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Abstract 
This paper derives closed form upper bounds on 

the response times of tasks in fixed priority real-time 
systems. These bounds are valid for tasks with 
arbitrary deadlines, release jitter, and blocking. 
Response time upper bounds are given for tasks that 
are scheduled pre-emptively, co-operatively with 
intervals where pre-emption is deferred, and non-
preemptively. The set of upper bounds for n tasks can 
be computed in O(n) time, providing a linear-time 
sufficient schedulability test, applicable to complex 
commercial real-time systems.  

1. Introduction 
1.1. Background and motivation 

Fixed priority scheduling is widely used in real-
time embedded systems, such as electronic control 
units and communications networks in automobiles, 
digital set-top boxes, medical systems, space systems, 
and mobile phones. As a result, fixed priority 
scheduling is supported by the majority of commercial 
real-time operating systems. 

In the context of fixed priority systems, 
schedulability analysis is used to determine if a set of 
tasks or messages can be guaranteed to always meet 
their deadlines at run-time. A common method of 
determining schedulability is to calculate the worst-
case response time of each task, measured from its 
release to its completion, and then compare this 
response time with the task�s deadline to determine if it 
is schedulable. This method is called Response Time 
Analysis (RTA). 

Exact response time analysis is known to have 
pseudo-polynomial complexity [1, 14]; however, in 
practice, efficient implementations exist [5, 8, 24] that 
can be used to determine the schedulability of 
industrial-scale real-time systems within a reasonable 
time frame. Nevertheless, there are a number of ways 
in which schedulability tests can be used, where the 
complexity and execution time of exact tests may 
become a limiting factor. These include: 
1. Interactive system design tools: Here user 

interaction / sensitivity analysis [20] requires that 
the results of multiple schedulability tests, on large 

and complex systems, are available within a few 
tenths of a second. 

2. System optimisation via search: Using search 
techniques such as simulated annealing to 
determine task and message allocations in a 
distributed system [9] requires a very large 
number of schedulability tests to be performed. 

3. Dynamic systems: In a running system, admission 
of a new task requires an online assessment of 
system schedulability before the task can be 
started. Stringent start-up constraints may preclude 
the use of exact schedulability tests in this context. 

In 2008, Davis et al. [8] showed that the efficiency of 
exact tests can be markedly improved, by using a 
response time upper bound to check on a task-by-task 
basis whether an exact response time calculation is 
required. Reducing the execution times of exact tests in 
this way can significantly enhance their suitability for 
use in practical applications such as those described 
above. 

1.2. Related work 
Research into schedulability tests for fixed priority 

pre-emptive systems effectively began in 1967, when 
Fineberg and Serlin [10] considered priority 
assignment for two tasks. They noted that if the task 
with the shorter period is assigned the higher priority, 
then the least upper bound on the schedulable 
utilisation is )12(2 −  or 82.8%. This result was 
generalised by both Serlin [23] in 1972 and Liu and 
Layland [19] in 1973, both of whom showed that for 
synchronous tasks (that share a common release time), 
that comply with a restrictive system model, and that 
have deadlines equal to their periods, then rate 
monotonic priority ordering is optimal. Liu and 
Layland [23] provided a simple, sufficient, utilisation-
based schedulability test for tasks compliant with their 
system model, and with priorities in rate monotonic 
priority order (RMPO)1. 

In 2003, Lauzac et al [15] introduced an improved 
utilisation-based test, using period ratios, called the 
RBound test. Also in 2003, Bini et al. [4] introduced a 
utilisation-based test referred to as the Hyperbolic 

1 RMPO assigns priorities in order of task periods, such that the task 
with shortest period is given the highest priority. 
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Bound. Both the RBound and Hyperbolic bound are 
only applicable to systems with a restricted system 
model, and task priorities assigned in RMPO2. 

Exact schedulability tests, based on computing 
worst-case response times, were introduced by Joseph 
and Pandya [14] in 1986, and Audsley et al. [1] in 
1993. An alternative method of determining exact 
schedulability without computing worst-case response 
times was introduced by Lehoczky et al. [17] in 1989. 

These exact tests have been extended to cater for 
cases where tasks access mutually exclusive shared 
resources according to mechanisms such as the Stack 
Resource Policy [2] and the Priority Ceiling Protocol 
(PCP) [22]. Further work on schedulability tests for 
fixed priority systems has lifted many of the earlier 
restrictions, providing exact tests for tasks with offset 
release times [25], arbitrary deadlines [16, 26], release 
jitter [26] and non-pre-emptive sections [6, 13]. Exact 
schedulability tests have also been developed for other 
resources scheduled according to fixed priorities, for 
example Controller Area Network [7]. 

Research by Sjodin and Hansson [24] in 1998, Bril 
et al. [5] in 2003, and Davis et al. [8] in 2008, has lead 
to practical improvements in the efficiency of exact 
response time tests, providing response time lower 
bounds that can be used as initial values for the fixed 
point equation used in such tests. Nevertheless the 
exact response time tests remain pseudo-polynomial in 
complexity. 

A polynomial-time, sufficient response time test 
was developed by Fisher and Baruah [12] in 2005. This 
test approximates the workload requested by higher 
priority tasks using an exact request bound function for 
k invocations of the task, and a linear function 
thereafter. This work has subsequently been extended 
to cater for tasks with release jitter [21]. 

A closed form upper bound on task�s response 
times, and an associated linear-time sufficient test was 
derived by Bini and Barauh [3] in 2007. This response 
time upper bound is valid for sets of independent, pre-
emptively scheduled tasks with arbitrary deadlines, and 
no release jitter. 

1.3. This paper 
The research described in this paper was motivated 

by the need to provide response time upper bounds that 
can be used as an integral part of exact response time 
analysis for complex commercial real-time systems. 

