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José Marinho∗ Vincent Nélis∗ Stefan M. Petters∗ Marko Bertogna† Robert I. Davis ‡

∗CISTER/INESC-TEC, Polytechnic Institute of Porto, Portugal
†University of Modena, Modena, Italy

‡University of York, York, UK

Email: {jmsm,nelis,smp}@isep.ipp.pt, marko.bertogna@unimore.it, rob.davis@york.ac.uk

Abstract—In this paper a limited pre-emptive global fixed task
priority scheduling policy for multiprocessors is presented. This
scheduling policy is a generalization of global fully pre-emptive
and non-pre-emptive fixed task priority policies for platforms with
at least two homogeneous processors. The scheduling protocol
devised is such that a job can only be blocked at most once by a
body of lower priority non-pre-emptive workload. The presented
policy dominates both fully pre-emptive and fully non-pre-emptive
with respect to schedulability. A sufficient schedulability test is
presented for this policy. Several approaches to estimate the
blocking generated by lower priority non-pre-emptive regions are
presented. As a last contribution it is experimentally shown that,
on the average case, the number of pre-emptions observed in a
schedule are drastically reduced in comparison to global fully
pre-emptive scheduling.

I. INTRODUCTION

The drive enhancing computational throughput has changed
its focus from increasing transistor switch frequency to repli-
cating functional units. As frequency of operation increases
the ability for memory to feed data to the faster cores cannot
keep up [1]. The discrepancy between memory and processor
throughput is not the only limiting factor. The power dissipated
in faster clocked processors also becomes prohibitive both
in terms of energy wasted and required energy dissipation
mechanisms [2]. The response of academia and industry was
to replicate the cores instead of increasing the clock frequency.
Throughput gains are nevertheless not linearly proportional to
the number of cores.

As multicores are currently a mainstream computing appa-
ratus, and will remain so in the foreseeable future, some COTS
platforms are being increasingly adopted as target platforms in
the embedded domain. In time it is expected that these will be
used in the high criticality embedded world. It is thus important
to study the scheduling theory that would govern the operation
of such systems.

Current real-time operating systems provide support for
symmetric multiprocessor scheduling. A number of global
scheduling policy types exist. These can be categorized into
distinct classes with respect to where tasks and their constituent
jobs are allowed to execute [3]. One extreme is the fully
partitioned scheduling. Tasks are statically allocated to one
processor, its workload can then only execute on the same
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single processor. On the other end of the spectrum lies the
global scheduling where there is no a-priori restriction on
which processor the workload of any task will execute. Both
fully partitioned and global fixed task priority scheduling poli-
cies are provided out of the box in popular real-time operating
systems [4].

A shortcoming of the literature on the schedulability assess-
ment for global multicore scheduling is that the workload is
assumed not to incur additional overheads when pre-emptions
and migrations happen. The cost of pre-emptions and especially
migrations between cores that do not share cache have been
shown to be quite significant [5]. As in fully pre-emptive dis-
ciplines for single core it is difficult to quantify the number of
pre-emptions a given task is subject to. Moreover in multicore
when a pre-emption occurs a subsequent migration may take
place. It is then beneficial to quantify these events and, if
possible, avoid these effects when these prove unnecessary for
correct system temporal behaviour. With this intent in mind we
sought to devise the theory of limited pre-emptive scheduling,
now somewhat mature in single core, in symmetric multicore.
The model presented allows for the accurate definition of a
limited set of points where a given task may be pre-empted,
hence allowing for reduced pessimism when analysing the
effect of pre-emptions and migrations.

In this paper we address a very particular global schedul-
ing discipline denominated global fixed task priority with
fixed non-pre-emptive regions. This scheduling policy is work-
conserving. This means that when workload is available and it
is not being executed on any of the processors it is the case
that all processors are currently executing some other workload.
The fixed task priority term refers to the fact that each task has
a base priority. When workload belonging to a task is executed
on the platform it does so with the task base priority. By fixed
non-pre-emptive regions it is implied that each job is composed
of a set of sub jobs which execute without pre-emption. When
a sub-job commences execution on a processor it cannot be
pre-empted until it terminates. A task can then only be pre-
empted at sub-job boundaries which are referred to as pre-
emption points. Pre-emption points may be implemented either
through interrupt disabling or even via a system call indicating
the start of a non-pre-emptive region to the system dispatcher
which acts accordingly.

The particularity of the proposed solution is such that some
job of a given task can be blocked at most once by lower
priority workload before it is first dispatched. In this paper
we provide a sufficient schedulability test for this scheduling
model. In this introductory work we assume that the pre-
emption and migration delays have negligible cost. This allows
for a clearer explanation and discussion of the basic limited
pre-emptive concepts.



II. SYSTEM MODEL

In this paper we consider the workload to be modeled as a
task-set T = {τ1, . . . , τn} composed of n tasks. Each task is
characterized by the four-tuple 〈Ci, Di, Ti, Qi〉. The parameter
Ci represents the worst-case execution time of each job from
τi, Di is the relative deadline and Ti the (minimum) distance
between consecutive job releases in the periodic or sporadic
model respectively. A task τi may release a potentially infinite

sequence of jobs, each with release time r
q
i � r

q−1
i + Ti and

with absolute deadline d
q
i = r

q
i +Di. We concentrate on task-

sets where for all the tasks Di � Ti, which is commonly termed
the constrained deadline task model. The base scheduling
policy considered is global fixed task priority scheduling. Each
task has a priority associated with it. Correspondingly every
job from a given task τi executes at task τi priority. For each
task τi, lp(i) denotes the set of tasks with lower priority than
τi, similarly hp(i) stands for the set of higher priority tasks
and hep(i) denotes the set of tasks of equal or higher priority
than τi. Tasks are assumed to be composed of multiple fixed
non-pre-emptive regions. A fixed non-pre-emptive region is
defined as some workload which when executed does not suffer
any interference from higher priority workload. In practice this
may be accomplished by placing explicit pre-emption points at
the boundaries of these regions such that if one boundary is
crossed τi can only be pre-empted once the next boundary is
reached. The worst-case execution time distance between the
boundaries of the region is the length of the non-pre-emptive
region. For each task the maximum length of such a non-
pre-emptive region is denoted by Qi. It is assumed that the
last non-pre-emptive region of any task is not smaller than
any other non-pre-emptive region preceding it. The platform
considered is composed of m unit-speed identical processors
denoted as π1, π2, · · · , πm (all processors have the exact same
computing capabilities). Each job can only execute on a single
core at any point in time (i.e. jobs cannot execute workload in
parallel). The migration and pre-emption delays are assumed
to be negligible.

