Noname manuscript No.
(will be inserted by the editor)

Static Probabilistic Timing Analysis for Real-Time Systems
using Random Replacement Caches

Sebastian Altmeyer - Liliana Cucu-Grosjean -
Robert I. Davis

Received: date / Accepted: date

Abstract In this paper, we investigate Static Probabilistic Timing Analysis (SPTA) for sin-
gle processor real-time systems that use a cache with an evict-on-miss random replacement
policy. We show that previously published formulae for the probability of a cache hit can
produce results that are optimistic and unsound when used to compute probabilistic Worst-
Case Execution Time (pWCET) distributions.

We investigate the correctness, optimality, and precision of different approaches to SPTA
for random replacement caches. We prove that one of the previously published formulae for
the probability of a cache hit is optimal with respect to the limited information (reuse dis-
tance and cache associativity) that it uses. We derive an alternative formulation that makes
use of additional information in the form of the number of distinct memory blocks accessed
(the stack distance). This provides a complementary lower bound that can be used together
with previously published formula to obtain more accurate analysis. We improve upon this
joint approach by using extra information about cache contention. To investigate the preci-
sion of various approaches to SPTA, we introduce a simple exhaustive method that computes
a precise pWCET distribution, albeit at the cost of exponential complexity. We integrate this
precise approach, applied to small numbers of frequently accessed memory blocks, with
imprecise analysis of other memory blocks, to form a combined approach that improves
precision, without significantly increasing complexity. The performance of the various ap-
proaches are compared on benchmark programs. We also make comparisons against deter-
ministic analysis of the Least Recently Used (LRU) replacement policy.

Sebastian Altmeyer
University of Amsterdam
Amsterdam, The Netherlands
E-mail: altmeyer@uva.nl

Liliana Cucu-Grosjean
INRIA Paris-Rocquencourt
Paris, France

E-mail: liliana.cucu@inria.fr

Robert I. Davis

University of York

York, UK

E-mail: rob.davis@york.ac.uk

2 Sebastian Altmeyer et al.

Extended version

This paper builds upon, and significantly extends the 6 page paper (Altmeyer and Davis,
2014) published in Design Automation and Test in Europe (DATE) 2014. The main exten-
sions are as follows:

— Derivation of an alternative method of computing a lower bound on the probability of a
cache hit, based on the concept of stack distance (Section 4).

— Correcting an omission in the basic approach to cache contention given by Altmeyer and
Davis (2014), and introducing a more effective cache contention approach (Section 5).

— Integration of the cache contention approaches with exhaustive analysis of a limited
number of relevant memory blocks, and the introduction of an additional heuristic to
select relevant memory blocks in a given trace (Section 7).

— Extended evaluation on significantly larger real-life examples, with comparisons against
deterministic analysis of the Least Recently Used (LRU) replacement policy (Section 8).

1 Introduction

Real-time systems such as those deployed in space, aerospace, automotive and railway ap-
plications require guarantees that the probability of the system failing to meet its timing
constraints is below an acceptable threshold (e.g. a failure rate of less than 10 per hour
for some aerospace and automotive applications). Advances in hardware technology and the
large gap between processor and memory speeds, bridged by the use of cache, make it dif-
ficult to provide such guarantees without significant over-provision of hardware resources.
The use of deterministic cache replacement policies means that pathological worst-case be-
haviours need to be accounted for, even when in practice they may have a vanishingly small
probability of actually occurring. The use of cache with random replacement policies facil-
itate upper bounding the probability of pathological worst-cases behaviours to quantifiably
extremely low levels for example well below the maximum permissible failure rate (e.g.
1079 per hour) for the system. This allows the extreme worst-case behaviours to be safely
ignored, and hence provides the potential to increase guaranteed performance in hard real-
time systems.

The timing behaviour of programs running on a processor with a random cache replace-
ment policy can be determined using Static Probabilistic Timing Analysis (SPTA). SPTA
computes an upper bound on the probabilistic Worst-Case Execution Time (pWCET) in
terms of an exceedance function (1 - Cumulative Distribution Function (CDF)). This ex-
ceedance function gives the probability, as a function of all possible values for an execution
time budget x, that the execution time of the program will not exceed that budget on any
single run. The reader is referred to Davis et al (2013) for examples of pWCET distribu-
tions, and Cucu-Grosjean (2013) for a detailed discussion of what is meant by a pWCET
distribution and the important difference between that and a probabilistic Execution Time
(pET) distribution.

