
Optimal Fixed Priority Scheduling with Deferred Pre-emption

Robert I. Davis
Real-Time Systems Research Group,

Department of Computer Science,
University of York, York, UK.

rob.davis@york.ac.uk

Marko Bertogna
Algorithmic Research Group,
Department of Mathematics,
University of Modena, Italy
marko.bertogna@unimore.it

Abstract— The schedulability of systems using fixed priority
pre-emptive scheduling can be improved by the use of non-pre-
emptive regions at the end of each task’s execution; an
approach referred to as deferred pre-emption. Choosing the
appropriate length for the final non-pre-emptive region of each
task is a trade-off between improving the worst-case response
time of the task itself and increasing the amount of blocking
imposed on higher priority tasks. In this paper we present an
optimal algorithm for determining both the priority ordering
of tasks and the lengths of their final non-pre-emptive regions.
This algorithm is optimal for fixed priority scheduling with
deferred pre-emption, in the sense that it is guaranteed to find
a schedulable combination of priority ordering and final non-
pre-emptive region lengths if such a schedulable combination
exists.

Keywords-real-time scheduling; schedulability analysis; fixed
priority; deferred pre-emption; optimal priority assignment; non-
pre-emptive scheduling.

I. INTRODUCTION

A common misconception with regard to fixed priority
scheduling of sporadic tasks on a single processor is that
fully pre-emptive scheduling is the best approach to take in
terms of taskset schedulability. Fixed priority non-pre-
emptive scheduling (FPNS) and fixed priority pre-emptive
scheduling (FPPS) are however incomparable; there are
tasksets that are schedulable under FPNS that are not
schedulable under FPPS and vice-versa.

In the literature, the term fixed priority scheduling with
deferred pre-emption (FPDS) has been used to refer to a
variety of different techniques by which pre-emptions may
be deferred for some period of time after a higher priority
task becomes ready. These are discussed in Section II. In this
paper, we assume a form of fixed priority scheduling with
deferred pre-emption where each task has a final non-pre-
emptive region. If this region is of the minimum possible
length1 for all tasks, then we have fixed priority pre-emptive
scheduling, whereas if the final non-pre-emptive region
constitutes all of the task’s execution time then we have
fixed priority non-pre-emptive scheduling. Thus FPDS can
be viewed as a superset of both FPPS and FPNS. FPDS can
therefore potentially schedule any taskset that is schedulable

1 The minimum possible length of a non-pre-emptive region is 1 rather
than 0, as we assume a discrete time model and tasks cannot be pre-empted
during a processor clock cycle.

under FPPS or FPNS; in other words FPDS dominates both
FPPS and FPNS.

With FPDS, there are two key parameters that affect
taskset schedulability: the priority assigned to each task, and
the length of each task’s final non-pre-emptive region. The
length of the final region affects both the schedulability of
the task itself, and the schedulability of tasks with higher
priorities. This is a trade-off, increasing the length of the
final non-pre-emptive region can improve schedulability for
the task itself by reducing the number of times it can be pre-
empted by higher priority tasks, but potentially increases
blocking on higher priority tasks reducing their
schedulability.

In this paper, we introduce an optimal algorithm for
FPDS. This Final Non-pre-emptive Region and Priority
Assignment (FNR-PA) algorithm is optimal in the sense that
it is guaranteed to find a combination of priority assignment
and final non-pre-emptive region lengths that result in a
schedulable system under FPDS whenever such a
schedulable combination of these parameters exists. Stated
otherwise, the FNR-PA algorithm is able to find a
schedulable solution for any taskset that is feasible under
FPDS. The algorithm relies on finding the minimum final
non-pre-emptive region length for each task that ensures its
schedulability. This value may be found via binary search;
however, we also derive a more efficient analytical method.
The algorithm takes a greedy approach to priority
assignment and is therefore tractable in terms of the number
of task schedulability tests that it requires.

The remainder of the paper is organised as follows.
Section II describes the background research which we build
upon. Section III describes the system model, terminology
and notation used. Section IV recapitulates schedulability
analysis for fixed priority scheduling with deferred pre-
emption. Section V provides formal definitions of the
problems addressed, and derives algorithms to solve them.
Section VI describes an analytical method for determining
the minimum final non-pre-emptive region length
commensurate with task schedulability. Section VII provides
an experimental evaluation, comparing the effectiveness of
FPDS with optimal priority and final non-pre-emptive region
length assignment, with that of FPPS and FPNS. Finally,
Section VIII concludes with a summary and directions for
future work.

mailto:marko.bertogna@unimore.it
mailto:rob.davis@york.ac.uk

II. BACKGROUND RESEARCH

In 1973, Liu and Layland [32] considered FPPS of
synchronous tasksets comprising independent periodic tasks,
with bounded execution times, deadlines equal to their
periods (referred to as implicit-deadlines), and a common
release time. Liu and Layland showed that rate monotonic
priority ordering (RMPO) is the optimal fixed priority
ordering for such tasksets.

Research into real-time scheduling during the 1980’s and
early 1990’s focused on lifting many of the restrictions of the
Liu and Layland task model. Task arrivals were permitted to
be sporadic, with known minimal inter-arrival times, (still
referred to as periods), and task deadlines were permitted to
be less than or equal to their periods (referred to as
constrained deadlines) or less than, equal to, or greater than
their periods (referred to as arbitrary deadlines).

In 1982, Leung and Whitehead [31] showed that deadline
monotonic2 priority ordering (DMPO) is the optimal fixed
priority ordering for constrained-deadline tasksets. Exact
schedulability tests for FPPS of constrained-deadline tasksets
were introduced by Joseph and Pandya in 1986 [28],
Lehoczky et al. in 1989 [29], and Audsley et al. in 1993 [4].

In 1990, Lehoczky [30] showed that DMPO is not
optimal for tasksets with arbitrary deadlines; however, an
optimal priority ordering for such tasksets can be determined
in at most 2/)1(+nn task schedulability tests using
Audsley’s optimal priority assignment (OPA) algorithm3 [3],
[5]. Exact schedulability tests for tasksets with arbitrary
deadlines were developed by Lehoczky [30] in 1990, and
Tindell et al. [34] in 1994.

In 1996, George et al. [27] derived an exact
schedulability test for FPNS based on the approach of
Tindell et al. [34] for the pre-emptive case. George et al.
showed that unlike in the pre-emptive case, DMPO is not
optimal for constrained-deadline tasksets scheduled by
FPNS. Further, they showed that Audsley’s optimal priority
assignment algorithm [5] is applicable, and can also be used
to determine an optimal priority ordering for tasksets with
arbitrary-deadlines in the non-pre-emptive case.

In 2008, Davis and Burns [23] provided linear response
time upper bounds and hence sufficient schedulability tests
for FPPS, FPNS and FPDS. Davis et al. [24] also showed
how to use response time lower bounds to improve the
efficiency of the exact schedulability tests.

Two different models of fixed priority scheduling with
deferred pre-emption have been developed in the literature.

In the fixed model, introduced by Burns in 1994 [19], the
location of each non-pre-emptive region is statically
determined prior to execution. Pre-emption is only permitted
at pre-defined locations in the code of each task, referred to
as pre-emption points. This method is also referred to as co-

2 Deadline monotonic priority ordering assigns priorities in order of task
deadlines, such that the task with the shortest deadline is given the highest
priority.
3 This algorithm is optimal in the sense that it finds a schedulable priority
ordering whenever such an ordering exists.

operative scheduling, as the tasks co-operate, providing re-
scheduling / pre-emption points to improve schedulability.

