 46
US = 23.91%

Bound v Unbound Tasks

Bound Tasks
TS = 160
US = 25.6%

Unbound Tasks
TS = 77
US = 28.6%

Contribution
 Exact Response Time Analysis

 For hierarchical fixed priority pre-emptive
scheduling

 Hard deadline tasks scheduled under Periodic,
Deferrable and Sporadic Servers
 Reduces computed worst-case response times w.r.t.

previous work.
 Improves minimum server utilisation required for

systems to be deemed schedulable

Contribution (continued)
 Analysis extended to “bound” and

“unbound” tasks
 Binding tasks

 reduces worst-case response times
 Reduces minimum server utilisation required
 influences optimal server period

 Comparison of Server Algorithms
 Metric is ability to guarantee deadlines of hard

real-time tasks (not aperiodic responsiveness!)
 Simple Periodic Server completely dominates

Deferrable and Sporadic Server algorithms on
this metric

Technical Report
 Robert Davis, Alan Burns, “Hierarchical Fixed Priority

Pre-emptive Scheduling” Department of Computer
Science Technical Report YCS385, University of York,
April 2005

 Report also includes
 Extending exact schedulability analysis to include blocking

due to global and local resource access.
 Research into server parameter selection algorithms

(choosing server priority, period and capacity)

	Analysis of Hierarchical�Fixed-Priority Pre-emptive Scheduling
	Roadmap
	Motivation
	System Model
	Servers
	Servers (continued)
	Bound and Unbound Tasks
	Schedulability Analysis
	Critical Instant
	Exact Analysis
	Busy Period
	Busy Period
	 Interference
	Exact worst-case Interference
	Response Time Computation
	Example Analysis
	Empirical Investigation
	Server Overheads: Exact Analysis
	Comparison of Analysis Methods
	Comparison of Server Algorithms
	Bound v Unbound Tasks
	Contribution
	Contribution (continued)
	Technical Report

