
Resource Sharing in Hierarchical Fixed Priority Pre-emptive Systems

R.I.Davis and A.Burns
Real-Time Systems Research Group, Department of Computer Science,

University of York, YO10 5DD, York (UK)
rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper focuses on resource sharing in

hierarchical fixed priority pre-emptive systems where a
number of separate applications, each with its own
server, reside on a single processor. It defines the
Hierarchical Stack Resource Policy, an appropriate
global resource access policy that bounds priority
inversion and also limits interference due to overruns
during resource access.

The paper provides detailed response time analysis
enabling the schedulability of application servers and
tasks to be determined for systems with local and
global resource access. This analysis is applicable to
real-world systems where server-based applications
need mutually exclusive access to shared resources
such as communications buffers, peripheral devices,
operating system calls and data structures shared with
interrupt handlers.

1. Introduction

In automotive electronics, the advent of advanced
high performance embedded microprocessors have
made possible functionality such as adaptive cruise
control, lane departure warning systems, integrated
telematics and satellite navigation as well as advances
in engine management, transmission control and body
electronics. Where low-cost 8 and 16-bit
microprocessors were previously used as the basis for
separate Electronic Control Units (ECUs), each
supporting a single hard real-time application, there is
now a trend towards integrating functionality into a
smaller number of more powerful microprocessors.
The motivation for such integration comes mainly from
cost reduction, but also offers the opportunity of
functionality enhancement. This trend in automotive
electronics is following a similar trend in avionics.

Integrating a number of real-time applications onto
a single microprocessor raises issues of resource
allocation and partitioning. In addition to the processor,
tasks in disparate applications typically also need to
share resources that must be accessed under mutual
exclusion. For example, memory-mapped peripherals
such as CAN controllers, FLASH memory used to
store diagnostic information, and data structures shared
with interrupt handlers. Tasks may also contain critical
sections during which they cannot be pre-empted.
These sections may correspond to operating system
calls or intervals when interrupts are disabled to
facilitate mutually exclusive access to data structures
shared with interrupt handlers.

When composing a system, comprising a number of
applications, it is typically a requirement to provide
temporal isolation between the various applications.
This enables the properties of previous system designs,
where each application resided on a separate processor,
to be retained. In particular, if one application fails to
meet its time constraints, then ideally there should be
no knock on effects on other unrelated applications.
There is currently considerable interest in hierarchical
scheduling as a way of providing temporal isolation
between applications executing on a single processor.

In a hierarchical system, a global scheduler is used
to determine which application should be allocated the
processor at any given time, and a local scheduler is
used to determine which of the chosen application’s
ready tasks should actually execute. A number of
different scheduling schemes have been proposed for
both global and local scheduling. These include cyclic
or time slicing frameworks, dynamic priority based
scheduling, and fixed priority scheduling. In this paper
we focus on the use of fixed priority pre-emptive
scheduling (FPPS) for both global and local
scheduling.

Fixed priority pre-emptive scheduling offers
advantages of flexibility over cyclic approaches whilst

mailto:alan.burns@cs.york.ac.uk
mailto:rob.davis@cs.york.ac.uk

being sufficiently simple to implement that it is
possible to construct highly efficient embedded real-
time operating systems based on this scheduling
policy.

The basic framework for a system utilising
hierarchical fixed priority pre-emptive scheduling is as
follows: The system comprises a number of
applications each of which is composed of a set of
tasks. A separate server is allocated to each
application. Each server has an execution capacity and
a replenishment period, enabling the overall processor
capacity to be divided up between the different
applications. Each server has a unique priority that is
used by the global scheduler to determine which of the
servers, with capacity remaining and tasks ready to
execute, should be allocated the processor. Further,
each task has a unique priority within its application.
The local scheduler, within each server, uses task
priorities to determine which of an application’s ready
tasks should execute when the server is active.

This basic model assumes that tasks and
applications are independent; however the model can
be extended to allow local resource sharing between
tasks in the same application and global resource
sharing between tasks in different applications. Local
resource sharing can be handled using protocols
developed for monolithic, as opposed to hierarchical,
fixed priority pre-emptive systems. Appropriate
protocols, mechanism and schedulability analysis for
global resource sharing are the focus of this paper.

1.1. Related work

1.1.1.Hierarchical fixed priority pre-emptive
scheduling. In 1999, building upon the work of Deng
and Liu [2], Kuo and Li [1] first introduced analysis of
hierarchical fixed priority pre-emptive scheduling.
They provided a simple utilisation based schedulability
test, using the techniques of Liu and Layland [4].

In 2002, Saewong et al [5] provided response time
analysis for hierarchical systems using Deferrable
Servers or Sporadic Servers to schedule a set of hard
real-time applications. This analysis assumes that in
the worst-case a server’s capacity is made available at
the end of its period. Whilst this is a safe assumption, it
is also pessimistic.

In 2003, Shin and Lee [6] provided analysis of
fixed priority pre-emptive scheduling at the local level,
given the bounded delay periodic resource model,
introduced by Feng and Mok [3].

Also in 2003, Lipari and Bini [7] provided an
alternative sufficient but not necessary response time
formulation using an availability function to represent

the time made available by a server from an arbitrary
time origin. In [8], Almeida built upon the work of
Lipari and Bini, recognising that the server availability
function depends on the “maximum jitter that periods
of server availability may suffer”. This analysis is
more accurate but can still be pessimistic.

