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Abstract— The schedulability of systems using fixed priority 
pre-emptive scheduling can be improved by the use of non-pre-
emptive regions at the end of each task’s execution; an 
approach referred to as deferred pre-emption. Choosing the 
appropriate length for the final non-pre-emptive region of each 
task is a trade-off between improving the worst-case response 
time of the task itself and increasing the amount of blocking 
imposed on higher priority tasks. In this paper we present an 
optimal algorithm for determining both the priority ordering 
of tasks and the lengths of their final non-pre-emptive regions. 
This algorithm is optimal for fixed priority scheduling with 
deferred pre-emption, in the sense that it is guaranteed to find 
a schedulable combination of priority ordering and final non-
pre-emptive region lengths if such a schedulable combination 
exists. 

Keywords-real-time scheduling; schedulability analysis; fixed 
priority; deferred pre-emption; optimal priority assignment; non-
pre-emptive scheduling. 

I. INTRODUCTION

A common misconception with regard to fixed priority 
scheduling of sporadic tasks on a single processor is that 
fully pre-emptive scheduling is the best approach to take in 
terms of taskset schedulability. Fixed priority non-pre-
emptive scheduling (FPNS) and fixed priority pre-emptive 
scheduling (FPPS) are however incomparable; there are 
tasksets that are schedulable under FPNS that are not 
schedulable under FPPS and vice-versa. 

In the literature, the term fixed priority scheduling with 
deferred pre-emption (FPDS) has been used to refer to a 
variety of different techniques by which pre-emptions may 
be deferred for some period of time after a higher priority 
task becomes ready. These are discussed in Section II. In this 
paper, we assume a form of fixed priority scheduling with 
deferred pre-emption where each task has a final non-pre-
emptive region. If this region is of the minimum possible 
length1 for all tasks, then we have fixed priority pre-emptive 
scheduling, whereas if the final non-pre-emptive region 
constitutes all of the task’s execution time then we have 
fixed priority non-pre-emptive scheduling. Thus FPDS can 
be viewed as a superset of both FPPS and FPNS. FPDS can 
therefore potentially schedule any taskset that is schedulable 

1 The minimum possible length of a non-pre-emptive region is 1 rather 
than 0, as we assume a discrete time model and tasks cannot be pre-empted 
during a processor clock cycle. 

under FPPS or FPNS; in other words FPDS dominates both 
FPPS and FPNS. 

With FPDS, there are two key parameters that affect 
taskset schedulability: the priority assigned to each task, and 
the length of each task’s final non-pre-emptive region. The 
length of the final region affects both the schedulability of 
the task itself, and the schedulability of tasks with higher 
priorities. This is a trade-off, increasing the length of the 
final non-pre-emptive region can improve schedulability for 
the task itself by reducing the number of times it can be pre-
empted by higher priority tasks, but potentially increases 
blocking on higher priority tasks reducing their 
schedulability. 

In this paper, we introduce an optimal algorithm for 
FPDS. This Final Non-pre-emptive Region and Priority 
Assignment (FNR-PA) algorithm is optimal in the sense that 
it is guaranteed to find a combination of priority assignment 
and final non-pre-emptive region lengths that result in a 
schedulable system under FPDS whenever such a 
schedulable combination of these parameters exists. Stated 
otherwise, the FNR-PA algorithm is able to find a 
schedulable solution for any taskset that is feasible under 
FPDS. The algorithm relies on finding the minimum final 
non-pre-emptive region length for each task that ensures its 
schedulability. This value may be found via binary search; 
however, we also derive a more efficient analytical method. 
The algorithm takes a greedy approach to priority 
assignment and is therefore tractable in terms of the number 
of task schedulability tests that it requires. 

The remainder of the paper is organised as follows. 
Section II describes the background research which we build 
upon. Section III describes the system model, terminology 
and notation used. Section IV recapitulates schedulability 
analysis for fixed priority scheduling with deferred pre-
emption. Section V provides formal definitions of the 
problems addressed, and derives algorithms to solve them. 
Section VI describes an analytical method for determining 
the minimum final non-pre-emptive region length 
commensurate with task schedulability. Section VII provides 
an experimental evaluation, comparing the effectiveness of 
FPDS with optimal priority and final non-pre-emptive region 
length assignment, with that of FPPS and FPNS. Finally, 
Section VIII concludes with a summary and directions for 
future work. 
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II. BACKGROUND RESEARCH

In 1973, Liu and Layland [32] considered FPPS of 
synchronous tasksets comprising independent periodic tasks, 
with bounded execution times, deadlines equal to their 
periods (referred to as implicit-deadlines), and a common 
release time. Liu and Layland showed that rate monotonic
priority ordering (RMPO) is the optimal fixed priority 
ordering for such tasksets. 

Research into real-time scheduling during the 1980’s and 
early 1990’s focused on lifting many of the restrictions of the 
Liu and Layland task model. Task arrivals were permitted to 
be sporadic, with known minimal inter-arrival times, (still 
referred to as periods), and task deadlines were permitted to 
be less than or equal to their periods (referred to as 
constrained deadlines) or less than, equal to, or greater than 
their periods (referred to as arbitrary deadlines). 

In 1982, Leung and Whitehead [31] showed that deadline 
monotonic2 priority ordering (DMPO) is the optimal fixed 
priority ordering for constrained-deadline tasksets. Exact 
schedulability tests for FPPS of constrained-deadline tasksets 
were introduced by Joseph and Pandya in 1986 [28], 
Lehoczky et al. in 1989 [29], and Audsley et al. in 1993 [4]. 

In 1990, Lehoczky [30] showed that DMPO is not 
optimal for tasksets with arbitrary deadlines; however, an 
optimal priority ordering for such tasksets can be determined 
in at most 2/)1( +nn  task schedulability tests using 
Audsley’s optimal priority assignment (OPA) algorithm3 [3], 
[5]. Exact schedulability tests for tasksets with arbitrary 
deadlines were developed by Lehoczky [30] in 1990, and 
Tindell et al. [34] in 1994. 

In 1996, George et al. [27] derived an exact 
schedulability test for FPNS based on the approach of 
Tindell et al. [34] for the pre-emptive case. George et al. 
showed that unlike in the pre-emptive case, DMPO is not 
optimal for constrained-deadline tasksets scheduled by 
FPNS. Further, they showed that Audsley’s optimal priority 
assignment algorithm [5] is applicable, and can also be used 
to determine an optimal priority ordering for tasksets with 
arbitrary-deadlines in the non-pre-emptive case. 

In 2008, Davis and Burns [23] provided linear response 
time upper bounds and hence sufficient schedulability tests 
for FPPS, FPNS and FPDS. Davis et al. [24] also showed 
how to use response time lower bounds to improve the 
efficiency of the exact schedulability tests. 

