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Abstract 
This paper focuses on resource sharing in 

hierarchical fixed priority pre-emptive systems where a 
number of separate applications, each with its own 
server, reside on a single processor. It defines the 
Hierarchical Stack Resource Policy, an appropriate 
global resource access policy that bounds priority 
inversion and also limits interference due to overruns 
during resource access. 

The paper provides detailed response time analysis 
enabling the schedulability of application servers and 
tasks to be determined for systems with local and 
global resource access. This analysis is applicable to 
real-world systems where server-based applications 
need mutually exclusive access to shared resources 
such as communications buffers, peripheral devices, 
operating system calls and data structures shared with 
interrupt handlers. 

1. Introduction 

In automotive electronics, the advent of advanced 
high performance embedded microprocessors have 
made possible functionality such as adaptive cruise 
control, lane departure warning systems, integrated 
telematics and satellite navigation as well as advances 
in engine management, transmission control and body 
electronics. Where low-cost 8 and 16-bit 
microprocessors were previously used as the basis for 
separate Electronic Control Units (ECUs), each 
supporting a single hard real-time application, there is 
now a trend towards integrating functionality into a 
smaller number of more powerful microprocessors. 
The motivation for such integration comes mainly from 
cost reduction, but also offers the opportunity of 
functionality enhancement. This trend in automotive 
electronics is following a similar trend in avionics. 

Integrating a number of real-time applications onto 
a single microprocessor raises issues of resource 
allocation and partitioning. In addition to the processor, 
tasks in disparate applications typically also need to 
share resources that must be accessed under mutual 
exclusion. For example, memory-mapped peripherals 
such as CAN controllers, FLASH memory used to 
store diagnostic information, and data structures shared 
with interrupt handlers. Tasks may also contain critical 
sections during which they cannot be pre-empted. 
These sections may correspond to operating system 
calls or intervals when interrupts are disabled to 
facilitate mutually exclusive access to data structures 
shared with interrupt handlers. 

When composing a system, comprising a number of 
applications, it is typically a requirement to provide 
temporal isolation between the various applications. 
This enables the properties of previous system designs, 
where each application resided on a separate processor, 
to be retained. In particular, if one application fails to 
meet its time constraints, then ideally there should be 
no knock on effects on other unrelated applications. 
There is currently considerable interest in hierarchical 
scheduling as a way of providing temporal isolation 
between applications executing on a single processor. 

In a hierarchical system, a global scheduler is used 
to determine which application should be allocated the 
processor at any given time, and a local scheduler is 
used to determine which of the chosen application’s 
ready tasks should actually execute. A number of 
different scheduling schemes have been proposed for 
both global and local scheduling. These include cyclic 
or time slicing frameworks, dynamic priority based 
scheduling, and fixed priority scheduling. In this paper 
we focus on the use of fixed priority pre-emptive 
scheduling (FPPS) for both global and local 
scheduling. 

Fixed priority pre-emptive scheduling offers 
advantages of flexibility over cyclic approaches whilst 
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being sufficiently simple to implement that it is 
possible to construct highly efficient embedded real-
time operating systems based on this scheduling 
policy. 

The basic framework for a system utilising 
hierarchical fixed priority pre-emptive scheduling is as 
follows: The system comprises a number of 
applications each of which is composed of a set of 
tasks. A separate server is allocated to each 
application. Each server has an execution capacity and 
a replenishment period, enabling the overall processor 
capacity to be divided up between the different 
applications. Each server has a unique priority that is 
used by the global scheduler to determine which of the 
servers, with capacity remaining and tasks ready to 
execute, should be allocated the processor. Further, 
each task has a unique priority within its application. 
The local scheduler, within each server, uses task 
priorities to determine which of an application’s ready 
tasks should execute when the server is active. 

This basic model assumes that tasks and 
applications are independent; however the model can 
be extended to allow local resource sharing between 
tasks in the same application and global resource 
sharing between tasks in different applications. Local 
resource sharing can be handled using protocols 
developed for monolithic, as opposed to hierarchical, 
fixed priority pre-emptive systems. Appropriate 
protocols, mechanism and schedulability analysis for 
global resource sharing are the focus of this paper. 

1.1. Related work 

1.1.1.Hierarchical fixed priority pre-emptive 
scheduling. In 1999, building upon the work of Deng 
and Liu [2], Kuo and Li [1] first introduced analysis of 
hierarchical fixed priority pre-emptive scheduling. 
They provided a simple utilisation based schedulability 
test, using the techniques of Liu and Layland [4]. 

In 2002, Saewong et al [5] provided response time 
analysis for hierarchical systems using Deferrable 
Servers or Sporadic Servers to schedule a set of hard 
real-time applications. This analysis assumes that in 
the worst-case a server’s capacity is made available at 
the end of its period. Whilst this is a safe assumption, it 
is also pessimistic. 