In the floating model [6], [36], an upper bound is given
on the length of the longest non-pre-emptive region of each
task. However, the location of each non-pre-emptive region
is not known a priori and may vary at run-time, for example
under the control of the operating system.

Exact schedulability analysis for the fixed model was
derived by Bril et al. in 2009 [15]. Recently, Bertogna et al.
integrated pre-emption costs and cache related pre-emption
delays (CRPD) into analysis of the fixed model, considering
both fixed [11] and variable [12] pre-emption costs.

In 2011, Bertogna et al. [13], derived a method of
computing the optimal length of the final non-pre-emptive
region of each task in order to maximize schedulability under
FPDS for a given priority assignment.

Alternative approaches to limiting pre-emption include
Pre-emption Thresholds (FPTS) [35], [33] and Non-pre-
emption Groups [21] in which each task has a base priority at
which it competes for the processor, and a threshold priority
at which it executes, thus limiting pre-emption to those tasks
with a base priority higher than the threshold. In [35], [33]
Saksena and Wang attempted to derive an integrated
approach to priority and pre-emption threshold assignment,
but did not succeed in finding an optimal algorithm with less
than exponential complexity. Research by Bril et al. [16] in
2012 combines the ideas of deferred pre-emption and pre-
emption thresholds, generalising both into a single scheme
with pre-emption thresholds between a set of sub-jobs which
execute non-pre-emptively.

For further information on limited pre-emption
scheduling the reader is referred to the survey in [17].

III. SYSTEM MODEL, TERMINOLOGY AND NOTATION

In this paper, we consider the fixed priority scheduling of
a set of sporadic tasks (or taskset) on a single processor.
Each taskset comprises a static set of n tasks (nττ ..1), where
n is a positive integer. We assume that the index i of task iτ
represents the task priority, hence 1τ has the highest priority,
and nτ the lowest. We assume a discrete time model, where
all task parameters are assumed to be positive integers.

We use the notation)(ihp (and)(ilp) to mean the set of
tasks with priorities higher than (lower than) i, and the
notation)(ihep (and)(ilep) to mean the set of tasks with
priorities higher than or equal to (lower than or equal to) i.

Each task iτ is characterized by its bounded worst-case
execution time iC , minimum inter-arrival time or period iT ,
and relative deadline iD . Each task iτ therefore gives rise to
a potentially unbounded sequence of invocations (or jobs),
each of which has an execution time upper bounded by iC ,
an arrival time at least iT after the arrival of its previous job,
and an absolute deadline that is iD after its arrival.

In an implicit-deadline taskset, all tasks have ii TD = . In
a constrained-deadline taskset, all tasks have ii TD ≤ , while
in an arbitrary-deadline taskset, task deadlines are
independent of their periods.

The utilisation iU of a task iτ is given by its execution
time divided by its period (iU = iC / iT). The total utilisation
U of a taskset is the sum of the utilisations of all of its tasks.

Under FPDS, each task is assumed to have a final non-
pre-emptive region of length iF in the range],1[iC .
Determining an appropriate value for the length of this
region is assumed to be part of the scheduling problem rather
than a characteristic of the task.

We assume that tasks may make mutually exclusive
access to shared resources according to the Stack Resource
Policy (SRP) [8]. We use i

lB to denote the longest time that
a task)(ilpl ∈τ may execute while holding a resource that is
shared with a task of priority i or higher. i

lB therefore
represents the longest time for which task lτ can execute at
priority i or higher due to the operation of the SRP. We
assume that any resource access occurring within the final
non-pre-emptive region of a task is properly nested, i.e.
wholly included within that region. We note that this may
place constraints on the specific values that the length of the
final non-pre-emptive region of each task may take.

The following assumptions are made about the behaviour
of the tasks. The arrival times of the tasks are independent
and unknown a priori; hence the tasks may share a common
release time. Each task is released, i.e. becomes ready to
execute, as soon as it arrives. The tasks do not voluntarily
suspend themselves.

The worst-case response time iR of a task is given by the
longest possible time from release of the task until it
completes execution. Thus task iτ is schedulable if and only
if ii DR ≤ , and a taskset is schedulable if and only if

ii DRi ≤∀ . A critical instant task iτ is a scenario or
pattern of task releases that leads to the worst-case response
time for task iτ .

Under FPDS, at any given time the highest priority ready
task is selected for execution by the processor. Note both
final non-pre-emptive regions and resource accesses
according to SRP are assumed to be implemented by
manipulating task priorities. Thus a task executing a final
non-pre-emptive region has the highest priority and so will
not be pre-empted.

A taskset is said to be schedulable with respect to some
scheduling algorithm, if all valid sequences of jobs that may
be generated by the taskset can be scheduled by the
algorithm without any missed deadlines.

A priority assignment policy P is said to be optimal with
respect to some class of tasksets (e.g. arbitrary-deadline), and
some type of fixed priority scheduling algorithm (e.g. FPPS,
FPNS, or FPDS) if there are no tasksets in the class that are
schedulable under the scheduling algorithm using any other
priority ordering policy, that are not also schedulable using
the priority assignment determined by policy P.

A fixed priority scheduling algorithm A is said to
dominate another fixed priority scheduling algorithm B if
there are tasksets that can be scheduled under algorithm A,
but cannot be scheduled under algorithm B, and all of the
tasksets that are schedulable under algorithm B are also

schedulable under algorithm A. If there are tasksets that are
schedulable under algorithm A, but not under algorithm B,
and vice-versa, then the two algorithms are said to be
incomparable. If both algorithms can schedule precisely the
same tasksets then they are said to be equivalent.

A scheduling algorithm is said to be sustainable [7], [20]
with respect to a system model, if and only if schedulability
of any taskset compliant with the model implies
schedulability of the same taskset modified by: (i) decreasing
execution times, (ii) increasing periods or inter-arrival times,
and (iii) increasing deadlines. Similarly, a schedulability test
is referred to as sustainable if these changes cannot result in
a taskset that was previously deemed schedulable by the test
becoming unschedulable. We note that the modified taskset
may not necessarily be deemed schedulable by the test. A
schedulability test is referred to as self-sustainable [9] if such
a modified taskset is always deemed schedulable by the test.

IV. RECAPITULATION OF SCHEDULABILITY ANALYSIS
FOR FPDS

We now recapitulate schedulability analysis for fixed
priority scheduling with deferred pre-emption for sporadic
tasksets with arbitrary deadlines, based on the work of Bril et
al. [15]. In order to deal with the discrete time domain
assumed in this paper, the results presented in [15] are
rephrased according to the notation adopted in [17]. We also
make simple extensions to the analysis to account for
blocking due to resource accesses.

First, we introduce the concepts of priority level-i active
period, and ∆-critical instant, which are fundamental to the
analysis of FPDS.

The term priority level-i active period refers to a
continuous period of time),[21 tt during which tasks, of
priority i or higher, that were released at the start of the
active period at 1t , or during the active period but strictly
before its end at 2t , are either executing or ready to execute.

A ∆-critical instant for a task iτ occurs when task iτ is
released simultaneously with all higher priority tasks, and
subsequent releases of task iτ and higher priority tasks
occur after the minimum permitted time intervals. Further,
the minimum possible amount of time ∆ prior to this
simultaneous release, a lower priority task kτ enters its final
non-pre-emptive region or begins accessing a resource
shared with a task of priority i or higher. Note that due to the
integer time model considered in this paper, the discrete time
granularity ∆ is one time unit.