Two different models of fixed priority scheduling with 
deferred pre-emption have been developed in the literature. 

In the fixed model, introduced by Burns in 1994 [19], the 
location of each non-pre-emptive region is statically 
determined prior to execution. Pre-emption is only permitted 
at pre-defined locations in the code of each task, referred to 
as pre-emption points. This method is also referred to as co-

2 Deadline monotonic priority ordering assigns priorities in order of task 
deadlines, such that the task with the shortest deadline is given the highest 
priority.
3 This algorithm is optimal in the sense that it finds a schedulable priority 
ordering whenever such an ordering exists.

operative scheduling, as the tasks co-operate, providing re-
scheduling / pre-emption points to improve schedulability. 

In the floating model [6], [36], an upper bound is given 
on the length of the longest non-pre-emptive region of each 
task. However, the location of each non-pre-emptive region 
is not known a priori and may vary at run-time, for example 
under the control of the operating system. 

Exact schedulability analysis for the fixed model was 
derived by Bril et al. in 2009 [15]. Recently, Bertogna et al. 
integrated pre-emption costs and cache related pre-emption 
delays (CRPD) into analysis of the fixed model, considering 
both fixed [11] and variable [12] pre-emption costs. 

In 2011, Bertogna et al. [13], derived a method of 
computing the optimal length of the final non-pre-emptive 
region of each task in order to maximize schedulability under 
FPDS for a given priority assignment. 

Alternative approaches to limiting pre-emption include 
Pre-emption Thresholds (FPTS) [35], [33] and Non-pre-
emption Groups [21] in which each task has a base priority at 
which it competes for the processor, and a threshold priority 
at which it executes, thus limiting pre-emption to those tasks 
with a base priority higher than the threshold. In [35], [33]
Saksena and Wang attempted to derive an integrated 
approach to priority and pre-emption threshold assignment, 
but did not succeed in finding an optimal algorithm with less 
than exponential complexity. Research by Bril et al. [16] in 
2012 combines the ideas of deferred pre-emption and pre-
emption thresholds, generalising both into a single scheme 
with pre-emption thresholds between a set of sub-jobs which 
execute non-pre-emptively.  

For further information on limited pre-emption 
scheduling the reader is referred to the survey in [17]. 

III. SYSTEM MODEL, TERMINOLOGY AND NOTATION

In this paper, we consider the fixed priority scheduling of 
a set of sporadic tasks (or taskset) on a single processor. 
Each taskset comprises a static set of n tasks ( nττ ..1 ), where 
n is a positive integer. We assume that the index i of task iτ
represents the task priority, hence 1τ  has the highest priority, 
and nτ  the lowest. We assume a discrete time model, where 
all task parameters are assumed to be positive integers. 

We use the notation )(ihp  (and )(ilp ) to mean the set of 
tasks with priorities higher than (lower than) i, and the 
notation )(ihep  (and )(ilep ) to mean the set of tasks with 
priorities higher than or equal to (lower than or equal to) i. 

Each task iτ  is characterized by its bounded worst-case 
execution time iC , minimum inter-arrival time or period iT , 
and relative deadline iD . Each task iτ  therefore gives rise to 
a potentially unbounded sequence of invocations (or jobs), 
each of which has an execution time upper bounded by iC , 
an arrival time at least iT  after the arrival of its previous job, 
and an absolute deadline that is iD  after its arrival. 

In an implicit-deadline taskset, all tasks have ii TD = . In 
a constrained-deadline taskset, all tasks have ii TD ≤ , while 
in an arbitrary-deadline taskset, task deadlines are 
independent of their periods. 



The utilisation iU  of a task iτ  is given by its execution 
time divided by its period ( iU = iC / iT ). The total utilisation 
U of a taskset is the sum of the utilisations of all of its tasks. 

Under FPDS, each task is assumed to have a final non-
pre-emptive region of length iF  in the range ],1[ iC . 
Determining an appropriate value for the length of this 
region is assumed to be part of the scheduling problem rather 
than a characteristic of the task.  

We assume that tasks may make mutually exclusive 
access to shared resources according to the Stack Resource 
Policy (SRP) [8]. We use i

lB  to denote the longest time that 
a task )(ilpl ∈τ  may execute while holding a resource that is 
shared with a task of priority i or higher. i

lB  therefore 
represents the longest time for which task lτ  can execute at 
priority i or higher due to the operation of the SRP. We 
assume that any resource access occurring within the final 
non-pre-emptive region of a task is properly nested, i.e. 
wholly included within that region. We note that this may 
place constraints on the specific values that the length of the 
final non-pre-emptive region of each task may take.  

The following assumptions are made about the behaviour 
of the tasks. The arrival times of the tasks are independent 
and unknown a priori; hence the tasks may share a common 
release time. Each task is released, i.e. becomes ready to 
execute, as soon as it arrives. The tasks do not voluntarily 
suspend themselves.  

The worst-case response time iR  of a task is given by the 
longest possible time from release of the task until it 
completes execution. Thus task iτ  is schedulable if and only 
if ii DR ≤ , and a taskset is schedulable if and only if 

ii DRi ≤∀ . A critical instant task iτ  is a scenario or 
pattern of task releases that leads to the worst-case response 
time for task iτ . 

Under FPDS, at any given time the highest priority ready 
task is selected for execution by the processor. Note both 
final non-pre-emptive regions and resource accesses 
according to SRP are assumed to be implemented by 
manipulating task priorities. Thus a task executing a final 
non-pre-emptive region has the highest priority and so will 
not be pre-empted. 

A taskset is said to be schedulable with respect to some 
scheduling algorithm, if all valid sequences of jobs that may 
be generated by the taskset can be scheduled by the 
algorithm without any missed deadlines. 

A priority assignment policy P is said to be optimal with 
respect to some class of tasksets (e.g. arbitrary-deadline), and 
some type of fixed priority scheduling algorithm (e.g. FPPS, 
FPNS, or FPDS) if there are no tasksets in the class that are 
schedulable under the scheduling algorithm using any other 
priority ordering policy, that are not also schedulable using 
the priority assignment determined by policy P. 

A fixed priority scheduling algorithm A is said to 
dominate another fixed priority scheduling algorithm B if 
there are tasksets that can be scheduled under algorithm A, 
but cannot be scheduled under algorithm B, and all of the 
tasksets that are schedulable under algorithm B are also 

schedulable under algorithm A. If there are tasksets that are 
schedulable under algorithm A, but not under algorithm B, 
and vice-versa, then the two algorithms are said to be 
incomparable. If both algorithms can schedule precisely the 
same tasksets then they are said to be equivalent. 

