
Response Time Upper Bounds for Fixed Priority Real-Time Systems.

R.I.Davis and A.Burns
Real-Time Systems Research Group, Department of Computer Science,

University of York, YO10 5DD, York (UK)
rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper derives closed form upper bounds on

the response times of tasks in fixed priority real-time
systems. These bounds are valid for tasks with
arbitrary deadlines, release jitter, and blocking.
Response time upper bounds are given for tasks that
are scheduled pre-emptively, co-operatively with
intervals where pre-emption is deferred, and non-
preemptively. The set of upper bounds for n tasks can
be computed in O(n) time, providing a linear-time
sufficient schedulability test, applicable to complex
commercial real-time systems.

1. Introduction
1.1. Background and motivation

Fixed priority scheduling is widely used in real-
time embedded systems, such as electronic control
units and communications networks in automobiles,
digital set-top boxes, medical systems, space systems,
and mobile phones. As a result, fixed priority
scheduling is supported by the majority of commercial
real-time operating systems.

In the context of fixed priority systems,
schedulability analysis is used to determine if a set of
tasks or messages can be guaranteed to always meet
their deadlines at run-time. A common method of
determining schedulability is to calculate the worst-
case response time of each task, measured from its
release to its completion, and then compare this
response time with the task�s deadline to determine if it
is schedulable. This method is called Response Time
Analysis (RTA).

Exact response time analysis is known to have
pseudo-polynomial complexity [1, 14]; however, in
practice, efficient implementations exist [5, 8, 24] that
can be used to determine the schedulability of
industrial-scale real-time systems within a reasonable
time frame. Nevertheless, there are a number of ways
in which schedulability tests can be used, where the
complexity and execution time of exact tests may
become a limiting factor. These include:
1. Interactive system design tools: Here user

interaction / sensitivity analysis [20] requires that
the results of multiple schedulability tests, on large

and complex systems, are available within a few
tenths of a second.

2. System optimisation via search: Using search
techniques such as simulated annealing to
determine task and message allocations in a
distributed system [9] requires a very large
number of schedulability tests to be performed.

3. Dynamic systems: In a running system, admission
of a new task requires an online assessment of
system schedulability before the task can be
started. Stringent start-up constraints may preclude
the use of exact schedulability tests in this context.

In 2008, Davis et al. [8] showed that the efficiency of
exact tests can be markedly improved, by using a
response time upper bound to check on a task-by-task
basis whether an exact response time calculation is
required. Reducing the execution times of exact tests in
this way can significantly enhance their suitability for
use in practical applications such as those described
above.

1.2. Related work
Research into schedulability tests for fixed priority

pre-emptive systems effectively began in 1967, when
Fineberg and Serlin [10] considered priority
assignment for two tasks. They noted that if the task
with the shorter period is assigned the higher priority,
then the least upper bound on the schedulable
utilisation is)12(2 − or 82.8%. This result was
generalised by both Serlin [23] in 1972 and Liu and
Layland [19] in 1973, both of whom showed that for
synchronous tasks (that share a common release time),
that comply with a restrictive system model, and that
have deadlines equal to their periods, then rate
monotonic priority ordering is optimal. Liu and
Layland [23] provided a simple, sufficient, utilisation-
based schedulability test for tasks compliant with their
system model, and with priorities in rate monotonic
priority order (RMPO)1.

In 2003, Lauzac et al [15] introduced an improved
utilisation-based test, using period ratios, called the
RBound test. Also in 2003, Bini et al. [4] introduced a
utilisation-based test referred to as the Hyperbolic

1 RMPO assigns priorities in order of task periods, such that the task
with shortest period is given the highest priority.

mailto:alan.burns@cs.york.ac.uk
mailto:rob.davis@cs.york.ac.uk

Bound. Both the RBound and Hyperbolic bound are
only applicable to systems with a restricted system
model, and task priorities assigned in RMPO2.

Exact schedulability tests, based on computing
worst-case response times, were introduced by Joseph
and Pandya [14] in 1986, and Audsley et al. [1] in
1993. An alternative method of determining exact
schedulability without computing worst-case response
times was introduced by Lehoczky et al. [17] in 1989.

These exact tests have been extended to cater for
cases where tasks access mutually exclusive shared
resources according to mechanisms such as the Stack
Resource Policy [2] and the Priority Ceiling Protocol
(PCP) [22]. Further work on schedulability tests for
fixed priority systems has lifted many of the earlier
restrictions, providing exact tests for tasks with offset
release times [25], arbitrary deadlines [16, 26], release
jitter [26] and non-pre-emptive sections [6, 13]. Exact
schedulability tests have also been developed for other
resources scheduled according to fixed priorities, for
example Controller Area Network [7].

Research by Sjodin and Hansson [24] in 1998, Bril
et al. [5] in 2003, and Davis et al. [8] in 2008, has lead
to practical improvements in the efficiency of exact
response time tests, providing response time lower
bounds that can be used as initial values for the fixed
point equation used in such tests. Nevertheless the
exact response time tests remain pseudo-polynomial in
complexity.

A polynomial-time, sufficient response time test
was developed by Fisher and Baruah [12] in 2005. This
test approximates the workload requested by higher
priority tasks using an exact request bound function for
k invocations of the task, and a linear function
thereafter. This work has subsequently been extended
to cater for tasks with release jitter [21].

A closed form upper bound on task�s response
times, and an associated linear-time sufficient test was
derived by Bini and Barauh [3] in 2007. This response
time upper bound is valid for sets of independent, pre-
emptively scheduled tasks with arbitrary deadlines, and
no release jitter.

1.3. This paper
The research described in this paper was motivated

by the need to provide response time upper bounds that
can be used as an integral part of exact response time
analysis for complex commercial real-time systems.

The research presented in the rest of this paper
builds upon the work of Bini and Baruah [3]. It takes
the concept of approximating task workload via a
linear function and applies it to systems where tasks
may be subject to blocking, have arbitrary deadlines,
and arbitrary release jitter. Further, in this paper,
response time upper bounds are derived for pre-

2 Later in this paper, we show how these utilisation-based tests can
be adapted to more complex system models.

emptive, co-operative, and non-pre-emptive
scheduling, ensuring that the results are applicable to a
wide range of processor and network scheduling
problems.

1.4. Organisation
Section 2 describes the terminology, notation and

system models used in the rest of the paper. Section 3
summarises existing response time analysis. Section 4
derives response time upper bounds for fixed priority
tasks with arbitrary deadlines, release jitter, and
blocking, under pre-emptive, co-operative, and non-
pre-emptive scheduling. These results form a sufficient
schedulability test that is applicable to a very general
system model. Section 5 presents an empirical
investigation into the effectiveness of the sufficient test
/ response time upper bound. Finally, Section 6
summarises the key contributions of this paper and
suggests directions for future research.