Simple forms of SPTA comprise two main steps (Davis et al, 2013): First, a probability
function is required to compute an estimate of the probability of a cache hit for each memory
access. This probability function is valid if it provides a lower bound on the probability of a
cache hit. Typical probability functions used in SPTA are a function of the cache associativ-
ity and the reuse distance, defined as the number of intervening memory accesses that could
cause an eviction, since the memory block was last accessed. The probability function is
used to obtain a pWCET distribution for each instruction. Second, the pWCET distribution

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 3

for a sequence of instructions is computed by convolving the distributions obtained for in-
dividual instructions. For the basic form of convolution to give correct results, the pWCET
distributions obtained for the different instructions must be independent. By independent,
we mean that the estimate of the probability of a cache hit for a given memory access re-
mains a valid lower bound irrespective of the behaviour of other memory accesses. We note
that the precise probability of a cache hit for a given memory access is rarely independent, it
typically depends strongly on the history of previous accesses (i.e. whether or not they were
cache hits). Thus care needs to be taken in the derivation of suitable probability functions to
ensure that independence is obtained.

SPTA has been developed for single processor systems assuming evict-on-miss (Quifiones
et al, 2009; Kosmidis et al, 2013), and evict-on-access (Cucu-Grosjean et al, 2012; Cazorla
et al, 2013) random replacement policies. This initial work assumed single path programs
and no pre-emption. Subsequently, Davis et al (2013) provided analysis for both evict-on-
miss and evict-on-access policies for single and multi-path programs, along with a method
of accounting for cache related pre-emption delays. As the evict-on-miss policy dominates
evict-on-access we focus on the former in this paper.

Despite the intensive research in this area over the past few years, it remains an open
problem (Davis, 2013) how to accurately and efficiently compute the pWCET distributions
for individual instructions and sequences of them. In particular, prior approaches gave little
information about the correctness and precision of the pWCET distributions obtained.

1.1 Related Work

In the previous section, we covered specific related work on SPTA for random replacement
caches. A detailed review of these methods is given in Section 2. We now set the work on
SPTA in context with respect to related work on both probabilistic hard real-time systems
and cache analysis for deterministic replacement policies.

The methods introduced in this paper belong to the realm of analyses that estimate
bounds on the execution time of a program. These bounds may be classified as either a
worst-case value (WCET), or a worst-case probability distribution (pWCET).

The first class is a mature area of research and the interested reader may refer to Wil-
helm et al (2008) for an overview of these methods. A specific overview of cache analysis
for deterministic replacement policies together with comparison between deterministic and
random cache replacement policies is provided at the end of this section.

The second class is a more recent research area with the first work on providing bounds
described by probability distributions published by Edgar and Burns (Burns and Edgar,
2000; Edgar and Burns, 2001). The methods for obtaining such distributions can be cate-
gorised into three different families: measurement-based probabilistic timing analyses, static
probabilistic timing analyses, and hybrid probabilistic timing analyses.

Measurement-based probabilistic timing analyses provide a pWCET distribution for a
program from a set of execution time observations obtained by running the program on
the target hardware. This distribution is obtained by applying Extreme Value Theory as
originally proposed by Edgar and Burns (2001). Several works have improved upon this
first use of the Extreme Value Theory in hard real-time systems by including block maxima
reasoning (Hansen et al, 2009), and via the treatment of execution time observations such
that the conditions of the basic version of Extreme Value Theory are fulfilled (Yue et al,
2011). Extreme Value Theory may underestimate the pWCET of a program as shown by
Griffin and Burns (2010). The work of Cucu-Grosjean et al (2012) overcomes this limitation

4 Sebastian Altmeyer et al.

and also introduces the appropriate statistical tests required to treat worst-case execution
times as rare events.

Static probabilistic timing analyses provide a pWCET distribution for a program by
analysing the structure of the program and modeling the behaviour of the hardware it runs
on. Here, each instruction of the program may have a probability distribution associated with
it; by combining these distributions, static probabilistic timing analysis provides a pWCET
for the entire program. Existing work is primarily focussed on randomized architectures
containing caches with random replacement policies. Initial results for the evict-on-miss
(Quinones et al, 2009; Kosmidis et al, 2013) and evict-on-access (Cucu-Grosjean et al,
2012; Cazorla et al, 2013) policies were derived for single-path programs. These results
were superseded by later work that also included extensions to multi-path programs and took
account of cache related preemption delays (Davis et al, 2013). Static probabilistic timing
analyses have also been developed taking into account faults (Hardy and Puaut, 2013). The
work described in this paper belongs to this family of static probabilistic timing analyses. It
extends the work of Altmeyer and Davis (2014) as described in the next section. Static prob-
abilistic timing analyses may have complexity problems to solve related to their heavy use
of convolution; however, techniques exist that are effective in addressing this issue without
making the pWCET estimation unsound (Refaat and Hladik, 2010; Maxim et al, 2012).

