
Resource Sharing in Hierarchical
Fixed-Priority Pre-emptive

Systems

Robert Davis and Alan Burns
Real-Time Systems Research Group

University of York

Roadmap
 Motivation
 Hierarchical Scheduling Problem

 System model
 Schedulability analysis for independent

applications
 Resource Access Policies

 SRP and HSRP
 Schedulability analysis with shared resources
 Example

 Conclusions

Motivation
 Automotive and Avionics applications

 Emerging trend: multiple applications on a single
processor

 Made possible by the advent of advanced high
performance microprocessors

 Driven by the desire for cost reductions and functionality
enhancement

 Requirements:
 Temporal isolation: applications must behave as if they

were running on individual microprocessors
 Access to shared resources under mutual exclusion

Examples: memory mapped peripherals, FLASH memory,
data structures etc.

System Model
 Multiple applications on a single processor

 Each application comprises multiple tasks
 Task parameters: Priority, period (Ti), deadline (Di),

execution time (Ci) , Release jitter (Ji)
 Worst-Case Response Time (Ri)
 Assume

 A Periodic Server is used to schedule each
application

 Server parameters: Priority, period (TS), capacity (CS)
 Tasks executed until the server’s capacity is exhausted,

then suspended until capacity replenished at next period
 If no tasks ready then capacity assumed to be idled away

(e.g. by an idle task carrying out BIT, memory checks etc.)

ii TD ≤

System Model
 Fixed Priority Pre-emptive Scheduling

 Global scheduling of servers
 Local scheduling of tasks within a server

Schedulability Analysis
 Using Response Time Analysis:

 Determine worst-case scenario (critical instant)
leading to worst-case response time for a task

 Calculate busy period and hence worst-case
response time given critical instant arrival
pattern

 Compare worst-case response time with task
deadline

Critical Instant

1. Server capacity exhausted as early as possible then…
2. Task of interest and all higher priority tasks arrive just after

server capacity exhausted
3. Server capacity available as late as possible due to interference

from higher priority servers

1. Server
capacity
exhausted
2. Tasks
arrive

3. Server
capacity
available
as late as
possible

Busy period (wi)
 Three components:

1. Task load released
during the busy
period

2. Gaps in complete
server periods

j
ihpj j

ji
iii C

T
Jw

CwL ∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+=

)(

)(

()SS
S

ii CT
C

wL
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
1)(

Note, Jj is the task jitter which is increased by
due to the operation of the server()SS CT −

Busy period (w)
3. Interference from higher priority servers in the

final server period that completes task execution

X
shpsX x

S
S

i

S C
T

T
C

wLw
wI ∑

∈∀
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

=
)(

1)(

)(

Response Time Computation

 Recurrence starts with:
 ends when

in which case is the task’s worst case
response time

 alternatively, recurrence ends when
in which case the task is unschedulable

() X
shpsX x

S
S

n
n

SS
S

n
nn C

T

T
C
wLw

CT
C
wLwLw ∑

∈∀

+

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
−

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

)(

1

1)(

1)()(

)(10
SS

S

i
ii CT

C
CCw −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

n
i

n
i ww =+1

ii
n
i JDw −>+1

i
n
i Jw ++1

Resource Access Policies
 Local Resources

 Shared by tasks in a single application
 Stack Resource Policy [T.P. Baker 1991]

 Global Resources
 Shared by tasks in multiple applications
 Hierarchical Stack Resource Policy – introduced

here
 Based on and compatible with SRP

Local resources
 Stack Resource Policy

1. Each local resource has a local ceiling priority equal to the
highest priority of any task that accesses the resource

2. Whilst a task accesses a local resource, its priority is
increased to the local ceiling priority of the resource

3. If the server’s capacity is exhausted whilst a task is
accessing a local resource, then execution of the task is
simply suspended until the server’s capacity is
replenished

Global resources
 Hierarchical Stack Resource Policy

1. Each global resource has a global ceiling priority equal to
the highest priority of any server that executes a task that
accesses the resource