In 2005, Davis and Burns [13] provided exact1

(sufficient and necessary) response time analysis for
independent hard real-time tasks scheduled under
Periodic, Sporadic and Deferrable Servers.

1.1.2 Resource sharing. In fixed priority pre-emptive
systems, the need for mutually exclusive access to
shared resources leads to priority inversion where a
high priority task is blocked waiting for a low priority
task to release a resource. In 1990, Sha et al. [18]
showed that without an appropriate protocol for
resource access, such priority inversion can be
essentially unbounded; a low priority task accessing a
resource can be pre-empted by tasks of medium
priority further delaying execution of the blocked high
priority task. A number of protocols based on priority
inheritance and priority ceilings [18] have been
developed to limit this priority inversion. The most
important and widely used of these is the Stack
Resource Policy (SRP) developed in 1991 by Baker
[11], extending the Priority Ceiling Protocol of Sha et
al. [18].

The SRP associates a priority ceiling with each
resource. This ceiling priority is equal to the highest
priority of any task that accesses the resource. At run-
time, when a task accesses a resource, its priority is
immediately increased to the ceiling priority of the
resource. Thus SRP bounds the amount of blocking (or
priority inversion) which a task is subject to, to the
maximum time for which any lower priority task locks
a resource that is shared with the task of interest or
another task of higher priority. The SRP ensures that a
task can only ever be blocked prior to actually starting
to execute. This minimises the number of context
switches, means that all the tasks can execute on a
single stack, and prevents deadlock.

In 1999, Kuo and Li [1] showed that if tasks in
hierarchical systems share resources locally (strictly
within an application) according to the SRP then task
schedulability analysis may be simply extended to
account for blocking equal to the maximum time that
any lower priority task within the application locks a
resource that is shared with the task of interest or a task
of higher priority. Kuo and Li assumed that execution

1 This analysis is exact if and only if, in the best case, the server can
provide all of its capacity at the start of its period.

of the task is suspended when the server’s capacity is
exhausted, even if the task currently has a resource
locked. This scheme is highly effective for sharing
local resources, however it is inappropriate for sharing
global resources. Suspension of a task with a global
resource locked would lead to unacceptably long
delays for tasks in other applications wishing to access
the resource.

To address this problem, Kuo and Li introduced a
common server for all globally shared resource
accesses. This has the disadvantage that as more tasks
are added that share global resources, so the common
server’s capacity must be made larger: its capacity is
effectively the sum of the lengths of the resource
accesses in each task, whilst its period is the greatest
common divisor of task periods. Accommodating such
a server has a significant negative impact on system
schedulability.

In 1997, in the context of hierarchical systems
based on Earliest Deadline First (EDF) scheduling,
Deng and Liu [2] suggested using non-pre-emptable
global resource access. This bounds the maximum
amount of blocking that a task may be subject to, to the
maximum time that any other task locks any global
resource. This scheme has the advantage of simplicity
and hence low implementation overheads, however it
has the disadvantage that all tasks are subject to
blocking, even those in high priority servers that do not
actually access any global resources themselves.

In 1995, Ghazalie and Baker [15] analysed the
effect of access to mutually exclusive globally shared
resources on schedulability for the case of a single
server under EDF scheduling. Ghazalie and Baker
recognised that if task execution was suspended during
resource access, due to exhaustion of server capacity,
excessive periods of blocking would ensue. They
proposed that if a server’s capacity is exhausted with a
global resource locked then the server should be
allowed to overrun until the resource is unlocked. This
overrun is limited to the maximum resource access
time. To avoid a cumulative effect in subsequent server
periods any overrun is then deducted from the capacity
allocated at the start of the next server period.

In [14], Niz et al provided a brief description of the
multi-reserve PCP scheme. This scheme enforces
execution time budgets on task execution and on
resource access via the use of reserves (servers). The
multi-reserve PCP scheme uses task priorities to
determine multi-reserve priorities in a way that
emulates the SRP. However, its applicability appears to
be limited to systems with only one task per server.

1.2. Organisation

Section 2 describes the terminology, notation and
system model used in the rest of this paper. It also re-
visits the schedulability analysis for independent
applications in hierarchical fixed priority pre-emptive
systems given in [13]. Section 3 defines the
Hierarchical Stack Resource Policy (HSRP) for global
resource access. This policy combines server and task
ceiling priorities with a server overrun and payback
mechanism to limit both priority inversion and
interference. Section 4 provides response time analysis
for applications sharing both local resources using the
SRP and global resources using the HSRP. Section 5
provides an example examining server and task
response times under the HSRP. Section 6 makes a
number of recommendations about using the HSRP in
real-world systems. Finally, section 7 summarises the
major contributions of this paper and suggests
directions for future research.

2. Hierarchical scheduling model

2.1. Terminology and system model

We are interested in the problem of scheduling
multiple real-time applications on a single processor.
Each application comprises a number of real-time
tasks. Associated with each application is a server. The
application tasks execute within the capacity of the
associated server.

Scheduling takes place at two levels: global and
local. The global scheduling policy determines which
server has access to the processor at any given time,
whilst the local scheduling policy determines which
application task that server should execute. In this
paper we analyse systems where the fixed priority pre-
emptive scheduling policy is used for both global and
local scheduling.