III. RELATED WORK

An upper-bound on the interference a given job suffers
when scheduled on a multiprocessor concurrently with other
higher priority workload was first proposed by Baker [6]. This
technique was later reused by Bertogna et al. in order to devise
a response time analysis for global fixed task priority and global
EDF [7]. The response time analysis for global EDF was then
refined by Baruah [8] where the worst-case response time of
a task is computed in a busy period starting with m− 1 tasks
with carry-in1 and the remainder having a synchronous release
in the beginning of the same time interval. Later Guan [9]
adapted the approach of Baruah to global fixed task priority and
proved that an upper-bound on the worst-case response time
for this scheduling policy can be constructed by considering
m − 1 higher priority tasks with carry-in in the beginning of
a time interval and a synchronous release of the remaining
higher priority tasks with the task under analysis. This result
was later generalised by Davis and Burns [10] who showed that
a scenario with a maximum of m-1 tasks with carry-in is the
worst-case not only for the sufficient test proposed by Guan,
but also in general, i.e. for any exact test.

1A task is referred to as having carry-in if at the start of the interval
considered in the analysis, it has a job that has been released but not yet
completed.

The limited pre-emptive scheduling literature is prolific in
what concerns single core scheduling. Restricting pre-emption
points presents a viable way to address the problem of pre-
emption delay. The mechanism of limited pre-emption termed
fixed non-pre-emptive region scheduling was first proposed
by Burns et al. [11] for single processors. A more complete
schedulability analysis of the limited pre-emptive model was
presented by Bril in [12], [13] where it is shown that more
than one frame in a given priority level busy period has to be
tested for the temporal correctness.

A similar mechanism termed floating non-pre-emptive re-
gion scheduling was proposed by Baruah [14] for single
processor EDF. In a floating non-pre-emptive region the po-
sitions of the non-pre-emptive region in the task execution
are variable. This contrasts with the fixed non-pre-emptive
region model which statically defines the non-pre-emptive
regions. The floating non-pre-emptive region model was later
adapted by Gang Yao et al. [15] for single processor fixed
task priority scheduling where a bound on the length of the
floating non-pre-emptive regions for each task is provided.
Gang Yao et al. presented another methodology to compute
the maximum length of the fixed non-pre-emptive regions for
single processor fixed task priority scheduling [16]. In this
situation the computed length of the fixed non-pre-emptive
regions are generally larger than in previous work, as the
last chunk of a task’s execution is not subject to further pre-
emptions. This enables a schedulability increase in comparison
to fully pre-emptive disciplines and a further reduction in the
number of pre-emptions observed in the schedule. Gang Yao
et al. provide a comparison of all available methods described
so far in the literature [17] regarding restricted pre-emptive
scheduling using single processor fixed task priority. In this
paper we revisit the limited pre-emptive model and devise the
theory for multiprocessor global fixed task priority scheduling
focusing solely on the fixed non-pre-emptive region model.

The pre-emption delay estimation problem using the fixed
non-pre-emptive region model in single processors was pre-
sented by Bertogna et al. [18]. In order to reduce cache related
pre-emption delay (CRPD), the use of fixed non-pre-emptive
areas of code is exploited. In this way the maximum CRPD is
decreased and overall system response time is enhanced.

The limited pre-emptive models have yet to be fully
addressed in the multiprocessor domain. Nevertheless some
works employing more restrictive solutions exist. Guan et al.
presented a schedulability analysis for global non-pre-emptive
fixed task priority scheduling [19]. In this work all the tasks
are deemed non-pre-emptive, which has the implication that
when jobs are dispatched onto a processor they execute until
completion. A less restrictive policy is presented by Lee and
Shin [20] where tasks can be either fully pre-emptive on
fully non-pre-emptive. This work was devised for global EDF.
Davis et al. [21] adapted previous work [22] on optimal
fixed priority scheduling with deferred pre-emption for single
processor systems to the multiprocessor case. However, in the
case of multiprocessor systems, the model was restricted to
tasks having only a single, final non-pre-emptive region at the
end of their execution.

In this paper we present an even less restrictive model
where tasks comprise a collection of non-pre-emptive regions
of execution. This model is then a generalization of [19], [20]
and [21].

2



IV. GLOBAL FIXED TASK PRIORITY RESPONSE TIME

ANALYSIS

0
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3Cj

Fig. 1: Functions WNC(τj , t) and WCI(τj , t) depiction for a
given task τj

In global fully pre-emptive fixed priority scheduling, if a
task τj has no pending workload at the beginning of an interval,
an upper bound on the workload which it may execute in an
interval of length t is given by [9]:

WNC
j (t) =

⌊

t

Tj

⌋

× Cj +min(t mod Tj , Cj) (1)

In (1) a release of a job from task τj is assumed to occur at
time instant 0 and subsequent releases happen at the minimum
inter-arrival time, in fact leading to a worst-case amount of
workload released in an interval of length t when no carry-in
is present.