In 2003, Shin and Lee [6] provided analysis of 
fixed priority pre-emptive scheduling at the local level, 
given the bounded delay periodic resource model, 
introduced by Feng and Mok [3]. 

Also in 2003, Lipari and Bini [7] provided an 
alternative sufficient but not necessary response time 
formulation using an availability function to represent 

the time made available by a server from an arbitrary 
time origin. In [8], Almeida built upon the work of 
Lipari and Bini, recognising that the server availability 
function depends on the “maximum jitter that periods 
of server availability may suffer”. This analysis is 
more accurate but can still be pessimistic. 

In 2005, Davis and Burns [13] provided exact1

(sufficient and necessary) response time analysis for 
independent hard real-time tasks scheduled under 
Periodic, Sporadic and Deferrable Servers. 

1.1.2 Resource sharing. In fixed priority pre-emptive 
systems, the need for mutually exclusive access to 
shared resources leads to priority inversion where a 
high priority task is blocked waiting for a low priority 
task to release a resource. In 1990, Sha et al. [18] 
showed that without an appropriate protocol for 
resource access, such priority inversion can be 
essentially unbounded; a low priority task accessing a 
resource can be pre-empted by tasks of medium 
priority further delaying execution of the blocked high 
priority task. A number of protocols based on priority 
inheritance and priority ceilings [18] have been 
developed to limit this priority inversion. The most 
important and widely used of these is the Stack 
Resource Policy (SRP) developed in 1991 by Baker 
[11], extending the Priority Ceiling Protocol of Sha et 
al. [18]. 

The SRP associates a priority ceiling with each 
resource. This ceiling priority is equal to the highest 
priority of any task that accesses the resource. At run-
time, when a task accesses a resource, its priority is 
immediately increased to the ceiling priority of the 
resource. Thus SRP bounds the amount of blocking (or 
priority inversion) which a task is subject to, to the 
maximum time for which any lower priority task locks 
a resource that is shared with the task of interest or 
another task of higher priority. The SRP ensures that a 
task can only ever be blocked prior to actually starting 
to execute. This minimises the number of context 
switches, means that all the tasks can execute on a 
single stack, and prevents deadlock. 

In 1999, Kuo and Li [1] showed that if tasks in 
hierarchical systems share resources locally (strictly 
within an application) according to the SRP then task 
schedulability analysis may be simply extended to 
account for blocking equal to the maximum time that 
any lower priority task within the application locks a 
resource that is shared with the task of interest or a task 
of higher priority. Kuo and Li assumed that execution 

1 This analysis is exact if and only if, in the best case, the server can 
provide all of its capacity at the start of its period. 



of the task is suspended when the server’s capacity is 
exhausted, even if the task currently has a resource 
locked. This scheme is highly effective for sharing 
local resources, however it is inappropriate for sharing 
global resources. Suspension of a task with a global 
resource locked would lead to unacceptably long 
delays for tasks in other applications wishing to access 
the resource. 

To address this problem, Kuo and Li introduced a 
common server for all globally shared resource 
accesses. This has the disadvantage that as more tasks 
are added that share global resources, so the common 
server’s capacity must be made larger: its capacity is 
effectively the sum of the lengths of the resource 
accesses in each task, whilst its period is the greatest 
common divisor of task periods. Accommodating such 
a server has a significant negative impact on system 
schedulability. 

In 1997, in the context of hierarchical systems 
based on Earliest Deadline First (EDF) scheduling, 
Deng and Liu [2] suggested using non-pre-emptable 
global resource access. This bounds the maximum 
amount of blocking that a task may be subject to, to the 
maximum time that any other task locks any global 
resource. This scheme has the advantage of simplicity 
and hence low implementation overheads, however it 
has the disadvantage that all tasks are subject to 
blocking, even those in high priority servers that do not 
actually access any global resources themselves. 

In 1995, Ghazalie and Baker [15] analysed the 
effect of access to mutually exclusive globally shared 
resources on schedulability for the case of a single 
server under EDF scheduling. Ghazalie and Baker 
recognised that if task execution was suspended during 
resource access, due to exhaustion of server capacity, 
excessive periods of blocking would ensue. They 
proposed that if a server’s capacity is exhausted with a 
global resource locked then the server should be 
allowed to overrun until the resource is unlocked. This 
overrun is limited to the maximum resource access 
time. To avoid a cumulative effect in subsequent server 
periods any overrun is then deducted from the capacity 
allocated at the start of the next server period. 

In [14], Niz et al provided a brief description of the 
multi-reserve PCP scheme. This scheme enforces 
execution time budgets on task execution and on 
resource access via the use of reserves (servers). The 
multi-reserve PCP scheme uses task priorities to 
determine multi-reserve priorities in a way that 
emulates the SRP. However, its applicability appears to 
be limited to systems with only one task per server. 