Application tasks may arrive either periodically at
fixed intervals of time, or sporadically after some
minimum inter-arrival time has elapsed. Each
application task iτ , has a unique priority i within its
application and is characterised by its relative deadline
Di, worst-case execution time Ci, minimum inter-
arrival time Ti, otherwise referred to as its period, and
finally its release jitter Ji defined as the maximum time
between the task arriving and it being ready to execute.

Each server has a unique priority S, within the set
of servers and is characterised by its capacity CS, and
replenishment period TS. A server’s capacity is the
maximum amount of execution time that may normally
be consumed by the server in a single invocation. The

replenishment period is the minimum time before the
server’s capacity is available again.

A task’s worst-case response time Ri, is the longest
time from the task arriving to it completing execution.
Similarly, a server’s worst-case response time RS, is the
longest time from the server being replenished to its
capacity being exhausted, given that there are tasks
ready to use all of the server’s available capacity. A
task is said to be schedulable if its worst-case response
time does not exceed its deadline. A server is
schedulable if its worst-case response time does not
exceed its period. The analysis given in this paper
assumes that both tasks and servers have deadlines that
are no greater than their periods.

The critical instant [4] for a task is defined as the
pattern of execution of other tasks and servers that
leads to the task’s worst-case response time.

The schedulability analysis originally given in [13]
and revisited in the remainder of this section assumes
that all applications and tasks are independent. This
restriction is lifted in section 4 and the analysis
extended to take account of blocking effects due to
tasks accessing resources that are shared locally within
a single application or globally between tasks in
multiple applications.

In this paper we consider applications scheduled
under a simple Periodic Server. The analysis presented
is extensible to alternative server algorithms such as
the Deferrable Server and the Sporadic Server,
however due to space considerations these alternative
server algorithms are not discussed further.

The Periodic Server is invoked with a fixed period
and executes any ready tasks until its capacity is
exhausted. Note each application is assumed to contain
an idle task that continuously carries out built in tests,
memory checks and so on, therefore the server’s
capacity is fully consumed during each period.

Once the server’s capacity is exhausted, the server
suspends execution until its capacity is replenished at
the start of its next period. If a task arrives before the
server’s capacity has been exhausted then it will be
serviced. Execution of the server may be delayed and
or pre-empted by the execution of other servers at a
higher priority. The jitter of the Periodic Server is
assumed to be zero and for the sake of simplicity,
server jitter is therefore omitted from the schedulability
analysis equations. The behaviour of the server does
however add to the jitter of the tasks that it executes.
The release jitter of the tasks is typically increased by

SS , corresponding to the maximum time that a
task may have to wait from the server capacity being
exhausted to it being replenished.

CT −

The analysis presented in the next section makes

use of the concepts of busy periods and loads. For a
particular application, a priority level i busy period is
defined as an interval of time during which there is
outstanding task execution at priority level i or higher.

Busy periods may be represented as a function of
the outstanding execution time at and above a given
priority level, thus is used to represent a priority
level i busy period (or ‘window’, hence w) equivalent
to the time that the application’s server can take to
execute a given load L. The load on a server is itself a
function of the time interval considered. We use
to represent the total task executions, at priority level i
and above, released by the application within a time
window of length w.

)(Lwi

)(wLi

2.2. Task schedulability analysis

In this section we revisit the schedulability analysis
given in [13] for independent hard real-time
applications.

Using the principles of Response Time Analysis
[10], the worst-case response time for a task iτ ,
executing under a server S, occurs following a critical
instant where:
1. The server’s capacity is exhausted by lower

priority tasks as early in its period as possible.
2. Task iτ and all higher priority tasks in the

application arrive just after the server’s capacity is
exhausted.

3. The server’s capacity is replenished at the start of
each subsequent period, however further execution
of the server is delayed for as long as possible due
to interference from higher priority servers.

The worst-case response time of iτ can be determined
by computing the length of the priority level i busy
period starting at the first release of the server that
could execute the task (see Figure 1).

Figure 1 Busy period
This busy period can be viewed as being made up of
three components:
1. The execution of task iτ and tasks of higher

priority released during the busy period.

2. The gaps in any complete periods of the server.
3. Interference from higher priority servers in the

final server period that completes execution of the
task.

The task load at priority level i and higher, ready to be
executed in the busy period , is given by: iw

j
ihpj j

ji
iii C

T
Jw

CwL ∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+=

)(
)((1)

where hp(i) is the set of tasks that have priorities
higher than task iτ and is the release jitter of the
task, increased by due to the operation of the
server.

jJ
SS CT −

The total length of gaps in complete server periods,
not including the final server period, is given by:

)(1)(
SS

S

ii CT
C

wL
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
 (2)

The interference due to higher priority servers
executing during the final server period that completes
execution of task iτ is dependent on the amount of
task execution that the server needs to complete before
the end of the busy period. The exact interference can
be calculated using information about server priorities,
capacities and replenishment periods.

Figure 1 illustrates the interference in the final
server period. The extent to which the busy period
extends into the final server period is given by:

iw

S
S

ii
i T

C
wLw ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
− 1)((3)

The full extent of the busy period, including
interference from higher priority servers in the final
server period, can be found using the following
recurrence relation, presented in [13]:

X

servers
ShpX X

S
S

n
iin

i

SS
S

n
iin

ii
n
i

C
T

T
C

wL
w

CT
C

wL
wLw

∑
∈∀

+

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

)(

1

1)(,0max

)(1)()(

 (4)

where hp(S) is the set of servers with higher
priority than server S.