The research presented in the rest of this paper 
builds upon the work of Bini and Baruah [3]. It takes 
the concept of approximating task workload via a 
linear function and applies it to systems where tasks 
may be subject to blocking, have arbitrary deadlines, 
and arbitrary release jitter. Further, in this paper, 
response time upper bounds are derived for pre-

2 Later in this paper, we show how these utilisation-based tests can 
be adapted to more complex system models. 

emptive, co-operative, and non-pre-emptive 
scheduling, ensuring that the results are applicable to a 
wide range of processor and network scheduling 
problems. 

1.4. Organisation 
Section 2 describes the terminology, notation and 

system models used in the rest of the paper. Section 3
summarises existing response time analysis. Section 4
derives response time upper bounds for fixed priority 
tasks with arbitrary deadlines, release jitter, and 
blocking, under pre-emptive, co-operative, and non-
pre-emptive scheduling. These results form a sufficient 
schedulability test that is applicable to a very general 
system model. Section 5 presents an empirical 
investigation into the effectiveness of the sufficient test 
/ response time upper bound. Finally, Section 6
summarises the key contributions of this paper and 
suggests directions for future research. 

2. System model, terminology and notation 
In this paper, we are interested in providing a 

closed form response time upper bound that can be 
used to form a linear-time sufficient test for 
applications executing under a fixed priority scheduler 
on a single processor. 

The application is assumed to comprise a static set 
of n tasks ( nττ ..1 ), each assigned a unique priority i, 
from 1 to n (where n is the lowest priority). 

We use the notation hp(i) and lp(i) to mean the set 
of tasks with priorities higher than i, and the set of 
tasks with priorities lower than i respectively. 
Similarly, we use the notation hep(i) and lep(i) to mean 
the set of tasks with priorities higher than or equal to i, 
and lower than or equal to i respectively. 

Application tasks may arrive either periodically at 
fixed intervals of time, or sporadically after some 
minimum inter-arrival time has elapsed. Each task iτ , 
is characterised by: its relative deadline i , worst-
case execution time i , minimum inter-arrival time or 
period i , and its release jitter i , defined as the 
maximum time between the task arriving and it being 
released (ready to execute). The utilisation , of each 
task is given by . 
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No assumptions are made about the relationship 

between the period of a task and its release jitter or 
between the period of a task and its deadline. Arbitrary 
release jitter ( i

C

i DJ <≤0 ), and arbitrary deadlines 
( ii TD ≤  or ii ) are therefore permitted. It is 
assumed that invocations of a task are released, and 
execute in order of arrival, and that once a task starts to 
execute it will not suspend itself voluntarily. 

TD >

We assume that the arrival times of tasks are 
independent and thus that the tasks may share a 
common release time, termed the critical instant [19]. 
Tasksets with a common release time are referred to as 
synchronous tasksets. Tasksets with offset arrival times 



that do not share a common release time are referred to 
as asynchronous tasksets. Asynchronous tasksets are 
not explicitly considered in this paper; however, the 
response time upper bounds provided, although 
pessimistic in this case, are applicable to such tasksets. 

Tasks may access shared resources in mutual 
exclusion according to the Stack Resource Policy [9]. 
A task at priority i may be blocked by lower priority 
tasks, as a result of the operation of the Stack Resource 
Policy, for at most , referred to as the blocking time. i

A task�s worst-case response time i , is the longest 
time from the task�s release to it completing execution. 
A task is referred to as schedulable if its worst-case 
response time is less than or equal to its deadline minus 
release jitter ( iii ). A system is referred to as 
schedulable if all its tasks are schedulable. 

B
R
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We assume, without loss of generality3, that task 
priorities are in deadline minus jitter monotonic4 (D-
JMPO) priority order [27]. 

In this paper, we provide analysis for fully pre-
emptive systems, and also for systems where pre-
emption may be deferred [6], so called co-operative
scheduling. With co-operative scheduling, it is 
assumed that each task�s worst-case execution time i
is divided into a number of non-pre-emptable sections, 
the final one of which is of length i  ( ii

C

F CF ≤ ), and 
that the blocking time i  represents the longest time 
for which any task of lower priority than i can execute 
non-pre-emptively. Note, that pure non-pre-emptive 
scheduling is a special case of deferred pre-emption, 
with . 

B
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2.1. Busy, idle and occupied periods 
A priority level-i idle instant is defined as a time 

instant t at which there are no tasks of priority i or 
higher awaiting execution that became ready to execute 
strictly before t. 

A priority level-i busy period is defined as a time 
interval  which; (i) starts at a priority level-i idle 
instant 1 , when a task of priority i or higher becomes 
ready to execute, (ii) is a contiguous interval of time 
during which any task of priority lower than i is unable 
to start executing, and (iii) ends at the first priority 
level-i idle instant after its start. 

),[ 21 tt
t

2
A priority level-i idle period is defined as a time 

interval  of length greater than zero, during 
which no tasks are ready to execute at priority i or 
higher, strictly before the end of the idle period at t . 

t

),[ 43 tt

4
A priority level-i occupied period is defined as a 

time interval which; starts at the end of a 
priority level-i idle period and ends at the start of the 
next priority level-i idle period. During a priority level-

),[ 65 tt

3 The analysis provided in this paper is independent of the chosen 
priority ordering. 
4 D-JMPO assigns priorities in order of deadline minus jitter, such 
that the task with the smallest value of Di-Ji is given the highest 
priority.

i occupied period, the processor is occupied executing 
tasks at priority i or higher and is thus unable to start 
execution of any computation at a priority lower than i. 

Note, the subtle difference between a busy period
and an occupied period: a busy period ends once all 
tasks released strictly prior to the end of the busy 
period have completed execution, irrespective of 
whether further tasks are released at the end of the 
period; whereas, an occupied period only ends once all 
tasks released prior to, and including, the end of the 
period have completed execution.  