Similarly, if the same task τj might have some pending
workload released before the beginning of the interval, a
conservative upper-bound on the workload it may execute in
an interval of length t is given by [9]:

WCI
j (t) =

⌊

max(t− Cj , 0)

Tj

⌋

× Cj + Cj

+min
(

[[t− Cj ]0 mod Tj − (Tj −Rj)]0 , Cj

)

(2)

In (2) a job of task τj is assumed to be released before the start
of the interval and that it will execute the bulk of the workload
after the interval starts. The upper-bound present in (2) assumes
that the carry-in job from task τj was subject, since its release
at time instant −RUB

j −Cj until the beginning of the interval,
to the worst-case scenario such that this job has not executed
any workload yet. The execution of the workload will terminate
Rj time units after the job was released. Subsequent jobs are
released with the minimum inter-arrival separation. The second
job is then released at time instant Tj−Rj+Cj . This constitutes
a conservative estimation of the workload a task τj executes in
a given time interval of length t if there exists some pending
workload released at some point before the beginning of the
interval.

For the same task τj (2) is an upper-bound on (1), this can
be observed from the graphical representation of both functions
presented in Figure 1. The difference between the upper-bound
considering a carry-in scenario and one where no carry-in is
considered yields:

W diff
j (t) = WCI

j (t)−WNC
j (t) (3)

In [9] it is shown that a conservative upper-bound on the
amount of higher priority workload which will execute during

the response time of a job from task τi is constructed by
assuming that some m− 1 higher priority tasks have pending
workload at the time of τi’s job release and that a synchronous
release of jobs from the remaining higher priority tasks occurs
at the same instant as τi’s job release. Writing this upper-bound
in more formal terms yields:

Ωi(t)
def
=

(

m−1
∑

l=1

�
max

τj∈hp(i)
W diff

j (t)

)

(4)

+
∑

τj∈hp(i)

WNC
j (t) (5)

Where max�τh∈τ1,··· ,τi−1
returns the �th greatest function value

along the higher priority task’s workload dimension. In a situa-
tion where no higher priority task has carry-in workload at the
beginning of the time interval, a sum over all the WNC(τj , t)
functions of tasks of higher priority than τi would yield an
upper-bound on the higher priority workload that would execute
in the time interval of length t. Since we know that in the
worst-case some m− 1 tasks present carry-in workload at the
beginning of the interval, then this additional workload will
never exceed the difference between the maximum workload
in a no carry-in situation and the carry-in situation. By choosing
the m − 1 higher priority tasks which for a given interval
length display the biggest difference between the no carry-
in and carry-in situation and by summing these differences
over all functions of no carry-in, we have an upper-bound on
the workload which higher priority tasks may execute in the
interval of length t.

In [6] Baker showed that in a multi-core platform composed
of m identical cores, a unit of higher priority workload can
interfere with the execution of task τi by at most 1

m
time

units. Consider that some task τj is executing on one processor
during one time unit. By executing on this processor it will not
prevent τi from getting hold of some other processing entity as
there exist m− 1 others in the platform. In order for τi to be
prevented from executing, the m processors need to be busy.
In order for m cores to be busy for one time unit then m time
units of higher priority workload need to execute on the overall
platform. Combining (5) and this fact enables the statement of
the upper-bound on the overall interference a task τi is subject
to in a time interval of length t. This is written as:

Ii(t) =
Ωi(t)

m
(6)

When considering the fully pre-emptive global fixed task
priority scheduling policy, by exploiting the upper-bound on
the interference by higher priority workload, the following
sufficient schedulability test is devised:

∀τi ∈ T , ∃t ∈ [0, Di] : Ii(t) + Ci � t (7)

A task-set is said to be schedulable if for all task τi ∈ T
the condition in (7) holds. The schedulability test presented
in (7) is a sufficient test. This means that some task-sets may
indeed manage to meet all the deadlines even if for some tasks
the condition in (7) is not met. Nevertheless if the condition is
met for all the tasks in the taskset then the timing requirements
of all the tasks are guaranteed to be met at run-time.

Similarly to the single processor case this condition need
not be tested for all of the values in the continuous interval
[0, Di] but rather for a finite number of time instants. Both
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functions WNC
j (t) and WCI

j (t) are piecewise linear functions,
i.e. they may be defined as a set of linear functions in distinct
time intervals. As a consequence of this, the Ωi(t) function
itself may be defined as a set of linear functions in distinct time
intervals as well. Hence the relation t− Ii(t) is maximized in
the [0, Di] interval for some value t ∈ Γi. The set Γi encloses
the Γ′

i set of points where the first derivative of the function
Ωi(t) changes in value and the time instant of the deadline Di

of τi. The Γ′
i∪{Di} set of points contains the points of interest

when trying to maximize the value of t− Ii(t).

For brevity and space constraints the derivation of the set
of points Γi is ommited from this document. The full details
on its derivation are provided in a techical report [23].

When the schedulability condition is tested over a discrete
set of points the response time computation can still be effi-
ciently carried out:

t1 = min{t ∈ Γi|Ii(t) + Ci � t} (8)

t2 = max{t ∈ Γi|t < t1} (9)

RUB
i = t1 +

Ii(t1) + Ci − t1

1− Ii(t2)−Ii(t1)
t2−t1

(10)

The quantity RUB
i ∈ (t2, t1] is the intersection between the

line segment

I(t) =
I(t1)− I(t2)

t1 − t2
× t+ I(t1)−

I(t1)− I(t2)

t1 − t2
× t1 (11)

defined ∀t ∈ (t2, t1] and the supply line f(t) = t.

The formulation of the sufficient schedulability condition
presented in this work is equivalent to the one in [9]. We
chose to formulate it not as a fixed point algorithm but rather
as a condition over an interval in order to ease the definition
of the parameters that we compute further on in this work.

V. LIMITED PRE-EMPTIVE SCHEDULING POLICIES

In a multi-core platform the stock global fixed priority fully
pre-emptive scheduling discipline may be informally described
as a policy where at any time t the m highest priority tasks with
available workload execute on the m processors comprising the
platform.