A scheduling algorithm is said to be sustainable [7], [20]
with respect to a system model, if and only if schedulability 
of any taskset compliant with the model implies 
schedulability of the same taskset modified by: (i) decreasing 
execution times, (ii) increasing periods or inter-arrival times, 
and (iii) increasing deadlines. Similarly, a schedulability test 
is referred to as sustainable if these changes cannot result in 
a taskset that was previously deemed schedulable by the test 
becoming unschedulable. We note that the modified taskset 
may not necessarily be deemed schedulable by the test. A 
schedulability test is referred to as self-sustainable [9] if such 
a modified taskset is always deemed schedulable by the test. 

IV. RECAPITULATION OF SCHEDULABILITY ANALYSIS 
FOR FPDS 

We now recapitulate schedulability analysis for fixed 
priority scheduling with deferred pre-emption for sporadic 
tasksets with arbitrary deadlines, based on the work of Bril et 
al. [15]. In order to deal with the discrete time domain 
assumed in this paper, the results presented in [15] are 
rephrased according to the notation adopted in [17]. We also 
make simple extensions to the analysis to account for 
blocking due to resource accesses. 

First, we introduce the concepts of priority level-i active 
period, and ∆-critical instant, which are fundamental to the 
analysis of FPDS. 

The term priority level-i active period refers to a 
continuous period of time ),[ 21 tt  during which tasks, of 
priority i or higher, that were released at the start of the 
active period at 1t , or during the active period but strictly 
before its end at 2t , are either executing or ready to execute. 

A ∆-critical instant for a task iτ  occurs when task iτ  is 
released simultaneously with all higher priority tasks, and 
subsequent releases of task iτ  and higher priority tasks 
occur after the minimum permitted time intervals. Further, 
the minimum possible amount of time ∆ prior to this 
simultaneous release, a lower priority task kτ  enters its final 
non-pre-emptive region or begins accessing a resource 
shared with a task of priority i or higher. Note that due to the 
integer time model considered in this paper, the discrete time 
granularity ∆ is one time unit.

Bril et al. [15] showed that for FPDS, the longest 
response time of a task iτ  occurs for some job of that task 
within the priority level-i active period starting at a ∆-critical 
instant. Lemma 3 in [15] states that the worst-case length of 
a priority level-i active period iA  is given by the minimum 
solution to the following fixed point iteration:  

j
ihepj j

m
i

i
m
i C

T
A

BA ∑
∈∀

+












+=

)(

1    (1) 



Iteration starts with an initial value 0
iA  guaranteed to be no 

larger than the minimum solution, for example ii CA =0 , and 
ends when m

i
m
i AA =+1 . In (1) the term iB  is the longest 

time that task iτ  can be blocked from executing by lower 
priority tasks, and is given by: 
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where RES
iB  and FNR

iB  are respectively the blocking factors 
at priority i due to resource locking and final non-pre-
emptive regions. In (2) the maximum of an empty set is 
assumed to be zero. 

The number of jobs iG  of task iτ  in the priority level-i
active period is given by: 
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job g (where g = 0 is the first job) of task iτ  measured with 
respect to the start of the ∆-critical instant is given by the 
minimum solution to the following fixed point iteration: 
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hence task iτ  is unschedulable. 
To find the worst-case response time, the start times of 

the final non-pre-emptive regions giW ,  need to be calculated 
for jobs 1,...3,2,1,0 −= iGg . The worst-case response time 
of task iτ  is then given by: 

)(max ,1...2,1,0 ii
NP
giGg

gTFWR
ii

−+=
−=∀

  (5) 

Task iτ  is schedulable provided that ii DR ≤ . 
Corollary 1: Sustainability of task schedulability with 
respect to an increase in the length of its final non-pre-
emptive region. From (4) and (5), the worst-case response 
time of task iτ  is monotonically non-increasing with respect 
to increases in the length of its final non-pre-emptive region 

iF . Stated otherwise, increasing the length of the final non-
pre-emptive region of a task cannot result in that task 
becoming unschedulable if it was previously schedulable. 

A. Example of FPDS 
We now provide an example of fixed priority scheduling 

with deferred pre-emption. The example is based on the 
taskset in Table I, and is derived from an example for fixed 
priority non-pre-emptive scheduling given in [25]. In this 
example, we assume that the tasks are independent. 

First let us consider which priority assignments might 
lead to a schedulable system. The deadline of 175 for task 

Aτ  means that it is trivially unschedulable at anything other 
than the highest priority level, irrespective of whether we use 

FPPS, FPNS, or FPDS, and whatever the lengths of any final 
non-pre-emptive regions. We must therefore place task Aτ  at 
the highest priority. 

TABLE I: TASK PARAMETERS

Task Execution time Period Deadline
Aτ 100 250 175

Bτ 100 400 300

Cτ 100 350 325

Now let us consider assigning task Cτ  the lowest 
priority. Corollary 1 tells us that the best schedulability for 
task Cτ  is achieved if it is completely non-pre-emptive, i.e. 

100== CC CF . From (1), the length of the priority level-3 
active period is 700, and so we must examine the response 
times of the first two jobs of task Cτ , starting from a ∆-
critical instant. This sequence of task execution is as shown 
in Figure 1, assuming that task Cτ  executes non-pre-
emptively. The second job of task Cτ  misses its deadline at 
time 675; hence task Cτ  cannot be given the lowest priority. 

A B C

A,B,C A

A

C

AB

A

C

0 100 200 300 400 500 600 700

Tasks released Deadline 
missedB

Figure 1: Priority level-3 active period. Task C at the lowest priority level. 

We observe that ( Aτ , Bτ , Cτ ) represents deadline 
monotonic priority order (DMPO). So DMPO cannot make 
this taskset schedulable, irrespective of what lengths we 
might choose for the final non-pre-emptive regions. 

A C B

A,B,C A

A AC

A

B

0 100 200 300 400 500 600 700

Tasks released
C B

Figure 2: Priority level-3 active period. Task B at the lowest priority level. 

Now let us consider placing task Bτ  at the lowest priority 
level, i.e. priority order ( Aτ , Cτ , Bτ ). If we set the length of 
the final non-pre-emptive region of task Bτ  to be 51=BF , 
then the priority level-3 active period is as shown in Figure 
2, and the two jobs of task Bτ  both meet their deadlines. 
Further, the worst-case response times of task Aτ  and task 

Cτ  are 150, and 250 respectively. Thus with a priority 
ordering ( Aτ , Cτ , Bτ ) and final non-pre-emptive region 
lengths of 1=AF , 1=CF , and 51=BF  the taskset is 
schedulable using FPDS. 