Busy periods are fundamental in the analysis of 
fixed priority pre-emptive scheduling, whilst occupied 
periods are fundamental in analysing co-operative and 
non-pre-emptive scheduling. 

In the remainder of the paper, for conciseness, we 
will use the terms busy period and occupied period
whenever the priority level is implicit in the context. 
Further, when we refer to a busy period or occupied 
period, we mean the worst-case or longest such period. 

2.2. Summary of notation used 
For ease of reference, Table 1 below summarises 

the notation used throughout this paper. 

Table 1: Notation 
Symbol Description 

iτ Task at priority level i. 
i

C
B Blocking time at priority level i. 

i Worst-case execution time of task iτ
iD Deadline of task iτ
iF Length of the final non-pre-emptable section 

of task iτ
)(tI O

j Interference at priority j executed by the 
processor in an interval of length t, when  
is the only task in the system. 

jτ

)(tI UB
j

iJ
Upper bound on .)(tI O

j
Release jitter of task iτ

)Oi

UB

(C Worst-case priority level-i occupied time, 
including computation C at priority i. 

)(COi Upper bound on  )(COi
q Denotes an invocation of task iτ  (q = 0 is 

the first invocation). 
iR Worst-case response time of task iτ

)(qRi Worst-case response time of the qth 
invocation of task iτ . 

)(qRUB
i UB

iR
Upper bound on .)

R
(qRi

Upper bound on .i
Minimum inter-arrival time of task iT iτ

iU Utilisation of task iτ
i

)(qv
v Length of a priority level-i occupied period. 

i Length of a priority level-i occupied period, 
up to the start of the final non-pre-emptable 
section of the qth invocation of task iτ . 

)(qV UB
i

iw
Upper bound on . )(qvi
Length of a priority level-i busy period. 

)(qwi Length of a priority level-i busy period, up to 
the end of the qth invocation of task iτ . 

)(qW UB
i Upper bound on . )(qwi



3. Response time analysis 
In this section, we outline standard response time 

analysis methods for fixed priority systems. The 
overall approach taken by response time analysis can 
be summarised as follows: 
1. Determine the worst-case scenario; the pattern of 

task activation and execution that leads to task iτ
having its worst-case response time R . i

2. Compute R  for the worst-case scenario. i
3. Determine task schedulability by checking 

whether JD . iii
For synchronous systems, Tindell [26] showed that the 
worst-case scenario for task i

R −≤

τ  occurs following a 
critical instant where iτ  is released simultaneously 
with all higher priority tasks, all subject to their 
maximum release jitter, and subsequent releases of task 

iτ  and higher priority tasks then occur after the 
minimum possible time intervals. Further, immediately 
prior to the critical instant, a lower priority task has just 
locked a shared resource or entered a non-pre-emptive 
section, and will therefore execute at priority level i or 
higher for the worst-case blocking time . i
 The worst-case scenario described above leads to 
the longest priority level-i busy period and the longest 
priority level-i occupied period [13]. 

B

In the rest of this section, we provide an outline of 
the analysis used to compute worst-case response 
times: 
(i) For pre-emptively scheduled tasks with 

deadlines less than or equal to their periods 
[1] (Section 3.1). 

(ii) For pre-emptively scheduled tasks with 
arbitrary deadlines [26] (Section 3.2). 

(iii) For pre-emptively scheduled tasks with 
deferred pre-emption [6] (Section 3.3). 

3.1. Pre-emptive scheduling, with deadlines less 
than or equal to periods 

For pre-emptively scheduled tasks with deadlines 
less than or equal to their periods, each invocation of 
task iτ  must be complete before the next invocation is 
released. Hence any priority level-i busy period 
contains at most one invocation of task iτ . The worst 
case response time of task iτ  therefore equates to the 
length of the longest priority level-i busy period, 
starting at the critical instant  

Response time analysis [1, 14], calculates the 
length i , of this busy period using the following 
equation. 

w
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where the summation term represents the total 
interference due to invocations of higher priority tasks 
released strictly before the end of the busy period. 

Note that  appears on both the left and right 

hand sides of Equation (1). As the right hand side is a 
monotonically non-decreasing function of i , the 
equation can be solved using the following fixed point 
iteration: 
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Iteration starts with an initial value , typically 
iii , and ends when either  in 

which case the worst-case response time i , is given 
by  or when ii  in which case the 
task is unschedulable. The fixed point iteration is 
guaranteed to converge provided that the overall 
taskset utilisation is less than 1. 

0
iw
n
iw +1

R
CBw +=0

1+n
iw

n
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i JDw −>+1

3.2. Pre-emptive scheduling with arbitrary 
deadlines 

For pre-emptively scheduled systems, where task 
deadlines are arbitrary, execution of one invocation of 
a task may not necessarily be complete before the next 
invocation is released. Hence a number of invocations 
of task iτ  may be present within the longest priority 
level-i busy period, with earlier invocations delaying 
the execution of later ones. In general it is therefore 
necessary to compute the response times of all 
invocations within the busy period in order to 
determine the worst-case response time. 

We note that with arbitrary release jitter, a number 
of invocations of task iτ  may be released together at 
the start of the busy period; such invocations of the 
same task are assumed to be executed in order of 
arrival5.  

The length of the busy period , starting at the 
critical instant and extending until the completion of 
the qth invocation of i

)(qwi

τ  (where q = 0 is the first 
invocation) is given by the fixed point iteration: 
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Iteration starts with an initial value , 
typically ii , and ends when either 

 in which case the worst-case 
response time , of invocation q, is given by 

i  or when  in 
which case invocation q is unschedulable. 