Hybrid probabilistic timing analyses are methods that apply measurement-based meth-
ods at the level of sub-programs or blocks of code and then operations such as convolution
to combine these bounds to obtain a pWCET for the entire program. The main principles
of hybrid analysis were introduced by Bernat et al (2002, 2003) with execution time prob-
ability distributions estimated at the level of sub-programs. Here, dependencies may exist
among the probability distributions of the sub-programs and copulas are used to describe
them (Bernat et al (2005)).

Static timing analysis for deterministic caches (Wilhelm et al (2008)) relies on a two
step approach with a low-level analysis to classify the cache accesses into hits and misses
(Theiling et al (2000)) and a high-level analysis to determine the length of the worst-case
path (Li and Malik (2006)). The most common deterministic replacement policies are least-
recently used (LRU), first-in first-out (FIFO) and pseudo-LRU (PLRU). Due to the high-
predictability of the LRU policy, academic research typically focusses on LRU caches—
with a well-established LRU cache analysis based on abstract interpretation (Ferdinand
et al (1999); Theiling et al (2000)). Only recently, analyses for FIFO (Grund and Reineke
(2010a)) and PLRU (Grund and Reineke (2010b)) have been proposed, both with a higher
complexity and lower precision than the LRU analysis due to specific features of the re-
placement policies. Despite the focus on LRU caches and its analysability, FIFO and PLRU
are often preferred in processor designs due to the lower implementation costs which enable
higher associativities.

Recent work by Abella et al (2014) and Reineke (2014) compares static analysis of
caches using LRU with prior work on SPTA (Davis et al, 2013) for evict-on-miss ran-
dom replacement policies, and also makes comparisons with measurement-based analysis
(Cucu-Grosjean et al, 2012). We discuss the findings of Reineke (2014) in further detail in
Section 8.3.

1.2 Contributions

In this paper, we re-visit the probability functions that form the fundamental building blocks
of SPTA. We show that convolution of the probability functions given by Kosmidis et al

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 5

(2013) and Quifiones et al (2009) is unsound (optimistic), as these probability functions
do not provide lower bounds on the probability of a cache hit that are independent of the
behaviour of previous memory accesses. By contrast, we show that the probability func-
tion derived by Davis et al (2013) provides a valid lower bound that is independent of the
behaviour of previous memory accesses, enabling the calculation of sound pWCET distri-
butions via convolution. We prove that this probability function is optimal with respect to
the limited information (reuse distances and the cache associativity) that it employs, in the
sense that no further improvement is possible without considering additional information.

As well as correctness and optimality, we also investigate the precision of SPTA. De-
spite claims to the contrary in the conclusions of Cucu-Grosjean et al (2012), SPTA does
not provide a precise pWCET distribution for a sequence of instructions when based on the
convolution of simple pWCET distributions for each instruction. Instead, precise analysis
requires that the probabilities of all possible sequences of cache hits and cache misses are
considered leading to exponential complexity. Previous work (Cazorla et al, 2013; Cucu-
Grosjean et al, 2012; Kosmidis et al, 2013; Quifiones et al, 2009) provides little indication
of the precision of existing SPTA techniques, while Davis et al (2013) provide some com-
parisons with simulation.

In this paper, we improve the precision and efficiency of SPTA for single-path programs
in a number of ways. First, we present an alternative formulation giving a lower bound on
the probability of a cache hit, based on the stack distance, i.e. the number of distinct memory
blocks accessed within the reuse distance. This formulation is incomparable with that given
by Davis et al (2013). Since neither formula dominates the other and both are valid lower
bounds, we may take the maximum of them to provide an improved lower bound. Second,
we refine the probability function given by Davis et al (2013) using the concept of cache con-
tention. Third, we describe a simple approach that exhaustively enumerates all cache states
that may occur for a given sequence of memory accesses. This provides precise analysis at
the cost of complexity that is exponential in the number of pairwise distinct memory blocks.
Nevertheless, this approach enables us to quantify the precision of various approaches to
SPTA for small programs. Finally, we introduce a combined approach which integrates pre-
cise analysis of the most important memory accesses (those made most frequently), with
imprecise analysis of the remaining memory accesses, using simple probability functions.
We show that this combined technique is effective in improving the accuracy of SPTA while
avoiding the exponential increase in complexity that exhaustive analysis brings.