Assuming FPPS with optimal (deadline monotonic) 
priority ordering, then task Cτ  misses its deadline at 325 due 
to pre-emption by task Aτ  at 250; hence, the taskset is 



unschedulable under FPPS with any priority ordering [31]. 
The taskset is also trivially unschedulable under FPNS as 
task Aτ  cannot tolerate being blocked for more than 75 and 
the execution times of tasks Bτ  and Cτ  are 100. 

This example illustrates the dominance, rather than 
equivalence, of FPDS over FPPS and FPNS. It also serves to 
show that deadline monotonic priority ordering is not 
optimal for FPDS. 

V. OPTIMAL FIXED PRIORITY SCHEDULING WITH 
DEFERRED PRE-EMPTION

In the previous section, we showed that deadline 
monotonic priority ordering is not optimal for FPDS, even 
for tasks with constrained deadlines. In this section, we pose 
two key problems relating to the assignment of priorities and 
final non-pre-emptive region lengths under FPDS. We then 
derive tractable optimal algorithms that solve these 
problems.  

Note we recognise that there may be constraints on the 
permissible set of values for the length of the final non-pre-
emptive region of each task. In this section when we refer to 
values for the length of the final non-pre-emptive region of a 
task, we mean valid values. We return to this point towards 
the end of Section VI. 
Problem 1: Final Non-pre-emptive Region length Problem 
(FNR Problem). For a given taskset complying with the task 
model described in Section III, and a given priority ordering 
X, find a value for the length of the final non-pre-emptive 
region of each task such that the taskset is schedulable under 
FPDS. 
Definition 1: An algorithm A is said to be optimal for the 
FNR Problem if there are no taskset / priority assignment 
combinations that are schedulable under FPDS with some set 
of values for the lengths of the final non-pre-emptive regions 
of each task, that are not also schedulable using the set of 
values for the lengths of final non-pre-emptive regions 
determined by algorithm A. 
Problem 2: Final Non-pre-emptive Region Length and 
Priority Assignment Problem (FNR-PA Problem). For a 
given taskset complying with the task model described in 
Section III, find both (i) a priority assignment, and (ii) a 
value for the length of the final non-pre-emptive region of 
each task that makes the taskset schedulable under FPDS. 
Definition 2: An algorithm B is said to be optimal for the 
FNR-PA Problem if there are no tasksets compliant with the 
task model that are schedulable under FPDS with some 
priority assignment X and some set of values for the lengths 
of the final non-pre-emptive regions of each task, that are not 
also schedulable using the priority assignment and set of 
values for the lengths of the final non-pre-emptive regions 
determined by algorithm B. 

We now derive tractable algorithms that solve the FNR 
and FNR-PA problems. In particular, the solution to the 
FNR-PA problem provides optimal fixed priority scheduling 
with deferred pre-emption. 

First we introduce some additional notation and a number 
of corollaries from the schedulability analysis for FPDS 
given in Section IV. 

For a given taskset and priority ordering X, we use 
),( Xkhep  to mean the set of tasks with priority higher than 

or equal to k. Similarly, ),( Xkhp is the set of tasks with 
priorities strictly higher than k, and ),( Xklp is the set of 
tasks with priorities strictly lower than k, in priority order X.  

We use ),( XkF  to denote the length of the final non-
pre-emptive region of the task at priority k in priority order 
X, and similarly, ),( XkB  to mean the blocking factor at 
priority level k. Where it is unnecessary to explicitly refer to 
the priority ordering, we use a short form of this notation e.g. 

)(khep , )(khp , )(klp , )(kF , and )(kB . 
We observe the following corollaries which follow 

directly from (4) and (5). 
Corollary 2: Sustainability [7] of task schedulability under 
FPDS with respect to a decrease in the blocking factor. A 
task that is schedulable at priority level k with a blocking 
factor )(kB  due to a set of lower priority tasks )(klp
remains schedulable when the blocking factor is reduced 
(e.g. by reducing the length of the final non-pre-emptive 
region of one or more lower priority tasks) and the sets 

)(klp  and )(khp  of lower and higher priority tasks remain 
unchanged. 
Corollary 3: The schedulability under FPDS of a task at 
priority k with a final non-pre-emptive region of length 

)(kF  depends on the set of higher priority tasks )(khp , but 
is independent of the relative priority ordering of those tasks. 
Corollary 4: The schedulability under FPDS of a task at 
priority k with a final non-pre-emptive region of length 

)(kF  depends on the set )(klp  of lower priority tasks in 
respect of the blocking factor; however, there is no 
dependency on the relative priority ordering of the lower 
priority tasks. 
Corollary 5: For a given set of higher priority tasks )(khp , 
the minimum value for the length )(kF  of the final non-pre-
emptive region of task kτ  consistent with that task 
remaining schedulable under FPDS is a monotonically non-
decreasing function of the blocking factor )(kB . Stated 
otherwise, a larger blocking factor at priority k cannot result 
in a smaller minimum length for the final non-pre-emptive 
region of the task at that priority level. 
Note, an analytical technique for determining the smallest 
final non-pre-emptive region length for each task is 
described in Section VI. 
for each priority level k, lowest first {
 determine the smallest value for the final 
 non-pre-emptive region length F(k) such that 
 the task at priority k is schedulable. 
 Set the length of the final non-pre-emptive 
 region of the task to this value. 
}

Algorithm 1: FNR Algorithm 



Theorem 1: The FNR algorithm (Algorithm 1) is optimal for 
the FNR problem (see Problem 1 and Definition 1).
Proof: We assume (for contradiction) that there exists a 
taskset τ  and priority ordering X that is schedulable with 
some set of final non-pre-emptive region lengths ),(' XkF
for k = 1 to n, for which the FNR algorithm fails to 
determine a set of non-pre-emptive region lengths ),( XkF
for k = 1 to n, that also results in a schedulable system. 

Let ),(' XkB  be the blocking factor at priority k with the 
schedulable set of final non-pre-emptive region lengths, and 

),( XkB  be the blocking factor at priority k with the set of 
final non-pre-emptive region lengths computed by the FNR 
Algorithm. At each priority level, we will show that 

),('),( XkFXkF ≤  and hence from (2) that 
),('),( XkBXkB ≤  thus proving via Corollary 2 

sustainability of task schedulability with respect to blocking 
factors that the taskset is schedulable with priority ordering 
X and the final non-pre-emptive region lengths determined 
by the FNR Algorithm, thus contradicting the original 
assumption. 

The proof is by induction over each priority level k from 
n to 1.  