1.2. Organisation 

Section 2 describes the terminology, notation and 
system model used in the rest of this paper. It also re-
visits the schedulability analysis for independent 
applications in hierarchical fixed priority pre-emptive 
systems given in [13]. Section 3 defines the 
Hierarchical Stack Resource Policy (HSRP) for global 
resource access. This policy combines server and task 
ceiling priorities with a server overrun and payback 
mechanism to limit both priority inversion and 
interference. Section 4 provides response time analysis 
for applications sharing both local resources using the 
SRP and global resources using the HSRP. Section 5 
provides an example examining server and task 
response times under the HSRP. Section 6 makes a 
number of recommendations about using the HSRP in 
real-world systems. Finally, section 7 summarises the 
major contributions of this paper and suggests 
directions for future research. 

2. Hierarchical scheduling model 

2.1. Terminology and system model 

We are interested in the problem of scheduling 
multiple real-time applications on a single processor. 
Each application comprises a number of real-time 
tasks. Associated with each application is a server. The 
application tasks execute within the capacity of the 
associated server. 

Scheduling takes place at two levels: global and 
local. The global scheduling policy determines which 
server has access to the processor at any given time, 
whilst the local scheduling policy determines which 
application task that server should execute. In this 
paper we analyse systems where the fixed priority pre-
emptive scheduling policy is used for both global and 
local scheduling. 

Application tasks may arrive either periodically at 
fixed intervals of time, or sporadically after some 
minimum inter-arrival time has elapsed. Each 
application task iτ , has a unique priority i within its 
application and is characterised by its relative deadline 
Di, worst-case execution time Ci, minimum inter-
arrival time Ti, otherwise referred to as its period, and 
finally its release jitter Ji defined as the maximum time 
between the task arriving and it being ready to execute. 

Each server has a unique priority S, within the set 
of servers and is characterised by its capacity CS, and 
replenishment period TS. A server’s capacity is the 
maximum amount of execution time that may normally 
be consumed by the server in a single invocation. The 



replenishment period is the minimum time before the 
server’s capacity is available again. 

A task’s worst-case response time Ri, is the longest 
time from the task arriving to it completing execution. 
Similarly, a server’s worst-case response time RS, is the 
longest time from the server being replenished to its 
capacity being exhausted, given that there are tasks 
ready to use all of the server’s available capacity. A 
task is said to be schedulable if its worst-case response 
time does not exceed its deadline. A server is 
schedulable if its worst-case response time does not 
exceed its period. The analysis given in this paper 
assumes that both tasks and servers have deadlines that 
are no greater than their periods. 

The critical instant [4] for a task is defined as the 
pattern of execution of other tasks and servers that 
leads to the task’s worst-case response time. 

The schedulability analysis originally given in [13] 
and revisited in the remainder of this section assumes 
that all applications and tasks are independent. This 
restriction is lifted in section 4 and the analysis 
extended to take account of blocking effects due to 
tasks accessing resources that are shared locally within 
a single application or globally between tasks in 
multiple applications.  

In this paper we consider applications scheduled 
under a simple Periodic Server. The analysis presented 
is extensible to alternative server algorithms such as 
the Deferrable Server and the Sporadic Server, 
however due to space considerations these alternative 
server algorithms are not discussed further. 

The Periodic Server is invoked with a fixed period 
and executes any ready tasks until its capacity is 
exhausted. Note each application is assumed to contain 
an idle task that continuously carries out built in tests, 
memory checks and so on, therefore the server’s 
capacity is fully consumed during each period. 

Once the server’s capacity is exhausted, the server 
suspends execution until its capacity is replenished at 
the start of its next period. If a task arrives before the 
server’s capacity has been exhausted then it will be 
serviced. Execution of the server may be delayed and 
or pre-empted by the execution of other servers at a 
higher priority. The jitter of the Periodic Server is 
assumed to be zero and for the sake of simplicity, 
server jitter is therefore omitted from the schedulability 
analysis equations. The behaviour of the server does 
however add to the jitter of the tasks that it executes. 
The release jitter of the tasks is typically increased by 

SS , corresponding to the maximum time that a 
task may have to wait from the server capacity being 
exhausted to it being replenished. 

CT −

The analysis presented in the next section makes 

use of the concepts of busy periods and loads. For a 
particular application, a priority level i busy period is 
defined as an interval of time during which there is 
outstanding task execution at priority level i or higher. 

Busy periods may be represented as a function of 
the outstanding execution time at and above a given 
priority level, thus  is used to represent a priority 
level i busy period (or ‘window’, hence w) equivalent 
to the time that the application’s server can take to 
execute a given load L. The load on a server is itself a 
function of the time interval considered. We use 
to represent the total task executions, at priority level i
and above, released by the application within a time 
window of length w. 