)(q
i CqBqw )1()(0 ++=

)(qwn
i=

)(qRi
qT− n

iw + (1

)(1 qwn
i
+

n
i qw + )(1

ii DqTq >−)

Invocation q can only impinge upon the execution 
of subsequent invocations if its completion occurs after 
their release. Hence, response times need to be 
calculated for invocations q=0,1,2,3� until an 
invocation q is found that completes at or before the 
earliest possible release of the next invocation q+1, i.e. 
where: iii JTqqw −+≤ )1()(

i

. The worst-case response 
time of task τ  is then given by: 

5 We assume that a later arriving invocation cannot, by virtue of 
having less release jitter, overtake an earlier one and be released first. 



))((max iiqi qTqwR −= ∀     (4) 
Again, the task is schedulable provided that 

. iii JDR −≤

3.3. Co-operative scheduling 
In the case of co-operative scheduling, even if task 

deadlines are less than or equal to their periods, an 
invocation of task iτ  can still delaying the execution of 
later invocations. This happens because non-pre-
emptive execution of the final section of task iτ  can 
delay execution of a higher priority task which then 
impinges upon the next invocation of task iτ  [6]. 
Response time analysis for pre-emptive scheduling 
with deferred pre-emption therefore needs to consider 
multiple invocations even when task deadlines are less 
than or equal to their periods. 

In a co-operatively scheduled system, a pessimistic 
value [6] for the length of the priority level-i worst-
case occupied period , by which invocation q of 
task i

)(qvi
τ  may be delayed from starting its final non-pre-

emptable section is given by the solution to the 
following fixed point equation: 
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where the summation term represents the total 
interference due to invocations of higher priority tasks 
released at or before , and i  is the maximum 
blocking time due to the non-pre-emptive execution of 
sections of lower priority tasks. 

)(qvn
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Equation (5) can be solved using a fixed point 
iteration, that starts with an initial value , 
typically ii , and ends when 
either  in which case the worst-case 
response time , of invocation q, is given by 

ii  or when ii
ii  in which case the invocation is 

unschedulable. 
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The number of invocations which need to be 
examined is given by: 

⎡ iiii TJwQ /)( += ⎤      (6) 
Where i  is the length of the priority level-i busy 

period assuming pre-emptive scheduling, found using 
the following fixed point iteration, starting with a value 
of  and ending when . 
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The worst-case response time of task iτ  is then 
given by: 

))((max 1..1,0 iiiQqi qTFqvR
i

−+= −=   (8) 
Again, the task is schedulable provided that 

. ii
We note that purely non-pre-emptive scheduling 

[13] is a special case of pre-emptive scheduling with 
deferred pre-emption, with the final non-pre-emptive 
section equal to the entire execution of the task 
(

i JDR −≤

ii CF = ).  

4. Response time upper bounds 
In this section, we present response time upper 

bounds for fixed priority systems, with arbitrary 
deadlines and release jitter. Following the approach of 
Bini and Baruah [3], we first derive a linear function 
that provides a closed form upper bound on the time 
that the processor can spend executing a high priority 
task jτ  during any given time interval. We then show 
how this linear function can be used to provide an 
upper bound on the worst-case occupied time and 
hence to provide response time upper bounds for pre-
emptive, co-operative, and non-pre-emptive 
scheduling. 

4.1. Interference upper bound 
In this section, we derive a linear function that 

forms an upper bound on the total time , that the 
processor spends executing a task j  during the 
interval [0, t) in the worst-case scenario (Section 

)(tI j
τ

2.1). 
We refer to  as the interference due to task )(tI j jτ . 

Following the approach outlined in [3], let  
denote the worst-case interference due to task j , 
when it is the only task in the system. Clearly 

.  

)(t
τ

I O
j

)()( tItI j
O
j ≥

Assuming that j  is the only task in the system, 
then with arbitrary release jitter j , a number of 
invocations of j  may be released simultaneously at 
time t=0 and executed consecutively. Further 
invocations of j

τ
J

τ

τ  may also be released prior to these 
initial invocations completing execution. In general, 
the processor will first be busy executing h invocations 
of jτ , then it will be idle for some time interval ( jT≤ ) 
before subsequently executing for  every , as 
shown in 

jC jT
Figure 1. 

Figure 1 
We now derive an equation for the linear upper 

bound , on  shown as a dashed line in )(tI UB
j )(tI O

j



Figure 1. This upper bound has a slope of  
and is the smallest linear function of t, with slope jU , 
such that . The point P(t, y) in 

jjj TCU /=

)(t
τ

)()( tItIt O
j

UB
j ≥∀

)()( tItI O
j

UB
j =

Figure 1 represents the point with the smallest value of 
t, for which . 

To determine the equation for , we must 
first compute the number of invocations of j  that 
execute consecutively, this information can then be 
used to determine the co-ordinates of the point P(t, y), 
and hence the equation for the linear bound. 

I UB
j

There are: 
⎣ ⎦ 1/ +jj TJ
τ

       (9) 
invocations of j  released at time t=0, with subsequent 
releases occurring, for k=1,2�, at times: 

⎣ ⎦( ) jT)j k 1( −+jjj JTTJ 1/ −+   (10) 
The number of subsequent releases that form part 

of the initial period of consecutive execution is 
therefore given by the largest value of k, such that the 
period of consecutive execution is equal to or exceeds 
the next release time of the task: 

⎣ ⎦( ) ≥jC)−++ jjj kCTJ 1(1/

⎣ ⎦( ) jT)1−j kJ (+−jjj TTJ 1/ +  (11) 
Simplifying, we have: 

⎣ ⎦jTk /jjjj JCTJ )/( −−≤     (12) 
and hence the largest such value of k is given by: 

⎣ ⎦ ⎣ ⎦jTk /jjjj JCTJ )/( −−=

j

    (13) 
Combining Equations (9) and (13), the total number h, 
of invocations of τ  that execute consecutively, is: 

⎣ ⎦ 1)/( +−= jjj CTJ

jC

h      (14) 
The y co-ordinate of the point P(t, y) is therefore 

, which expands to: jhCy +=
⎣ ⎦( ) jj C+jjj CCTJy +−= 1)/(    (15) 

The t co-ordinate of the point P(t, y) is found by adding 
jj  to the release time of final invocation that 

forms part of the initial consecutive execution (itself 
found by substituting the value of k from Equation (13) 
into Equation (10)). 