While the focus of this paper is on the fundamentals of analysis for single path programs
we note that the methods presented are extendable to multipath programs. Such extension is
the subject of further work by the authors.

2 System Model and Prior Approaches
2.1 Random Cache Replacement

A cache with the evict-on-miss random replacement policy operates as follows: whenever a
memory block is requested and is not found in the cache, then a randomly chosen cache line
is evicted and the requested block is loaded into the evicted location. We assume an N-way
fully associative cache', and so the probability of any cache line being evicted on a miss is
1/N. We also assume pessimistically that random caches do not replace free or invalid cache

! Tn a fully associative cache, any memory block may be placed in any cache line.

6 Sebastian Altmeyer et al.

lines first, which means that cache evictions can occur even when less than N elements are
cached.

Prior work considered mostly instruction cache only and no data cache; however, this
restriction is unnecessary for the theoretical foundations of our analysis as we assume that
access traces are given. We therefore define traces as sequences of memory blocks directly
(independent of the content of the memory blocks) instead of sequences of instructions as
was done by Davis et al (2013). Further, the restriction to a fully-associative cache can
be easily lifted, as a set-associative cache with s cache sets can be analysed as s parallel
and independent fully-associative caches. In the context of random cache replacement, the
cache-hit and cache-miss delays are assumed to be constant and hence the processor archi-
tecture is assumed to not exhibit timing anomalies. For data caches, accesses to unknown
memory blocks are possible when the effective memory address cannot be statically deter-
mined. In such cases, we use a unique memory block identifier for each unidentified access
which guarantees that it is considered a cache miss.

2.2 Traces and Reuse Distance

A trace T of size n is an ordered sequence of n memory blocks [ey,...,e,]. The set of
all traces is denoted by T, while E denotes the set of all elements, where an element is an
access to a memory block. The reuse distance rd(e) of an element ¢ is the maximum possible
number of evictions since the last access to the same memory block, with reuse distance co
in the case that there is no prior access to that memory block.

rd: EXT — N U {oo}

[—j—1ifdej:ej=e AVjciq: e # e
00 otherwise

rd(ep,ler,...e1]) = { (1
We typically represent the reuse distance k using a superscript and omit all infinite reuse
distances. For example,

1 3 2 5 5
a,b,a ,c,d,b’,c*, f,a’,c

We denote the event of a cache hit at memory block e; as ef”” and P(ef”") the corresponding
probability, with !"** and P(e!"**) being the equivalent for a cache miss. Further, we use P
to denote approximations to distinguish them from the precise probability values.
Successive accesses to the same memory block will always lead to cache hits in a ran-
dom cache with the evict-on-miss replacement policy. We therefore collapse the traces and

remove all successive accesses. For instance, the trace
a,b,b,c,c,b,c,c,a,a,c

is collapsed to

a,b,c,b,c,a,c

and successive accesses to the same element do not count towards the reuse distance. We
note that this step does not influence the number of cache misses.

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 7

2.3 Review of prior Approaches

In this section, we present the different approaches that have been proposed to compute the
probability of cache hits and misses and thus the pWCET distribution.

Zhou (2010) proposed using the reuse-distance to compute the probability P(e") of a
cache hit at access e with reuse distance k:

N-1\
) (2)

P - ("5
where N is the associativity of the cache. To simplify the notation, we write }A’Z(e;"") as a
short form of pz(rd (es, ler,...e—1]).

The rationale behind (2) is that the second access to e can only be a hit, if all intermediate
cache misses evict cache lines other than the one that element e occupies. Equation (2) is
not precise, but a lower bound on the individual probability of a cache hit for that specific
access. Recall that the reuse distance is defined as the maximum number of evictions, and
not the actual number. Therefore PZ(e"") < P(e"") holds for some access sequences.