2. System model, terminology and notation
In this paper, we are interested in providing a

closed form response time upper bound that can be
used to form a linear-time sufficient test for
applications executing under a fixed priority scheduler
on a single processor.

The application is assumed to comprise a static set
of n tasks (nττ ..1), each assigned a unique priority i,
from 1 to n (where n is the lowest priority).

We use the notation hp(i) and lp(i) to mean the set
of tasks with priorities higher than i, and the set of
tasks with priorities lower than i respectively.
Similarly, we use the notation hep(i) and lep(i) to mean
the set of tasks with priorities higher than or equal to i,
and lower than or equal to i respectively.

Application tasks may arrive either periodically at
fixed intervals of time, or sporadically after some
minimum inter-arrival time has elapsed. Each task iτ ,
is characterised by: its relative deadline i , worst-
case execution time i , minimum inter-arrival time or
period i , and its release jitter i , defined as the
maximum time between the task arriving and it being
released (ready to execute). The utilisation , of each
task is given by .

D

iU

C

T/

T J

ii
No assumptions are made about the relationship

between the period of a task and its release jitter or
between the period of a task and its deadline. Arbitrary
release jitter (i

C

i DJ <≤0), and arbitrary deadlines
(ii TD ≤ or ii) are therefore permitted. It is
assumed that invocations of a task are released, and
execute in order of arrival, and that once a task starts to
execute it will not suspend itself voluntarily.

TD >

We assume that the arrival times of tasks are
independent and thus that the tasks may share a
common release time, termed the critical instant [19].
Tasksets with a common release time are referred to as
synchronous tasksets. Tasksets with offset arrival times

that do not share a common release time are referred to
as asynchronous tasksets. Asynchronous tasksets are
not explicitly considered in this paper; however, the
response time upper bounds provided, although
pessimistic in this case, are applicable to such tasksets.

Tasks may access shared resources in mutual
exclusion according to the Stack Resource Policy [9].
A task at priority i may be blocked by lower priority
tasks, as a result of the operation of the Stack Resource
Policy, for at most , referred to as the blocking time. i

A task�s worst-case response time i , is the longest
time from the task�s release to it completing execution.
A task is referred to as schedulable if its worst-case
response time is less than or equal to its deadline minus
release jitter (iii). A system is referred to as
schedulable if all its tasks are schedulable.

B
R

JDR −≤

We assume, without loss of generality3, that task
priorities are in deadline minus jitter monotonic4 (D-
JMPO) priority order [27].

In this paper, we provide analysis for fully pre-
emptive systems, and also for systems where pre-
emption may be deferred [6], so called co-operative
scheduling. With co-operative scheduling, it is
assumed that each task�s worst-case execution time i
is divided into a number of non-pre-emptable sections,
the final one of which is of length i (ii

C

F CF ≤), and
that the blocking time i represents the longest time
for which any task of lower priority than i can execute
non-pre-emptively. Note, that pure non-pre-emptive
scheduling is a special case of deferred pre-emption,
with .

B

ii CF =

2.1. Busy, idle and occupied periods
A priority level-i idle instant is defined as a time

instant t at which there are no tasks of priority i or
higher awaiting execution that became ready to execute
strictly before t.

A priority level-i busy period is defined as a time
interval which; (i) starts at a priority level-i idle
instant 1 , when a task of priority i or higher becomes
ready to execute, (ii) is a contiguous interval of time
during which any task of priority lower than i is unable
to start executing, and (iii) ends at the first priority
level-i idle instant after its start.

),[21 tt
t

2
A priority level-i idle period is defined as a time

interval of length greater than zero, during
which no tasks are ready to execute at priority i or
higher, strictly before the end of the idle period at t .

t

),[43 tt

4
A priority level-i occupied period is defined as a

time interval which; starts at the end of a
priority level-i idle period and ends at the start of the
next priority level-i idle period. During a priority level-

),[65 tt

3 The analysis provided in this paper is independent of the chosen
priority ordering.
4 D-JMPO assigns priorities in order of deadline minus jitter, such
that the task with the smallest value of Di-Ji is given the highest
priority.

i occupied period, the processor is occupied executing
tasks at priority i or higher and is thus unable to start
execution of any computation at a priority lower than i.

Note, the subtle difference between a busy period
and an occupied period: a busy period ends once all
tasks released strictly prior to the end of the busy
period have completed execution, irrespective of
whether further tasks are released at the end of the
period; whereas, an occupied period only ends once all
tasks released prior to, and including, the end of the
period have completed execution.

Busy periods are fundamental in the analysis of
fixed priority pre-emptive scheduling, whilst occupied
periods are fundamental in analysing co-operative and
non-pre-emptive scheduling.

In the remainder of the paper, for conciseness, we
will use the terms busy period and occupied period
whenever the priority level is implicit in the context.
Further, when we refer to a busy period or occupied
period, we mean the worst-case or longest such period.

2.2. Summary of notation used
For ease of reference, Table 1 below summarises

the notation used throughout this paper.

Table 1: Notation
Symbol Description

iτ Task at priority level i.
i

C
B Blocking time at priority level i.

i Worst-case execution time of task iτ
iD Deadline of task iτ
iF Length of the final non-pre-emptable section

of task iτ
)(tI O

j Interference at priority j executed by the
processor in an interval of length t, when
is the only task in the system.

jτ

)(tI UB
j

iJ
Upper bound on .)(tI O

j
Release jitter of task iτ

)Oi

UB

(C Worst-case priority level-i occupied time,
including computation C at priority i.

)(COi Upper bound on)(COi
q Denotes an invocation of task iτ (q = 0 is

the first invocation).
iR Worst-case response time of task iτ

)(qRi Worst-case response time of the qth
invocation of task iτ .

)(qRUB
i UB

iR
Upper bound on .)

R
(qRi

Upper bound on .i
Minimum inter-arrival time of task iT iτ

iU Utilisation of task iτ
i

)(qv
v Length of a priority level-i occupied period.

i Length of a priority level-i occupied period,
up to the start of the final non-pre-emptable
section of the qth invocation of task iτ .

)(qV UB
i

iw
Upper bound on .)(qvi
Length of a priority level-i busy period.

)(qwi Length of a priority level-i busy period, up to
the end of the qth invocation of task iτ .

)(qW UB
i Upper bound on .)(qwi

3. Response time analysis
In this section, we outline standard response time

analysis methods for fixed priority systems. The
overall approach taken by response time analysis can
be summarised as follows:
1. Determine the worst-case scenario; the pattern of

task activation and execution that leads to task iτ
having its worst-case response time R . i

2. Compute R for the worst-case scenario. i
3. Determine task schedulability by checking

whether JD . iii
For synchronous systems, Tindell [26] showed that the
worst-case scenario for task i

R −≤

τ occurs following a
critical instant where iτ is released simultaneously
with all higher priority tasks, all subject to their
maximum release jitter, and subsequent releases of task

iτ and higher priority tasks then occur after the
minimum possible time intervals. Further, immediately
prior to the critical instant, a lower priority task has just
locked a shared resource or entered a non-pre-emptive
section, and will therefore execute at priority level i or
higher for the worst-case blocking time . i
 The worst-case scenario described above leads to
the longest priority level-i busy period and the longest
priority level-i occupied period [13].