)(Lwi
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2.2. Task schedulability analysis 

In this section we revisit the schedulability analysis 
given in [13] for independent hard real-time 
applications. 

Using the principles of Response Time Analysis 
[10], the worst-case response time for a task iτ , 
executing under a server S, occurs following a critical 
instant where: 
1. The server’s capacity is exhausted by lower 

priority tasks as early in its period as possible. 
2. Task iτ  and all higher priority tasks in the 

application arrive just after the server’s capacity is 
exhausted. 

3. The server’s capacity is replenished at the start of 
each subsequent period, however further execution 
of the server is delayed for as long as possible due 
to interference from higher priority servers. 

The worst-case response time of iτ  can be determined 
by computing the length of the priority level i busy 
period starting at the first release of the server that 
could execute the task (see Figure 1). 

Figure 1 Busy period 
This busy period can be viewed as being made up of 
three components: 
1. The execution of task iτ  and tasks of higher 

priority released during the busy period. 



2. The gaps in any complete periods of the server. 
3. Interference from higher priority servers in the 

final server period that completes execution of the 
task. 

The task load at priority level i and higher, ready to be 
executed in the busy period , is given by: iw
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where hp(i) is the set of tasks that have priorities 
higher than task iτ  and  is the release jitter of the 
task, increased by  due to the operation of the 
server. 
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The total length of gaps in complete server periods, 
not including the final server period, is given by: 
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The interference due to higher priority servers 
executing during the final server period that completes 
execution of task iτ  is dependent on the amount of 
task execution that the server needs to complete before 
the end of the busy period. The exact interference can 
be calculated using information about server priorities, 
capacities and replenishment periods. 

Figure 1 illustrates the interference in the final 
server period. The extent to which the busy period 
extends into the final server period is given by: 
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The full extent of the busy period, including 
interference from higher priority servers in the final 
server period, can be found using the following 
recurrence relation, presented in [13]:  
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where hp(S) is the set of servers with higher 
priority than server S. 

Recurrence starts with a value of 
and ends either when 

 in which case i gives the task’s 
worst-case response time or when  in 
which case the task is not schedulable. 
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Note the use of max(0, …) in the 3rd term in 
Equation (4) ensures that the extent to which the busy 

period extends into the final server period is not 
considered to be an interval of negative length. 

3. Resource access policies 

In this section, we describe resource access 
policies, mechanisms and schedulability analysis for 
both local and global resource access. 

3.1. Local resources 

3.1.1 Stack Resource Policy. Following Kuo and Li 
[1], we assume that access to local resources is 
according to the SRP: 
1. Associated with each local resource is a ceiling 

priority. This local ceiling priority is equal to the 
highest priority of any task that accesses the 
resource. 

2. Whilst a task accesses a local resource, its priority 
is increased to the local ceiling priority of the 
resource. 

3. If the capacity of the task’s server is exhausted 
whilst the task is accessing a local resource, then 
the server simply suspends execution. 

3.2. Global resources 

We assume that there is a set of globally shared 
resources G. Each application task iτ  may access a 
global shared resource r, for at most an execution time 

ir . This critical section is assumed to be less than the 
task’s worst-case execution time and also less than the 
associated server’s capacity, so iir  and 

b ,

Cb <, Sir Cb <, . 
We note that for a well-constrained application 
will typically be much smaller than these values. 

irb ,

3.1.1 Hierarchical Stack Resource Policy. We 
assume that access to global shared resources is 
according to the Hierarchical Stack Resource Policy 
(HSRP) defined below. The HSRP is based on the 
SRP, extended to hierarchical systems, and utilising the 
overrun and payback mechanism described in [15]: 
1. Associated with each global resource is a ceiling 

priority. This is a global (i.e. server) priority level 
that is equal to the highest priority of any server 
that executes a task that also accesses the resource. 

2. Whilst a task accesses a global shared resource the 
priority of its server is increased to the global 
ceiling priority associated with the resource. 

3. Whilst a task accesses a global shared resource, 
the priority of the task itself is increased to the 
highest local priority level within its application. 

4. If the server’s capacity is exhausted whilst a task 



has a global resource locked, then the server 
continues to execute the task until the resource 
access is completed. 

5. (Optionally) If a server overruns then the capacity 
allocated to it at the start of the next server period 
is reduced by the amount of the overrun. 

It might seem that point 3 above unnecessarily 
increases the task’s priority in the case where the task 
belongs to the highest priority server involved in 
access to the resource. Under the SRP we might expect 
such a task’s priority to be increased so it is equal to 
the highest priority of any task in the application that 
accesses the resource, but not necessarily equal to the 
highest priority of any task in the application. However 
there is a good reason for making global resource 
accesses effectively non-pre-emptive with respect to 
other tasks in the same application. As the server is 
permitted to overrun whilst a global resource is locked, 
the maximum overrun is determined by the overall 
time for which the resource is held. To avoid a 
detrimental effect on schedulability, the HSRP must 
ensure that this time cannot be extended via pre-
emption by other tasks in the same application. 