Bril et al. [15] showed that for FPDS, the longest
response time of a task iτ occurs for some job of that task
within the priority level-i active period starting at a ∆-critical
instant. Lemma 3 in [15] states that the worst-case length of
a priority level-i active period iA is given by the minimum
solution to the following fixed point iteration:

j
ihepj j

m
i

i
m
i C

T
A

BA ∑
∈∀

+












+=

)(

1 (1)

Iteration starts with an initial value 0
iA guaranteed to be no

larger than the minimum solution, for example ii CA =0 , and
ends when m

i
m
i AA =+1 . In (1) the term iB is the longest

time that task iτ can be blocked from executing by lower
priority tasks, and is given by:

),max(FNR
i

RES
ii BBB = (2)

)1(max),1(max
)()(

−=−=
∈∀∈∀

lilpl

FNR
i

i
lilpl

RES
i FBBB

where RES
iB and FNR

iB are respectively the blocking factors
at priority i due to resource locking and final non-pre-
emptive regions. In (2) the maximum of an empty set is
assumed to be zero.

The number of jobs iG of task iτ in the priority level-i
active period is given by:












=

i

i
i T

AG (3)

The start time NP
giW , of the final non-pre-emptive region of

job g (where g = 0 is the first job) of task iτ measured with
respect to the start of the ∆-critical instant is given by the
minimum solution to the following fixed point iteration:

∑
∈∀

+













+












+−++=

)(

,1
, 1)1(

ihpj
j

j

m
qi

iii
m

gi C
T
w

FCgBw (4)

Iteration starts with an initial value 0
,giw guaranteed to be no

greater than NP
giW , , typically iiigi FCgBw −++=)1(0

, , and
ends when either m

gi
m

gi ww ,
1

, =+ in which case 1
,,
+= m
gi

NP
gi wW ,

or when: iii
m

gi DgTFw >−++1
, in which case job g, and

hence task iτ is unschedulable.
To find the worst-case response time, the start times of

the final non-pre-emptive regions giW , need to be calculated
for jobs 1,...3,2,1,0 −= iGg . The worst-case response time
of task iτ is then given by:

)(max ,1...2,1,0 ii
NP
giGg

gTFWR
ii

−+=
−=∀

 (5)

Task iτ is schedulable provided that ii DR ≤ .
Corollary 1: Sustainability of task schedulability with
respect to an increase in the length of its final non-pre-
emptive region. From (4) and (5), the worst-case response
time of task iτ is monotonically non-increasing with respect
to increases in the length of its final non-pre-emptive region

iF . Stated otherwise, increasing the length of the final non-
pre-emptive region of a task cannot result in that task
becoming unschedulable if it was previously schedulable.

A. Example of FPDS
We now provide an example of fixed priority scheduling

with deferred pre-emption. The example is based on the
taskset in Table I, and is derived from an example for fixed
priority non-pre-emptive scheduling given in [25]. In this
example, we assume that the tasks are independent.

First let us consider which priority assignments might
lead to a schedulable system. The deadline of 175 for task

Aτ means that it is trivially unschedulable at anything other
than the highest priority level, irrespective of whether we use

FPPS, FPNS, or FPDS, and whatever the lengths of any final
non-pre-emptive regions. We must therefore place task Aτ at
the highest priority.

TABLE I: TASK PARAMETERS

Task Execution time Period Deadline
Aτ 100 250 175

Bτ 100 400 300

Cτ 100 350 325

Now let us consider assigning task Cτ the lowest
priority. Corollary 1 tells us that the best schedulability for
task Cτ is achieved if it is completely non-pre-emptive, i.e.

100== CC CF . From (1), the length of the priority level-3
active period is 700, and so we must examine the response
times of the first two jobs of task Cτ , starting from a ∆-
critical instant. This sequence of task execution is as shown
in Figure 1, assuming that task Cτ executes non-pre-
emptively. The second job of task Cτ misses its deadline at
time 675; hence task Cτ cannot be given the lowest priority.

A B C

A,B,C A

A

C

AB

A

C

0 100 200 300 400 500 600 700

Tasks released Deadline
missedB

Figure 1: Priority level-3 active period. Task C at the lowest priority level.

We observe that (Aτ , Bτ , Cτ) represents deadline
monotonic priority order (DMPO). So DMPO cannot make
this taskset schedulable, irrespective of what lengths we
might choose for the final non-pre-emptive regions.

A C B

A,B,C A

A AC

A

B

0 100 200 300 400 500 600 700

Tasks released
C B

Figure 2: Priority level-3 active period. Task B at the lowest priority level.

Now let us consider placing task Bτ at the lowest priority
level, i.e. priority order (Aτ , Cτ , Bτ). If we set the length of
the final non-pre-emptive region of task Bτ to be 51=BF ,
then the priority level-3 active period is as shown in Figure
2, and the two jobs of task Bτ both meet their deadlines.
Further, the worst-case response times of task Aτ and task

Cτ are 150, and 250 respectively. Thus with a priority
ordering (Aτ , Cτ , Bτ) and final non-pre-emptive region
lengths of 1=AF , 1=CF , and 51=BF the taskset is
schedulable using FPDS.

Assuming FPPS with optimal (deadline monotonic)
priority ordering, then task Cτ misses its deadline at 325 due
to pre-emption by task Aτ at 250; hence, the taskset is

unschedulable under FPPS with any priority ordering [31].
The taskset is also trivially unschedulable under FPNS as
task Aτ cannot tolerate being blocked for more than 75 and
the execution times of tasks Bτ and Cτ are 100.

This example illustrates the dominance, rather than
equivalence, of FPDS over FPPS and FPNS. It also serves to
show that deadline monotonic priority ordering is not
optimal for FPDS.

V. OPTIMAL FIXED PRIORITY SCHEDULING WITH
DEFERRED PRE-EMPTION

In the previous section, we showed that deadline
monotonic priority ordering is not optimal for FPDS, even
for tasks with constrained deadlines. In this section, we pose
two key problems relating to the assignment of priorities and
final non-pre-emptive region lengths under FPDS. We then
derive tractable optimal algorithms that solve these
problems.

Note we recognise that there may be constraints on the
permissible set of values for the length of the final non-pre-
emptive region of each task. In this section when we refer to
values for the length of the final non-pre-emptive region of a
task, we mean valid values. We return to this point towards
the end of Section VI.
Problem 1: Final Non-pre-emptive Region length Problem
(FNR Problem). For a given taskset complying with the task
model described in Section III, and a given priority ordering
X, find a value for the length of the final non-pre-emptive
region of each task such that the taskset is schedulable under
FPDS.
Definition 1: An algorithm A is said to be optimal for the
FNR Problem if there are no taskset / priority assignment
combinations that are schedulable under FPDS with some set
of values for the lengths of the final non-pre-emptive regions
of each task, that are not also schedulable using the set of
values for the lengths of final non-pre-emptive regions
determined by algorithm A.
Problem 2: Final Non-pre-emptive Region Length and
Priority Assignment Problem (FNR-PA Problem). For a
given taskset complying with the task model described in
Section III, find both (i) a priority assignment, and (ii) a
value for the length of the final non-pre-emptive region of
each task that makes the taskset schedulable under FPDS.
Definition 2: An algorithm B is said to be optimal for the
FNR-PA Problem if there are no tasksets compliant with the
task model that are schedulable under FPDS with some
priority assignment X and some set of values for the lengths
of the final non-pre-emptive regions of each task, that are not
also schedulable using the priority assignment and set of
values for the lengths of the final non-pre-emptive regions
determined by algorithm B.