B

In the rest of this section, we provide an outline of
the analysis used to compute worst-case response
times:
(i) For pre-emptively scheduled tasks with

deadlines less than or equal to their periods
[1] (Section 3.1).

(ii) For pre-emptively scheduled tasks with
arbitrary deadlines [26] (Section 3.2).

(iii) For pre-emptively scheduled tasks with
deferred pre-emption [6] (Section 3.3).

3.1. Pre-emptive scheduling, with deadlines less
than or equal to periods

For pre-emptively scheduled tasks with deadlines
less than or equal to their periods, each invocation of
task iτ must be complete before the next invocation is
released. Hence any priority level-i busy period
contains at most one invocation of task iτ . The worst
case response time of task iτ therefore equates to the
length of the longest priority level-i busy period,
starting at the critical instant

Response time analysis [1, 14], calculates the
length i , of this busy period using the following
equation.

w

∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
++=

)(ihpj
j

j

ji
iii C

T
Jw

CBw (1)

where the summation term represents the total
interference due to invocations of higher priority tasks
released strictly before the end of the busy period.

Note that appears on both the left and right

hand sides of Equation (1). As the right hand side is a
monotonically non-decreasing function of i , the
equation can be solved using the following fixed point
iteration:

iw

w

ihpj j

j
n
i

ii
n
i C

T
Jw

CBw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
++=

)(

1
j

iw=

 (2)

Iteration starts with an initial value , typically
iii , and ends when either in

which case the worst-case response time i , is given
by or when ii in which case the
task is unschedulable. The fixed point iteration is
guaranteed to converge provided that the overall
taskset utilisation is less than 1.

0
iw
n
iw +1

R
CBw +=0

1+n
iw

n

n
i JDw −>+1

3.2. Pre-emptive scheduling with arbitrary
deadlines

For pre-emptively scheduled systems, where task
deadlines are arbitrary, execution of one invocation of
a task may not necessarily be complete before the next
invocation is released. Hence a number of invocations
of task iτ may be present within the longest priority
level-i busy period, with earlier invocations delaying
the execution of later ones. In general it is therefore
necessary to compute the response times of all
invocations within the busy period in order to
determine the worst-case response time.

We note that with arbitrary release jitter, a number
of invocations of task iτ may be released together at
the start of the busy period; such invocations of the
same task are assumed to be executed in order of
arrival5.

The length of the busy period , starting at the
critical instant and extending until the completion of
the qth invocation of i

)(qwi

τ (where q = 0 is the first
invocation) is given by the fixed point iteration:

∑
∈∀

+

⎢
⎢
⎢

⎡ +
+++=

)(

1)(
)1()(

ihpj j

j
n
i

ii
n
i T

Jqw
CqBqw

⎥
⎥
⎥

⎤
jC

0wi

iJ−

 (3)

Iteration starts with an initial value ,
typically ii , and ends when either

 in which case the worst-case
response time , of invocation q, is given by

i or when in
which case invocation q is unschedulable.

)(q
i CqBqw)1()(0 ++=

)(qwn
i=

)(qRi
qT− n

iw + (1

)(1 qwn
i
+

n
i qw +)(1

ii DqTq >−)

Invocation q can only impinge upon the execution
of subsequent invocations if its completion occurs after
their release. Hence, response times need to be
calculated for invocations q=0,1,2,3� until an
invocation q is found that completes at or before the
earliest possible release of the next invocation q+1, i.e.
where: iii JTqqw −+≤)1()(

i

. The worst-case response
time of task τ is then given by:

5 We assume that a later arriving invocation cannot, by virtue of
having less release jitter, overtake an earlier one and be released first.

))((max iiqi qTqwR −= ∀ (4)
Again, the task is schedulable provided that

. iii JDR −≤

3.3. Co-operative scheduling
In the case of co-operative scheduling, even if task

deadlines are less than or equal to their periods, an
invocation of task iτ can still delaying the execution of
later invocations. This happens because non-pre-
emptive execution of the final section of task iτ can
delay execution of a higher priority task which then
impinges upon the next invocation of task iτ [6].
Response time analysis for pre-emptive scheduling
with deferred pre-emption therefore needs to consider
multiple invocations even when task deadlines are less
than or equal to their periods.

In a co-operatively scheduled system, a pessimistic
value [6] for the length of the priority level-i worst-
case occupied period , by which invocation q of
task i

)(qvi
τ may be delayed from starting its final non-pre-

emptable section is given by the solution to the
following fixed point equation:

j
ihpj j

j
n
i

iii
n
i C

T
Jqv

FCqBqv ∑
∈∀

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ +
+−++=

)(

1 1
)(

)1()(

(5)
where the summation term represents the total
interference due to invocations of higher priority tasks
released at or before , and i is the maximum
blocking time due to the non-pre-emptive execution of
sections of lower priority tasks.

)(qvn
i B

Equation (5) can be solved using a fixed point
iteration, that starts with an initial value ,
typically ii , and ends when
either in which case the worst-case
response time , of invocation q, is given by

ii or when ii
ii in which case the invocation is

unschedulable.

)(0 qvi

qTF −

ii FCqBqv −++=)1()(0

)()(1 qvq n
i=+

)(qRi
qTF − v

vn
i

q +)
J−

n
iv + (1

D>

n
i q ++)(1

The number of invocations which need to be
examined is given by:

⎡ iiii TJwQ /)(+= ⎤ (6)
Where i is the length of the priority level-i busy

period assuming pre-emptive scheduling, found using
the following fixed point iteration, starting with a value
of and ending when .

w

i C+ ii Bw =0 n
i

n
i ww =+1

j
ihepj j

j
n
i

i
n
i C

T
Jw

Bw ∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ +
+=

)(

1 (7)

The worst-case response time of task iτ is then
given by:

))((max 1..1,0 iiiQqi qTFqvR
i

−+= −= (8)
Again, the task is schedulable provided that

. ii
We note that purely non-pre-emptive scheduling

[13] is a special case of pre-emptive scheduling with
deferred pre-emption, with the final non-pre-emptive
section equal to the entire execution of the task
(

i JDR −≤

ii CF =).

4. Response time upper bounds
In this section, we present response time upper

bounds for fixed priority systems, with arbitrary
deadlines and release jitter. Following the approach of
Bini and Baruah [3], we first derive a linear function
that provides a closed form upper bound on the time
that the processor can spend executing a high priority
task jτ during any given time interval. We then show
how this linear function can be used to provide an
upper bound on the worst-case occupied time and
hence to provide response time upper bounds for pre-
emptive, co-operative, and non-pre-emptive
scheduling.