Recurrence starts with a value of
and ends either when

 in which case i gives the task’s
worst-case response time or when in
which case the task is not schedulable.

⎡ ⎤())(1/0
SSSiii CTCCCw −−+=

n
i

n
i ww =+1 n

i Jw +
ii

n
i JDw −>+1

Note the use of max(0, …) in the 3rd term in
Equation (4) ensures that the extent to which the busy

period extends into the final server period is not
considered to be an interval of negative length.

3. Resource access policies

In this section, we describe resource access
policies, mechanisms and schedulability analysis for
both local and global resource access.

3.1. Local resources

3.1.1 Stack Resource Policy. Following Kuo and Li
[1], we assume that access to local resources is
according to the SRP:
1. Associated with each local resource is a ceiling

priority. This local ceiling priority is equal to the
highest priority of any task that accesses the
resource.

2. Whilst a task accesses a local resource, its priority
is increased to the local ceiling priority of the
resource.

3. If the capacity of the task’s server is exhausted
whilst the task is accessing a local resource, then
the server simply suspends execution.

3.2. Global resources

We assume that there is a set of globally shared
resources G. Each application task iτ may access a
global shared resource r, for at most an execution time

ir . This critical section is assumed to be less than the
task’s worst-case execution time and also less than the
associated server’s capacity, so iir and

b ,

Cb <, Sir Cb <, .
We note that for a well-constrained application
will typically be much smaller than these values.

irb ,

3.1.1 Hierarchical Stack Resource Policy. We
assume that access to global shared resources is
according to the Hierarchical Stack Resource Policy
(HSRP) defined below. The HSRP is based on the
SRP, extended to hierarchical systems, and utilising the
overrun and payback mechanism described in [15]:
1. Associated with each global resource is a ceiling

priority. This is a global (i.e. server) priority level
that is equal to the highest priority of any server
that executes a task that also accesses the resource.

2. Whilst a task accesses a global shared resource the
priority of its server is increased to the global
ceiling priority associated with the resource.

3. Whilst a task accesses a global shared resource,
the priority of the task itself is increased to the
highest local priority level within its application.

4. If the server’s capacity is exhausted whilst a task

has a global resource locked, then the server
continues to execute the task until the resource
access is completed.

5. (Optionally) If a server overruns then the capacity
allocated to it at the start of the next server period
is reduced by the amount of the overrun.

It might seem that point 3 above unnecessarily
increases the task’s priority in the case where the task
belongs to the highest priority server involved in
access to the resource. Under the SRP we might expect
such a task’s priority to be increased so it is equal to
the highest priority of any task in the application that
accesses the resource, but not necessarily equal to the
highest priority of any task in the application. However
there is a good reason for making global resource
accesses effectively non-pre-emptive with respect to
other tasks in the same application. As the server is
permitted to overrun whilst a global resource is locked,
the maximum overrun is determined by the overall
time for which the resource is held. To avoid a
detrimental effect on schedulability, the HSRP must
ensure that this time cannot be extended via pre-
emption by other tasks in the same application.

3.3. Budget enforcement

To ensure that erroneous behaviour of one application
cannot cause tasks in another application to miss their
deadlines, a run-time mechanism is required that
ensures that any task accessing a global resource r
cannot exceed its budgeted time irb , in that resource.
We assume that if a task exceeds this budget, then its
execution is abandoned and its server’s priority reset.
This prevents further failures in other tasks and servers.
It is beyond the scope of this paper, which is concerned
with schedulability analysis, to consider the
consequences of this abandonment, but typically the
task could be aborted and the resource returned to a
stable state via a roll-back mechanism.

3.4. Notation

SO is defined as the longest time for which any
task in server S may access a global resource. SO is
effectively the server overrun time, equal to the longest
time that server S may overrun.

B
B

S is defined as the longest time for which a task,
in a server of lower priority than S, can access a
resource that has a ceiling priority equal to or higher
than S. S corresponds to the longest time that an
invocation of server S can be blocked from executing
by a server of lower priority.

B

B

iB is defined as the longest time for which a task in

the same application and of lower priority than task iτ ,
accesses either: (i) a global shared resource or (ii) a
local shared resource with a ceiling priority greater
than or equal to the priority of iτ . i corresponds to
the longest time that a task in the same application and
of lower priority than task i

B

τ can execute at priority i
or higher during a priority level i busy period.

4. Schedulability with shared resources

4.1. Server schedulability

The SRP, used for local resource access, does not
alter server priorities. As task execution is suspended
when server capacity is exhausted during local
resource access, local resource access cannot cause
server overruns. Hence local resource access has no
effect on server schedulability.

The HSRP, used for global resource access, does
alter server priorities and can result in server overruns.
The worst-case effects on the schedulability of a server
S due to global resource access under HSRP occur as
follows:
1. When server S is released, a lower priority server

is running and the task that it is executing has just
started accessing a global shared resource r.
Resource r has the longest access time S , of any
global resource shared by a task in a server of
lower priority than S and another task in server S
or a server of higher priority than S.

B

2. Once server S is released, all subsequent releases
of servers of higher priority than S overrun by their
maximum amount due to tasks accessing global
resources. With the overrun and payback
mechanism, the first invocation of each higher
priority server in the busy period of S, has an
execution time of XOX , whilst subsequent
invocations have an execution time of X as their
capacity is reduced by but they may also
overrun by .