We now derive tractable algorithms that solve the FNR
and FNR-PA problems. In particular, the solution to the
FNR-PA problem provides optimal fixed priority scheduling
with deferred pre-emption.

First we introduce some additional notation and a number
of corollaries from the schedulability analysis for FPDS
given in Section IV.

For a given taskset and priority ordering X, we use
),(Xkhep to mean the set of tasks with priority higher than

or equal to k. Similarly,),(Xkhp is the set of tasks with
priorities strictly higher than k, and),(Xklp is the set of
tasks with priorities strictly lower than k, in priority order X.

We use),(XkF to denote the length of the final non-
pre-emptive region of the task at priority k in priority order
X, and similarly,),(XkB to mean the blocking factor at
priority level k. Where it is unnecessary to explicitly refer to
the priority ordering, we use a short form of this notation e.g.

)(khep ,)(khp ,)(klp ,)(kF , and)(kB .
We observe the following corollaries which follow

directly from (4) and (5).
Corollary 2: Sustainability [7] of task schedulability under
FPDS with respect to a decrease in the blocking factor. A
task that is schedulable at priority level k with a blocking
factor)(kB due to a set of lower priority tasks)(klp
remains schedulable when the blocking factor is reduced
(e.g. by reducing the length of the final non-pre-emptive
region of one or more lower priority tasks) and the sets

)(klp and)(khp of lower and higher priority tasks remain
unchanged.
Corollary 3: The schedulability under FPDS of a task at
priority k with a final non-pre-emptive region of length

)(kF depends on the set of higher priority tasks)(khp , but
is independent of the relative priority ordering of those tasks.
Corollary 4: The schedulability under FPDS of a task at
priority k with a final non-pre-emptive region of length

)(kF depends on the set)(klp of lower priority tasks in
respect of the blocking factor; however, there is no
dependency on the relative priority ordering of the lower
priority tasks.
Corollary 5: For a given set of higher priority tasks)(khp ,
the minimum value for the length)(kF of the final non-pre-
emptive region of task kτ consistent with that task
remaining schedulable under FPDS is a monotonically non-
decreasing function of the blocking factor)(kB . Stated
otherwise, a larger blocking factor at priority k cannot result
in a smaller minimum length for the final non-pre-emptive
region of the task at that priority level.
Note, an analytical technique for determining the smallest
final non-pre-emptive region length for each task is
described in Section VI.
for each priority level k, lowest first {
 determine the smallest value for the final
 non-pre-emptive region length F(k) such that
 the task at priority k is schedulable.
 Set the length of the final non-pre-emptive
 region of the task to this value.
}

Algorithm 1: FNR Algorithm

Theorem 1: The FNR algorithm (Algorithm 1) is optimal for
the FNR problem (see Problem 1 and Definition 1).
Proof: We assume (for contradiction) that there exists a
taskset τ and priority ordering X that is schedulable with
some set of final non-pre-emptive region lengths),(' XkF
for k = 1 to n, for which the FNR algorithm fails to
determine a set of non-pre-emptive region lengths),(XkF
for k = 1 to n, that also results in a schedulable system.

Let),(' XkB be the blocking factor at priority k with the
schedulable set of final non-pre-emptive region lengths, and

),(XkB be the blocking factor at priority k with the set of
final non-pre-emptive region lengths computed by the FNR
Algorithm. At each priority level, we will show that

),('),(XkFXkF ≤ and hence from (2) that
),('),(XkBXkB ≤ thus proving via Corollary 2

sustainability of task schedulability with respect to blocking
factors that the taskset is schedulable with priority ordering
X and the final non-pre-emptive region lengths determined
by the FNR Algorithm, thus contradicting the original
assumption.

The proof is by induction over each priority level k from
n to 1.

Initial step: At the lowest priority level, n we have
0),('),(== XnBXnB . At priority n, the FNR Algorithm

(Algorithm 1) computes the minimum schedulable final non-
pre-emptive region length),(XnF for task nτ , hence

),('),(XnFXnF ≤ .
Inductive step: We assume that at priority k,

),('),(XkBXkB ≤ and),('),(XkFXkF ≤ . As the
resource accesses by the task at priority k are unchanged,
then from (2) we have),1('),1(XkBXkB −≤− and thus
via Corollary 5,).,1('),1(XkFXkF −≤−

Iterating over all of the priority levels shows that for all k
from n to 1,),('),(XkBXkB ≤ and so by Corollary 2, the
taskset is schedulable with the set of final non-pre-emptive
region lengths),(XkF obtained by Algorithm 1 □
for each priority level k, lowest first {

for each unassigned task τ {
 determine the smallest value for the

 final non-pre-emptive region length F(k)
 such that task τ is schedulable at
 priority k, assuming all other
 unassigned tasks have higher priorities.

 Record as task Z the unassigned task
 with the minimum value for the length of
 its final non-pre-emptive region F(k).

}
if no tasks are schedulable at priority k {
 return unschedulable
}
else {
 assign priority k to task Z and use the
 value of F(k) as the length of its final

 non–pre-emptive region.
}

}
return schedulable

Algorithm 2: FNR-PA Algorithm

Corollary 6: For a given taskset and fixed priority ordering
X, that is schedulable under FPDS with some set of final
non-pre-emptive region lengths, Algorithm 1 minimises the
final non-pre-emptive region length of every task, and hence
minimises the blocking factor at every priority level.
Theorem 2: The Final Non-pre-emptive Region Priority
Assignment (FNR-PA) algorithm (Algorithm 2) is optimal
for the FNR-PA problem (see Problem 2 and Definition 2).
Proof: We assume (for contradiction) that there exists a
taskset τ with a priority ordering X and a set of final non-
pre-emptive region lengths),(XkF for k = 1 to n that result
in a schedulable system. Without loss of generality, we
assume that these final non-pre-emptive region lengths are
the smallest possible values for this priority assignment – see
Theorem 1. Further, we assume that the FNR-PA algorithm
is unable to find a schedulable priority ordering and set of
final non-pre-emptive region lengths for taskset τ .

For the purposes of the proof, we will refer to the
schedulable priority ordering X as nX . We will iteratively
transform nX into 1−nX .. 1X , where 1X is the same
priority order as the complete priority ordering P generated
by the FNR-PA algorithm. The transformation will be such
that the taskset remains schedulable thus proving the theorem
via contradiction. Further, we will show that the FNR-PA
algorithm is able to generate a complete priority ordering P.

We use k as an iteration count and also the priority level
that we will transform. Thus k counts down from an initial
value of n to 1, and represents the priority level at which the
FNR-PA algorithm assigns a task. We note that as a result of
the transformations, the tasks at priority levels lower than k
become the same in both kX and P, hence once iteration is
complete, 1X and P represent the same priority ordering.

We show that at each priority level k, the FNR-PA
algorithm can always find at least one schedulable task
among those tasks of priority k or higher in kX (i.e. in

),(),(PkhepXkhep k =). Thus it can find a task to assign to
priority k.

On iteration k, the FNR-PA algorithm examines all of
the tasks in),(kXkhep (i.e. the tasks of priority k or higher
in kX). Of those tasks, it selects the one that is schedulable
at priority k, with the minimum length final non-pre-emptive
region, and assigns it to that priority level.