4.1. Interference upper bound
In this section, we derive a linear function that

forms an upper bound on the total time , that the
processor spends executing a task j during the
interval [0, t) in the worst-case scenario (Section

)(tI j
τ

2.1).
We refer to as the interference due to task)(tI j jτ .

Following the approach outlined in [3], let
denote the worst-case interference due to task j ,
when it is the only task in the system. Clearly

.

)(t
τ

I O
j

)()(tItI j
O
j ≥

Assuming that j is the only task in the system,
then with arbitrary release jitter j , a number of
invocations of j may be released simultaneously at
time t=0 and executed consecutively. Further
invocations of j

τ
J

τ

τ may also be released prior to these
initial invocations completing execution. In general,
the processor will first be busy executing h invocations
of jτ , then it will be idle for some time interval (jT≤)
before subsequently executing for every , as
shown in

jC jT
Figure 1.

Figure 1
We now derive an equation for the linear upper

bound , on shown as a dashed line in)(tI UB
j)(tI O

j

Figure 1. This upper bound has a slope of
and is the smallest linear function of t, with slope jU ,
such that . The point P(t, y) in

jjj TCU /=

)(t
τ

)()(tItIt O
j

UB
j ≥∀

)()(tItI O
j

UB
j =

Figure 1 represents the point with the smallest value of
t, for which .

To determine the equation for , we must
first compute the number of invocations of j that
execute consecutively, this information can then be
used to determine the co-ordinates of the point P(t, y),
and hence the equation for the linear bound.

I UB
j

There are:
⎣ ⎦ 1/ +jj TJ
τ

 (9)
invocations of j released at time t=0, with subsequent
releases occurring, for k=1,2�, at times:

⎣ ⎦() jT)j k 1(−+jjj JTTJ 1/ −+ (10)
The number of subsequent releases that form part

of the initial period of consecutive execution is
therefore given by the largest value of k, such that the
period of consecutive execution is equal to or exceeds
the next release time of the task:

⎣ ⎦() ≥jC)−++ jjj kCTJ 1(1/

⎣ ⎦() jT)1−j kJ (+−jjj TTJ 1/ + (11)
Simplifying, we have:

⎣ ⎦jTk /jjjj JCTJ)/(−−≤ (12)
and hence the largest such value of k is given by:

⎣ ⎦ ⎣ ⎦jTk /jjjj JCTJ)/(−−=

j

 (13)
Combining Equations (9) and (13), the total number h,
of invocations of τ that execute consecutively, is:

⎣ ⎦ 1)/(+−= jjj CTJ

jC

h (14)
The y co-ordinate of the point P(t, y) is therefore

, which expands to: jhCy +=
⎣ ⎦() jj C+jjj CCTJy +−= 1)/((15)

The t co-ordinate of the point P(t, y) is found by adding
jj to the release time of final invocation that

forms part of the initial consecutive execution (itself
found by substituting the value of k from Equation (13)
into Equation (10)).

CT +

⎣ ⎦() j

)jU

))1 jU−

j CJt +−jjjj TCTJ +−= 1)/(

)(tI UB
j

)(jj
UB
j JUtUtI +=

()
)()(ihpjihpj

j UUtt += ∑∑
∈∀∈∀

 (16)
The slope of the linear bound is jU and so from
Equations (15) and (16), the equation for the linear
upper bound is:

1(j −j C+ (17)
Summing over all tasks with higher priorities than

i, an upper bound on the total interference due to
higher priority tasks executed in the time interval [0, t)
is given by:

((
)(

jjj
ihpj

UB
j CJI +∑

∈∀

 (18)

4.2. Occupied time upper bound
An upper bound on the longest time that the

processor takes to execute higher priority tasks and

computation C at priority i, is given by the intersection
of the line y=t and the line

))1((
)()(

jj
ihpj

jj
ihpj

j UCJUUtCy −+++= ∑∑
∈∀∈∀

 (19)

The solution (intersection of these lines) is given by:

∑

∑

∈∀

∈∀

−

−++

=

)(

)(

1

))1((
)(

ihpj
j

jj
ihpj

jj
UB
i U

UCJUC
CO (20)

Theorem 1: i is an upper bound on the worst-
case occupied period , where includes
computation C at priority i.

)(COUB

)(COi)(COi

Proof: First, we note the following from Figure 1. At
any time t, the interference upper bound , given
by Equation (17) is either:

)(tI UB
j

(i) strictly greater than the actual interference due
to task jτ executed in the time interval [0, t),

or
(ii) equal to the actual interference due to task jτ

executed in the time interval [0, t), and task
jτ has just completed execution at the earliest

possible time, and is not released again until
some non-zero time interval has elapsed.

To show that is an upper bound on ,
there are two cases to consider:

)(COUB
i)(COi

1.)(CO is a time at which, for one or more
higher priority tasks j

t UB
i=

τ ,)(tI UB
j is strictly greater

than the actual computation executed by the
processor on behalf of task jτ in the interval [0,
t). In this case, the total computation executed by
the processor in the interval [0, t) is strictly less
than the length of the interval and hence the
processor is able to start or resume execution at
priority i some time before)(COt UB= . i

2.)(CO is a time at which, for all higher
priority tasks j

t UB
i=

τ ,)(tI UB
j is equal to the actual

computation executed by the processor on behalf
of task jτ in the interval [0, t), and all the higher
priority tasks have just completed execution
simultaneously at their earliest possible times.
(Note, this is only actually possible when there is
one higher priority task). Hence, there is an
interval of non-zero length before any further
release of a higher priority task, and so the
processor is available to start or continue
executing at priority i at time)(COt UB= . i

In both cases, at or before time t= the
processor is able to continue executing at priority i □

)C(OUB
i

4.3. Pre-emptive scheduling
In this section, we use the worst-case occupied time

upper bound derived in Section 4.2 to obtain an upper
bound response time for tasks with arbitrary deadlines
and release jitter that are scheduled pre-emptively.

Comparing the analysis for pre-emptive scheduling
in Section 3.2, with that for co-operative scheduling in
Section 3.3, specifically Equations (3) and (5), we note

that as analysis for co-operative
scheduling with , can be used to provide
pessimistic worst-case response times for purely pre-
emptive scheduling. Hence the worst-case occupied
time upper bound i for execution
of computation ii at priority i forms an
upper bound on the length of the priority level-i busy
period given by Equation (3). From Equation (20),

⎣ ⎦ ⎡ yxyx /1/ ≥+
0=iF

(i
UB
i BO
qB)1(++

⎤

))1(Cq ++
C

∑

∑

∈∀

∈∀

−

−++++

=

)(

)(

1

))1(()1(
)(

ihpj
j

jj
ihpj

jjii
UB
i U

UCJUCqB
qW

 (21)
is therefore an upper bound on the length of the busy
period for invocation q of task)(qwi iτ .