When tasks are composed of both pre-emptible and non-
pre-emptible workload then more complex protocols may be
devised reflecting the more complex nature of the workload.
In this work two scheduling policies are considered:

1) Regular Deferred Scheduling (RDS): At any point in
time, the pre-emptible jobs executing in any processor
are eligible for being pre-empted by a higher priority
job;

2) Adapted Deferred Scheduling (ADS): At any point
in time a pre-emption can only occur if the lowest
priority running job is pre-emptible, in which case
the lowest priority running job is pre-empted from
the processor on which it runs and the highest priority
waiting job is dispatched onto the same processor.

Bear in mind that these are only two generalisations of
the regular fully pre-emptive scheduling discipline. The RDS
policy is the straightforward derivation of the fully pre-emptive
scheduler whereas the ADS is an adaptation which enables

t

π2

π1

π2

π1

τi

RDS Schedule

τi

HP release

ADS Schedule

HP release

HP

LP

HPLP

t

Fig. 2: Possible Priority Inversion After a Job From τi Com-
mences Execution in RDS

some interesting properties with respect to lower priority inter-
ference to be achieved.

In the RDS scheduling policy, a higher priority job from τi
might suffer interference from lower priority non-pre-emptive
regions more than once after τi has commenced execution. A
situation where said priority inversion occurs after the start of
τi execution may be observed in the top schedule displayed in
Figure 2. In Figure 2 the crosses represent fixed pre-emption
points. The bottom schedule in the same picture displays the
ADS schedule for the specific workload pattern. In this case,
before τi is pre-empted, all other lower priority workload has
to be pre-empted from the platform. A task can only be pre-
empted if it is the task currently running upon some processor
such that it has the lowest priority among all tasks currently
executing in the system.

Once a task starts to execute its last non-pre-emptive region
it ceases to suffer interference, as a consequence it is only
subject to interference during the execution of the first Ci−Qi

units of workload. The schedulability test then becomes:

∃t ∈ [0, Di −Qi] :

t−
1

m
×
(

WA
diff
i (t) +WNC

i (t) +ANC
i (t)

)

− (Ci −Qi) > 0

(12)

The corresponding upper-bound on the response time of a given
task τi can thus be computed as:

RUB
i =min{t|t−

1

m
×
(

WA
diff
i (t) +WNC

i (t) +ANC
i (t)

)

− (Ci −Qi) > 0}+Qi (13)

Similarly to the fully pre-emptive scenario, the term WNC
i (t)

upper-bounds the maximum interference that higher priority
workload may induce on τi when no higher priority carry-
in exists. The ANC

i (t) function characterizes the maximum
amount of interference due to lower priority workload released
inside the interval of interest, which may exhibit non-pre-
emptive regions and hence prevent higher priority workload

from executing on the processors. The function WA
diff
i (t) en-

capsulates the maximum interference contribution from carry-
in workload. This is workload which was released before or
immediately before the beginning of the interval of interest
and which will be executed inside the interval of interest.
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By modifying the proof in [9] it is possible to show that
the worst-case interefering contribution is given when there
are at most m carry-in tasks, of those at most m − 1 can
be of higher priority tasks. In the case of non-pre-emptive
regions there might exist at most m lower priority tasks which
were executing immediately before the start of the interval of
interest. If some core is executing lower priority workload
then this implies that this core cannot be executing higher
priority carry-in in the beginning of the interval of interest. As
a consequence then, if there are k lower priority tasks executing
non-pre-emptively in the beginning of the interval of interest,
then there can be at most m−k higher priority tasks with carry-
in. The maximum additional workload due to the k lower or
equal priority tasks executing in the beginning of the interval of
interest is denoted by Ak

i . The computation of an upper-bound
of Ak

i given a set of lower or equal priority non-pre-emptive
regions is the subject of the subsequent sections.

The WA
diff
i (t) function is defined as follows:

WA
diff
i (t)

def
=

max
k∈{1,··· ,m}

{

Ak
i +

m−k
∑

l=1

�
max

τh∈τ1,··· ,τi−1

W diff(τh, t)

}

(14)

In the ADS policy ANC
i (t) = 0. Lower priority tasks may

execute in other processors while τi is executing, but higher
priority workload will only be able to pre-empt τi when τi
is the lowest priority task executing on any processor. As a
consequence of this, lower priority workload can only interfere
with τi execution if they are currently executing once τi is
released. We note that this is the key difference between ADS
and regular fixed priority scheduling with deferred pre-emption
(RDS).

Contrary to the single processor limited pre-emptive theory,
where multiple jobs from τi in a level−i busy period need to be
checked for the temporal correctness, this is not the case in the
presented schedulability condition ((12)). As a consequence,
when m = 1 the analysis provided is still safe albeit pessimistic
as the provided test is sufficient but not necessary, whereas
the test available in the literature for single processor is both
necessary and sufficient [12], [13].

Theorem 1 (Correctness of the Schedulability Condition (12)).
Let us assume that the term Ak

i (t), in (14) , gives an upper-
bound on the workload generated by all the jobs from tasks
with priority lower than or equal to i, released before time t
and executed non-pre-emptively on k processors (we will show
later how to compute this upper-bounds). If (14) is satisfied
for all task τi then the task-set is schedulable.

Proof: For a given k ∈ [1,m], the equation in the brackets
of (14) gives an upper-bound on the carry-in workload at time
t, where (i) k processors execute non-pre-emptive workload
coming from k lower or equal priority jobs released before
time t, and (ii) m−k processors execute pre-emptive workload
coming from m − k higher priority jobs released before time
t.

Therefore, WA
diff
i (t) as defined in Equation (14), which

takes the max for all k, is an upper-bound on the carry-
in workload at time t. From the definitions of WNC

i (t) and
since ANC

i (t) = 0, it holds for a given time-instant t that
the sum WADIFF

i (t) + WNC
i (t) gives an upper-bound on

the total workload at time t (including both carry-in and
non carry-in workload from lower- and higher-priority tasks).
The correctness of the condition given by Inequality (12)
immediately follows from the meaning of this sum, i.e., if
the condition is satisfied for a given t, then it means that any
job from task τi will always be able to execute for at least
Ci − Qi + ε time units within Di − Qi time units from its
release. Given that every job of τi will get the highest priority
after executing for Ci − Qi + ε time units, it implies that all
jobs of τi will have to execute its (at most) Qi remaining time
units within the last Qi time units to its deadline, which it will
always do.