CT +

⎣ ⎦( ) j

)jU

))1 jU−

j CJt +−jjjj TCTJ +−= 1)/(

)(tI UB
j

)( jj
UB
j JUtUtI +=

()
)()( ihpjihpj

j UUtt += ∑∑
∈∀∈∀

  (16) 
The slope of the linear bound is jU  and so from 
Equations (15) and (16), the equation for the linear 
upper bound is: 

1(j −j C+   (17) 
Summing over all tasks with higher priorities than 

i, an upper bound on the total interference due to 
higher priority tasks executed in the time interval [0, t) 
is given by: 
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4.2. Occupied time upper bound 
An upper bound on the longest time that the 

processor takes to execute higher priority tasks and 

computation C at priority i, is given by the intersection 
of the line y=t and the line 

))1((
)()(

jj
ihpj

jj
ihpj

j UCJUUtCy −+++= ∑∑
∈∀∈∀

 (19) 

The solution (intersection of these lines) is given by: 
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Theorem 1: i  is an upper bound on the worst-
case occupied period , where  includes 
computation C at priority i.  

)(COUB

)(COi )(COi

Proof: First, we note the following from Figure 1. At 
any time t, the interference upper bound , given 
by Equation (17) is either: 

)(tI UB
j

(i) strictly greater than the actual interference due 
to task jτ  executed in the time interval [0, t),  

or 
(ii) equal to the actual interference due to task jτ

executed in the time interval [0, t), and task 
jτ  has just completed execution at the earliest 

possible time, and is not released again until 
some non-zero time interval has elapsed. 

To show that  is an upper bound on , 
there are two cases to consider: 

)(COUB
i )(COi

1. )(CO  is a time at which, for one or more 
higher priority tasks j

t UB
i=

τ , )(tI UB
j  is strictly greater 

than the actual computation executed by the 
processor on behalf of task jτ  in the interval [0, 
t). In this case, the total computation executed by 
the processor in the interval [0, t) is strictly less 
than the length of the interval and hence the 
processor is able to start or resume execution at 
priority i some time before )(COt UB= . i

2. )(CO  is a time at which, for all higher 
priority tasks j

t UB
i=

τ , )(tI UB
j  is equal to the actual 

computation executed by the processor on behalf 
of task jτ  in the interval [0, t), and all the higher 
priority tasks have just completed execution 
simultaneously at their earliest possible times. 
(Note, this is only actually possible when there is 
one higher priority task). Hence, there is an 
interval of non-zero length before any further 
release of a higher priority task, and so the 
processor is available to start or continue 
executing at priority i at time )(COt UB= . i

In both cases, at or before time t=  the 
processor is able to continue executing at priority i □

)C(OUB
i

4.3. Pre-emptive scheduling 
In this section, we use the worst-case occupied time 

upper bound derived in Section 4.2 to obtain an upper 
bound response time for tasks with arbitrary deadlines 
and release jitter that are scheduled pre-emptively. 

Comparing the analysis for pre-emptive scheduling 
in Section 3.2, with that for co-operative scheduling in 
Section 3.3, specifically Equations (3) and (5), we note 



that as  analysis for co-operative 
scheduling with , can be used to provide 
pessimistic worst-case response times for purely pre-
emptive scheduling. Hence the worst-case occupied 
time upper bound i  for execution 
of computation ii  at priority i forms an 
upper bound on the length of the priority level-i busy 
period given by Equation (3). From Equation (20),  
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 (21) 
is therefore an upper bound on the length of the busy 
period  for invocation q of task )(qwi iτ . 

Hence, a response time upper bound  for 
the qth invocation is given by: 

)(qRUB
i

i
UB
i

UB
i qTqWqR −= )()(      (22) 

Combining Equations (4) and (22), an overall response 
time upper bound  for task UB

iR iτ  is given by: 
))(max iiq

UB
i qTqR −= ∀ ( UBW     (23) 

Comparing the response time upper bounds for 
invocations q and q+1, we have: 
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Now as the overall taskset utilisation is assumed to be 
less than or equal to one, the right hand side of 
Equation (24) is either zero or positive, and so  
is a monotonic non-increasing function of q
( . Hence: 
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and so i . A response time upper bound 
for task 

)0(i RR =
iτ  is therefore given by: 
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 We note that Equation (26) reverts to the response 
time upper bound given by Bini and Baruah in [3] in 
the case where both blocking and release jitter are zero. 

4.4. Co-operative scheduling 
In this section, we use the worst-case occupied time 

upper bound derived in Section 4.2 to obtain an upper 
bound response time for tasks with arbitrary deadlines 
and release jitter, scheduled co-operatively; that is pre-
emptively with deferred pre-emption. 