Hence, a response time upper bound for
the qth invocation is given by:

)(qRUB
i

i
UB
i

UB
i qTqWqR −=)()((22)

Combining Equations (4) and (22), an overall response
time upper bound for task UB

iR iτ is given by:
))(max iiq

UB
i qTqR −= ∀ (UBW (23)

Comparing the response time upper bounds for
invocations q and q+1, we have:

∑
∈∀

−
−=+−

)(
1

)1()(

ihpj
j

i
i

UB
i

UB
i U

CTqRqR (24)

Now as the overall taskset utilisation is assumed to be
less than or equal to one, the right hand side of
Equation (24) is either zero or positive, and so
is a monotonic non-increasing function of q
(. Hence:

)(qRUB
i

))1()(+≥ qRqR UB
i

UB
i

)0(Rq UB ≥∀)(qRUB
ii

UBUB
 (25)

and so i . A response time upper bound
for task

)0(i RR =
iτ is therefore given by:

∑

∑

∈∀

∈∀

−

−+++CB
=

)(

)(

1

))1((

ihpj
j

jj
ihpj

jjii
UB
i U

UCJU
R (26)

 We note that Equation (26) reverts to the response
time upper bound given by Bini and Baruah in [3] in
the case where both blocking and release jitter are zero.

4.4. Co-operative scheduling
In this section, we use the worst-case occupied time

upper bound derived in Section 4.2 to obtain an upper
bound response time for tasks with arbitrary deadlines
and release jitter, scheduled co-operatively; that is pre-
emptively with deferred pre-emption.

))1((UB FCqBO −++ iiii is an upper bound on the
worst-case occupied time given by Equation (5). Hence
from Equation (20),

∑

∑

∈∀

∈∀

−

−++−++

=

)(

)(

1

))1(()1(
)(

ihpj
j

jj
ihpj

jjiii
UB
i U

UCJUFCqB
qV

 (27)
is an upper bound on the length of the priority level-i
occupied period , during which invocation q of
task i

)(qvi
τ may be delayed from starting its final non-pre-

emptable section.
A response time upper bound for the qth

invocation is therefore given by:
)(qRUB

i

ii
UB
i

UB
i qTFqVqR −+=)()((28)

Combining Equations (8) and (28), a response time
upper bound for task UB

iR iτ is therefore given by:
)((ii

UB
iq

UB
i qTqVR −= ∀) F+max (29)

Comparing the response times upper bounds for
invocations q and q+1, again we have:

∑
∈∀

−
−=+−

)(
1

)1()(

ihpj
j

i
i

UB
i

UB
i U

CTqRqR (30)

and so . Hence:)1()(+≥ qRqR UB
i

UB
i

)0(RRq UBUB ≥∀)(qii
UBUB

 (31)
and therefore .)0(RR = ii
A response time upper bound for task iτ , scheduled
co-operatively, is therefore given by:

i

ihpj
j

jj
ihpj

jjiii
UB
i F

U

UCJUFCB
R +

−

−++−+

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((

(32)

4.5. Non-pre-emptive scheduling
Non-pre-emptive scheduling is a special case of co-

operative scheduling, with the final non-pre-emptive
section equal to the entire execution of the task
(ii CF =). Hence:

i

ihpj
j

jj
ihpj

jji
UB
i C

U

UCJUB
R +

−

−++

=
∑

∑

∈∀

∈∀

)(

)(

1

))1((
 (33)

provides a response time upper bound for a non-pre-
emptively scheduled task iτ .

4.6. Sufficient schedulability test
The response time upper bounds for pre-emptive,

and non-pre-emptive scheduling, are just special cases
of the bound for pre-emptive scheduling with deferred
pre-emption. Hence we can use Equation (32) to form
a sufficient schedulability test for fixed priority
systems complying with a very general system model.
This system model permits tasks that are scheduled
pre-emptively (0=iF), co-operatively (ii CF <<0)
effectively offering limited pre-emption points and

hence deferred pre-emption, or non-pre-emptively
(ii) on a task-by task basis. Further, tasks may
have arbitrary deadlines, arbitrary release jitter, and
access mutually exclusive shared resources.

CF =

i∀

In this system model, the blocking factor i is
computed as the longest time that a lower priority task
can spend executing either non-pre-emptively, or
whilst holding a mutually exclusive resource shared
with a task of priority i or higher. Note it is assumed
that the pre-emption points offered by co-operatively
scheduled tasks do not occur within critical sections
where mutually exclusive shared resources are locked.

B

The sufficient test is given below:

ii
UB
i JDR −≤

where

i

ihpj
j

jj
ihpj

jjiii
UB
iR =

C

F
U

UCJUFCB
+

−

−++−+

∑

∑

∈∀

∈∀

)(

)(

1

))1((

 (34)
The sufficient schedulability test checks tasks in

priority order, highest priority first, computing their
response time upper bound, and then comparing it with
their deadline less release jitter to determine
schedulability.

By checking tasks in priority order, highest priority
first, the summation terms can be computed
incrementally, via addition to the summation term for
the previous, higher priority task. In this way the set of
response time upper bounds, and hence the sufficient
schedulability test for all n tasks, can be computed in
linear time; O(n) for all n tasks.

4.7. Example
We now give an example of the effectiveness of the

response time upper bound, based on a simple taskset
with parameters chosen to be representative of tasks
from an automotive electronic control unit. Here task
periods commonly range from 10ms to 1 second, with
release jitter of typically 50-100ms when tasks are
released due to the arrival of messages transmitted over
the network. Our example taskset comprises six tasks,
with an overall utilisation of 85.5%. The tasks have
deadlines less than or equal to their periods, and non-
zero values for blocking and release jitter. The task
parameters are given in Table 2.

Table 2: Example taskset
i iT iD iJ iB ii JD − iR UB

iR
1τ 3 10 10 2 0 8 3 3
2τ 15 100 50 5 10 45 37 40
3τ 15 200 200 5 10 195 58 75
4τ 40 400 400 50 20 350 153 191
5τ 30 1000 500 50 50 450 282 404
6τ 200 1000 1000 100 0 900 682 876

The final two columns of Table 2 compare the

exact response times of each task with the response
time upper bound given by Equation (34). In this
example, calculation of the response time upper
bounds is sufficient to show that the taskset is
schedulable. In contrast, the adapted utilisation-based
tests, described in Section 5.1, deem all except the
highest priority task to be unschedulable.

5. Empirical investigation
In this section, we report on the results of an

empirical investigation, examining the effectiveness of
the response time upper bound in the context of pre-
emptive scheduling.