In order to assess the schedulability of τi it is important to
quantify Ak

i where k ∈ {1, · · · ,m}. The derivation of upper-
bounds for Ak

i is the subject of the subsequent section.

An alternative way of writing the schedulability condition
for the ADS policy is:

βk
i (Qi)

def
= max

t∈[0,Di−Qi]

{

m× t−WNC
i (t)

−m× (Ci −Qi)−

m−k
∑

l=1

�
max

τh∈τ1,··· ,τi−1

W diff(τh, t)

}

(15)

The task-set is deemed schedulable for a given set of last
non-pre-emptive region for all the task τi ∈ T if:

∀τi ∈ T , ∀k ∈ {1, · · · ,m}, βk
i (Qi) � Ak

i (16)

The computation of the Function (15) can be performed
by analyzing the limited set of time instants Γi described
previously.

F k
i (t) = max

{t′∈Γi∪{t}|t′�t}

{

m× t′ −WNC
i (t′)

−m× Ci −

m−k
∑

l=1

�
max

τh∈τ1,··· ,τi−1

W diff(τh, t
′)

}

(17)

Equation (15) may then be rewritten as:

βk
i (Qi) = F k

i (Di −Qi) +Qi ×m (18)

VI. MAXIMUM INTERFERENCE FROM LOWER OR EQUAL

PRIORITY NON-PRE-EMPTIVE REGIONS IN ADS

τl

τa

τd

τs

� Ca

� Cs

� Cd

m
c
o
re
s

Fig. 3: Maximum Interference Function Due to m Non-pre-
emptive Regions of Lower or Equal Priority Tasks
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The ADS scheduling policy considered in this work dictates
that a task can only be dispatched to run on one of the m cores,
at a time instant t, when either a core is idle or a pre-emption
point of the lowest priority task running on any m processors
has been reached. The task which is pre-empted is then the
lowest priority task running on any of the cores at time t.

The worst-case interference pattern generated by the lower
or equal priority non-pre-emptive region execution is repre-
sented in Figure 3 for a platform where m = 4. In Figure 3 the
crosses represent fixed pre-emption points. In a scenario where
m processors are executing lower or equal priority workload
and several higher priority releases occur, the first task to be
pre-empted is τl which is of lower priority than the remainder
(τl ≺ τa ≺ τs ≺ τd) at time tl when a pre-emption point
from τl is reached. In the worst case scenario task τa enters a
non-pre-emptive region at time tl − ε and its next pre-emption
point is reached at tl+ ε+Qa. Subsequently in the worst-case
situation τs has entered a non-pre-emptive region just before
the pre-emption point of τa was reached.

Let us assume the total ordered set LQi = {Qn, · · · , Qi}
where, if d > l then Qd � Ql. Each element of the LQi

set represents the length of the non-pre-emptive region of task
with priority equal or lower than τi, the priority ordering among
tasks is represented by the total ordering of the elements of the
set.

Given a subset SQi of LQi with k elements one can
compute the Ak

i area accurately: Algorithm 1 places non-pre-

Algorithm 1: Low Priority Interference Computation
from a SQi subset of k Lower or Equal Priority Non-
pre-emptive Regions

Input : SQi, i, k
Output: Ak

i

A = 0
span = 0
for y ∈ {k, · · · , 1} do

if Cy � span+Qy then
if Cy > span then

span = Cy

A = A+ Cy

else
A = A+ span+Qy

span = span+Qy

return Ak
i

emptive regions in SQi in priority order. The first element Q1

is the lowest priority element in SQi (observe that in case
the subscript � in Q� references the �th element in the totally
ordered set SQi), in the worst case its pre-emption point will
be reached at t1 = Q1. At the end of the first iteration the
variable span is equal to Q1. The span variable keeps track
of the rightmost pre-emption point from all the tasks when
these are placed in priority ordering in order to construct the
maximum Ak

i from the set of SQi values. Some task τs may
not have enough Cs such that its pre-emption point would be
placed at span + Qs, in which case the span variable either
remains constant if Cs < span, or span = Cs otherwise.

Algorithm 1 takes as input a set of k tasks with lower or
equal priority than τi and returns the exact worst-case interfer-
ence from these k tasks on task τi – as a result, Algorithm 1

can be used to derive the exact worst-case interference from the
lower priority tasks on any task τi. However, doing so would
require to enumerate all possible subsets of k tasks out of the
set of all the tasks with a lower or equal priority than τi and the
computation of the exact interference would be of exponential
complexity.

As a compromise between accuracy and computation time,
we propose below three methods that derive an upper-bound on
the worst-case lower priority interference. The first one is the
simplest (the least accurate and fastest) as it factors neither the
task priorities, nor the WCET constraints in the computation
and considers the maximum non-pre-emptive region length
from all lower priority non-pre-emptive regions.

ADS Blocking Estimation 1.

The most straightforward method relies on considering the
largest lower priority non-pre-emptive region and constructing
the Ak

i area with it in conjunction with at most a single instance
of the non-preemptive region of task τi so as to encompass the
self-pushing effect. This bound is stated in (19).

Ak
i �

k

2
× (k + 1)×max{LQi} (19)

ADS Blocking Estimation 2.

The second method is slightly more complex, it considers
a variety of last non-pre-emptive regions present in SQi. The
largest interference is obtained when the largest element of LQi

is accounted for k times (assuming the lowest priority for this
task), the second largest is added up k−1 times (assuming the
second lowest priority for this task), etc., until the kth largest
element which is only considered once. This upper-bound is
stated in (20).