))1((UB FCqBO −++ iiii  is an upper bound on the 
worst-case occupied time given by Equation (5). Hence 
from Equation (20), 
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 (27) 
is an upper bound on the length of the priority level-i
occupied period , during which invocation q of 
task i

)(qvi
τ  may be delayed from starting its final non-pre-

emptable section. 
A response time upper bound  for the qth 

invocation is therefore given by: 
)(qRUB

i

ii
UB
i

UB
i qTFqVqR −+= )()(      (28) 

Combining Equations (8) and (28), a response time 
upper bound  for task UB

iR iτ  is therefore given by: 
)(( ii

UB
iq

UB
i qTqVR −= ∀ ) F+max    (29) 

Comparing the response times upper bounds for 
invocations q and q+1, again we have: 
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and so . Hence: )1()( +≥ qRqR UB
i

UB
i

)0( RRq UBUB ≥∀ )(qii
UBUB

     (31) 
and therefore . )0(RR = ii
A response time upper bound for task iτ , scheduled 
co-operatively, is therefore given by: 
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4.5. Non-pre-emptive scheduling  
Non-pre-emptive scheduling is a special case of co-

operative scheduling, with the final non-pre-emptive 
section equal to the entire execution of the task 
( ii CF = ). Hence: 
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provides a response time upper bound for a non-pre-
emptively scheduled task iτ . 

4.6. Sufficient schedulability test 
The response time upper bounds for pre-emptive, 

and non-pre-emptive scheduling, are just special cases 
of the bound for pre-emptive scheduling with deferred 
pre-emption. Hence we can use Equation (32) to form 
a sufficient schedulability test for fixed priority 
systems complying with a very general system model. 
This system model permits tasks that are scheduled 
pre-emptively ( 0=iF ), co-operatively ( ii CF <<0 ) 
effectively offering limited pre-emption points and 



hence deferred pre-emption, or non-pre-emptively 
( ii ) on a task-by task basis. Further, tasks may 
have arbitrary deadlines, arbitrary release jitter, and 
access mutually exclusive shared resources. 

CF =

i∀

In this system model, the blocking factor i  is 
computed as the longest time that a lower priority task 
can spend executing either non-pre-emptively, or 
whilst holding a mutually exclusive resource shared 
with a task of priority i or higher. Note it is assumed 
that the pre-emption points offered by co-operatively 
scheduled tasks do not occur within critical sections 
where mutually exclusive shared resources are locked. 

B

The sufficient test is given below: 
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 (34) 
The sufficient schedulability test checks tasks in 

priority order, highest priority first, computing their 
response time upper bound, and then comparing it with 
their deadline less release jitter to determine 
schedulability. 

By checking tasks in priority order, highest priority 
first, the summation terms can be computed 
incrementally, via addition to the summation term for 
the previous, higher priority task. In this way the set of 
response time upper bounds, and hence the sufficient 
schedulability test for all n tasks, can be computed in 
linear time; O(n) for all n tasks. 

4.7. Example 
We now give an example of the effectiveness of the 

response time upper bound, based on a simple taskset 
with parameters chosen to be representative of tasks 
from an automotive electronic control unit. Here task 
periods commonly range from 10ms to 1 second, with 
release jitter of typically 50-100ms when tasks are 
released due to the arrival of messages transmitted over 
the network. Our example taskset comprises six tasks, 
with an overall utilisation of 85.5%. The tasks have 
deadlines less than or equal to their periods, and non-
zero values for blocking and release jitter. The task 
parameters are given in Table 2.  

Table 2: Example taskset 
i iT iD iJ iB ii JD − iR UB

iR
1τ 3 10 10 2 0 8 3 3 
2τ 15 100 50 5 10 45 37 40 
3τ 15 200 200 5 10 195 58 75 
4τ 40 400 400 50 20 350 153 191 
5τ 30 1000 500 50 50 450 282 404 
6τ 200 1000 1000 100 0 900 682 876 

The final two columns of Table 2 compare the 

exact response times of each task with the response 
time upper bound given by Equation (34). In this 
example, calculation of the response time upper 
bounds is sufficient to show that the taskset is 
schedulable. In contrast, the adapted utilisation-based 
tests, described in Section 5.1, deem all except the 
highest priority task to be unschedulable. 

5. Empirical investigation 
In this section, we report on the results of an 

empirical investigation, examining the effectiveness of 
the response time upper bound in the context of pre-
emptive scheduling. 

In each experiment, we compared the response time 
upper bound with utilisation-based tests: the Liu and 
Layland bound [23], the Hyperbolic bound [4] and the 
RBound [15], and also with the standard exact test 
given by Equation (2). In each case, the schedulability 
tests were applied on a task-by-task basis. Hence the 
complexity of the tests was as follows: response time 
upper bound O(n), Liu and Layland bound O(n), 
Hyperbolic bound O(n), RBound O(nlogn), exact test 
pseudo-polynomial. 

5.1. Adaptations to the utilisation-based tests 
So that we could examine comparative performance 

for tasksets with blocking, release jitter, and deadlines 
less than or equal to periods, we adapted the 
utilisation-based tests to cater for these more complex 
system models. 

The Liu and Layland bound states that task iτ  is 
schedulable if: 

∑
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assuming that there is no blocking or release jitter, that 
deadlines are equal to task periods, and that the tasks 
are in rate monotonic priority order. 

For tasksets where tasks have deadlines less than or 
equal to their periods, release jitter, and priorities in 
�deadline minus jitter� monotonic priority order [27], 
we can apply the principles of sustainable 
schedulability analysis [29] to transform the taskset 
into one that complies with the Liu and Layland system 
model. Recognising that the minimum inter-release 
time for task iτ  is given by ii , that iiiJD − JDR −≤
is required for schedulability, and that the tasks are in 
�deadline minus jitter� monotonic priority order, task 

iτ  is schedulable if: 
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Further, separating out the term for task iτ  and 
including blocking as if it were additional execution of 

iτ , we have: 
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The adapted version of the Liu and Layland bound 
given by Equation (37) is referred to in our 
experiments as simply the �Liu & Layland bound�. The 
Hyperbolic bound and RBound were similarly adapted 
to cater for less restrictive system models. 