The transformation of priority ordering kX is as
follows: First we find the priority level i in kX of the task
that the FNR-PA algorithm selects. We refer to this task as

kτ , as the FNR-PA algorithm will assign it to priority level
k. Note that as the tasks of lower priority than k are the same
in both kX and P, priority level i must be either higher than
or equal to k.
There are two cases to consider:
1. Task kτ is at priority k in both P and kX , in which case

no transformation is required on this iteration, and so
1−kX is identical to kX and therefore a schedulable

priority ordering.
2. Task kτ is at a higher priority i in kX . In this case, we

form priority ordering 1−kX by modifying kX as
follows: Task kτ is moved down in priority from
priority level i to priority level k, and the tasks at priority
levels i+1 to k are all moved up one priority level, as
illustrated in Figure 3.
Priority order Xk Priority order Xk-1

i
i+1

kk

n

1

n

1

i+1
i

Same as
priority
order P

Figure 3: Transformation of priority order

Comparing the tasks in priority order 1−kX with their
counterparts in kX . There are effectively four groups of
tasks to consider:
1.),(1−∈ kl Xklpτ : Each of these tasks lτ is assigned the

same priority in both kX and 1−kX , and as
),(),(1 kk XkhepXkhep =− , they are subject to

interference from the same set of higher priority tasks.
Thus these tasks remain schedulable with unchanged
final non-pre-emptive section lengths determined as per
priority ordering kX .

2. kτ : Task kτ is at priority level i in kX and at the lower
priority level k in 1−kX : We know from the FNR-PA
algorithm that kτ is schedulable at priority k and
tolerates the minimum value for the final non-pre-
emptive region length at priority k of any of the tasks in

),(kXkhep . In particular, kτ tolerates a final non-pre-
emptive region length that is at least as short as that of
the task at priority k in kX .

3.),(),(11 −− ∩∈ kkm XilepXkhpτ : These tasks retain the
same partial order but are shifted up one priority level in

1−kX . The only difference in the schedulability of a task
mτ in priority order 1−kX as compared to priority order

kX is that in the former case, mτ is subject to
interference from task kτ (which is at the higher priority
i in kX) whereas in priority order 1−kX , mτ is subject
to blocking from task kτ (which is at the lower priority
level k in 1−kX) – see Figure 3. Any increasing in the
blocking factor at priority m due to kτ being at a lower
priority in 1−kX cannot exceed its execution time kC ,
by contrast the reduction in interference is at least kC .
Thus each task),(),(11 −− ∩∈ kkm XilepXkhpτ remains
schedulable under priority order 1−kX with its final non-
pre-emptive region length set as per priority ordering

kX . Without loss of generality, we assume that the
minimum length of each of these final non-pre-emptive
regions is re-computed for priority ordering 1−kX using
Algorithm 1 (i.e. lowest priority first). These values

cannot increase with respect to the values for the same
tasks in priority ordering kX (Theorem 1).

4.),(1−∈ kh Xihpτ : These tasks are assigned the same
priorities in both kX and 1−kX and as

),(),(1 kk XilepXilep =− they have the same set of lower
priority tasks in each case. We now consider the set of
lower priority tasks),(1−kXilep . As shown in the above
three paragraphs, the only one of these tasks that may
have a longer final non-pre-emptive region in priority
order 1−kX is task kτ ; however, we know that in
priority order 1−kX task kτ has a final non-pre-emptive
region that is no longer than that of the task at priority k
in kX , which is also in the set),(kXilep . Thus the
blocking factors at all priority levels higher than i cannot
have increase due to the transformation of the priority
order. (The contribution to these blocking factors due to
resource locking by the tasks in),(kXilep is the same
in both cases, and the contribution due to final non-pre-
emptive regions is no larger). Hence all of the tasks

),(1−∈ kh Xihpτ remain schedulable with their final
non-pre-emptive region lengths set as per priority
ordering kX . Without loss of generality, we again
assume that the minimum lengths of their final non-pre-
emptive regions are re-computed for priority ordering

1−kX using Algorithm 1 (i.e. lowest priority first).
These values cannot increase with respect to the values
for the same tasks in priority ordering kX (Theorem 1).

For each of the four groups of tasks, all of the tasks remain
schedulable in priority ordering 1−kX with the revised final
non-pre-emptive region lengths.

A total of n iterations of the above procedure, for values
of k from n down to 1, is sufficient to transform any arbitrary
priority ordering X into the priority ordering P, generated by
the FNR-PA algorithm. Further, at each step, the FNR-PA
algorithm is able to identify a schedulable task, thus resulting
in a schedulable priority assignment and set of final non-pre-
emptive region lengths □

We note that the proof technique employed above is
similar to that used in the proof of robust priority assignment
algorithms in [22], [25].
Theorem 3: For any taskset where there exists a priority
ordering and a set of final non-pre-emptive region lengths
that is schedulable under FPDS, the FNR-PA algorithm
results in a blocking factor FNR

iB from final non-pre-
emptive regions at every priority level i that is no larger than
that obtained with any other schedulable priority and final
non-pre-emptive region length assignment.
Proof: Let),(max XkF denote the length of the longest
final-non-pre-emptive region of any task of priority k or
lower in priority order X (i.e. in),(Xklep). Recall that the
length of the final non-pre-emptive region of the task at
priority k in priority order X is denoted by),(XkF .

The four numbered paragraphs in the proof of Theorem
2 describe the priority transformation between intermediate
priority orderings 1−kX and kX for tasks in four subsets of

the overall priority levels. These paragraphs show the
following relationships between the final non-pre-emptive
region lengths for the tasks at each priority level in priority
orderings 1−kX and kX . Paragraph 1 shows that for each
priority level l lower than k,),(),(1 kk XlFXlF =− and
therefore that)(klpl∈∀ :),(),(max

1
max

kk XlFXlF =− .
Paragraph 2 shows that),(),(1 kk XkFXkF ≤− and so

),(),(max
1

max
kk XkFXkF ≤− . Paragraph 3 shows that

)()(ilepkhpj ∩∈∀ :),1(),(1 kk XjFXjF +≤− . From
paragraph 2, we also know that),(),(1 kk XkFXkF ≤− and
hence)()(ilepkhpj ∩∈∀ :),(),(max

1
max

kk XjFXjF ≤− .
Paragraph 4 shows that)(ihpj∈∀ :),(),(1 kk XjFXjF ≤−
and so we have)(ihpj∈∀ :),(),(max

1
max

kk XjFXjF ≤− .
Combining these results for all 4 subsets of priority levels,
we have j∀ :),(),(max

1
max

kk XjFXjF ≤− .
In the proof of Theorem 2, n iterations of the priority

transformation from k = n to 1, are used to transform the
arbitrary priority ordering nXX = into the priority ordering

PX =1 generated by the FNR-PA algorithm, hence we
have j∀ :),(max PjF),(max XjF≤ . From (2),),(max XkF
corresponds to the blocking factor FNR

kB 1− at priority k-1 in
priority order X, due to final non-pre-emptive regions, as the
blocking factor at the lowest priority level is always zero □

VI. FNR LENGTH CALCULATION

The FNR and FNR-PA algorithms presented in the
previous section need to compute the minimum final non-
pre-emptive region length for each task. This can be found
using a binary search; however, in this section, we derive an
analytical method that can be used instead, thus reducing the
overall complexity of the algorithms. We note that the
approach presented in [13] cannot be used for this purpose,
since it determines the maximum final non-pre-emptive
region length for each task, and involves computing blocking
tolerances which require information about the relative
priority ordering of higher priority tasks.