BC +
C

XOB
XO

Server schedulability can be determined by
incorporating the appropriate blocking and interference
factors into the standard recurrence relation:

B

X

servers
ShpX X

n
S

servers
ShpX

XOSS
n
S C

T
wBBCw ∑∑

∈∀∈∀

+
⎥
⎥

⎤
⎢
⎢

⎡
+++=

)()(

1 (5)

The recurrence relation given by Equation (5) starts
with and ends when either in which
case gives the worst-case response time of the
server or when in which case the server is
unschedulable.

00 =Sw n
S

n
S ww =+1

1+n
Sw

S
n
S Tw >+1

When considering the schedulability of server S, we

only require that the server’s normal capacity SC be
completed within its period. We do not need to include
any overrun by server S in the analysis of S itself. This
is because any overrun by server S in one period leads
to a reduction in the capacity available in the next
period by exactly the amount of the overrun. Hence in
the next period, interference due to any overrun plus
the replenished capacity of the server cannot exceed

S . Again this must be completed by the end of the
server period. There may of course be a further global
resource access causing an overrun at the end of this
server period, however the same argument applies.
Hence for the server to be schedulable only C needs
to be accommodated in each server period.

C

S

An alternative formulation is possible if we relax
the rule that any server overruns are deducted from the
subsequent replenishment capacity. In this case, the
schedulability analysis is formulated as if each higher
priority server X had a capacity of . XOX BC +

)(
)(

1
XOX

servers
ShpX X

n
S

SS
n
S BC

T
w

BCw +⎥
⎥

⎤
⎢
⎢

⎡
++= ∑

∈∀

+ (6)

Note that whilst server S completes execution of its
normal capacity in the response time given by
Equation (6), we must also ensure that any overrun by
S cannot impact its own next invocation. Hence we
must ensure that the busy period calculated by
Equation (7) is also less than the server’s period.

)(
)(

1
XOX

servers
ShpX X

n
S

SSOS
n
S BC

T
w

BBCw +⎥
⎥

⎤
⎢
⎢

⎡
+++= ∑

∈∀

+ (7)

Although Equation (6) leads to longer response
times than Equation (5); it may be preferable, for
systems with short global resource access times, to
simply allow for server overruns without the additional
overheads of monitoring the overrun and adjusting the
subsequent capacity replenishment.

4.2. Task schedulability

In a hierarchical system, task schedulability
depends upon two factors, both of which are increased
by resource access.
1. The worst-case load that must be executed during

the busy period of the task.
2. The worst-case time that the server takes to

execute this load.

4.2.1. Task load. Accesses to local and global
resources have an effect on the amount of task load
that has to be executed before task iτ can be
completed. The SRP serialises local resource access

such that only one task of a lower priority than task iτ ,
can access a shared resource with a ceiling priority
higher than or equal to priority i at any given time.
Similarly, the HSRP serialises access to global
resources such that only one task in server S can access
a global shared resource at any given time. These
protocols are compatible and proper nesting of local
and global resource accesses is permitted.

Taking global and local resource access into
account, the function , determining the
maximum task load at priority i and above ready to
execute in a window of length w is given by:

)(wLi

j
ihpj j

ji
iiii C

T
Jw

CBwL ∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
++=

)(
)((8)

where i is the blocking factor due to local and global
resource access defined in section 3.4 and j is the
release jitter of task j . Note is increased due to
the operation of the server by with
the payback mechanism, or by without the
payback mechanism.

B
J

τ jJ
)(SOSS BCT −−

SS CT −

4.2.2 Server execution. Accesses to globally shared
resources have three effects, each of which increases
the time that the server can take to execute a given
load:
1. The server’s capacity is exhausted earlier in its

period. This occurs when the previous invocation
of the server overran by SO due to a task
accessing a global shared resource. This overrun
must be paid back, decreasing the server’s
replenishment capacity to SOS and thus
increasing the maximum time between exhaustion
of this capacity and the next replenishment to

SOSS

B

BC −

BCT +− as shown in the second server
period in Figure 2.

2. Immediately prior to the final period of server S
that will complete execution of task iτ , a lower
priority server is running and the task that it is
executing has just started accessing a global shared
resource. This resource access has a ceiling
priority equal to or higher than that of server S and
a length . S

3. In the final period of server S that will complete
execution of task i

B

τ , all releases of servers of
higher priority than S overrun by their maximum
amount due to tasks accessing globally shared
resources. Assuming that the payback mechanism
is used, this means that the first release of each
server has an execution time of XOX , whilst
subsequent releases have an execution time of XC
as their capacity is reduced by and they
overrun by .

BC +

XOB
XOB

4.2.3 Worst-case scenario. Figure 2 illustrates the
critical instant leading to the worst-case response time
of task iτ .

RS

TS

Task Ri
Overrun of BSO

CS

Payback of BSO

TS-(CS-BSO)

Task Blocking Bi

Server Blocking BS

Jitter Busy Period

CS

Key:

Server Capacity (available)
Server Capacity (pre-used) Task Blocking

Server Interference
Server BlockingServer Capacity (unused)

Figure 2: Critical instant
We note that when it is a global resource access

that defines the longest blocking period i , then the
scenario shown in Figure 2 cannot actually occur. This
is because global resource access immediately prior to
the server capacity being exhausted leads to an overrun
as illustrated in Figure 3.