Quifiones et al (2009) proposed deriving the pWCET distribution of a single path pro-
gram via convolution of the pWCET distributions of individual accesses obtained from (2).
However, (2) is only valid if considered in isolation and the convolution for independent
events cannot be used due to a dependency stemming from the finite size of the cache (Davis
et al, 2013). To correct (2), Davis et al (2013) proved an independent lower bound on the
probability of a cache hit:

k
N N-1
PPk = (N)N>k. 3)
0 otherwise
We use PP (! as a short form of PP(rd (e, [e, . . . e1-11)).

The drawback of (3) is that all accesses with reuse distance higher than the associativity
of the cache are considered to be cache misses.
Kosmidis et al (2013) proposed the following formula:

N - 12
))

DK ¢ hity _

Pren= (T
where the summation in the exponent is over the probabilities of misses of the intervening
memory accesses. (We note that a similar formula was given by Zhou (2010) as an ap-
proximation). Equation (4) may over-estimate the actual probability of a cache hit as noted
by Davis (2013), and thus lead to a pWCET distribution that is optimistic.

Using one of the above estimates of the probability of a cache hit, the Probability Mass
Function (PMF) 7; of element ¢; is defined as follows:

hit-delay miss-delay
Ii= P(ehit) P(emiSS)

with P(¢”5%) = 1 = P(e"") and hit-delay (miss-delay) denoting the execution time for a cache
hit (cache miss). The probability mass function thus gives the probability distribution for a
discrete random variable that describes the possible execution times of the memory access.
The pWCET distribution is then derived by computing the convolution ® of the probability
mass function of every memory access e; in the original (uncollapsed) trace:

pWCET =7, 1,®...1, (6)

)

8 Sebastian Altmeyer et al.

where convolution provides the sum Z of two independent random variables X| and X;:

Z=X18X;
For discrete random variables:
+00
PIZ=2=) PIX, =KP(Xs =2~k
k=—00

Note that convolution is commutative and associative.

Under the assumption of constant hit- and miss-delays, computing the distribution of
cache-hits and cache-misses is sufficient to derive the pWCET distribution. We will therefore
concentrate only on the former, the latter can be obtained by multiplying the constant delays
by the number of hits and misses.

3 Correctness Conditions and Optimality

As stated by Davis et al (2013), the probability that a single access is a cache hit/miss is
not independent of prior events. This means that in general, the convolution for independent
events cannot be soundly applied, as it is only valid for independent events. What can be
done instead; however, is to provide a lower bound approximation P to the actual probability
of a cache hit for which we can soundly apply the basic convolution for independent events.
Sound in this context means that for any sequence of cache accesses [ey, . . ., e,], the approx-
imation P complies with two constraints: (C1) it does not over-estimate the probability of a
cache hit, and (C2) the value obtained from convolution of the approximated probabilities
for any subset of accesses on a trace T describing the probability that all elements in the
subset are a hit, is at most the precise probability of such an event occurring:

Cl Yeeley,...,e,): P(e") = P(e"M),
C2 VE Cfey,...,e,): P(/\eeE ehit) > [Loeg P(E"™).

We note that C2 can be instantiated to C1; however, we define two separate constraints as
each one covers a distinct property of a correct approximation P.

3.1 Counterexamples to Equation (2) and Equation (4)

Of the different approaches presented in Section 1, only (3) provides a valid and sound
lower-bound. Equation (2) does not fulfil C2 and (4) fulfils neither C1 nor C2 as shown
below.

To show that (4) over-estimates the probability of an individual cache hit (i.e. contradicts
constraint C1), we use the access sequence

a,b,c,d,a’, b’

and a cache with associativity 2.
Equation (4) computes the probability of a cache hit for the second access to a as

(1/2)° = 0.125

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 9

which is correct and precise. For the second access to b, however, (4) results in
(1/2)**%%7 > 0.1363
which is optimistic as the correct probability of a cache hit is in this case
(1/2)* = 0.125

This can be seen by enumerating all the possible cache states that could exist after the second
access to a; out of 16 possibilities each with probability 0.0625, only two contain b.
To show that C2 does not hold using (4) we use an example from Davis (2013), we
assume the access sequence
a,b,a',b'

and a cache with associativity of 4. Further, we assume that the latency of a cache hit is 1
and the latency of a cache miss is 10. The first two accesses are certain misses, so using (4),
the probability distributions for the first three instructions are as follows:

110\ {110\ (1 10
(0 1)’(0 1)’(0.75 0.25) (7)

According to (4), the probability of the 4th access being a cache hit is then: PX ety =
0.75%% = 0.9306. (Note this value is rounded down slightly, which is a safe assumption).
So the overall pWCET is