3.3. Budget enforcement 

To ensure that erroneous behaviour of one application 
cannot cause tasks in another application to miss their 
deadlines, a run-time mechanism is required that 
ensures that any task accessing a global resource r
cannot exceed its budgeted time irb ,  in that resource. 
We assume that if a task exceeds this budget, then its 
execution is abandoned and its server’s priority reset. 
This prevents further failures in other tasks and servers. 
It is beyond the scope of this paper, which is concerned 
with schedulability analysis, to consider the 
consequences of this abandonment, but typically the 
task could be aborted and the resource returned to a 
stable state via a roll-back mechanism. 

3.4. Notation 

SO is defined as the longest time for which any 
task in server S may access a global resource. SO  is 
effectively the server overrun time, equal to the longest 
time that server S may overrun. 

B
B

S  is defined as the longest time for which a task, 
in a server of lower priority than S, can access a 
resource that has a ceiling priority equal to or higher 
than S. S  corresponds to the longest time that an 
invocation of server S can be blocked from executing 
by a server of lower priority.

B

B

iB is defined as the longest time for which a task in 

the same application and of lower priority than task iτ , 
accesses either: (i) a global shared resource or (ii) a 
local shared resource with a ceiling priority greater 
than or equal to the priority of iτ . i  corresponds to 
the longest time that a task in the same application and 
of lower priority than task i

B

τ  can execute at priority i
or higher during a priority level i busy period. 

4. Schedulability with shared resources 

4.1. Server schedulability 

The SRP, used for local resource access, does not 
alter server priorities. As task execution is suspended 
when server capacity is exhausted during local 
resource access, local resource access cannot cause 
server overruns. Hence local resource access has no 
effect on server schedulability. 

The HSRP, used for global resource access, does 
alter server priorities and can result in server overruns. 
The worst-case effects on the schedulability of a server 
S due to global resource access under HSRP occur as 
follows: 
1. When server S is released, a lower priority server 

is running and the task that it is executing has just 
started accessing a global shared resource r. 
Resource r has the longest access time S , of any 
global resource shared by a task in a server of 
lower priority than S and another task in server S
or a server of higher priority than S. 

B

2. Once server S is released, all subsequent releases 
of servers of higher priority than S overrun by their 
maximum amount due to tasks accessing global 
resources. With the overrun and payback 
mechanism, the first invocation of each higher 
priority server in the busy period of S, has an 
execution time of XOX , whilst subsequent 
invocations have an execution time of X  as their 
capacity is reduced by  but they may also 
overrun by . 

BC +
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Server schedulability can be determined by 
incorporating the appropriate blocking and interference 
factors into the standard recurrence relation: 

B

X

servers
ShpX X

n
S

servers
ShpX

XOSS
n
S C

T
wBBCw ∑∑

∈∀∈∀

+
⎥
⎥

⎤
⎢
⎢

⎡
+++=

)()(

1   (5) 

The recurrence relation given by Equation (5) starts 
with and ends when either  in which 
case  gives the worst-case response time of the 
server or when  in which case the server is 
unschedulable. 
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When considering the schedulability of server S, we 



only require that the server’s normal capacity SC  be 
completed within its period. We do not need to include 
any overrun by server S in the analysis of S itself. This 
is because any overrun by server S in one period leads 
to a reduction in the capacity available in the next 
period by exactly the amount of the overrun. Hence in 
the next period, interference due to any overrun plus 
the replenished capacity of the server cannot exceed 

S . Again this must be completed by the end of the 
server period. There may of course be a further global 
resource access causing an overrun at the end of this 
server period, however the same argument applies. 
Hence for the server to be schedulable only C  needs 
to be accommodated in each server period. 

C

S

An alternative formulation is possible if we relax 
the rule that any server overruns are deducted from the 
subsequent replenishment capacity. In this case, the 
schedulability analysis is formulated as if each higher 
priority server X had a capacity of . XOX BC +
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Note that whilst server S completes execution of its 
normal capacity in the response time given by 
Equation (6), we must also ensure that any overrun by 
S cannot impact its own next invocation. Hence we 
must ensure that the busy period calculated by 
Equation (7) is also less than the server’s period. 
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Although Equation (6) leads to longer response 
times than Equation (5); it may be preferable, for 
systems with short global resource access times, to 
simply allow for server overruns without the additional 
overheads of monitoring the overrun and adjusting the 
subsequent capacity replenishment. 

4.2. Task schedulability 

In a hierarchical system, task schedulability 
depends upon two factors, both of which are increased 
by resource access. 
1. The worst-case load that must be executed during 

the busy period of the task. 
2. The worst-case time that the server takes to 

execute this load. 