2. Whilst a task accesses a global resource, the priority of its
server is increased to the global ceiling priority of the
resource

3. Whilst a task accesses a global resource, the priority of the
task is increased to the highest local priority within its
application

4. If the server’s capacity is exhausted whilst a task is
accessing a global resource, then the server continues to
execute the task until the resource access is completed

5. (Optionally) if a server overruns, then the capacity
allocated at the start of its next period is reduced by the
amount of the overrun

Blocking Factors
 Definitions:

longest time for which a task in server S can access a
global resource. (Overrun time for server S)

longest time for which a task in a server of lower priority
than S can access a global resource with a ceiling priority
equal to or higher than S. (Blocking time for server S).

longest time for which a task in the same application and
of lower priority than task τi can access either a global
resource or a local resource with a ceiling priority equal to
or higher than τi . (Blocking time for task τi).

SOB

SB

iB

Server Schedulability
 Worst-case scenario for server S

 Blocked by a lower priority server for
 Additional interference due to overruns of higher priority

servers
 With overrun & payback:

 Don’t need to account for overrun of S in analysis of S
 Overrun in one period leads to reduction in capacity

replenished in next period
 Server ‘execution time’ in next period due to overrun +

replenished capacity cannot exceed server capacity

SB

X

servers
ShpX X

n
S

servers
ShpX

XOSS
n
S C

T
wBBCw ∑∑

∈∀∈∀

+
⎥
⎥

⎤
⎢
⎢

⎡
+++=

)()(

1

Server Schedulability
 With overrun & no payback:

 Must account for overrun of server S

 Server schedulable if its capacity can be fully
consumed within its period

)(
)(

1
XOX

servers
ShpX X

n
S

SSOS
n
S BC

T
wBBCw +

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+++= ∑

∈∀

+

Task Schedulability
 Depends on two factors

 Worst-case load to be executed during the busy period
 Worst-case time the server takes to execute this load

 Task Load:
 SRP and HSRP serialise access to resources
 Maximum blocking of task τi by lower priority tasks is Bi

 Task jitter increased by:
 with payback mechanism
 without payback mechanism

j
ihpj j

ji
iiii C

T
Jw

CBwL ∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
++=

)(
)(

)(SOSS BCT −−
SS CT −

Task Schedulability
 Worst-case scenario for server to execute task load

RS

TS

Task Ri
Overrun of BSO

CS

Payback of BSO

TS-(CS-BSO)

Task Blocking Bi

Server Blocking BS

Jitter Busy Period

CS

Key:

Server Capacity (available)
Server Capacity (pre-used) Task Blocking

Server Interference
Server BlockingServer Capacity (unused)

Task Schedulability
 Response Time Computation (overrun & payback)

 Re-compute task load Li(w) each iteration
 Task jitter increased by due to operation of

the server
 Response time is

X

servers
ShpX X

S
S

n
iin

i

servers
ShpX

XO

SSS
S

n
iin

ii
n
i

C
T

T
C
wL

w

B

BCT
C
wL

wLw

∑∑
∈∀∈∀

+

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

+

++−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

)()(

1

1)(,0max

)(1)()(

i
n

i Jw +

)(SOSS BCT −−

Task Schedulability
 Response Time Computation (overrun & no payback)

 Re-compute task load Li(w) each iteration
 Task jitter increased by due to operation of the server
 Response time is i

n
i Jw +

)(

1
)(

,0max

)(1
)(

)(

)(

1

XOX

servers
ShpX X

S
S

n
iin

i

SSS
S

n
iin

ii
n
i

BC
T

T
C

wL
w

BCT
C

wL
wLw

+

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
−

++−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=

∑
∈∀

+

SS CT −

Example
 Server parameters:

 Server response times:

*includes overrun of the server

Server Period Capacity T - C U
SA 2000 500 1500 25%
SB 10000 2500 7500 25%
SC 20000 5000 15000 25%

