
Optimal
Fixed Priority Scheduling

with Deferred Pre-emption

Rob Davis
Real-Time Systems Research Group,
Department of Computer Science,

University of York, York, UK.
rob.davis@york.ac.uk

Marko Bertogna
Algorithmic Research Group,
Department of Mathematics,
University of Modena, Italy

marko.bertogna@unimore.it

2

Types of Fixed Priority Scheduling
 Fixed Priority Scheduling

 Tasks have unique priorities
 At task release and completion, the highest priority ready task is

chosen to execute
 Fixed Priority Pre-emptive Scheduling (FPPS)

 Tasks execute at their initial priorities
 The executing task can be pre-empted at any time when a higher

priority task is released
 Fixed Priority Non-pre-emptive Scheduling (FPNS)

 Once a task starts executing it is effectively given the highest
priority and cannot be pre-empted

 Fixed Priority Scheduling with Deferred Pre-emption (FPDS)
 Each task has a final non-pre-emptive region of execution

Once it enters this region it is effectively given the highest priority
and cannot be pre-empted

3

Comparison of FPPS, FPNS, FPDS
 Fixed Priority Pre-emptive Scheduling (FPPS)

 Minimal blocking of
higher priority tasks

 Many pre-emptions
 Long response time for

low priority task


 Fixed Priority Non-pre-emptive Scheduling (FPNS)

4

Comparison of FPPS, FPNS, FPDS

 Maximal blocking of
higher priority tasks

 No pre-emptions
 Short response time for

low priority task



 Fixed Priority Scheduling with Deferred Pre-emption (FPDS)

5

Comparison of FPPS, FPNS, FPDS

 Superset of FPPS and FPNS
 Trade off between blocking

effect on higher priority
tasks and the response
time of the task itself

 Fewer pre-emptions than
FPPS

 Less blocking than FPNS



FPPS FPDS FPNS

6

Blocking v. Response Time trade-off

Blocking

Response
time

Tolerance of higher priority tasks to blocking

Deadline of the task

Task
execution









Final non-pre-emptive region

7

System model
 Single processor

 Fixed Priority Scheduling with Deferred Pre-emption (FPDS)

 Sporadic task model
 Static set of n tasks. Each task τi has a unique priority i

 Ci – Execution time (bound)
 Di – Relative deadline
 Ti – Minimum inter-arrival time or period
 Fi – Length of final non-pre-emptive region

 Compute Ri worst-case response time to check if each task is
schedulable

 FPDS subsumes FPPS and FPNS
 Fi =1 equivalent to FPPS
 Fi = Ci equivalent to FPNS

 Worst-case response time for task τi occurs in the longest
priority level-i active period starting at a ∆-critical instant

 Blocking:

 Number of jobs of task τi in the active period:

 Start time of final non-pre-emptive region:

 Response time:

8

Schedulability test for FPDS

j
ihepj j

m
i

i
m
i C

T
A

BA ∑
∈∀

+












+=

)(

1

)1(max
)(

−=
∈∀

lilpli FB












=

i

i
i T

AG

∑
∈∀

+













+












+−++=

)(

,1
, 1)1(

ihpj
j

j

m
gi

iii
m

gi C
T

w
FCgBw

iii
m

gi DgTFw >−++1
,

Unschedulable if

)(max ,1...2,1,0 ii
NP
giGg

gTFWR
ii

−+=
−=∀

Schedulable if
ii DR ≤

10

Example
Task Execution Time Deadline Period

A 100 175 250
B 100 300 400
C 100 325 350



FPPS FPNS
Trivially not schedulable
100 + 100 > 175

For FPPS deadline monotonic is
the optimal priority assignment

FPDS

 Shows:
 FPDS strictly dominates both FPPS and FPNS (not equivalent)
 Deadline Monotonic is not an optimal priority assignment for

FPDS
 Use Audsley’s Optimal Priority Assignment algorithm when

FNR lengths are known 11

Example
Task Execution Time Deadline Period

A 100 175 250
B 100 300 400
C 100 325 350

 

14

Optimal FPDS
 Problem #1: Final Non-pre-emptive Region length Problem

(FNR Problem)
 For a taskset complying with the task model with some known

priority order X, find a value for the length Fi of the FNR of each
task such that the taskset is schedulable under FPDS

An optimal FNR length assignment algorithm can schedule any system
for which there exists a schedulable FNR length assignment

15

Optimal FPDS
 Solution to Problem #1: Final Non-pre-emptive Region length

Problem (FNR Problem)
 The minimum FNR length Fi such that task τi is schedulable at

priority i is a monotonically non-decreasing function of the blocking
factor Bi due to tasks at lower priorities

 The blocking factor at higher priorities is a monotonically non-
decreasing function of Fi

FNR Algorithm

Minimises both the final non-pre-emptive region length and the
blocking factor at every priority level

for each priority level i, lowest first {
 determine the smallest value for the
 final non-pre-emptive region length such
 that the task at priority i is schedulable.
 Set the length of the final non-pre-emptive
 region to that value
}

16

Optimal FPDS
 Problem #2: Final Non-pre-emptive Region length and Priority

Assignment Problem
(FNR-PA Problem)
 For a taskset complying with the task model, find both (i) a priority

assignment, and (ii) a value for the length of the final non-pre-
emptive region of each task that makes the taskset schedulable
under FPDS.