B

It is easy to show that the scenario in Figure 3
cannot result in a longer response time than that in
Figure 2. (For task loads that exceed S , the response
time is the same in both cases. For task loads S

C
C≤ ,

the response time is less for the scenario in Figure 3 as
the task completes execution using a smaller amount of
server capacity in the 3rd server period illustrated).

Key:

Server Capacity (available)
Server Capacity (pre-used) Task Blocking

Server Interference
Server BlockingServer Capacity (unused)

RS

TS

Task Ri

CS

Payback of BSO

TS-CS-BSO

Task Blocking and overrun of Bi

Server Blocking BS

Jitter Busy Period
CS-Bi

Overrun of BSO

Figure 3
 Whilst global resource access might result in a
potentially shorter response time, it is also the case that
such resource access could be completed immediately
prior to exhaustion of the server’s normal capacity in
the second server period shown in Figure 3. This has
the potential to cause ‘push through’ blocking where at
most i units of additional high priority task execution
are pushed into the busy period of task i

B
τ , effectively

producing the same worst-case load and execution
scenario as depicted in Figure 2.

To ensure that our analysis computes a sufficient
worst-case response time in all circumstances, we

assume the behaviour shown in Figure 2, even when a
global resource is responsible for the maximum task
blocking time i . We recognise that this may result in
pessimism in the analysis of tasks where all of the
following hold:

B

1. The blocking factor iB is due to global resource
access by lower priority tasks in the same
application rather than local resource access.

2. There are no higher priority tasks that can provide
additional interference in the form of ‘push
through’ blocking.

3. The task’s worst-case response time is less than
SS CT −2 .

4.2.4 Response times. Incorporating the server
blocking factors into the response time analysis
equations, and assuming that the overrun and payback
mechanism is used, the length of the priority level i
busy period required for the server to execute the task
load is given by:

X

servers
ShpX X

S
S

n
iin

i

servers
ShpX

XO

SSS
S

n
iin

ii
n
i

C
T

T
C
wL

w

B

BCT
C
wL

wLw

∑∑
∈∀∈∀

+

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

+

++−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

)()(

1

1)(,0max

)(1)()(

 (9)
Where is given by Equation (8) and is
recalculated on each iteration of the recurrence
relation. Recurrence starts with a value of and
ends either when in which case i
gives the task’s worst-case response time or when

ii in which case the task is not
schedulable. (Note that the task jitter is increased by

)(ii wL

00 =iw
nn ww =+1 n Jw +

n JDw −>+1

)(SOSS BCT −− when the overrun and payback
mechanism is used).

)(

1
)(

,0max

)(1
)(

)(

)(

1

XOX

servers
ShpX X

S
S

n
iin

i

SSS
S

n
iin

ii
n
i

BC
T

T
C

wL
w

BCT
C

wL
wLw

+

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

++−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

∑
∈∀

+

(10)

An alternative formulation is possible if we relax
the rule that any server overruns are deducted from the
subsequent replenishment capacity. In this case, the
length of the priority level i busy period required for
the server to execute the task load is given by Equation
(10). The task load is again given by Equation (8). In

this case the task jitter is increased by due to
the operation of the server.

SS CT −

4.3. Non-pre-emptive global resource access

We observe that a simple scheme utilising non-pre-
emptive execution for global resource access, as
suggested in [2], is effectively a special case of the
HSRP (without the payback mechanism), where the
global ceiling priority of each resource is set to the
highest priority of any server, as opposed to the highest
priority of those servers with tasks that access the
resource. As such, non-pre-emptive execution of global
resources can be analysed using the schedulability
analysis for the HSRP, i.e. Equations (6), (7) and (10),
provided that an appropriately revised blocking factors
() are used. SB

A simple non-pre-emptive scheme for global
resource access gives rise to blocking factors that are
always at least as large as those for the HSRP and so
the HSRP dominates the non-pre-emptive approach in
terms of both server and task schedulability.

With non-pre-emptive execution, just one long
global resource access in a low priority application is
enough to result in a large blocking factor for all higher
priority applications (tasks and servers) irrespective of
whether or not they share that resource. For this reason,
non-pre-emptive global resource access is
inappropriate for many hierarchical systems. However,
for systems where all global resource access times are
very short, the benefits of simplicity and lower
implementation overheads may be enough to warrant
considering a simple non-pre-emptive mechanism
despite the potential for increased blocking times.

5. Example

In this section, we use a simple example system to
illustrate the effects of local and global resource access
on server and task worst-case response times using the
HSRP with and without the payback mechanism.

The example system comprises three applications,
each scheduled under a Periodic Server defined by the
parameters given in Table 1. (The times are in
microseconds – µS).

Table 1: Server parameters

Server Period Capacity T-C U
SA 2000 500 1500 25%
SB 10000 2500 7500 25%
SC 20000 5000 15000 25%

Tasks in all three applications access a globally

shared resource for a maximum of 350µS. (We note
that this time is relatively large in comparison to the
capacity of server SA, this is deliberate to better
illustrate the potential effects of long resource access
times).

Table 2: Server response times

Server (1) No
Resources

(2) HSRP
No Payback

(3) HSRP &
Payback

SA 500 850 850
SB 3500 5400 4700
SC 10000 19200 14700

Table 2 gives the worst-case response time of the
servers assuming (1) no global resource access, (2)
global resource access using the HSRP without the
payback mechanism (3) global resource access using
the HSRP with the payback mechanism.