Initial step: At the lowest priority level, n we have 
0),('),( == XnBXnB . At priority n, the FNR Algorithm 

(Algorithm 1) computes the minimum schedulable final non-
pre-emptive region length ),( XnF  for task nτ , hence 

),('),( XnFXnF ≤ . 
Inductive step: We assume that at priority k, 

),('),( XkBXkB ≤  and ),('),( XkFXkF ≤ . As the 
resource accesses by the task at priority k are unchanged, 
then from (2) we have ),1('),1( XkBXkB −≤−  and thus 
via Corollary 5, ).,1('),1( XkFXkF −≤−

Iterating over all of the priority levels shows that for all k
from n to 1, ),('),( XkBXkB ≤  and so by Corollary 2, the 
taskset is schedulable with the set of final non-pre-emptive 
region lengths ),( XkF  obtained by Algorithm 1 □
for each priority level k, lowest first {

for each unassigned task τ { 
  determine the smallest value for the  

  final non-pre-emptive region length F(k)
  such that task τ is schedulable at  
  priority k, assuming all other   
  unassigned tasks have higher priorities. 

  Record as task Z the unassigned task  
  with the minimum value for the length of 
  its final non-pre-emptive region F(k).

} 
if no tasks are schedulable at priority k { 
  return unschedulable 
} 
else { 
  assign priority k to task Z and use the  
  value of F(k) as the length of its final 

  non–pre-emptive region. 
} 

} 
return schedulable

Algorithm 2: FNR-PA Algorithm 

Corollary 6: For a given taskset and fixed priority ordering 
X, that is schedulable under FPDS with some set of final 
non-pre-emptive region lengths, Algorithm 1 minimises the 
final non-pre-emptive region length of every task, and hence 
minimises the blocking factor at every priority level.  
Theorem 2: The Final Non-pre-emptive Region Priority 
Assignment (FNR-PA) algorithm (Algorithm 2) is optimal 
for the FNR-PA problem (see Problem 2 and Definition 2). 
Proof: We assume (for contradiction) that there exists a 
taskset τ  with a priority ordering X and a set of final non-
pre-emptive region lengths ),( XkF  for k = 1 to n that result 
in a schedulable system. Without loss of generality, we 
assume that these final non-pre-emptive region lengths are 
the smallest possible values for this priority assignment – see 
Theorem 1. Further, we assume that the FNR-PA algorithm 
is unable to find a schedulable priority ordering and set of 
final non-pre-emptive region lengths for taskset τ . 

For the purposes of the proof, we will refer to the 
schedulable priority ordering X as nX . We will iteratively 
transform nX  into 1−nX .. 1X , where 1X  is the same 
priority order as the complete priority ordering P generated 
by the FNR-PA algorithm. The transformation will be such 
that the taskset remains schedulable thus proving the theorem 
via contradiction. Further, we will show that the FNR-PA 
algorithm is able to generate a complete priority ordering P.  

We use k as an iteration count and also the priority level 
that we will transform. Thus k counts down from an initial 
value of n to 1, and represents the priority level at which the 
FNR-PA algorithm assigns a task. We note that as a result of 
the transformations, the tasks at priority levels lower than k
become the same in both kX  and P, hence once iteration is 
complete, 1X  and P represent the same priority ordering. 

We show that at each priority level k, the FNR-PA 
algorithm can always find at least one schedulable task 
among those tasks of priority k or higher in kX  (i.e. in 

),(),( PkhepXkhep k = ). Thus it can find a task to assign to 
priority k. 

On iteration k, the FNR-PA algorithm examines all of 
the tasks in ),( kXkhep  (i.e. the tasks of priority k or higher 
in kX ). Of those tasks, it selects the one that is schedulable 
at priority k, with the minimum length final non-pre-emptive 
region, and assigns it to that priority level. 

The transformation of priority ordering kX  is as 
follows: First we find the priority level i in kX  of the task 
that the FNR-PA algorithm selects. We refer to this task as 

kτ , as the FNR-PA algorithm will assign it to priority level 
k. Note that as the tasks of lower priority than k are the same 
in both kX  and P, priority level i must be either higher than 
or equal to k. 
There are two cases to consider: 
1. Task kτ  is at priority k in both P and kX , in which case 

no transformation is required on this iteration, and so 
1−kX  is identical to kX  and therefore a schedulable 

priority ordering. 
2. Task kτ  is at a higher priority i in kX . In this case, we 



form priority ordering 1−kX  by modifying kX  as 
follows: Task kτ  is moved down in priority from 
priority level i to priority level k, and the tasks at priority 
levels i+1 to k are all moved up one priority level, as 
illustrated in Figure 3. 
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Figure 3: Transformation of priority order 

Comparing the tasks in priority order 1−kX  with their 
counterparts in kX . There are effectively four groups of 
tasks to consider: 
1. ),( 1−∈ kl Xklpτ : Each of these tasks lτ  is assigned the 

same priority in both kX  and 1−kX , and as 
),(),( 1 kk XkhepXkhep =− , they are subject to 

interference from the same set of higher priority tasks. 
Thus these tasks remain schedulable with unchanged 
final non-pre-emptive section lengths determined as per 
priority ordering kX . 

2. kτ : Task kτ  is at priority level i in kX  and at the lower 
priority level k in 1−kX : We know from the FNR-PA 
algorithm that kτ  is schedulable at priority k and 
tolerates the minimum value for the final non-pre-
emptive region length at priority k of any of the tasks in 

),( kXkhep . In particular, kτ  tolerates a final non-pre-
emptive region length that is at least as short as that of 
the task at priority k in kX . 

3. ),(),( 11 −− ∩∈ kkm XilepXkhpτ : These tasks retain the 
same partial order but are shifted up one priority level in 

1−kX . The only difference in the schedulability of a task 
mτ  in priority order 1−kX  as compared to priority order 

kX  is that in the former case, mτ  is subject to 
interference from task kτ  (which is at the higher priority 
i in kX ) whereas in priority order 1−kX , mτ  is subject 
to blocking from task kτ  (which is at the lower priority 
level k in 1−kX  ) – see Figure 3. Any increasing in the 
blocking factor at priority m due to kτ  being at a lower 
priority in 1−kX  cannot exceed its execution time kC , 
by contrast the reduction in interference is at least kC . 
Thus each task ),(),( 11 −− ∩∈ kkm XilepXkhpτ  remains 
schedulable under priority order 1−kX  with its final non-
pre-emptive region length set as per priority ordering 

kX . Without loss of generality, we assume that the 
minimum length of each of these final non-pre-emptive 
regions is re-computed for priority ordering 1−kX  using 
Algorithm 1 (i.e. lowest priority first). These values 

cannot increase with respect to the values for the same 
tasks in priority ordering kX  (Theorem 1).  