Ak
i �

k
∑

j=1

Qmax
j × (k − j + 1) (20)

where Qmax
j denotes the jth largest element in the set LQi.

ADS Blocking Estimation 3.

By taking the priority ordering among the lower or equal
priority tasks into account, it is possible to construct a less
pessimistic upper-bound on the Ak

i quantity. The problem
can be formulated as follows: Find k LQi element indexes
{x1, x2, . . . , xk} such that for all j ∈ [1, k]: xj ∈ [1, n − i],
τxj

≺ τxj+1
and

k
∑

j=1

Qxj
× (k − j + 1) (21)

is maximum. The third method that we propose solves this
problem. First, let us reformulate it as follows.

Problem 1: Given a set of non-negative values
{Q1, Q2, . . . , Qn−i+1} ordered by task priority (note
that these subscripts relate to the position of the element in
the totally ordered set, higher priority is associated to higher
set index value) and a non-negative integer k � n− i+ 1, we
construct a table T of k rows and n − i + 1 columns such
that the value vy,z of the cell in row y and column z is set to
vy,z = (k − y + 1) × Qz (rows are indexed from 1 to k and
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columns from 1 to n− i+1). The problem consists of finding
S for which there exists {x1, x2, . . . , xk} such that each xj ,
1 ≤ xj ≤ n − i + 1, denotes the index of a column and it
holds that

1) xj < xk, ∀ 1 ≤ j < k, and

2) S =
∑k

y=1 vy,xj
is maximum

It is easy to see that a solution S to problem 1 is also a
maximum value for the sum of (21), and thus an upper-bound
on Ak

i .

Algorithm 2: Algorithm to Compute S

The idea is to construct another table T ′ based on T
as follows:

1) As T , the table T ′ has k rows and n− i+ 1
columns.

2) We set v′1,1 = v1,1
3) For the other cells v′1,z of the first row, with

z = 2, . . . , n− i+ 1, we set
v′1,z = max(v1,z, v

′
1,z−1)

4) For each row y = 2, . . . , k:

a) We set v′y,y = vy,y + v′y−1,y−1

b) The other cells v′y,z of the yth row, with
z = y + 1, . . . , n− i− k + y + 1, we set
v′y,z = max(vy,z + v′y−1,z−1, v

′
y,z−1).

Finally, we have S = v′k,n−i+1

Lemma 1. S = v′k,n−i+1 is a solution to problem 1.

Proof: The proof is obtained by (double) induction, first
on y (row index) and then on z (column index). We show for all
y and z, with 1 ≤ y ≤ k and 1 ≤ z ≤ n− i+1, that S = v′y,z
is the maximum value of the sum

∑y

�=1 v�,x�
, assuming that

the k variables x1, x2, . . . xk are such that x� ∈ [1, z], ∀�.

base case: y = 1 and z = 1.

The case is straightforward: v′1,1 = v1,1 and thus S = v′1,1
is the maximum value of the sum

∑y

�=1 v�,x�
where there is

only a single variable x1 and x1 = 1 is the only choice.

Inductive step on z: y = 1 and 1 < z ≤ n− i+ 1.

By the induction, we assume that for y = 1 and for all
p ∈ [1, z − 1], S = v′1,p is the maximum value of the sum
∑y

�=1 v�,x�
where there is a single variable x1 and x1 is chosen

within [1, p].

By construction, for all z = 2, . . . , n− i+1, the value v′1,z
is defined as v′1,z = max(v1,z, v

′
1,z−1) and thus either S = v′1,z

is equal to v′1,z−1 (the maximum previously recorded and x1

is chosen within [1, z− 1]) or it is equal to v1,z , in which case
S = v1,z is the maximum and x1 = z leads to the maximum

sum
∑1

�=1 v�,x�
(= S).

Inductive step on y, base case on z: 1 < y ≤ k and z = y.

The value v′�,� is defined as v′z,z = vz,z + v′z−1,z−1 =
∑z

�=1 vz,z . As we must have x� < x�+1 for all 1 ≤ � < y, the
only choice for the y variables x1, x2, . . . xy is to have x� = �
for all � ∈ [1, y]. Therefore, S = v′z,z is the maximum value

of the sum
∑z

�=1 v�,�.

Inductive step on y and z: 1 < y ≤ k and 1 < z ≤ n− i+1.

By the induction, we assume that for all r ∈ [1, y − 1]
and for all p ∈ [1, z − 1], S = v′r,p is the maximum value of

the
∑r

�=1 v�,x�
where the variables x1, x2, . . . , xr are chosen

within [1, p].

By definition, we know that the maximum value of the
sum

∑y

�=1 v�,x�
assuming that the y variables x1, x2, . . . , xy

are chosen within [1, z], is equal to the maximum between

1) the maximum value of the sum
∑y

�=1 v�,x�
assuming

that the y variables x1, x2, . . . , xy are chosen within
[1, z − 1], and

2) the maximum value of the sum
∑y−1

�=1 v�,x�
assuming

that the y − 1 variables x1, x2, . . . , xy−1 are chosen
within [1, z − 1] and xy = z.

This is reflected at step (4b) where v′y,z is set to the maximum
of both.

It is thus true that v′y,z holds the maximum value of the

sum
∑y

�=1 v�,x�
assuming that the variables x1, x2, . . . , xy are

chosen within [1, z]. As the result holds for y = k and z =
n− i+1, we have that S = v′k,n−i+1 is a solution to problem
1.

Algorithm 2 tests at most (n−i−k+1)·k different scenarios
since it traverses at most n− i−k+1 elements k times, which
compares favorably with the brute force approach which would
test the

(

n
k

)

different legal scenarios.

So far the Ak
i area has been upper-bounded by only taking

into consideration the priority ordering between the non-pre-
emptive regions of lower or equal priority tasks. It might be
the case in fact that the worst-case execution time of the lower
or equal priority tasks does not enable the result obtained with
Algorithm 2 ever to occur in practice.