5.2. Task parameter generation 
The task parameters used in our experiments were 

randomly generated as follows: Of the n tasks in each 
taskset, n/M tasks were assigned to each of M �order of 
magnitude� ranges used (e.g. 1-10ms, 10-100ms, 
100ms-1s, etc.). Task periods were then determined 
according to a uniform random distribution, from the 
assigned range. This was done to replicate the type of 
period distributions found in commercial real-time 
systems. For each utilisation level studied, the 
UUniFast algorithm [28] was used to determine 
individual task utilisation iU , and hence task execution 
times, iii TUC = , g previously selected task 
periods. 

iven the 

Unless otherwise stated, the experiments used the 
following default parameter settings. Each taskset 
comprised 24 tasks (n=24). Task deadlines were set 
equal to their periods ( ii ), and release jitter and 
blocking times were set equal to zero ( ,

TD =
0=iB 0=iJ ). 

The default number of order of magnitude period 
ranges used was 2 (M=2), and the default taskset 
utilisation 60% (U = 60%). 10,000 tasksets were 
generated for each x-axis value plotted on the graphs. 

5.3. Experiments 
Experiment 1: This experiment investigated the 
efficiency of the response time upper bound with 
respect to taskset utilisation, and the spread of task 
periods. The taskset utilisation was varied from 50% to 
97.5% in increments of 2.5%, and the number of 
period �order of magnitude ranges� varied from 1 to 5. 
The other parameters took the default values: n=24, 

, , . i i i
In this experiment, we used the taskset acceptance 

ratio as a measure of sufficient schedulability test 
effectiveness. For a given schedulability test, the 
acceptance ratio is defined as the number of tasksets 
deemed schedulable by the test, divided by the number 
of tasksets that are actually schedulable according to an 
exact test. Hence any exact schedulability test has an 
acceptance ratio of 100%. 

i TD = 0=B 0=J

The dashed line in Figure 2 represents the Liu and 
Layland bound of 70.3% utilisation for 24 tasks. The 
other utilisation-based tests gave very similar results. 
The five solid lines in Figure 2 are for the response 
time upper bound, showing how its performance varies 
with the number M, of order of magnitude ranges used 
in task period generation. For the wide spread of task 
periods ( 2≥M ), and large number of tasks ( ) 

typical of commercial real-time systems, the 
performance of the response time upper bound is 
significantly better than that of the utilisation-based 
tests. However, when the range of task periods is 
restricted to be within just one order of magnitude, the 
performance of the response time upper bound is 
generally inferior to that of the utilisation based tests. 
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Figure 2 
Experiment 2: This experiment investigated the 
efficiency of the tests with respect to tasksets with 
deadlines less than their periods. The deadlines of all 
the tasks were varied in lock step from 0.05 to 0.95 
times their periods. The other parameters took the 
default values: n=24, M=2, , , U = 60%. 0=Bi i

In this experiment (and all the subsequent ones), we 
used the percentage of tasksets schedulable as a 
measure of schedulability test effectiveness. This 
measure was computed by dividing the number of 
tasksets deemed schedulable by each test, by the total 
number of tasksets generated. Hence, in this case, it is 
necessary to compare the performance of the sufficient 
tests with that of the exact test, also plotted on the 
graphs. 
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Figure 3 
Figure 3 shows that using the exact test, the 

majority of the tasksets generated were schedulable 
with ii  By comparison, using the response 
time upper bound, the majority of tasksets were 

TD 3.0≥



deemed schedulable with . In contrast, the 
utilisation-based tests required before any 
of the tasksets were deemed schedulable. 

ii TD 45.0≥
iD 0≥ iT8.

This experiment shows that the response time 
upper bound is effective for applications where task 
deadlines are shorter than their periods. 
Experiment 3: This experiment investigated the 
efficiency of the tests with respect to tasks with release 
jitter. The release jitter of all the tasks was varied in 
lock step from 0.05 to 0.95 times their periods. The 
other parameters took the default values: n=24, M=2, 

, , U = 60%. ii TD = 0=iB
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Figure 4 
Figure 4, shows that using the exact test, the 

majority of the tasksets generated were schedulable 
with ii . By comparison, using the response 
time upper bound, the majority of tasksets were 
deemed schedulable with i . In contrast, the 
utilisation-based tests required i  before any 
of the tasksets were deemed schedulable. 

TJ 5.0≤

iTJ 35.0≤
J 0< iT2.

This experiment shows that the response time 
upper bound is effective for applications where tasks 
exhibit release jitter that greater than zero, but 
nevertheless relatively small in relation to their 
periods. 
Experiment 4:  
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Figure 5 

This experiment investigated the efficiency of the tests 
with respect to tasks with blocking. The blocking time 
of all the tasks was varied in lock step from 0.5 to 10 
times their computation time, with the exception of the 
lowest priority task which had a blocking factor of 
zero. The other parameters took the default values: 
n=24, M=2, ii TD = , 0=iB , U = 60%. 

Figure 5 shows that, for applications with a wide 
range of blocking factors, the performance of the 
response time upper bound is close to that of the exact 
test, and significantly better than that of the utilisation-
based tests. 
Experiment 5: This experiment investigated the 
efficiency of the tests with respect to tasksets with 
varying deadlines, release jitter and blocking, for a 
range of overall utilisation levels from 5% to 95%. 

In this experiment, task deadlines, release jitter, 
and blocking factors were derived from task periods, 
deadlines, and execution times respectively, by 
applying random scaling factors chosen from a uniform 
distribution. Task deadlines were chosen in the range 
0.5 to 1.0 times the task�s period, release jitter in the 
range 0 to 0.5 times the task�s deadline, and blocking 
factors in the range 0 to 1.0 times the task�s execution 
time. The other parameters took the default values: 
n=24, M=2. 
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Figure 6 
Figure 6 shows that for tasksets with varying 

parameters as described above, the majority of the 
tasksets generated were schedulable (according to the 
exact test) at 70% utilisation or below. By comparison, 
using the response time upper bound, the majority of 
tasksets were deemed schedulable at 60% utilisation or 
below. In contrast, using the utilisation-based tests, 
none of the tasksets with utilisation above 45% were 
deemed to be schedulable. 