4. ),( 1−∈ kh Xihpτ : These tasks are assigned the same 
priorities in both kX  and 1−kX  and as 

),(),( 1 kk XilepXilep =−  they have the same set of lower 
priority tasks in each case. We now consider the set of 
lower priority tasks ),( 1−kXilep . As shown in the above 
three paragraphs, the only one of these tasks that may 
have a longer final non-pre-emptive region in priority 
order 1−kX  is task kτ ; however, we know that in 
priority order 1−kX  task kτ  has a final non-pre-emptive 
region that is no longer than that of the task at priority k
in kX , which is also in the set ),( kXilep . Thus the 
blocking factors at all priority levels higher than i cannot 
have increase due to the transformation of the priority 
order. (The contribution to these blocking factors due to 
resource locking by the tasks in ),( kXilep  is the same 
in both cases, and the contribution due to final non-pre-
emptive regions is no larger). Hence all of the tasks 

),( 1−∈ kh Xihpτ  remain schedulable with their final 
non-pre-emptive region lengths set as per priority 
ordering kX . Without loss of generality, we again 
assume that the minimum lengths of their final non-pre-
emptive regions are re-computed for priority ordering 

1−kX  using Algorithm 1 (i.e. lowest priority first). 
These values cannot increase with respect to the values 
for the same tasks in priority ordering kX  (Theorem 1). 

For each of the four groups of tasks, all of the tasks remain 
schedulable in priority ordering 1−kX  with the revised final 
non-pre-emptive region lengths.  

A total of n iterations of the above procedure, for values 
of k from n down to 1, is sufficient to transform any arbitrary 
priority ordering X into the priority ordering P, generated by 
the FNR-PA algorithm. Further, at each step, the FNR-PA 
algorithm is able to identify a schedulable task, thus resulting 
in a schedulable priority assignment and set of final non-pre-
emptive region lengths □

We note that the proof technique employed above is 
similar to that used in the proof of robust priority assignment 
algorithms in [22], [25].  
Theorem 3: For any taskset where there exists a priority 
ordering and a set of final non-pre-emptive region lengths 
that is schedulable under FPDS, the FNR-PA algorithm 
results in a blocking factor FNR

iB  from final non-pre-
emptive regions at every priority level i that is no larger than 
that obtained with any other schedulable priority and final 
non-pre-emptive region length assignment. 
Proof: Let ),(max XkF  denote the length of the longest 
final-non-pre-emptive region of any task of priority k or 
lower in priority order X (i.e. in ),( Xklep ). Recall that the 
length of the final non-pre-emptive region of the task at 
priority k in priority order X is denoted by ),( XkF . 

The four numbered paragraphs in the proof of Theorem 
2 describe the priority transformation between intermediate 
priority orderings 1−kX  and kX  for tasks in four subsets of 



the overall priority levels. These paragraphs show the 
following relationships between the final non-pre-emptive 
region lengths for the tasks at each priority level in priority 
orderings 1−kX  and kX . Paragraph 1 shows that for each 
priority level l lower than k, ),(),( 1 kk XlFXlF =−  and 
therefore that )(klpl∈∀ : ),(),( max

1
max

kk XlFXlF =− . 
Paragraph 2 shows that ),(),( 1 kk XkFXkF ≤−  and so 

),(),( max
1

max
kk XkFXkF ≤− . Paragraph 3 shows that 

)()( ilepkhpj ∩∈∀ : ),1(),( 1 kk XjFXjF +≤− . From 
paragraph 2, we also know that ),(),( 1 kk XkFXkF ≤−  and 
hence )()( ilepkhpj ∩∈∀ : ),(),( max

1
max

kk XjFXjF ≤− . 
Paragraph 4 shows that )(ihpj∈∀ : ),(),( 1 kk XjFXjF ≤−
and so we have )(ihpj∈∀ : ),(),( max

1
max

kk XjFXjF ≤− . 
Combining these results for all 4 subsets of priority levels, 
we have j∀ : ),(),( max

1
max

kk XjFXjF ≤− . 
In the proof of Theorem 2, n iterations of the priority 

transformation from k = n to 1, are used to transform the 
arbitrary priority ordering nXX =  into the priority ordering 

PX =1  generated by the FNR-PA algorithm, hence we 
have j∀ : ),(max PjF ),(max XjF≤ . From (2), ),(max XkF
corresponds to the blocking factor FNR

kB 1−  at priority k-1 in 
priority order X, due to final non-pre-emptive regions, as the 
blocking factor at the lowest priority level is always zero □

VI. FNR LENGTH CALCULATION

The FNR and FNR-PA algorithms presented in the 
previous section need to compute the minimum final non-
pre-emptive region length for each task. This can be found 
using a binary search; however, in this section, we derive an 
analytical method that can be used instead, thus reducing the 
overall complexity of the algorithms. We note that the 
approach presented in [13] cannot be used for this purpose, 
since it determines the maximum final non-pre-emptive 
region length for each task, and involves computing blocking 
tolerances which require information about the relative 
priority ordering of higher priority tasks. 

To determine the minimum final non-pre-emptive region 
length )(iF  that ensures the schedulability of the task at 
priority level i, we effectively need to compute the largest 
amount of execution that the task can complete pre-
emptively without missing its deadline.  

As tasks are evaluated lowest priority first, the amount of 
blocking due to lower priority tasks is known at each step 
and is given by (2). Further, the set of higher priority tasks is 
also known, but not their priority order, and so (1) and (3) 
can be used to compute the priority level-i active period and 
the number of jobs iG  of a task iτ  that it contains. We then 
need to compute, for each job g of task iτ  in the priority 
level-i active-period, the minimum final non-pre-emptive 
region required to guarantee the schedulability of that job. To 
do this, we first consider the minimum amount of execution 

)(, tS gi  that task iτ  is certain to be able to perform between 
the start of its g-th job and some arbitrary time t prior to that 
job’s deadline at ii DgT + : 
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If 0)(, ≥tS gi  and the remaining execution time 
( )(, tSC gii − ) of the job at time t is smaller than the time to 
its deadline ( tDgT ii −+ ), then the remaining execution 
time corresponds to a schedulable final non-pre-emptive 
region. We need to find the maximum )(, tS gi  among all 
such schedulable time points. The function )(, tS gi  is a 
piece-wise linear function with local maxima corresponding 
to the release times of higher priority tasks minus one time 
unit. For each job 1...2,1,0 −= iGg , let gi,Ρ  be the set of 
time points corresponding to the local maxima of )(, tS gi , 
for [ ]1, −+∈ iii DgTgTt , including the end of the interval: 
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To find the maximum )(, tS gi  it is sufficient to check the 
schedulable points in giP , :  
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(8) 
Note that the first inequality guarantees that the job has 
sufficient time to complete its final non-pre-emptive region 
before its deadline, while the second inequality guarantees 
that the final non-pre-emptive region can actually start 
executing at or before time t. If no point in giP ,  satisfies both 
inequalities, then the job is not schedulable, and giS ,  is set to 
a negative value. 