4.2.1. Task load. Accesses to local and global 
resources have an effect on the amount of task load 
that has to be executed before task iτ  can be 
completed. The SRP serialises local resource access 

such that only one task of a lower priority than task iτ , 
can access a shared resource with a ceiling priority 
higher than or equal to priority i at any given time. 
Similarly, the HSRP serialises access to global 
resources such that only one task in server S can access 
a global shared resource at any given time. These 
protocols are compatible and proper nesting of local 
and global resource accesses is permitted. 

Taking global and local resource access into 
account, the function , determining the 
maximum task load at priority i and above ready to 
execute in a window of length w is given by: 
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where i  is the blocking factor due to local and global 
resource access defined in section 3.4 and j  is the 
release jitter of task j . Note  is increased due to 
the operation of the server by  with 
the payback mechanism, or by  without the 
payback mechanism. 

B
J

τ jJ
)( SOSS BCT −−

SS CT −

4.2.2 Server execution. Accesses to globally shared 
resources have three effects, each of which increases 
the time that the server can take to execute a given 
load: 
1. The server’s capacity is exhausted earlier in its 

period. This occurs when the previous invocation 
of the server overran by SO  due to a task 
accessing a global shared resource. This overrun 
must be paid back, decreasing the server’s 
replenishment capacity to SOS and thus 
increasing the maximum time between exhaustion 
of this capacity and the next replenishment to 

SOSS

B

BC −

BCT +−  as shown in the second server 
period in Figure 2. 

2. Immediately prior to the final period of server S
that will complete execution of task iτ , a lower 
priority server is running and the task that it is 
executing has just started accessing a global shared 
resource. This resource access has a ceiling 
priority equal to or higher than that of server S and 
a length . S

3. In the final period of server S that will complete 
execution of task i

B

τ , all releases of servers of 
higher priority than S overrun by their maximum 
amount due to tasks accessing globally shared 
resources. Assuming that the payback mechanism 
is used, this means that the first release of each 
server has an execution time of XOX , whilst 
subsequent releases have an execution time of XC
as their capacity is reduced by  and they 
overrun by . 

BC +

XOB
XOB



4.2.3 Worst-case scenario. Figure 2 illustrates the 
critical instant leading to the worst-case response time 
of task iτ . 

RS

TS

Task Ri
Overrun of BSO

CS

Payback of  BSO

TS-(CS-BSO)

Task Blocking Bi

Server Blocking BS

Jitter Busy Period

CS

Key:

Server Capacity (available)
Server Capacity (pre-used) Task Blocking

Server Interference
Server BlockingServer Capacity (unused)

Figure 2: Critical instant 
We note that when it is a global resource access 

that defines the longest blocking period i , then the 
scenario shown in Figure 2 cannot actually occur. This 
is because global resource access immediately prior to 
the server capacity being exhausted leads to an overrun 
as illustrated in Figure 3. 

B

It is easy to show that the scenario in Figure 3 
cannot result in a longer response time than that in 
Figure 2. (For task loads that exceed S , the response 
time is the same in both cases. For task loads S

C
C≤ , 

the response time is less for the scenario in Figure 3 as 
the task completes execution using a smaller amount of 
server capacity in the 3rd server period illustrated). 

Key:

Server Capacity (available)
Server Capacity (pre-used) Task Blocking

Server Interference
Server BlockingServer Capacity (unused)
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Task Ri
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Payback of  BSO

TS-CS-BSO

Task Blocking and overrun of Bi

Server Blocking BS

Jitter Busy Period
CS-Bi

Overrun of BSO

Figure 3 
 Whilst global resource access might result in a 
potentially shorter response time, it is also the case that 
such resource access could be completed immediately 
prior to exhaustion of the server’s normal capacity in 
the second server period shown in Figure 3. This has 
the potential to cause ‘push through’ blocking where at 
most i  units of additional high priority task execution 
are pushed into the busy period of task i

B
τ , effectively 

producing the same worst-case load and execution 
scenario as depicted in Figure 2. 

To ensure that our analysis computes a sufficient 
worst-case response time in all circumstances, we 

assume the behaviour shown in Figure 2, even when a 
global resource is responsible for the maximum task 
blocking time i . We recognise that this may result in 
pessimism in the analysis of tasks where all of the 
following hold: 

B

1. The blocking factor iB  is due to global resource 
access by lower priority tasks in the same 
application rather than local resource access. 