In each experiment, we compared the response time
upper bound with utilisation-based tests: the Liu and
Layland bound [23], the Hyperbolic bound [4] and the
RBound [15], and also with the standard exact test
given by Equation (2). In each case, the schedulability
tests were applied on a task-by-task basis. Hence the
complexity of the tests was as follows: response time
upper bound O(n), Liu and Layland bound O(n),
Hyperbolic bound O(n), RBound O(nlogn), exact test
pseudo-polynomial.

5.1. Adaptations to the utilisation-based tests
So that we could examine comparative performance

for tasksets with blocking, release jitter, and deadlines
less than or equal to periods, we adapted the
utilisation-based tests to cater for these more complex
system models.

The Liu and Layland bound states that task iτ is
schedulable if:

∑
=

−≤
ij

i

j

j i
T
C

..1

/1)12((35)

assuming that there is no blocking or release jitter, that
deadlines are equal to task periods, and that the tasks
are in rate monotonic priority order.

For tasksets where tasks have deadlines less than or
equal to their periods, release jitter, and priorities in
�deadline minus jitter� monotonic priority order [27],
we can apply the principles of sustainable
schedulability analysis [29] to transform the taskset
into one that complies with the Liu and Layland system
model. Recognising that the minimum inter-release
time for task iτ is given by ii , that iiiJD − JDR −≤
is required for schedulability, and that the tasks are in
�deadline minus jitter� monotonic priority order, task

iτ is schedulable if:

∑
=

−≤
−ij

i

jj

j i
JD

C

..1

/1)12((36)

Further, separating out the term for task iτ and
including blocking as if it were additional execution of

iτ , we have:

∑
−=

−≤
−

+
−
+

1..1

/1)12(
ij

i

jj

j

ii

ii i
JD

C
JD
BC (37)

The adapted version of the Liu and Layland bound
given by Equation (37) is referred to in our
experiments as simply the �Liu & Layland bound�. The
Hyperbolic bound and RBound were similarly adapted
to cater for less restrictive system models.

5.2. Task parameter generation
The task parameters used in our experiments were

randomly generated as follows: Of the n tasks in each
taskset, n/M tasks were assigned to each of M �order of
magnitude� ranges used (e.g. 1-10ms, 10-100ms,
100ms-1s, etc.). Task periods were then determined
according to a uniform random distribution, from the
assigned range. This was done to replicate the type of
period distributions found in commercial real-time
systems. For each utilisation level studied, the
UUniFast algorithm [28] was used to determine
individual task utilisation iU , and hence task execution
times, iii TUC = , g previously selected task
periods.

iven the

Unless otherwise stated, the experiments used the
following default parameter settings. Each taskset
comprised 24 tasks (n=24). Task deadlines were set
equal to their periods (ii), and release jitter and
blocking times were set equal to zero (,

TD =
0=iB 0=iJ).

The default number of order of magnitude period
ranges used was 2 (M=2), and the default taskset
utilisation 60% (U = 60%). 10,000 tasksets were
generated for each x-axis value plotted on the graphs.

5.3. Experiments
Experiment 1: This experiment investigated the
efficiency of the response time upper bound with
respect to taskset utilisation, and the spread of task
periods. The taskset utilisation was varied from 50% to
97.5% in increments of 2.5%, and the number of
period �order of magnitude ranges� varied from 1 to 5.
The other parameters took the default values: n=24,

, , . i i i
In this experiment, we used the taskset acceptance

ratio as a measure of sufficient schedulability test
effectiveness. For a given schedulability test, the
acceptance ratio is defined as the number of tasksets
deemed schedulable by the test, divided by the number
of tasksets that are actually schedulable according to an
exact test. Hence any exact schedulability test has an
acceptance ratio of 100%.

i TD = 0=B 0=J

The dashed line in Figure 2 represents the Liu and
Layland bound of 70.3% utilisation for 24 tasks. The
other utilisation-based tests gave very similar results.
The five solid lines in Figure 2 are for the response
time upper bound, showing how its performance varies
with the number M, of order of magnitude ranges used
in task period generation. For the wide spread of task
periods (2≥M), and large number of tasks ()

typical of commercial real-time systems, the
performance of the response time upper bound is
significantly better than that of the utilisation-based
tests. However, when the range of task periods is
restricted to be within just one order of magnitude, the
performance of the response time upper bound is
generally inferior to that of the utilisation based tests.

10≥n

0%

20%

40%

60%

80%

100%

120%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

A
cc

ep
ta

nc
e

ra
tio

 (%
)

M=1

M=2

M=3

M=4

M=5

Liu and
Layland

Figure 2
Experiment 2: This experiment investigated the
efficiency of the tests with respect to tasksets with
deadlines less than their periods. The deadlines of all
the tasks were varied in lock step from 0.05 to 0.95
times their periods. The other parameters took the
default values: n=24, M=2, , , U = 60%. 0=Bi i

In this experiment (and all the subsequent ones), we
used the percentage of tasksets schedulable as a
measure of schedulability test effectiveness. This
measure was computed by dividing the number of
tasksets deemed schedulable by each test, by the total
number of tasksets generated. Hence, in this case, it is
necessary to compare the performance of the sufficient
tests with that of the exact test, also plotted on the
graphs.

0=J

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Deadline / Period Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

Figure 3
Figure 3 shows that using the exact test, the

majority of the tasksets generated were schedulable
with ii By comparison, using the response
time upper bound, the majority of tasksets were

TD 3.0≥

deemed schedulable with . In contrast, the
utilisation-based tests required before any
of the tasksets were deemed schedulable.

ii TD 45.0≥
iD 0≥ iT8.

This experiment shows that the response time
upper bound is effective for applications where task
deadlines are shorter than their periods.
Experiment 3: This experiment investigated the
efficiency of the tests with respect to tasks with release
jitter. The release jitter of all the tasks was varied in
lock step from 0.05 to 0.95 times their periods. The
other parameters took the default values: n=24, M=2,

, , U = 60%. ii TD = 0=iB
120%

0%

20%

40%

60%

80%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Jitter / Period Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

Figure 4
Figure 4, shows that using the exact test, the

majority of the tasksets generated were schedulable
with ii . By comparison, using the response
time upper bound, the majority of tasksets were
deemed schedulable with i . In contrast, the
utilisation-based tests required i before any
of the tasksets were deemed schedulable.

TJ 5.0≤

iTJ 35.0≤
J 0< iT2.

This experiment shows that the response time
upper bound is effective for applications where tasks
exhibit release jitter that greater than zero, but
nevertheless relatively small in relation to their
periods.
Experiment 4:

0%

20%

40%

60%

80%

100%

120%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
Blocking / Execution Time Ratio

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

Figure 5

This experiment investigated the efficiency of the tests
with respect to tasks with blocking. The blocking time
of all the tasks was varied in lock step from 0.5 to 10
times their computation time, with the exception of the
lowest priority task which had a blocking factor of
zero. The other parameters took the default values:
n=24, M=2, ii TD = , 0=iB , U = 60%.