Server No
Resources

HSRP No
payback*

HSRP
payback

SA 500 1200 850
SB 3500 5750 4700
SC 10000 19550 14700

Global resource
shared between
all 3 applications,
access time 350

Example (continued)
 Task parameters:

 Task response times:

 Payback mechanism can result in task response times being larger or smaller
(Note, with payback, could make server capacity larger)

Task T D C U
τ1 25000 25000 2300 9.6%
τ2 50000 50000 4800 9.2%
τ3 100000 100000 2400 2.4%

Task No
Resources

HSRP No
payback

HSRP
payback

τ1 10800 19000 19350
τ2 40400 42800 42450
τ3 89200 90750 90750

Tasks for
application B

All tasks in
application B
access a local
resource for 500
and a global
resource for 350

Alternative methods #1
 “Non-pre-emptive” resource access

 Special case of Hierarchical Stack Resource Policy (HSRP)
 Global ceiling priority of all resources set to the highest

priority of any server
 Can be analysed using analysis for HSRP (overrun & no

payback)
 HSRP dominates non-pre-emptive approach for both:

 Server schedulability
 Task schedulability

 Non-pre-emptive approach useful if:
 All global resource accesses are very short
 Tasks in all applications share the same global resources

Alternative methods #2
 “Prevent and pass-on”

 Uses ceiling priorities as per HSRP
 When resource access required:

 First check if sufficient server capacity remains
 If not, then suspend server until next replenishment
 Any capacity remaining when server suspended is

available in the next server period
 Schedulability

 Tasks: similar to ‘overrun & payback’ model
 Servers: worse than ‘overrun & payback’

 Due to need to accommodate additional preserved
capacity in the server period

Alternative methods #3
 “Suspend & use next server’s capacity”

 Uses ceiling priorities as per HSRP
 When resource locked and server capacity exhausted

 Suspend server
 If a task in another server needs the resource, then complete

resource access using that server’s capacity
 Schedulability

 Each pre-empting server may result in a reduction in available
capacity due to the need to subsequently unlock a resource

 Double reduction in schedulability:
 resource unlocking for other applications
 Extra interference due to increased capacity of higher priority

servers needed for resource unlocking
 Implementation issues

 Next server could also run out of capacity whilst unlocking a
resource on behalf of another server and so on

Recommendations
 In hierarchical fixed priority pre-emptive systems, global

resources accesses have a large cumulative effect on
schedulability
 Important to make resource access times as short as possible

 Hierarchical Stack Resource Policy (HSRP)
 An effective and analysable method of handling global resource

access
 Payback mechanism?

 Improves server schedulability which may permit larger server
capacities

 May or may not improve task response times
 depends on system parameters
 But larger server capacities also improve task schedulability

Contribution
 Motivation

 Trend towards multiple applications on a single processor in both
Automotive Electronics and Avionics

 Real-world applications share resources both globally and locally:
memory mapped peripherals, data buffers, shared comms
devices etc.

 Contribution
 Definition of HSRP, an appropriate resource locking protocol for

hierarchical fixed priority pre-emptive systems based on priority
ceilings and the SRP.

 Schedulability analysis for HSRP.

Conclusions
 Techniques and analysis now available to design and develop

hierarchical, multiple application, real-world systems using
fixed priority pre-emptive scheduling

 Areas of Future Work
 Choice of Server parameters (T and C)
 Policies for resource access that avoid server overruns

 Acknowledgements
 Research partially funded by:

 EPSRC DIRC project
 EU project

	Resource Sharing in Hierarchical�Fixed-Priority Pre-emptive Systems
	Roadmap
	Motivation
	System Model
	System Model
	Schedulability Analysis
	Critical Instant
	Busy period (wi)
	Busy period (w)
	Response Time Computation
	Resource Access Policies
	Local resources
	Global resources
	Blocking Factors
	Server Schedulability
	Server Schedulability
	Task Schedulability
	Task Schedulability
	Task Schedulability
	Task Schedulability
	Example
	Example (continued)
	Alternative methods #1
	Alternative methods #2
	Alternative methods #3
	Recommendations
	Contribution
	Conclusions