This experiment shows that the response time 
upper bound is effective for applications with a wide 
variety of task parameter settings. 
Experiment 6: Considers the results of Experiment 5 
in the context of using the response time upper bound 
to improve the efficiency of an exact test, by 



determining, on a task-by-task basis, if an exact 
response time calculation is required.  

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Utilisation

Pe
rc

en
ta

ge
 o

f T
as

ks
 s

ch
ed

ul
ab

le

Exact 

Response Time
Upper Bound
Liu & Layland
Bound
Hyperbolic Bound

Rbound

Figure 7 
Figure 7 shows the percentage of individual tasks 

generated in Experiment 5 that were deemed 
schedulable by each of the tests. At 60% taskset 
utilisation, 95% of the tasks generated were deemed 
schedulable by the response time upper bound, and so 
only 5% of the tasks would require an exact response 
time calculation to determine their schedulability. At 
75% taskset utilisation, more than three quarters of the 
tasks generated were deemed schedulable by the upper 
bound, and finally, even at the highest utilisation level 
of 95%, more than 50% of the tasks generated were 
schedulable according to the upper bound. These 
results indicate that a significant increase in exact 
schedulability test efficiency is possible by using the 
response time upper bound to determine on a task-by-
task basis whether or not exact response time 
calculations are required. 

In summary, Experiments 1-5 showed that for 
tasksets, resembling those present in commercial real-
time systems, i.e. with a large number of tasks 
( ), a spread of task periods spanning two or 
more orders of magnitude (

10≥n
2≥M ), and tasks which 

exhibit blocking, release jitter and have deadlines less 
than or equal to their periods, the response time upper 
bound derived in this paper is significantly more 
effective than the utilisation-based tests, adapted from 
the Liu and Layland bound, the Hyperbolic bound or 
the RBound.  

Further, the results of Experiment 6 indicate that 
using the response time upper bound to determine on a 
task-by-task basis whether exact response time 
calculations are required, is a highly effective means of 
improving exact schedulability test efficiency. Using 
the response time upper bound in this way means that 
time-consuming exact calculations are typically only 
required for a minority of tasks. 

6. Summary and conclusions 
In this paper we derived a closed form response 

time upper bound that is applicable to a very general 
system model, catering for tasks that are scheduled pre-
emptively, co-operatively, and non-pre-emptively on a 
task-by-task basis. This system model places no 
restrictions on the relationship between task periods 
and their deadlines, or between task periods and their 
release jitter, allowing arbitrary values for these 
parameters. In addition, tasks are permitted to access 
mutually exclusive shared resources according to the 
Stack Resource Policy [2]. 

The response time upper bound forms a sufficient 
schedulability test which can be computed in linear 
time, O(n) for a set of n tasks, and is applicable to a 
wide range of fixed priority real-time systems, 
including both processors and networks [7]. 

The motivation for providing a generally applicable 
response time upper bound was two fold.  
1. To improve the efficiency of exact schedulability 

tests. 
2. To provide a simple and highly efficient, sufficient 

schedulability test that can be used stand-alone in 
a broad range of engineering contexts. 

In interactive system design tools, system 
optimisation via search, and admission of new tasks 
into dynamic systems, schedulability test efficiency is 
a key consideration. Here, the response time upper 
bound can be used on a task-by-task basis to determine 
whether an exact response time computation is 
necessary in order to determine schedulability, 
significantly reducing the overall execution time of the 
schedulability test. This is illustrated in [8] for pre-
emptively scheduled systems with task deadlines less 
than or equal to their periods, and no blocking or 
release jitter. 

A number of scenarios can be envisaged where 
engineers may chose to use response time upper 
bounds in preference to a polynomial approximation or 
exact test. In the early stages of system design, when 
task or message parameters are only estimates, using 
response time upper bounds can be a pragmatic choice. 

Although the bounds have a degree of pessimism, 
they have the advantage that they are continuous and 
differentiable in the task parameters. From an 
engineering perspective, this means that there can be 
no nasty surprises; increasing the jitter or execution 
time of a task by a small margin results in a 
commensurate small increase in its response time 
upper bound. In contrast, with exact analysis, the 
response time equations include either ceiling or floor 
functions, and so the exact response time is a 
discontinuous function of the task parameters. This 
means that a small increase in blocking, jitter or task 
execution times, or a small decrease in task periods can 
sometimes result in large increases in the exact 
response time. 

Using exact response times, the sensitivity of a 
design to changes in task parameters can be difficult to 
estimate; whereas using response time upper bounds, 



design sensitivity can be well understood by computing 
the first derivative of the bound with respect to each of 
the task parameters that may change. 

Task admission to dynamic systems, is another case 
where using response time upper bounds may be 
preferable to exact analysis. Using a linear-time 
admission test here enables the operating system 
overheads to be tightly constrained. 

Finally, when system optimisation (i.e. task and 
message allocation) is performed via search [9], the 
computational efficiency with which response time 
upper bounds can be calculated may be useful in 
narrowing the search to regions of interest, which can 
then, in a subsequent phase of the search, be explored 
in further detail using a slower but more precise exact 
response time calculation. Further, the fact that the 
response time upper bound is a continuous function of 
the task parameters may improve search efficiency. 
The effectiveness of this approach is something we aim 
to explore in future research. 

In conclusion, the major contribution of this work 
is in providing for the first time, a closed form 
response time upper bound that is sufficiently general 
in its applicability, that it can be used in an engineering 
context to determine the schedulability of tasks and 
messages in complex real-world, real-time systems. 
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