An optimal FNR length and priority assignment algorithm can schedule
any system for which there exists a schedulable priority and FNR length
assignment

 Solution to Problem #2: Final Non-pre-emptive Region length
and Priority Assignment Problem (FNR-PA Problem)

for each priority level i, lowest first {
 for each unassigned task ττ {
 determine minimum final non-pre-emptable region length
 (if any) that makes the task schedulable at priority i

assuming that all unassigned tasks have higher priorities
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
 else {
 assign the schedulable task with the shortest final non-
 pre-emptive region at priority i to priority i

}
}
return schedulable

17

FNR-PA Algorithm

for each priority level i, lowest first {
 for each unassigned task ττ {

determine minimum final non-pre-emptable region length
 (if any) that makes the task schedulable at priority i

assuming that all unassigned tasks have higher priorities
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
 else {

assign the schedulable task with the shortest final non-
 pre-emptive region at priority i to priority i

}
}
return schedulable

Tasks
A, B, C, D, E

D

Tasks
A, B, C, E

Tasks
A, C, E

B
E
C

Tasks
A, C

A

Tasks
A

Complexity n(n+1)/2 x determining task schedulability and minimum FNR length

 Assume some priority order X exists that is
schedulable with some set of FNR lengths
Transform X into the priority order P constructed,
along with a set of FNR lengths, by the Optimal FNR-
PA Algorithm without loss of schedulability
Do this in n steps

18

Proof of Optimality

 First step
 Select the task in Xn that is at priority n in P
 Shift the task (from priority i) to priority n
 Set the FNR length for task τn in Xn-1 to the

smallest possible value such that it is
schedulable (FNR algorithm).

 This is the same as the value determined by
the optimal FNR-PA algorithm (same set of
hp tasks)

 No greater than the value for the task at
priority n in Xn otherwise the optimal
FNR-PA algorithm would have chosen that
task instead

 Show Xn-1 is schedulable
 Tasks at higher priority than i in Xn

– no increase in blocking
 Tasks at priorities i+1 to n in Xn

– shifted up in priority hence remain
schedulable

 Task τn must be schedulable at the
lowest priority in Xn-1
– as it was chosen by the FNR-PA
algorithm (and there must be such a
task e.g. task at priority n in Xn)

19

Proof of Optimality

 Intermediate steps
 Select the task in Xk that is at priority k in P
 Shift the task (from priority i) to priority k

- note i is never lower than k due to the
lowest priority tasks being the same in both
orderings

 Set the FNR length for task τk in Xk-1 to the
smallest possible value such that it is
schedulable (FNR algorithm).

 This value is the same as the value
determined by the optimal FNR-PA algorithm
(same set of hp tasks, and same set of lp
tasks with the same FNR lengths)

 This value is no greater than that for the
task at priority k in Xk otherwise the Optimal
FNR-PA algorithm would have chosen that
task instead

 Show Xk-1 is schedulable
 Tasks at higher priority than i

– no increase in blocking
 Tasks at priorities i+1 to k-1

– are shifted up in priority hence
remain schedulable

 Task τk at priority k in Xn-1
– was chosen by the FNR-PA
algorithm, so must be schedulable

 Task at lower priorities
– have the same set of hp tasks and
unchanged FNR lengths so remain
schedulable

20

Optimal FPDS
 FNR-PA algorithm

 Optimality: Determines a schedulable priority ordering and set of
final non-pre-emptive region lengths whenever such a combination
exists.

Proof – see the paper

 Provides Optimal Fixed Priority Scheduling with Deferred Pre-
emption

 Has the side-effect of minimising blocking due to FNRs at
every priority level

 Also works when tasks share resources according to Stack Resource
Policy (provided there is proper nesting) or have other non-pre-
emptive regions – may constrain the permitted length of FNRs

21

FNR length calculation
 Algorithms presented rely on being able to find the minimum

final non-pre-emptive region length such that a task is schedule
(if it is schedulable for any FNR)

 Simple option is Binary Search
 Requires multiple single task schedulability tests

 Analytical method given in the paper
 Pseudo-polynomial in complexity - same as a single task

schedulability test

 FNR-PA algorithm using the analytical method
 Needs the equivalent of n(n+1)/2 task schedulability tests to

determine an optimal priority and final non-pre-emptive region
length assignment

 Compares to a search space of ∏
∀i

iCn!