The minimum final non-pre-emptive region of the g-th 
job of task iτ  is given by: 

)1,max(),( ,gii SCgiF −=     (9) 
Taking the maximum over all jobs of task iτ  in the priority 
level-i-active period determines the minimum final non-pre-
emptive region for task iτ : 

{ }),(max)(
1...2,1,0

giFiF
iGg −=

=      (10) 

Finally, task iτ  is schedulable provided that iCiF ≤)( . 
This analytical method enables the minimum final non-

pre-emptive region for each task to be computed as part of 
the FNR and FNR-PA algorithms. The run-time complexity 
of the method is similar to that of a single task schedulability 
test e.g. the computation required for (5). 

The set of valid values for the length of the final non-
pre-emptive region of task iτ  may be limited to a subset of 
values in the range ],1[ iC  due to constraints related to nested 
resource locking or other non-pre-emptive regions. As the 
schedulability of a task is sustainable with respect to 
increasing the length of its final non-pre-emptive region 
(Corollary 1) the minimum valid value can be found by 
computing the minimum theoretical value as described 
above, and then selecting the smallest valid value that is no 
smaller than this computed minimum. 



Using the analytical method described in this section, the 
FNR-PA algorithm effectively requires a maximum of 

)2/)1(( +nn task schedulability tests to determine an optimal 
priority and final non-pre-emptive region length assignment, 
We note that the size of the search space is: 

∏
∀i

iCn!

Thus, the FNR-PA algorithm represents a significant 
reduction in complexity, making the problem tractable for 
the majority of practical applications. 

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the 
following fixed priority scheduling algorithms:  
o FPDS (OPT) with optimal priority and final non-pre-

emptive region length assignment using the FNR-PA 
algorithm introduced in Section V; 

o FPDS (DM) with deadline monotonic priority 
assignment, using the highest-priority-first approach to 
determining final non-pre-emptive region lengths 
described in [13]; 

o FPPS with deadline monotonic priority assignment, 
which is optimal in this case [31]; 

o FPNS with optimal priority assignment using Audsley’s 
OPA algorithm [3], [5]. 

o FPTS Fixed priority Pre-emption Threshold Scheduling 
[35] using the optimal threshold assignment given in 
[33] and deadline monotonic priority assignment4. 

A. Parameter generation 
The task parameters used in our experiments were 

randomly generated as follows: 
o The UUniFast algorithm [14] was used to generate a set 

of n utilisation values iU , with a total utilisation of U . 
o Task periods were generated according to a log-uniform 

distribution5. Here the ratio between the maximum and 
the minimum permissible task period was given by r10 . 
By default, this range was 10, i.e. r = 1. 

o Task execution times were set based on the utilisation 
and period selected: iii TUC = . 

o The tasks were independent, and hence there were no 
constraints on the final non-pre-emptive region lengths. 

o Task deadlines were either implicit, and so equal to their 
periods, or constrained and chosen at random according 
to a uniform distribution in the range 

]),([ iiii TCTC −+α , with α = 0.5 as the default. 
o The default taskset cardinality was 10. 
In each experiment, the taskset utilisation was varied from 
0.03 to 0.99 in steps of 0.03. For each utilisation value, 5000 
tasksets were generated and their schedulability determined 

4 Deadline monotonic priority assignment is not optimal for FPTS; 
however, to the best of our knowledge no optimal approach to priority and 
threshold assignment is known that requires less than exponential time.
5 The log-uniform distribution of a variable x is such that ln (x) has a 
uniform distribution.

according to the various scheduling algorithms. 

B. Success ratio 
In our first set of experiments, we compared the 

performance of the scheduling algorithms via a metric 
referred to as the success ratio; the proportion of randomly 
generated tasksets that are schedulable in each case. We also 
compared the performance of the algorithms to Earliest 
Deadline First (EDF) scheduling which is an optimal 
scheduler for fully pre-emptive sporadic tasks with 
constrained deadlines on a single processor [26]. 

Figure 4: Success ratio for n = 10, D = T 

Figure 5: Success ratio for n = 10, D ≤ T 

Figure 4 and Figure 5 plot the success ratio for implicit-
deadline and constrained-deadline tasksets respectively. 
These figures show that FPDS significantly improves upon 
the schedulability obtained using FPPS, FPNS and FPTS. 
Further, as expected, the optimal approach to FPDS denoted 
by FPDS(OPT) dominates FPDS(DM) which uses deadline 



monotonic priority assignment and calculates final non-pre-
emptive region lengths that are optimal only with respect to 
that priority assignment. Figure 4 clearly illustrates that 
FPPS and FPNS are incomparable, as the lines for the two 
algorithms cross. Note the figures are best viewed online in 
colour. 

C. Weighted schedulability 
In our second set of experiments we compare how the 

overall performance of each of the scheduling algorithms 
varies with respect to changes in a specific parameter via a 
metric referred to as the weighted schedulability measure
[10]. The following figures show the weighted schedulability 
measure )( pZ y  for schedulability test y as a function of 
parameter p. For each value of parameter p, this measure 
combines results for all of the tasksets generated for all of a 
set of equally spaced utilisation levels. Let ),( pS y τ  be the 
binary result (1 or 0) of schedulability test y for a taskset τ
with parameter value p. 

∑
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where )(τU  is the utilisation of taskset τ . The weighted 
schedulability measure reduces what would otherwise be a 3-
dimensional plot to 2 dimensions [10]. Weighting the 
individual schedulability results by taskset utilisation reflects 
the higher value placed on being able to schedule higher 
utilisation tasksets. 

In our weighted schedulability experiments, taskset 
parameters other than the one that was varied assumed their 
default values (e.g. n=10, r =1, and α = 0.5). 

Figure 6: Weighted schedulability as a function of taskset size, D ≤ T 

The first parameter we examined was taskset cardinality. 
Figure 6 shows how the weighted schedulability measure for 
each of the algorithms varies with increasing taskset size 
(from 2 to 40 tasks) for tasksets with constrained deadlines.  

From Figure 6, we see that FPDS(OPT) significantly 
outperforms FPNS, FPPS, and FPTS. While the performance 

of FPDS(DM) is similar to that of FPDS(OPT) for small 
tasksets, it declines relative to FPDS(OPT) as the number of 
tasks increases. This happens because with more tasks there 
is less chance that deadline monotonic priority ordering 
equates to an optimal priority ordering. With fixed priority 
pre-emptive scheduling, larger tasksets are in general harder 
to schedule, hence FPDS, FPPS, and FPTS all show 
declining performance with increasing taskset size. In 
contrast, the performance of FPNS improves with increasing 
taskset size. This is because larger tasksets tend to have tasks 
with smaller execution times relative to their deadlines, 
which means that blocking due to non-pre-emptive execution 
is less detrimental to taskset schedulability. 