Figure 5 shows that, for applications with a wide
range of blocking factors, the performance of the
response time upper bound is close to that of the exact
test, and significantly better than that of the utilisation-
based tests.
Experiment 5: This experiment investigated the
efficiency of the tests with respect to tasksets with
varying deadlines, release jitter and blocking, for a
range of overall utilisation levels from 5% to 95%.

In this experiment, task deadlines, release jitter,
and blocking factors were derived from task periods,
deadlines, and execution times respectively, by
applying random scaling factors chosen from a uniform
distribution. Task deadlines were chosen in the range
0.5 to 1.0 times the task�s period, release jitter in the
range 0 to 0.5 times the task�s deadline, and blocking
factors in the range 0 to 1.0 times the task�s execution
time. The other parameters took the default values:
n=24, M=2.

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Utilisation

Pe
rc

en
ta

ge
 o

f T
as

ks
et

s
sc

he
du

la
bl

e

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

Figure 6
Figure 6 shows that for tasksets with varying

parameters as described above, the majority of the
tasksets generated were schedulable (according to the
exact test) at 70% utilisation or below. By comparison,
using the response time upper bound, the majority of
tasksets were deemed schedulable at 60% utilisation or
below. In contrast, using the utilisation-based tests,
none of the tasksets with utilisation above 45% were
deemed to be schedulable.

This experiment shows that the response time
upper bound is effective for applications with a wide
variety of task parameter settings.
Experiment 6: Considers the results of Experiment 5
in the context of using the response time upper bound
to improve the efficiency of an exact test, by

determining, on a task-by-task basis, if an exact
response time calculation is required.

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Utilisation

Pe
rc

en
ta

ge
 o

f T
as

ks
 s

ch
ed

ul
ab

le

Exact

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

Figure 7
Figure 7 shows the percentage of individual tasks

generated in Experiment 5 that were deemed
schedulable by each of the tests. At 60% taskset
utilisation, 95% of the tasks generated were deemed
schedulable by the response time upper bound, and so
only 5% of the tasks would require an exact response
time calculation to determine their schedulability. At
75% taskset utilisation, more than three quarters of the
tasks generated were deemed schedulable by the upper
bound, and finally, even at the highest utilisation level
of 95%, more than 50% of the tasks generated were
schedulable according to the upper bound. These
results indicate that a significant increase in exact
schedulability test efficiency is possible by using the
response time upper bound to determine on a task-by-
task basis whether or not exact response time
calculations are required.

In summary, Experiments 1-5 showed that for
tasksets, resembling those present in commercial real-
time systems, i.e. with a large number of tasks
(), a spread of task periods spanning two or
more orders of magnitude (

10≥n
2≥M), and tasks which

exhibit blocking, release jitter and have deadlines less
than or equal to their periods, the response time upper
bound derived in this paper is significantly more
effective than the utilisation-based tests, adapted from
the Liu and Layland bound, the Hyperbolic bound or
the RBound.

Further, the results of Experiment 6 indicate that
using the response time upper bound to determine on a
task-by-task basis whether exact response time
calculations are required, is a highly effective means of
improving exact schedulability test efficiency. Using
the response time upper bound in this way means that
time-consuming exact calculations are typically only
required for a minority of tasks.

6. Summary and conclusions
In this paper we derived a closed form response

time upper bound that is applicable to a very general
system model, catering for tasks that are scheduled pre-
emptively, co-operatively, and non-pre-emptively on a
task-by-task basis. This system model places no
restrictions on the relationship between task periods
and their deadlines, or between task periods and their
release jitter, allowing arbitrary values for these
parameters. In addition, tasks are permitted to access
mutually exclusive shared resources according to the
Stack Resource Policy [2].

The response time upper bound forms a sufficient
schedulability test which can be computed in linear
time, O(n) for a set of n tasks, and is applicable to a
wide range of fixed priority real-time systems,
including both processors and networks [7].

The motivation for providing a generally applicable
response time upper bound was two fold.
1. To improve the efficiency of exact schedulability

tests.
2. To provide a simple and highly efficient, sufficient

schedulability test that can be used stand-alone in
a broad range of engineering contexts.

In interactive system design tools, system
optimisation via search, and admission of new tasks
into dynamic systems, schedulability test efficiency is
a key consideration. Here, the response time upper
bound can be used on a task-by-task basis to determine
whether an exact response time computation is
necessary in order to determine schedulability,
significantly reducing the overall execution time of the
schedulability test. This is illustrated in [8] for pre-
emptively scheduled systems with task deadlines less
than or equal to their periods, and no blocking or
release jitter.

A number of scenarios can be envisaged where
engineers may chose to use response time upper
bounds in preference to a polynomial approximation or
exact test. In the early stages of system design, when
task or message parameters are only estimates, using
response time upper bounds can be a pragmatic choice.

Although the bounds have a degree of pessimism,
they have the advantage that they are continuous and
differentiable in the task parameters. From an
engineering perspective, this means that there can be
no nasty surprises; increasing the jitter or execution
time of a task by a small margin results in a
commensurate small increase in its response time
upper bound. In contrast, with exact analysis, the
response time equations include either ceiling or floor
functions, and so the exact response time is a
discontinuous function of the task parameters. This
means that a small increase in blocking, jitter or task
execution times, or a small decrease in task periods can
sometimes result in large increases in the exact
response time.

Using exact response times, the sensitivity of a
design to changes in task parameters can be difficult to
estimate; whereas using response time upper bounds,

design sensitivity can be well understood by computing
the first derivative of the bound with respect to each of
the task parameters that may change.

Task admission to dynamic systems, is another case
where using response time upper bounds may be
preferable to exact analysis. Using a linear-time
admission test here enables the operating system
overheads to be tightly constrained.

Finally, when system optimisation (i.e. task and
message allocation) is performed via search [9], the
computational efficiency with which response time
upper bounds can be calculated may be useful in
narrowing the search to regions of interest, which can
then, in a subsequent phase of the search, be explored
in further detail using a slower but more precise exact
response time calculation. Further, the fact that the
response time upper bound is a continuous function of
the task parameters may improve search efficiency.
The effectiveness of this approach is something we aim
to explore in future research.

In conclusion, the major contribution of this work
is in providing for the first time, a closed form
response time upper bound that is sufficiently general
in its applicability, that it can be used in an engineering
context to determine the schedulability of tasks and
messages in complex real-world, real-time systems.

6.1. Acknowledgements and future work
This work was funded in part by the EU Frescor

project. As part of this project, we aim to use the
results of this research to improve the efficiency of the
on-line admission tests and spare capacity allocation
algorithms in the Frescor contract framework.