2. There are no higher priority tasks that can provide 
additional interference in the form of ‘push 
through’ blocking. 

3. The task’s worst-case response time is less than 
SS CT −2 . 

4.2.4 Response times. Incorporating the server 
blocking factors into the response time analysis 
equations, and assuming that the overrun and payback 
mechanism is used, the length of the priority level i
busy period required for the server to execute the task 
load is given by: 
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 (9) 
Where  is given by Equation (8) and is 
recalculated on each iteration of the recurrence 
relation. Recurrence starts with a value of  and 
ends either when  in which case i
gives the task’s worst-case response time or when 

ii  in which case the task is not 
schedulable. (Note that the task jitter is increased by 

)( ii wL

00 =iw
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)( SOSS BCT −−  when the overrun and payback 
mechanism is used). 
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An alternative formulation is possible if we relax 
the rule that any server overruns are deducted from the 
subsequent replenishment capacity. In this case, the 
length of the priority level i busy period required for 
the server to execute the task load is given by Equation 
(10). The task load is again given by Equation (8). In 



this case the task jitter is increased by  due to 
the operation of the server. 

SS CT −

4.3. Non-pre-emptive global resource access 

We observe that a simple scheme utilising non-pre-
emptive execution for global resource access, as 
suggested in [2], is effectively a special case of the 
HSRP (without the payback mechanism), where the 
global ceiling priority of each resource is set to the 
highest priority of any server, as opposed to the highest 
priority of those servers with tasks that access the 
resource. As such, non-pre-emptive execution of global 
resources can be analysed using the schedulability 
analysis for the HSRP, i.e. Equations (6), (7) and (10), 
provided that an appropriately revised blocking factors 
( ) are used. SB

A simple non-pre-emptive scheme for global 
resource access gives rise to blocking factors that are 
always at least as large as those for the HSRP and so 
the HSRP dominates the non-pre-emptive approach in 
terms of both server and task schedulability. 

With non-pre-emptive execution, just one long 
global resource access in a low priority application is 
enough to result in a large blocking factor for all higher 
priority applications (tasks and servers) irrespective of 
whether or not they share that resource. For this reason, 
non-pre-emptive global resource access is 
inappropriate for many hierarchical systems. However, 
for systems where all global resource access times are 
very short, the benefits of simplicity and lower 
implementation overheads may be enough to warrant 
considering a simple non-pre-emptive mechanism 
despite the potential for increased blocking times. 

5. Example 

In this section, we use a simple example system to 
illustrate the effects of local and global resource access 
on server and task worst-case response times using the 
HSRP with and without the payback mechanism. 

The example system comprises three applications, 
each scheduled under a Periodic Server defined by the 
parameters given in Table 1. (The times are in 
microseconds – µS). 

Table 1: Server parameters 

Server Period Capacity T-C U 
SA 2000 500 1500 25% 
SB 10000 2500 7500 25% 
SC 20000 5000 15000 25% 

Tasks in all three applications access a globally 

shared resource for a maximum of 350µS. (We note 
that this time is relatively large in comparison to the 
capacity of server SA, this is deliberate to better 
illustrate the potential effects of long resource access 
times). 

Table 2: Server response times 

Server (1) No 
Resources 

(2) HSRP 
No Payback 

(3) HSRP & 
Payback 

SA 500 850 850 
SB 3500 5400 4700 
SC 10000 19200 14700 

Table 2 gives the worst-case response time of the 
servers assuming (1) no global resource access, (2) 
global resource access using the HSRP without the 
payback mechanism (3) global resource access using 
the HSRP with the payback mechanism. 

Note that where the payback mechanism is 
employed, as mentioned earlier, we need only consider 
the server’s response time to the exhaustion of its 
normal capacity. In contrast, in the overrun and no 
payback case, we must include the server’s maximum 
overrun time and check that the resulting busy period 
does not exceed the server’s period. In our example, 
the busy periods for the overrun and no payback case 
exceed the response times given in the second column 
of Table 2 by 350µS. 

It is evident from our schedulability analysis and 
the values in Table 2 that global resource accesses have 
a cumulative effect on server response times and busy 
periods. In particular, permitting server overruns 
without payback dramatically increases the total 
interference on lower priority servers. The busy period 
of server SC without payback (19550µS) is almost 
twice that of the non-blocking case (10000µS) and 
close to being unschedulable. Using the payback 
mechanism limits this cumulative interference resulting 
in improved server schedulability. 

We now consider task response times. Server SB
executes the set of tasks defined by the parameters in 
Table 3 below. Task jitter is assumed initially to be 
zero, increased only by the operation of the server. 

Table 3: Task parameters 

Task T D C U 
1τ 25000 25000 2300 9.6% 
2τ 50000 50000 4800 9.2% 
3τ 100000 100000 2400 2.4% 

In addition to global resource accesses, these tasks also 
all access a local shared resource for a maximum of 



500µS. Table 4 gives the worst-case response times of 
the tasks under server SB assuming (1) no resource 
access, (2) local resource access using the SRP and 
global resource access using the HSRP without the 
payback mechanism (3) local resource access using the 
SRP and global resource access using the HSRP with 
the payback mechanism. 