Figure 7: Weighted schedulability as a function of period range, D ≤ T 

The second parameter we examined was the range of task 
periods. Figure 7 shows how the weighted schedulability 
measure for each of the algorithms varies with the log-range 
r of task periods given by the ratio r10  between the 
maximum and the minimum permissible task period. Here, 
the value of r was varied from r = 0.5 ( 16.310 5.0 = ) to r = 3 
( 1000103 = ). Figure 7 shows the results for tasksets with 
constrained-deadlines. 

Figure 7 shows that FPDS(OPT) is particularly effective 
in scheduling tasksets where the range of task periods is 
relatively small. This is because with all task periods and 
deadlines of a similar duration, all of the tasks can typically 
tolerate a significant amount of blocking and so there is 
significant scope to choose final non-pre-emptive region 
lengths that improve schedulability. Further, when tasks have 
similar periods and deadlines, there is a much greater chance 
that deadline monotonic priority assignment will not equate 
to an optimal priority ordering, hence FPDS(OPT) 
significantly improves upon FPDS(DM) in this case. 

As expected, all of the fixed priority pre-emptive 
scheduling algorithms (FPDS, FPTS, and FPPS) show 
improved performance as the range of task periods increases. 
In contrast, FPNS shows rapidly declining performance. This 



is because tasks with relatively long periods tend to have 
large execution times which may be longer than the 
deadlines of other tasks, making non-pre-emptive scheduling 
infeasible. 

We repeated the weighted schedulability experiments 
examining taskset cardinality and the range of task periods 
for tasksets with implicit deadlines. We found that both the 
results and the conclusions that could be drawn from them 
were broadly similar to those for constrained-deadline 
tasksets. The additional figures are omitted for space reasons. 

Figure 8: Weighted schedulability as a function of deadline distribution 

The third parameter we examined was the range of 
permissible deadlines relative to the period of each task. 
Figure 8 shows how the weighted schedulability measure 
for each of the algorithms varies with this parameter. Here, 
each task deadline was chosen at random according to a 
uniform distribution in the range ]),([ iiii TCTC −+α . 
Figure 8 shows that increasing the range of task deadlines 
(i.e. smaller α) reduces schedulability in all cases.  

We note that even though FPDS has significantly better 
performance than FPTS in our experiments, no dominance 
relationship exists between these two scheduling algorithms. 
There are tasksets that are schedulable with FPTS but not 
with FPDS and vice-versa, hence the two are incomparable. 

VIII. SUMMARY AND CONCLUSIONS

Fixed priority scheduling with deferred pre-emption 
(FPDS), dominates both fixed priority fully pre-emptive 
(FPPS) and fixed priority non-pre-emptive scheduling 
(FPNS). 

The main contribution of this paper is the introduction of 
an optimal algorithm for FPDS. This FNR-PA algorithm is 
optimal in the sense that it is guaranteed to find a 
combination of priority assignment and task final non-pre-
emptive region lengths that result in a schedulable system 
under FPDS, whenever such a schedulable combination of 
these parameters exists. Stated otherwise, the FNR-PA 
algorithm is able to find a schedulable solution for any

taskset that is feasible under FPDS. As a consequence of 
optimising schedulability under FPDS, the FNR-PA 
algorithm has the notable side-effect that for any given 
taskset, it minimises the blocking effect due to final non-pre-
emptive regions at every priority level. Using the analytical 
method of computing final non-pre-emptive region lengths, 
derived in Section VI, the FNR-PA algorithm requires at 
most )2/)1(( +nn  task schedulability tests to find an optimal 
solution, making it tractable for the majority of systems. 

We evaluated the performance of optimal FPDS via an 
experimental investigation. As expected, the experiments 
verified the dominance of FPDS over FPPS and FPNS. They 
also showed that the optimal approach, derived in this paper, 
improves upon previous techniques for FPDS which 
assumed deadline monotonic priority ordering (DMPO) [13]. 
We used a simple example with three tasks to illustrate that 
DMPO is not optimal for FPDS. 

A. Practical applications 
Pre-emptive EDF is the optimal algorithm for scheduling 

the task model considered in this paper; however, for 
systems that conform to standards requiring fixed priority 
scheduling, such as AUTOSAR6, then FPDS represents an 
approach that is both efficient to implement and can 
significantly improve upon the performance of FPPS and 
FPNS. 

The AUTOSAR Operating System standard supports co-
operative scheduling of tasks comprising multiple non-pre-
emptive regions. In many automotive systems tasks are 
composed of 50-300 sequential functions [18] each of which 
could be considered as a non-pre-emptive region. (The use of 
these non-pre-emptive regions can significantly reduce stack 
usage, and the implementation of such regions alone can be 
simpler than using resource locking protocols as there is no 
requirement to support nesting). The techniques described in 
this paper are applicable to these systems. In particular, the 
FNR-PA algorithm introduced in this paper can be used to 
determine an optimal assignment of task priorities and final 
non-pre-emptive regions lengths, subject to the constraints 
imposed on the lengths of such regions by the functions 
making up each task. 

B. Future work 
The FNR-PA algorithm presented in this paper provides 

an optimal solution for FPDS for a task model where task 
execution times are independent of pre-emption and pre-
emption costs are negligible. In many real-time systems; 
however, each pre-emption incurs a cost to do with saving 
and restoring task contexts, run-queue manipulation and task 
dispatch. Further, in systems using cache, pre-emption also 
causes cache-related pre-emption delays (CRPD). Here 
cache lines evicted by a pre-empting task may need to be 
reloaded once the pre-empted task has been resumed. For 
large tasksets, allowing arbitrary pre-emption can result in 

6 AUTOSAR (AUTomotive Open System Architecture) www.autosar.org. 



lower priority tasks being pre-empted a large number of 
times, significantly increasing CRPD to the detriment of 
schedulability [1], [2]. In fact CRPD can amount to a 
significant proportion of a task’s execution time. 

The integration of pre-emption related delays and 
schedulability analysis is a key area for further research. In 
future, we plan to integrate schedulability analysis for FPDS 
with different models of CRPD. Our aim is to obtain optimal 
or near optimal task priority assignments and non-pre-
emptive region allocations that maximise schedulability. For 
more complex task models this will involve a trade-off 
between blocking due to non-pre-emptive sections and pre-
emption related delays. 
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