To determine the minimum final non-pre-emptive region
length)(iF that ensures the schedulability of the task at
priority level i, we effectively need to compute the largest
amount of execution that the task can complete pre-
emptively without missing its deadline.

As tasks are evaluated lowest priority first, the amount of
blocking due to lower priority tasks is known at each step
and is given by (2). Further, the set of higher priority tasks is
also known, but not their priority order, and so (1) and (3)
can be used to compute the priority level-i active period and
the number of jobs iG of a task iτ that it contains. We then
need to compute, for each job g of task iτ in the priority
level-i active-period, the minimum final non-pre-emptive
region required to guarantee the schedulability of that job. To
do this, we first consider the minimum amount of execution

)(, tS gi that task iτ is certain to be able to perform between
the start of its g-th job and some arbitrary time t prior to that
job’s deadline at ii DgT + :

∑
∈∀














+












−−−=

)(
, 1)(

ihpj
j

j
iigi C

T
tgCBttS (6)

If 0)(, ≥tS gi and the remaining execution time
()(, tSC gii −) of the job at time t is smaller than the time to
its deadline (tDgT ii −+), then the remaining execution
time corresponds to a schedulable final non-pre-emptive
region. We need to find the maximum)(, tS gi among all
such schedulable time points. The function)(, tS gi is a
piece-wise linear function with local maxima corresponding
to the release times of higher priority tasks minus one time
unit. For each job 1...2,1,0 −= iGg , let gi,Ρ be the set of
time points corresponding to the local maxima of)(, tS gi ,
for []1, −+∈ iii DgTgTt , including the end of the interval:

{ } [] { }11,1
)(, −+






 −+∈−∀=Ρ

∈
iiiiijihpjgi DgTDgTgThT 

(7)
To find the maximum)(, tS gi it is sufficient to check the
schedulable points in giP , :













≥∧−+≤−=
∈

0)()()(max ,,,,
,

tStDgTtSCtSS giiigiigiPtgi
gi

(8)
Note that the first inequality guarantees that the job has
sufficient time to complete its final non-pre-emptive region
before its deadline, while the second inequality guarantees
that the final non-pre-emptive region can actually start
executing at or before time t. If no point in giP , satisfies both
inequalities, then the job is not schedulable, and giS , is set to
a negative value.

The minimum final non-pre-emptive region of the g-th
job of task iτ is given by:

)1,max(),(,gii SCgiF −= (9)
Taking the maximum over all jobs of task iτ in the priority
level-i-active period determines the minimum final non-pre-
emptive region for task iτ :

{ }),(max)(
1...2,1,0

giFiF
iGg −=

= (10)

Finally, task iτ is schedulable provided that iCiF ≤)(.
This analytical method enables the minimum final non-

pre-emptive region for each task to be computed as part of
the FNR and FNR-PA algorithms. The run-time complexity
of the method is similar to that of a single task schedulability
test e.g. the computation required for (5).

The set of valid values for the length of the final non-
pre-emptive region of task iτ may be limited to a subset of
values in the range],1[iC due to constraints related to nested
resource locking or other non-pre-emptive regions. As the
schedulability of a task is sustainable with respect to
increasing the length of its final non-pre-emptive region
(Corollary 1) the minimum valid value can be found by
computing the minimum theoretical value as described
above, and then selecting the smallest valid value that is no
smaller than this computed minimum.

Using the analytical method described in this section, the
FNR-PA algorithm effectively requires a maximum of

)2/)1((+nn task schedulability tests to determine an optimal
priority and final non-pre-emptive region length assignment,
We note that the size of the search space is:

∏
∀i

iCn!

Thus, the FNR-PA algorithm represents a significant
reduction in complexity, making the problem tractable for
the majority of practical applications.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the
following fixed priority scheduling algorithms:
o FPDS (OPT) with optimal priority and final non-pre-

emptive region length assignment using the FNR-PA
algorithm introduced in Section V;

o FPDS (DM) with deadline monotonic priority
assignment, using the highest-priority-first approach to
determining final non-pre-emptive region lengths
described in [13];

o FPPS with deadline monotonic priority assignment,
which is optimal in this case [31];

o FPNS with optimal priority assignment using Audsley’s
OPA algorithm [3], [5].

o FPTS Fixed priority Pre-emption Threshold Scheduling
[35] using the optimal threshold assignment given in
[33] and deadline monotonic priority assignment4.

A. Parameter generation
The task parameters used in our experiments were

randomly generated as follows:
o The UUniFast algorithm [14] was used to generate a set

of n utilisation values iU , with a total utilisation of U .
o Task periods were generated according to a log-uniform

distribution5. Here the ratio between the maximum and
the minimum permissible task period was given by r10 .
By default, this range was 10, i.e. r = 1.

o Task execution times were set based on the utilisation
and period selected: iii TUC = .

o The tasks were independent, and hence there were no
constraints on the final non-pre-emptive region lengths.

o Task deadlines were either implicit, and so equal to their
periods, or constrained and chosen at random according
to a uniform distribution in the range

]),([iiii TCTC −+α , with α = 0.5 as the default.
o The default taskset cardinality was 10.
In each experiment, the taskset utilisation was varied from
0.03 to 0.99 in steps of 0.03. For each utilisation value, 5000
tasksets were generated and their schedulability determined

4 Deadline monotonic priority assignment is not optimal for FPTS;
however, to the best of our knowledge no optimal approach to priority and
threshold assignment is known that requires less than exponential time.
5 The log-uniform distribution of a variable x is such that ln (x) has a
uniform distribution.

according to the various scheduling algorithms.

B. Success ratio
In our first set of experiments, we compared the

performance of the scheduling algorithms via a metric
referred to as the success ratio; the proportion of randomly
generated tasksets that are schedulable in each case. We also
compared the performance of the algorithms to Earliest
Deadline First (EDF) scheduling which is an optimal
scheduler for fully pre-emptive sporadic tasks with
constrained deadlines on a single processor [26].

Figure 4: Success ratio for n = 10, D = T

Figure 5: Success ratio for n = 10, D ≤ T

Figure 4 and Figure 5 plot the success ratio for implicit-
deadline and constrained-deadline tasksets respectively.
These figures show that FPDS significantly improves upon
the schedulability obtained using FPPS, FPNS and FPTS.
Further, as expected, the optimal approach to FPDS denoted
by FPDS(OPT) dominates FPDS(DM) which uses deadline

monotonic priority assignment and calculates final non-pre-
emptive region lengths that are optimal only with respect to
that priority assignment. Figure 4 clearly illustrates that
FPPS and FPNS are incomparable, as the lines for the two
algorithms cross. Note the figures are best viewed online in
colour.

C. Weighted schedulability
In our second set of experiments we compare how the

overall performance of each of the scheduling algorithms
varies with respect to changes in a specific parameter via a
metric referred to as the weighted schedulability measure
[10]. The following figures show the weighted schedulability
measure)(pZ y for schedulability test y as a function of
parameter p. For each value of parameter p, this measure
combines results for all of the tasksets generated for all of a
set of equally spaced utilisation levels. Let),(pS y τ be the
binary result (1 or 0) of schedulability test y for a taskset τ
with parameter value p.