In the worst-case the blocking area cannot exceed the sum
of the k largest lower or equal priority task WCET:

Ak
i �

k
∑

j=1

j
max

�∈lep(i)
C� (22)

VII. ENHANCING SYSTEM PREDICTABILITY WITH FIXED

NON-PRE-EMPTIVE REGIONS

Let us consider a scenario where the priority ordering
among tasks is provided a-priori. We intend to compute a set
of non-pre-emptive regions for each task such that the number
of pre-emptions observed in a schedule is reduced. A first
approach to solving this problem is presented in Algorithm 3.
The task-set is parsed starting from the lowest priority task τn.
At each priority level i, the set of minimum Qk

i values which
render the m schedulability constraints (16) are found. From
these m values the largest one is chosen. Since the βk

i (Qi)
functions are monotonically non-decreasing, if Qk′

i > Qk
i and

βk
i (Q

k
i ) = Ak

i then βk
i (Q

k′

i ) � Ak
i . Hence choosing the

maximum Qk
i out of all the m minimum values which make

the m inequalities true will still ensure the attainment of the
schedulability condition. If, for any of the m schedulability
conditions there exists no Qi quantity for which βk

i (Qi) = Ak
i

then the task-set is deemed unschedulable.

Lemma 2 (Minimum Non-pre-emptive Region Assignment).
Algorithm 3 provides the minimum set of Qi values ∀τi ∈ T
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Algorithm 3: Minimum Last Non-pre-emptive Region
Length (Qi) Assignment

for i ∈ {n, · · · , 1} do
for k ∈ {1, · · · ,m} do

if ∃{Qi|β
k
i (Qi) = Ak

i } then

Qk
i = {Qi|β

k
i (Qi) = Ak

i }

else
return UNSCHED

Qi = max1�k�m{Qk
i }

return SCHED

such that the task-set is schedulable under ADS with a given
priority assignment

Proof: Proof by induction. For task τn the quantity Qn

computed by Algorithm 3 is the smallest last non-pre-emptive
region length such that task τn is schedulable. As a conse-
quence, the blocking that τn induces on the higher priority
task is the minimum possible such that τn is schedulable.

Inductive step: Algorithm 3 yields the minimum last non-
pre-emptive region length for a task τi, 1 � i � n such that
τi is schedulable. As a consequence of this the set of task
{τi, · · · , τn} induces the lowest possible worst-case blocking
to the higher priority workload such that those tasks are
schedulable.

If for the same priority assignment any value Q′
i ∈

{Q′
i, · · · , Q

′
n} it would happen that Q′

i < Qi, then task τi
would be unschedulable as a consequence.

Theorem 2. The ADS policy dominates the fully pre-emptive
fully pre-emptive and fully non-pre-emptive global fixed task
priority with respect to schedulability

Proof: This result is easily proven by observing that
according to Lemma 2 the Q vector outcome of Algorithm 3
is the smallest such that the taskset is schedulable. As a
consequence, if T is schedulable under fully pre-emptive global
fixed task priority the set Q resulting from Algorithm 3 is such
that ∀Qi ∈ {Q1, · · · , Qn} : Qi = 0. Otherwise if T is not
schedulable with fully pre-emptive global fixed task priority
but it is with ADS then ∃Qi ∈ Q : Qi > 0. Similarly
if a task is only schedulable with fully non-pre-emptive the
Q vector produced by algorithm 3 would be such that each

Qi = Ci. Since Ak
i �

∑k

j=1 maxj
�∈lp(i) Cl the maximum

blocking lower priority tasks induce in ADS can in the worst-
case be equal to that of fully non-pre-emptive and never greater.
In a situation where ∀i, Qi = Ci the ADS policy is equivalent
to the fully non-pre-emptive policy (i.e. the schedules produced
are identical).

Having the mechanism to produce the minimum set of Q
values which ensures the schedulability of the task-set in ADS
we intend to compute a set of non-preemptive regions where at
least some of its constituents are larger than the corresponding
components of the minimum vector but never smaller. Having
larger Qi potentially leads to a smaller number of preemptions
in the actual schedule as will be showcased in the Experimental
Section.

Algorithm 4 takes as input the minimum Q vector ensuring
schedulability. Contrary to the minimum Q vector computation

Algorithm 4: Last Non-pre-emptive Region Length
(Qi) Assignment

for i ∈ {1, · · · , n} do
for k ∈ {1, · · · ,m} do

Qk
i = max{Q|∀j ∈ hep(i), βk

j (Qi) � Ak
j }

Qi = min1�k�m{Qk
i }

procedure we now take a top down approach (i.e. starting
from the highest priority to the lowest). The resulting Q′

vector has all its elements larger or equal to the minimum Qi

vector since by definition this is the smallest possible ensuring
schedulability. At each priority level the maximum Qi quantity
is assigned which still preserves the schedulability of higher
priority tasks. It is considered that any remainder lower or equal
priority task τ� has a Q� equal to the maximum between any
Qj where j ∈ hep(i) and the minimum Q� which renders
τ� schedulable. This is due to the plausible scenario where a
tasks with lower priority than τi processed in further iterations
requesting a greater value than its minimum Q�. Since at the
given iteration we are unaware of future developments and in
order to reduce complexity the future requests of lower priority
tasks are limited to the values known to us in the current
iteration. These are the set of minimum last non-pre-emptive
region lengths ensuring the schedulability of each lower priority
task and the set of assigned higher priority task last non-pre-
emptive regions.

VIII. EXPERIMENTAL SECTION

In this paper the theory for limited pre-emptive global fixed
task priority scheduling is presented. In order to assess the
performance of this scheduling discipline first we examine the
relative performance of the three methods of estimating the
blocking induced by lower or equal priority workload.