7. References
[1] N.C. Audsley, A. Burns, M. Richardson, and A.J.Wellings.
�Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling�. Software Engineering Journal, 8(5) pp. 284-292, 1993.
[2] T.P. Baker. �Stack-based Scheduling of Real-Time Processes.�
Real-Time Systems Journal (3)1, pp. 67-100, 1991.
[3] E. Bini and S.K. Baruah. �Efficient Computation of Response
Time Bounds under Fixed-priority Scheduling�. In Proceedings of
the 15th conference on Real-Time and Network Systems, pp. 95�104,
Nancy, France, March 2007.
[4] E. Bini, G.C. Buttazzo, and G.M. Buttazzo. �Rate Monotonic
Scheduling: The Hyperbolic Bound�. IEEE Transactions on
Computers, 52(7):933�942, July 2003.
[5] R.J. Bril, W.F.J. Verhaegh, and E-J.D. Pol. �Initial Values for
On-line Response Time Calculations�. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems, pp. 13�22, Porto,
Portugal, July 2003.
[6] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. �Worst-Case
Response Time Analysis of Real-Time Tasks under Fixed-Priority
Scheduling with Deferred Preemption Revisited�. In Proceedings of
the 19th Euromicro Conference on Real-Time Systems ECRTS. pp.
269-279. July 2007.
[7] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. �Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and
revised�. Real-Time Systems, Volume 35, Number 3, pp. 239-272.
April 2007.
[8] R.I. Davis, A. Zabos, and A. Burns, �Efficient Exact
Schedulability Tests for Fixed Priority Pre-emptive Systems� IEEE
Transactions on Computers September 2008 (Vol. 57, No. 9) pp.
1261-1276.

[9] P. Emberson and I. Bate, �Minimising Task Migration and
Priority Changes In Mode Transitions�, In proceedings 13th IEEE
Real-Time And Embedded Technology And Applications Symposium
(RTAS 2007), pp. 158-167, 2007.
[10] M.S. Fineberg and O. Serlin, �Multiprogramming for hybrid
computation�, In proceedings AFIPS Fall Joint Computing
Conference, pp. 1-13, 1967
[11] N. Fisher, C. H. Nguyen, J. Goossens, and P. Richard,
�Parametric Polynomial-Time Algorithms for Computing Response-
Time Bounds for Static-Priority Tasks with Release Jitters.� In
Proceedings 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 377-385. Daegu
Korea, August 2007.
[12] N. Fisher and S. Baruah. �A polynomial-time approximation
scheme for feasibility analysis in static-priority systems with
arbitrary relative deadlines.� In Proceeding of the 17th Euromicro
Conference on Real-Time Systems, pp. 117-126. Palma de Mallorca,
Spain, July 2005.
[13] L. George, N. Rivierre, and M. Spuri. �Pre-emptive and non-
pre-emptive real-time uni-processor scheduling. Technical Report
2966, Institut National de Recherche et Informatique et en
Automatique (INRIA), France, September 1996
[14] M. Joseph and P.K. Pandya. �Finding Response Times in a
Real-time System�. The Computer Journal, 29(5):390�395, October
1986.
[15] S. Lauzac, R. Melhem, and D. Mosse. �An Improved Rate-
monotonic Admission Control and its Applications�. IEEE
Transactions on Computers, 52(3):337�350, March 2003.
[16] J. Lehoczky. �Fixed priority scheduling of periodic task sets
with arbitrary deadlines�. In Proceedings 11th IEEE Real-Time
Systems Symposium, pp. 201�209, IEEE Computer Society Press,
December 1990.
[17] J.P. Lehoczky, L. Sha, and Y. Ding, �The rate monotonic
scheduling algorithm: Exact characterization and average
case behaviour�. In Proceedings of the 10th IEEE Real-Time Systems
Symposium, pp. 166�171, Santa Monica, CA, December 1989.
[18] J. Y.-T. Leung and J. Whitehead, "On the complexity of fixed-
priority scheduling of periodic real-time tasks," Performance
Evaluation, 2(4): 237-250, December 1982.
[19] C. L. Liu and J. W. Layland. "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of the
ACM, 20(1): 46-61, January 1973.
[20] S. Punnekkat, R. Davis, and A. Burns, �Sensitivity analysis of
real-time task sets�. In Proceedings of the Asian Computing Science
Conference, pp. 72�82, Nepal, December 1997.
[21] P. Richard, J. Goossens, and N. Fisher, �Approximate
Feasibility Analysis and Response-Time Bounds of Static-Priority
Tasks with Release Jitters.� In Proceedings 15th International
Conference on Real-Time and Network Systems, pp. 105-112, March
2007.
[22] L. Sha, R. Rajkumar, and J.P. Lehoczky. �Priority inheritance
protocols: An approach to real-time synchronization�. IEEE
Transactions on Computers, 39(9): 1175-1185, 1990.
[23] O. Serlin, �Scheduling of time critical processes�. In
proceedings AFIPS Spring Computing Conference, pp 925-932,
1972.
[24] M. Sjodin and H. Hansson. �Improved Response Time Analysis
Calculations�. In Proceedings of the 19th IEEE Real-Time Systems
Symposium, pp. 399�408, Madrid, Spain, December 1998.
[25] K. W. Tindell. �Using Offset Information to Analyse Static
Priority Pre-Emptively Scheduled Task Sets�. Technical Report
YCS-92-182. Dept. of Computer Science, University of York, UK,
1992.
[26] K.W. Tindell, , A. Burns, and A.J.Wellings. �An extendible
approach for analyzing fixed priority hard real-time tasks�. Real-
Time Systems. Volume 6, Number 2, pp. 133-151 March 1994.
[27] A. Zuhily and A. Burns �Optimality of (D-J)-monotonic Priority
Assignment�. Information Processing Letters. Number 103, pp. 247-
250, April 2007.
[28] E. Bini and G.C. Buttazzo. �Measuring the Performance of
Schedulability tests�. Real-Time Systems, 30(1�2):129�154, May
2005.
[29] S. Baruah and A. Burns, �Sustainable Scheduling Analysis�. In
proceedings Real-Time Systems Symposium, pp159-168, Dec. 2006.

	Abstract
	1. Introduction
	1.1. Background and motivation
	1.2. Related work
	1.3. This paper
	1.4. Organisation

	2. System model, terminology and notation
	2.1. Busy, idle and occupied periods
	2.2. Summary of notation used

	3. Response time analysis
	3.1. Pre-emptive scheduling, with deadlines less than or equal to periods
	3.2. Pre-emptive scheduling with arbitrary deadlines
	3.3. Co-operative scheduling

	4. Response time upper bounds
	4.1. Interference upper bound
	4.2. Occupied time upper bound
	4.3. Pre-emptive scheduling
	4.4. Co-operative scheduling
	4.5. Non-pre-emptive scheduling
	4.6. Sufficient schedulability test
	4.7. Example

	5. Empirical investigation
	5.1. Adaptations to the utilisation-based tests
	5.2. Task parameter generation
	5.3. Experiments

	6. Summary and conclusions
	6.1. Acknowledgements and future work

	7. References