∑
∀

=
τ τ

ττ
)(

)().(
)(

U
US

pZ y
y (11)

where)(τU is the utilisation of taskset τ . The weighted
schedulability measure reduces what would otherwise be a 3-
dimensional plot to 2 dimensions [10]. Weighting the
individual schedulability results by taskset utilisation reflects
the higher value placed on being able to schedule higher
utilisation tasksets.

In our weighted schedulability experiments, taskset
parameters other than the one that was varied assumed their
default values (e.g. n=10, r =1, and α = 0.5).

Figure 6: Weighted schedulability as a function of taskset size, D ≤ T

The first parameter we examined was taskset cardinality.
Figure 6 shows how the weighted schedulability measure for
each of the algorithms varies with increasing taskset size
(from 2 to 40 tasks) for tasksets with constrained deadlines.

From Figure 6, we see that FPDS(OPT) significantly
outperforms FPNS, FPPS, and FPTS. While the performance

of FPDS(DM) is similar to that of FPDS(OPT) for small
tasksets, it declines relative to FPDS(OPT) as the number of
tasks increases. This happens because with more tasks there
is less chance that deadline monotonic priority ordering
equates to an optimal priority ordering. With fixed priority
pre-emptive scheduling, larger tasksets are in general harder
to schedule, hence FPDS, FPPS, and FPTS all show
declining performance with increasing taskset size. In
contrast, the performance of FPNS improves with increasing
taskset size. This is because larger tasksets tend to have tasks
with smaller execution times relative to their deadlines,
which means that blocking due to non-pre-emptive execution
is less detrimental to taskset schedulability.

Figure 7: Weighted schedulability as a function of period range, D ≤ T

The second parameter we examined was the range of task
periods. Figure 7 shows how the weighted schedulability
measure for each of the algorithms varies with the log-range
r of task periods given by the ratio r10 between the
maximum and the minimum permissible task period. Here,
the value of r was varied from r = 0.5 (16.310 5.0 =) to r = 3
(1000103 =). Figure 7 shows the results for tasksets with
constrained-deadlines.

Figure 7 shows that FPDS(OPT) is particularly effective
in scheduling tasksets where the range of task periods is
relatively small. This is because with all task periods and
deadlines of a similar duration, all of the tasks can typically
tolerate a significant amount of blocking and so there is
significant scope to choose final non-pre-emptive region
lengths that improve schedulability. Further, when tasks have
similar periods and deadlines, there is a much greater chance
that deadline monotonic priority assignment will not equate
to an optimal priority ordering, hence FPDS(OPT)
significantly improves upon FPDS(DM) in this case.

As expected, all of the fixed priority pre-emptive
scheduling algorithms (FPDS, FPTS, and FPPS) show
improved performance as the range of task periods increases.
In contrast, FPNS shows rapidly declining performance. This

is because tasks with relatively long periods tend to have
large execution times which may be longer than the
deadlines of other tasks, making non-pre-emptive scheduling
infeasible.

We repeated the weighted schedulability experiments
examining taskset cardinality and the range of task periods
for tasksets with implicit deadlines. We found that both the
results and the conclusions that could be drawn from them
were broadly similar to those for constrained-deadline
tasksets. The additional figures are omitted for space reasons.

Figure 8: Weighted schedulability as a function of deadline distribution

The third parameter we examined was the range of
permissible deadlines relative to the period of each task.
Figure 8 shows how the weighted schedulability measure
for each of the algorithms varies with this parameter. Here,
each task deadline was chosen at random according to a
uniform distribution in the range]),([iiii TCTC −+α .
Figure 8 shows that increasing the range of task deadlines
(i.e. smaller α) reduces schedulability in all cases.

We note that even though FPDS has significantly better
performance than FPTS in our experiments, no dominance
relationship exists between these two scheduling algorithms.
There are tasksets that are schedulable with FPTS but not
with FPDS and vice-versa, hence the two are incomparable.

VIII. SUMMARY AND CONCLUSIONS

Fixed priority scheduling with deferred pre-emption
(FPDS), dominates both fixed priority fully pre-emptive
(FPPS) and fixed priority non-pre-emptive scheduling
(FPNS).

The main contribution of this paper is the introduction of
an optimal algorithm for FPDS. This FNR-PA algorithm is
optimal in the sense that it is guaranteed to find a
combination of priority assignment and task final non-pre-
emptive region lengths that result in a schedulable system
under FPDS, whenever such a schedulable combination of
these parameters exists. Stated otherwise, the FNR-PA
algorithm is able to find a schedulable solution for any

taskset that is feasible under FPDS. As a consequence of
optimising schedulability under FPDS, the FNR-PA
algorithm has the notable side-effect that for any given
taskset, it minimises the blocking effect due to final non-pre-
emptive regions at every priority level. Using the analytical
method of computing final non-pre-emptive region lengths,
derived in Section VI, the FNR-PA algorithm requires at
most)2/)1((+nn task schedulability tests to find an optimal
solution, making it tractable for the majority of systems.

We evaluated the performance of optimal FPDS via an
experimental investigation. As expected, the experiments
verified the dominance of FPDS over FPPS and FPNS. They
also showed that the optimal approach, derived in this paper,
improves upon previous techniques for FPDS which
assumed deadline monotonic priority ordering (DMPO) [13].
We used a simple example with three tasks to illustrate that
DMPO is not optimal for FPDS.

A. Practical applications
Pre-emptive EDF is the optimal algorithm for scheduling

the task model considered in this paper; however, for
systems that conform to standards requiring fixed priority
scheduling, such as AUTOSAR6, then FPDS represents an
approach that is both efficient to implement and can
significantly improve upon the performance of FPPS and
FPNS.

The AUTOSAR Operating System standard supports co-
operative scheduling of tasks comprising multiple non-pre-
emptive regions. In many automotive systems tasks are
composed of 50-300 sequential functions [18] each of which
could be considered as a non-pre-emptive region. (The use of
these non-pre-emptive regions can significantly reduce stack
usage, and the implementation of such regions alone can be
simpler than using resource locking protocols as there is no
requirement to support nesting). The techniques described in
this paper are applicable to these systems. In particular, the
FNR-PA algorithm introduced in this paper can be used to
determine an optimal assignment of task priorities and final
non-pre-emptive regions lengths, subject to the constraints
imposed on the lengths of such regions by the functions
making up each task.

B. Future work
The FNR-PA algorithm presented in this paper provides

an optimal solution for FPDS for a task model where task
execution times are independent of pre-emption and pre-
emption costs are negligible. In many real-time systems;
however, each pre-emption incurs a cost to do with saving
and restoring task contexts, run-queue manipulation and task
dispatch. Further, in systems using cache, pre-emption also
causes cache-related pre-emption delays (CRPD). Here
cache lines evicted by a pre-empting task may need to be
reloaded once the pre-empted task has been resumed. For
large tasksets, allowing arbitrary pre-emption can result in

6 AUTOSAR (AUTomotive Open System Architecture) www.autosar.org.

lower priority tasks being pre-empted a large number of
times, significantly increasing CRPD to the detriment of
schedulability [1], [2]. In fact CRPD can amount to a
significant proportion of a task’s execution time.

The integration of pre-emption related delays and
schedulability analysis is a key area for further research. In
future, we plan to integrate schedulability analysis for FPDS
with different models of CRPD. Our aim is to obtain optimal
or near optimal task priority assignments and non-pre-
emptive region allocations that maximise schedulability. For
more complex task models this will involve a trade-off
between blocking due to non-pre-emptive sections and pre-
emption related delays.

ACKNOWLEDGEMENTS

The authors would like to thank Alan Burns for his
comments on a draft of this paper. This work was partially
funded by the UK EPSRC Tempo project (EP/G055548/1).