Table 4: Task response times 

Task (1) No 
Resources 

(2) HSRP 
No Payback 

(3) HSRP & 
Payback 

1τ 10800 19000 19350 
2τ 40400 42800 42450 
3τ 89200 90750 90750 

There are two interesting conclusions to be drawn 
from the task response times. 

Firstly, resource access can increase the task load 
sufficient to require a further invocation of the server 
to complete execution. This effect is responsible for 
increasing the response time of 1τ from 10800µS in the 
non-blocking case to at least 19000µS when resource 
access is accounted for.  

Secondly, using the payback mechanism may or 
may not improve task response times. Although the 
interference from higher priority servers in the final 
server period is either the same or less when the 
payback mechanism is used, the server induced task 
jitter is greater. Combined, these two effects may result 
in task response times that are unchanged, increased or 
decreased. 

The example illustrates all three possibilities. In 
the case of task 1τ , the task load executed during the 
final server period that completes execution of task 1τ
is 300µS. Accounting for server blocking and 
overruns, the busy period is only long enough for one 
invocation of SA to interfere before 1τ  is completed. 
This means the overall task busy period is the same for 
both overrun without payback and overrun & payback 
mechanisms at 11500µS. As the server induced task 
jitter is less in the case of overrun without payback, the 
overall response time is shorter (19000µS v 19350µS). 

For task 2τ , the task load executed during the final 
server period is 2400µS, leading to interference from 
three invocations of SA before 2τ  is completed. The 
two additional overruns more than counteract the 
increased server induced jitter and the overall response 
time is shorter with the payback mechanism (42450µS 
v 42800µS). 

Finally, for task 3τ , the task load executed during 
the final server period is 1200µS, leading to 
interference from two invocations of SA before 3τ  is 
completed. The additional overrun exactly counteracts 

the increased server induced task jitter and the 
response times are the same with and without payback. 

6. Recommendations 

It is evident from the response time analysis and 
our example that long accesses to global shared 
resources in hierarchical fixed priority pre-emptive 
systems can have a large cumulative impact on the 
schedulability of both servers and application tasks. 
Clearly it is advisable to make such resource accesses 
as short as possible to limit their impact on system 
schedulability. 

In practical applications, there are arguments both 
for and against employing the payback mechanism 
within the HSRP. Omitting the payback mechanism 
has the advantage of simplicity. However including the 
payback mechanism may improve system 
schedulability. 

Ultimately, the choice whether or not to include the 
payback mechanism depends upon the parameters of 
the system. If all of the servers have similar periods, 
then it is unlikely that the payback mechanism would 
provide any advantage. If global resource access times 
are short, then any advantage that the payback 
mechanism has may be outweighed by the additional 
complexity of implementation. However, in other 
systems, typically those with a wider range of server 
periods and longer global resource access times, the 
advantages of the payback mechanism can be 
significant; resulting in the ability to support larger 
server capacities and hence reduce task response times. 

7. Summary and conclusions 

In this paper we considered the problem of 
scheduling a number of applications on a single 
processor using a set of servers. Application tasks were 
permitted to make mutually exclusive access to 
resources that were shared either locally within the 
same application, or globally, between applications. 

The motivation for this work comes from the 
automotive and avionics industries where the advent of 
high performance microprocessors is now making it 
both possible and cost effective to implement multiple 
applications on a single platform. These applications 
typically require mutually exclusive access to both 
local shared resources such as data buffers within an 
application and global shared resources such as shared 
communications devices and other memory mapped 
on-chip peripherals, as well as executing system calls 
and other critical sections where interrupts are 
disabled. 



7.1. Contribution 

The major contributions of this work are: 
• Improved understanding of the impact of resource 

sharing in server based systems, leading to the 
realisation that limiting the length of such critical 
sections is highly desirable – even more so than in 
monolithic systems. 

• Definition of an appropriate resource locking 
protocol for hierarchical fixed priority pre-emptive 
systems. This Hierarchical Stack Resource Policy 
(HSRP) combines ceiling priorities to limit 
priority inversion and hence blocking of high 
priority application tasks and an overrun and 
(optional) payback mechanism to limit 
interference on low priority applications. 

• Extended response time analysis catering for 
global and local resource access by hard real-time 
application tasks scheduled under a set of servers. 

These contributions make significantly improvements 
to the techniques and associated analysis available in 
the design and development of hierarchical multi-
application, real-world systems. 

7.2. Future work 

Alternative approaches have been developed for 
hierarchical systems with a somewhat different set of 
assumptions scheduled using dynamic priorities. These 
approaches avoid server overrun either by revising 
server parameters prior to entering critical sections [16] 
or by executing critical sections using the bandwidth of 
blocked servers [17]. It remains an open question 
whether an approach based on avoiding server 
overruns would be successful in hierarchical fixed 
priority pre-emptive systems. 
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