Note that where the payback mechanism is
employed, as mentioned earlier, we need only consider
the server’s response time to the exhaustion of its
normal capacity. In contrast, in the overrun and no
payback case, we must include the server’s maximum
overrun time and check that the resulting busy period
does not exceed the server’s period. In our example,
the busy periods for the overrun and no payback case
exceed the response times given in the second column
of Table 2 by 350µS.

It is evident from our schedulability analysis and
the values in Table 2 that global resource accesses have
a cumulative effect on server response times and busy
periods. In particular, permitting server overruns
without payback dramatically increases the total
interference on lower priority servers. The busy period
of server SC without payback (19550µS) is almost
twice that of the non-blocking case (10000µS) and
close to being unschedulable. Using the payback
mechanism limits this cumulative interference resulting
in improved server schedulability.

We now consider task response times. Server SB
executes the set of tasks defined by the parameters in
Table 3 below. Task jitter is assumed initially to be
zero, increased only by the operation of the server.

Table 3: Task parameters

Task T D C U
1τ 25000 25000 2300 9.6%
2τ 50000 50000 4800 9.2%
3τ 100000 100000 2400 2.4%

In addition to global resource accesses, these tasks also
all access a local shared resource for a maximum of

500µS. Table 4 gives the worst-case response times of
the tasks under server SB assuming (1) no resource
access, (2) local resource access using the SRP and
global resource access using the HSRP without the
payback mechanism (3) local resource access using the
SRP and global resource access using the HSRP with
the payback mechanism.

Table 4: Task response times

Task (1) No
Resources

(2) HSRP
No Payback

(3) HSRP &
Payback

1τ 10800 19000 19350
2τ 40400 42800 42450
3τ 89200 90750 90750

There are two interesting conclusions to be drawn
from the task response times.

Firstly, resource access can increase the task load
sufficient to require a further invocation of the server
to complete execution. This effect is responsible for
increasing the response time of 1τ from 10800µS in the
non-blocking case to at least 19000µS when resource
access is accounted for.

Secondly, using the payback mechanism may or
may not improve task response times. Although the
interference from higher priority servers in the final
server period is either the same or less when the
payback mechanism is used, the server induced task
jitter is greater. Combined, these two effects may result
in task response times that are unchanged, increased or
decreased.

The example illustrates all three possibilities. In
the case of task 1τ , the task load executed during the
final server period that completes execution of task 1τ
is 300µS. Accounting for server blocking and
overruns, the busy period is only long enough for one
invocation of SA to interfere before 1τ is completed.
This means the overall task busy period is the same for
both overrun without payback and overrun & payback
mechanisms at 11500µS. As the server induced task
jitter is less in the case of overrun without payback, the
overall response time is shorter (19000µS v 19350µS).

For task 2τ , the task load executed during the final
server period is 2400µS, leading to interference from
three invocations of SA before 2τ is completed. The
two additional overruns more than counteract the
increased server induced jitter and the overall response
time is shorter with the payback mechanism (42450µS
v 42800µS).

Finally, for task 3τ , the task load executed during
the final server period is 1200µS, leading to
interference from two invocations of SA before 3τ is
completed. The additional overrun exactly counteracts

the increased server induced task jitter and the
response times are the same with and without payback.

6. Recommendations

It is evident from the response time analysis and
our example that long accesses to global shared
resources in hierarchical fixed priority pre-emptive
systems can have a large cumulative impact on the
schedulability of both servers and application tasks.
Clearly it is advisable to make such resource accesses
as short as possible to limit their impact on system
schedulability.

In practical applications, there are arguments both
for and against employing the payback mechanism
within the HSRP. Omitting the payback mechanism
has the advantage of simplicity. However including the
payback mechanism may improve system
schedulability.

Ultimately, the choice whether or not to include the
payback mechanism depends upon the parameters of
the system. If all of the servers have similar periods,
then it is unlikely that the payback mechanism would
provide any advantage. If global resource access times
are short, then any advantage that the payback
mechanism has may be outweighed by the additional
complexity of implementation. However, in other
systems, typically those with a wider range of server
periods and longer global resource access times, the
advantages of the payback mechanism can be
significant; resulting in the ability to support larger
server capacities and hence reduce task response times.

7. Summary and conclusions

In this paper we considered the problem of
scheduling a number of applications on a single
processor using a set of servers. Application tasks were
permitted to make mutually exclusive access to
resources that were shared either locally within the
same application, or globally, between applications.

The motivation for this work comes from the
automotive and avionics industries where the advent of
high performance microprocessors is now making it
both possible and cost effective to implement multiple
applications on a single platform. These applications
typically require mutually exclusive access to both
local shared resources such as data buffers within an
application and global shared resources such as shared
communications devices and other memory mapped
on-chip peripherals, as well as executing system calls
and other critical sections where interrupts are
disabled.

7.1. Contribution

The major contributions of this work are:
• Improved understanding of the impact of resource

sharing in server based systems, leading to the
realisation that limiting the length of such critical
sections is highly desirable – even more so than in
monolithic systems.

• Definition of an appropriate resource locking
protocol for hierarchical fixed priority pre-emptive
systems. This Hierarchical Stack Resource Policy
(HSRP) combines ceiling priorities to limit
priority inversion and hence blocking of high
priority application tasks and an overrun and
(optional) payback mechanism to limit
interference on low priority applications.