REFERENCES

[1] S. Altmeyer, R.I. Davis, C. Maiza “Cache related Pre-emption Delay
aware response time analysis for fixed priority pre-emptive systems”.
In proceedings Real-Time Systems Symposium, pp. 261-271, 2011.

[2] S. Altmeyer, R.I. Davis, C. Maiza “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-
emptive systems” . Real-Time Systems, Volume 48, Issue 5, Pages
499-526, Sept 2012

[3] N.C. Audsley, "Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times", Technical Report YCS 164,
Dept. Computer Science, University of York, UK, 1991.

[4] N.C. Audsley, A. Burns, M. Richardson , A.J. Wellings., “Applying
new Scheduling Theory to Static Priority Pre-emptive Scheduling”.
Software Engineering Journal, 8(5), pp 284-292, 1993.

[5] N.C. Audsley, “On priority assignment in fixed priority scheduling”,
Information Processing Letters, 79(1): 39-44, May 2001.

[6] S.K. Baruah. “The limited-preemption uniprocessor scheduling of
sporadic task systems”. In Proceedings Euromicro Conference on
Real-Time Systems (ECRTS), pp. 137–144, 2005.

[7] S.K. Baruah, A. Burns, “Sustainable Scheduling Analysis”. In
proceedings Real-Time Systems Symposium, pp. 159-168, 2006.

[8] Baker T.P., “Stack-based Scheduling of Real-Time Processes.” Real-
Time Systems Journal (3)1, pp. 67-100. 1991.

[9] T.P. Baker, S.K. Baruah, “Sustainable multiprocessor scheduling of
sporadic task systems”. In Proceedings ECRTS, pp. 141-150, 2009.

[10] A. Bastoni, B. Brandenburg, and J. Anderson, "Cache-Related
Preemption and Migration Delays: Empirical Approximation and
Impact on Schedulability," in Proceedings of OSPERT, , pp. 33-44,
Brussels, Belgum, 2010.

[11] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, Francesco Esposito,
Marco Caccamo. "Preemption points placement for sporadic task
sets", In Proceedings Euromicro Conference on Real-Time Systems
(ECRTS), Bruxelles, Belgium, June 2010.

[12] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, G. Buttazzo.
"Optimal Selection of Preemption Points to Minimize Preemption
Overhead", In Proceedings Euromicro Conference on Real-Time
Systems (ECRTS), Porto, Portugal, July 2011.

[13] M. Bertogna, G. Buttazzo, G. Yao. "Improving Feasibility of Fixed
Priority Tasks using Non-Preemptive Regions", In Proceedings Real-
Time Systems Symposium, Vienna, Austria, December 2011.

[14] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[15] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with
deferred preemption. Real-Time Systems, 42(1-3):63–119, 2009.

[16] R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin, J.J. Lukkien,
“Generalized fixed-priority scheduling with limited preemptions”, In
proceedings Euromicro Conference on Real-Time Systems (ECRTS),
pp. 209-220. Pisa, Italy, July 2012.

[17] G.C. Buttazzo, M. Bertogna, G. Yao. "Limited Preemptive
Scheduling for Real-Time Systems: A Survey". IEEE Transactions on
Industrial Informatics. In press. Downloadable from
http://retis.sssup.it/~marko/publi.html

[18] D. Buttle, “Real-Time in the Prime Time” Keynote talk at Euromicro
Conference on Real-Time Systems (ECRTS) 2012. Presentation:
http://ecrts.eit.uni-kl.de/index.php?id=69.

[19] A. Burns. “Preemptive priority based scheduling: An appropriate
engineering approach”. S. Son, editor, Advances in Real-Time
Systems, pp. 225–248, 1994.

[20] A. Burns, S.K. Baruah “Sustainability in real-time scheduling”.
Journal of Computing Science and Engineering 2 (1), pp 74-97. 2008.

[21] R.I. Davis, N. Merriam, N.J. Tracey, “How Embedded Applications
Using an RTOS can stay within On-chip Memory Limits”. In
proceedings Work in Progress and Industrial Experience Sessions,
Euromicro Conference on Real-Time Systems (ECRTS), 2000.

[22] R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed Priority
Real-Time Systems”. In proceedings Real-Time Systems Symposium,
pp. 3-14. 2007

[23] R.I. Davis, A. Burns. "Response Time Upper Bounds for Fixed
Priority Real-Time Systems". In proceedings Real-Time Systems
Symposium, Barcelona, Spain, 2008.

[24] R.I. Davis, A. Zabos, A. Burns, "Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems”. IEEE Transactions on
Computers, (Vol. 57, No. 9) pp. 1261-1276, September 2008.

[25] R.I. Davis and A. Burns "Robust priority assignment for messages on
Controller Area Network (CAN)”. Real-Time Systems, Volume 41,
Issue 2, pages 152-180, February 2009.

[26] M.L. Dertouzos, “Control Robotics: The Procedural Control of
Physical Processes”. In Proceedings of the IFIP congress, pages 807-
813, 1974.

[27] L. George, N. Rivierre, M. Spuri, “Preemptive and Non-Preemptive
Real-Time UniProcessor Scheduling”, INRIA Research Report, No.
2966, September 1996.

[28] M. Joseph, P.K. Pandya, “Finding Response Times in a Real-time
System”. The Computer Journal, 29(5), pages 390–395, 1986.

[29] J.P. Lehoczky, L. Sha, Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behaviour”. In
Proceedings Real-Time Systems Symposium, pp. 166–171, 1989.

[30] J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines”. In Proceedings Real-Time Systems Symposium,
pp. 201–209, 1990.

[31] J.Y.-T. Leung, J. Whitehead, "On the complexity of fixed-priority
scheduling of periodic real-time tasks". Performance Evaluation, 2(4),
pp. 237-250, 1982.

[32] C.L. Liu, J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of the
ACM, 20(1) pp. 46-61, 1973.

[33] M. Saksena and Y. Wang. “Scalable real-time system design using
preemption thresholds”. In Proceedings Real-Time Systems
Symposium, 2000.

[34] K.W.Tindell, A. Burns, A.J.Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks”. Real-Time Systems.
Volume 6, Number 2, pp. 133-151, 1994.

[35] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with pre-
emption threshold. In Proceedings RTCSA’99, Hong Kong, China,
December 13-15, 1999.

[36] G. Yao, G. Buttazzo, M. Bertogna. "Bounding the Maximum Length
of Non-Preemptive Regions Under Fixed Priority Scheduling", In
Proceedings RTCSA 2009, Beijing, China, August 2009.

[37] G. Yao, G. Buttazzo, M. Bertogna. "Feasibility Analysis under Fixed
Priority Scheduling with Fixed Preemption Points", In Proceedings
RTCSA 2010, Macau, China, August 2010.

http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf
http://www.cs.unc.edu/~baruah/Papers/2009-bakerBaruah-ECRTS.pdf

	I. Introduction
	II. Background Research
	III. System model, Terminology and Notation
	IV. Recapitulation of Schedulability Analysis for FPDS
	A. Example of FPDS

	V. Optimal Fixed Priority Scheduling with Deferred Pre-emption
	VI. FNR Length Calculation
	VII. Experimental Evaluation
	A. Parameter generation
	B. Success ratio
	C. Weighted schedulability

	VIII. Summary and Conclusions
	A. Practical applications
	B. Future work
	Acknowledgements
	References