22

Experimental Evaluation
 Performance comparison of

 FPDS (OPT) – Optimal FPDS
 FPDS (DM) – assumes Deadline Monotonic Priority Order (not optimal)
 FPPS – with DMPO (which is optimal for FPPS)
 FPNS – with optimal priority assignment using Audsley’s algorithm
 FPTS – Fixed Priority Pre-emption Threshold scheduling with optimal

threshold assignment and DMPO
and
 EDF (pre-emptive) as a benchmark as this is the optimal single

processor scheduling algorithm

23

Experimental Evaluation
 Parameter generation for tasks

 Utilisation values generated via UUnifast
 Task periods – log-uniform distribution with a ratio of 10r between

max and min periods (default r = 1)
 Execution times based on the utilisation and period values selected
 Independent tasks – so no constraints on FNR lengths
 Deadlines were either implicit or constrained and chosen according

to a uniform distribution in the range (default α =
0.5)

 Taskset generation
 Default taskset cardinality was n = 10
 Total utilisation values from 0.03 to 0.99
 5000 tasksets generated for each utilisation value

]),([iiii TCTC −+ α

Implict deadlines
Taskset cardinality n = 10
Period range 10r (r = 1)

24

Success ratio

Constrained deadlines
Taskset cardinality n = 10
Period range 10r (r = 1)
Deadlines in range

with α = 0.5
]),([iiii TCTC −+ α

25

Other comparisons
 Weighted schedulability

 Enables overall comparisons when varying a specific parameter
(not just utilisation)

 Combines results from all of a set of equally spaced utilisation levels
 Weighted schedulability:

 Collapses all data on a success ratio plot for a given algorithm, into
a single point on a weighted schedulability graph

∑
∑

∀

∀=

τ

τ

τ

ττ

)(

)().(
)(

U

US
pZ

y

y

Constrained deadlines
Variable taskset cardinality
Period range 10r (r = 1)
Deadlines in range

with α = 0.5

26

Weighted schedulability:
Varying taskset cardinality

]),([iiii TCTC −+ α

Constrained deadlines
Taskset cardinality n = 10
Variable range of periods
Deadlines in the range

with α = 0.5

27

Weighted schedulability:
Varying range of task periods

]),([iiii TCTC −+ α

29

Summary and conclusions
 Main contribution:

 Optimal Fixed Priority Scheduling with Deferred Pre-
emption

 Can find the priorities and final non-pre-emptive region lengths to
obtain a schedulable system whenever such parameters exist

Optimal FNR-PA Algorithm
for each priority level i, lowest first {
 for each unassigned task ττ {

determine minimum final non-pre-emptable region length
 (if any) that makes the task schedulable at priority i

assuming that all unassigned tasks have higher priorities
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
 else {

assign the schedulable task with the shortest final non-
 pre-emptive region at priority i to priority i

}
}
return schedulable

Minimises blocking
at EVERY

priority level

Compatible with SRP
for resource locking

Complexity O(n2)
search space

∏
∀i

iCn!

31

Applications and Future work
 Applications

 Automotive systems: tasks composed of 50-300 sequential functions
each of which can be a non-pre-emptive region

 FNR-PA algorithm can be used to determine optimal priority
assignments and final non-pre-emptive region lengths, subject to
constraints (granularity due to sequential functions)

 Future work
 Integration with:

 Pre-emption costs, and Cache Related Pre-emption Delays
 Requirements for robustness – must not end up with systems that are

only just schedulable

Optimal Fixed Priority Scheduling with
Deferred Pre-emption
Rob Davis and Marko Bertogna

RTSS 2012
San Juan, Puerto Rico

32

Questions?

33

End

	�Optimal�Fixed Priority Scheduling�with Deferred Pre-emption�
	Types of Fixed Priority Scheduling
	Comparison of FPPS, FPNS, FPDS
	Comparison of FPPS, FPNS, FPDS
	Comparison of FPPS, FPNS, FPDS
	Blocking v. Response Time trade-off
	System model
	Schedulability test for FPDS
	Example
	Example
	Optimal FPDS
	Optimal FPDS
	Optimal FPDS
	FNR-PA Algorithm
	Proof of Optimality
	Proof of Optimality
	Optimal FPDS
	FNR length calculation
	Experimental Evaluation
	Experimental Evaluation
	Success ratio
	Other comparisons
	Weighted schedulability:�Varying taskset cardinality
	Weighted schedulability:�Varying range of task periods
	Summary and conclusions
	Applications and Future work
	Questions?
	End