A. Blocking Estimation

We generate 100 sets, with n Q elements. These sets are
intended to represent the last non-pre-emptive regions from
all tasks in a given taskset. Each last non-pre-emptive region
length is a randomly generated value in the range [0, 300]. The
quantity Ak

1 to Ak
n−k is upper-bounded for each of these Q sets

using the three methods described previously. The estimations
are performed for each generated set of Q values starting
with priority 1 (i.e. computing Ak

1) until priority level n − k
(Ak

n−k). The average last non-pre-emptive region length (Qi)
is computed over the 100 task-sets for each priority level i
using each of the three methods. The results are presented in
Figure 4.

From the results in Figure 4 it is clear that the third
estimation mechanism outperforms the first two as expected.
The first one is the crudest approximation, its estimations tend
to be much more pessimistic than the other two. Whereas
the second one, albeit simple enough, provides results that
are similar to the third and most complex of the three. As
the priority level decreases (i.e. task index increases) the
estimations tend to decrease since any subset of k values will
necessarily be smaller than or equal to any in a larger set.
The two latter methods tend to decrease their estimation faster
as the priority level increases since the number of values to
chose from decreases whereas the first method, by basing its
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Fig. 4: Blocking Estimations (k=8,n=88).

estimation on the maximum value present in the set will not
reduce its estimation as steeply.

B. Pre-emptions in Simulated Schedules

In order to assess the performance of the ADS scheduling
policy with respect to the observed pre-emptions in a given
schedule a simulator was created. Task-sets are randomly gen-
erated and the schedule produced by fully pre-emptive global
fixed task priority and ADS is generated. In the simulated
schedules the number of direct pre-emptions is extracted. Each
task-set is randomly generated where Utot is the target total
utilization. The individual task utilizations 0 < ui � 1 are
obtained by the random fixed sum method [24]. The execution
requirement of each task Ci is a uniformly distributed random
variable in the interval [100, 500]. The relative deadlines of the

tasks are computed then as Di =
Ci

ui
. The period of each task

Ti is equal to the relative deadline (Ti = Di).

The priority assigned to the tasks is the same for both fully
pre-emptive and ADS simulations. The heuristic employed to
assign priorities is DkC [25]. The schedules are simulated for
platforms comprising m cores. In Figures 5a and 5b m = 2.
Whereas Figures 5c 5d relate to simulations on four processors.
The simulations are run for 5000000 time units. The total
utilizations of the taskset are varied from 0.1 to m with steps
of 0.1 units. At each utilization level 100 random task-sets are
generated and their schedules simulated.

Since ADS is compared against the global fully pre-emptive
fixed task priority only task-sets which are schedulable by the
latter are considered. As a consequence, while computing the
last non-pre-emptive regions for each task with Algorithm 4 the
minimum Q vector considered is one where all elements are
zero. Since the performance of the blocking estimation 1 is the
most modest, this was put to use in order to get a sense of the
worst-case performance of ADS and to show that even in those
circumstances it compares quite favorably against the fully pre-
emptive scheduler with respect to run-time pre-emptions.

From the presented results it is apparent that a large number
of the pre-emptions are removed from the actual schedule.
From figures 5a to 5d it is obvious that the number of pre-
emptions in ADS tends to decrease with increases in n. This is
due to the spread of the available utilization among constituents

of the task-set. Consequently tasks will tend to have moderately
similar deadlines and execution requirements. This is beneficial
for obtaining larger admissible non-pre-emptive regions when
compared to the execution time. The number of pre-emptions
in both scheduling policies increase with the total utilization
of the task-set, still the pre-emption increase in fully pre-
emptive tends to be steeper than in the ADS schedule. Since
the processors tend to be occupied for larger time intervals it is
more likely that newly released jobs will induce a pre-emption.

As the number of processors increase the relative benefits of
the ADS policy suffer a mild degradation (comparison between
m=4 and m=2). This is due to the poor performance of the
blocking estimation mechanism put to use in this simulation
effort (ADS estimation 1) as it will severely over-estimate the
actual worst-case blocking time tasks will be subject to and
as a consequence will lead to smaller non-pre-emptive region
lengths. This induces more pre-emptions points in the tasks
and hence more possibilities for pre-emptions to occur. To
be noted that the blocking estimation 1 and estimation 2 in
this case would yield similar results since by taking a top
down approach and by assuming that the lower priority non-
preemptive regions would be equal to Qi, the Ak

i estimate is
the same for both methods as there would exist only a single
distinct non-preemptive region length value which would be
mandatorily the maximum. Another shortcoming general to all
the aproximate blocking estimation mechanisms presented in
this work is that these do not take into account the maximum
execution requirement of the lower or equal priority tasks. As
m increases so does the pessimism involved in the estimation
step since the stair-case pattern of blocking is subject to cruder
overestimations as the number of steps increases.

IX. CONCLUSIONS AND FUTURE WORK

In this work we present a novel limited pre-emptive global
scheduling policy. The schedulability test is presented with
three approaches to estimate the blocking from lower or equal
priority non-pre-emptive regions. The new scheduling policy is
shown to ensure that a job can be blocked by lower priority
workload only before its first dispatch. This compares favorably
with the scheduling policy termed RDS which is subject to mul-
tiple instances of blocking throughout the execution of a given
job. The presented scheduling policy (ADS) dominates global
fully pre-emptive fixed task priority and fully non-pre-emptive
scheduling with respect to schedulability. As final contributions
the blocking estimation mechanisms are compared against each
other. Finally, the ADS policy is shown to drastically reduce
the number of pre-emptions occurring in the schedule when
compared to global fully pre-emptive scheduling.

As future work we intend enhance the system model
and consider non-negligible pre-emption and migration delay
penalties. In this manner we will exploit the limited pre-emptive
model in order to decrease the pre-emption and migration delay
involved with the scheduling of task-sets upon multiprocessors.
The contention at the memory access bus and controller will
similarly be modeled and the interference resulting from the
contention at this shared resource will be integrated into the
non-preemptive schedulability analysis. Furthermore we wish
to devise clustering techniques so as to alleviate the ADS
pessimism when large quantities of processors comprise the
execution platform.
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