• Extended response time analysis catering for
global and local resource access by hard real-time
application tasks scheduled under a set of servers.

These contributions make significantly improvements
to the techniques and associated analysis available in
the design and development of hierarchical multi-
application, real-world systems.

7.2. Future work

Alternative approaches have been developed for
hierarchical systems with a somewhat different set of
assumptions scheduled using dynamic priorities. These
approaches avoid server overrun either by revising
server parameters prior to entering critical sections [16]
or by executing critical sections using the bandwidth of
blocked servers [17]. It remains an open question
whether an approach based on avoiding server
overruns would be successful in hierarchical fixed
priority pre-emptive systems.

8. Acknowledgements

This work was partially funded by the UK EPSRC
funded DIRC project and the EU funded FRESCOR
project. The authors would like to thank Reinder Bril
for his suggestions on an early version of this paper.

9. References

[1] T-W. Kuo, C-H. Li. “A Fixed Priority Driven Open
Environment for Real-Time Applications”. In proceedings of
IEEE Real-Time Systems Symposium, pp. 256-267, IEEE
Computer Society Press, December 1999.
[2] Z. Deng, J.W-S. Liu. “Scheduling Real-Time
Applications in an Open Environment”. In proceedings of the
IEEE Real-Time Systems Symposium. pp. 308-319, IEEE
Computer Society Press, December 1997.

[3] X. Feng and A. Mok. “A Model of Hierarchical Real-
Time Virtual Resources”. In proceedings of IEEE Real-Time
Systems Symposium. pp. 26-35, IEEE Computer Society
Press, December 2002.
[4] C.L. Liu, J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”
JACM, 20 (1) 46-61, January 1973.
[5] S. Saewong, R. Rajkumar, J. Lehoczky, M. Klein.
“Analysis of Hierarchical Fixed priority Scheduling”. In
proceedings of the ECRTS, pp. 173-181, 2002.
[6] I. Shin, I. Lee. “Periodic Resource Model for
Compositional Real-Time Guarantees”. In proceedings of the
IEEE Real-Time Systems Symposium. pp. 2-13, IEEE
Computer Society Press, December 2003.
[7] G. Lipari, E. Bini. “Resource Partitioning among Real-
Time Applications”. In proceedings of the ECRTS, pp July
2003.
[8] L. Almeida. “Response Time Analysis and Server Design
for Hierarchical Scheduling”. In proceedings of the IEEE
Real-Time Systems Symposium Work-in-Progress, December
2003.
[9] G. Bernat, A. Burns. “New Results on Fixed Priority
Aperiodic Servers”. In proceedings of the IEEE Real-Time
Systems Symposium, pp. 68-78, IEEE Computer Society
Press, December 1999.
[10] N.C. Audsley, A. Burns, M. Richardson, A.J.Wellings.
“Applying new Scheduling Theory to Static Priority Pre-
emptive Scheduling”. Software Engineering Journal, 8(5) pp.
284-292, 1993.
[11] T.P. Baker. “Stack-based Scheduling of Real-Time
Processes.” Real-Time Systems Journal (3)1, pp. 67-100,
1991.
[12] L. Sha, J.P. Lehoczky, R. Rajkumar. “Solutions for
some Practical Problems in Prioritised Preemptive
Scheduling” In proceedings of the IEEE Real-Time Systems
Symposium, pp. 181-191, IEEE Computer Society Press,
December 1986.
[13] R.I. Davis, A. Burns “Hierarchical Fixed Priority Pre-
emptive Scheduling” In proceedings of the IEEE Real-Time
Systems Symposium, pp. 389-398, IEEE Computer Society
Press, December 2005.
[14] D. Niz, L. Abeni, S. Saewong, R. Rajkumar. “Resource
Sharing in Reservation-Based Systems” In proceedings of the
IEEE Real-Time Systems Symposium. pp. 171-180, IEEE
Computer Society Press, December 2001.
[15] T.M. Ghazalie, T.P. Baker. “Aperiodic Servers in a
Deadline Scheduling Environment” Real-Time Systems. 9(1)
July 1995.
[16] M. Caccamo and L. Sha. “Aperiodic Servers with
Resource Constraints” In proceedings of the IEEE Real-Time
Systems Symposium. pp. 161-170, IEEE Computer Society
Press, December 2001.
[17] G. Lamastra, G. Lipari, L. Abeni. “A Bandwidth
Inheritance Algorithm for Real-Time Task Synchronisation
in Open Systems” In proceedings of the IEEE Real-Time
Systems Symposium, pp. 151-160, IEEE Computer Society
Press, December 2001.
[18] L. Sha, R. Rajkumar, and J.P. Lehoczky. “Priority
inheritance protocols: An approach to real-time
synchronization”. IEEE Transactions on Computers, 39(9):
1175-1185, 1990.

	Abstract
	Introduction
	Related work
	Organisation

	Hierarchical scheduling model
	Terminology and system model
	Task schedulability analysis

	Resource access policies
	Local resources
	Global resources
	Budget enforcement
	Notation

	Schedulability with shared resources
	Server schedulability
	Task schedulability
	Non-pre-emptive global resource access

	Example
	Recommendations
	Summary and conclusions
	Contribution
	Future work

	Acknowledgements
	References