10 ® 10 ® 1 10 ® 1 10 _ 22 31 40)
1 1 0.75 0.25 0.9306 0.0694) ~— 10.69795 0.0.2847 0.01735
However, the correct pWCET is

(22 31 40) ©)

0.75 0.1875 0.0625

This can be seen by considering the scenarios that result in a total of two and four cache
misses respectively. (The first accesses to a and b are certain to be cache misses). If the first
access to b does not evict a (probability 0.75), then the second access to a can only be a
cache hit, which in itself does not evict b, and so in this scenario, which has a probability of
occurring of 0.75, there are two cache misses in total. Alternatively, if the first access to b
evicts a (probability 0.25), then the second access to a is certain to be a cache miss, which
in turn has a probability of 0.25 of evicting b and so making the second access to b a cache
miss. Hence the only scenario with four cache misses in total has a probability of occurring
of 0.0625.

In this example, using (4) results in a pWCET distribution that significantly under-
estimates the probability of obtaining four cache misses and hence an execution time of 40.
This is an optimistic and unsound result. We note that if the same example is repeated for a
larger cache associativity then the discrepancy becomes more marked with (4) resulting in a
pWCET distribution that under-estimates the probability of obtaining four cache misses by
more than two orders of magnitude for an associativity of 128 (e.g. a small fully-associative
cache).

To show that (2) also contradicts constraint C2, we assume an associativity of 2 and the
access sequence:

a,b,c,b',a’

10 Sebastian Altmeyer et al.

Using (2), the overall pWCET is computed as follows:

10 10 10 1 10 110\ _ (32 41 50)
120 1)® 1) ®los0s) ®lo12s0s7s)] = 1006250504375
However, the correct pWCET is:

41 50
(0.625 0.375) (D

This can be seen by considering the scenarios that result in one and two cache misses for the
last two accesses in the sequence. (The first accesses to a, b, and c¢ are certain to be cache
misses). If the access to ¢ does not evict b (which occurs with a probability of 0.5), then the
second access to b is certain to be a hit; however, as the cache then contains both b and ¢
and the associativity is two, the final access to a is certain to be a miss. Alternatively, if the
access to ¢ evicts b (which also occurs with a probability of 0.5), then the second access to
b is certain to be a miss. In this case, since ¢ evicted b, it did not evict a, and so the final
access to a has a conditional probability of 0.25 of surviving the two accesses to b both of
which are misses. Hence the overall probabilities of a cache hit for the final accesses to a
and b are 0.125 and 0.5 respectively. We note that these are the values given by (2); however,
these two events (cache hits for the final accesses to a, and b) are not independent, they are
instead mutually exclusive; either the last access to a is a hit, or the last access to b is a hit,
but both cannot be hits, hence the values in the correct pWCET (11).
As a further example, we assume an associativity of 4 and the access sequence:

4 14 4 44 4
a,b,c,d, f,a",b",c",d", f

Using (2) then by construction, all probabilities of a cache hit P%(e"") for the last five ac-
cesses are non-zero. Hence, the combined probability of five hits is also non-zero, which
contradicts with the fact that at most 4 elements can be stored simultaneously in the cache.

Note that the counter examples we have given in this section are for small associativity
(i.e. 2 or 4) as found in typical set-associative caches. The associativity and the sequences
chosen are simply used to highlight the issues, and to make the calculations easy to compre-
hend; however, the reader should be in no doubt that these issues persist for finite values of
associativity (> 2), and for access sequences of arbitrary lengths.

3.2 Correctness of Equation (3)

In this section, we prove that Equation (3) is correct in the sense that it fulfils both constraints
(C1) and (C2) and therefore can be used for static probabilistic timing analysis. Recall that
we use }A’D(ef”") as a short form of PP(rd (e, [e1, . . . e1_1])).

Theorem 1 The function PP(e"") does not over-estimate the probability of a cache hit and
therefore provides a valid lower bound on the exact probability of a cache hit for any single
element in a trace. (CI)

Ve € {ey,...,en): P(e") > PP

Proof (Theorem 1)
Let e be an arbitrary element on a trace 7" with reuse distance k. We prove Theorem 1 using
a case distinction over k:

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 11

Case k > N: If the reuse distance k is equal to or larger than the associativity N, the value
PP(k) is equal to zero and PP (k) < P(¢"") holds.

Case k < N: By definition of the reuse distance, we know that exactly k elements have been
accessed in between the last and the current access to the memory block of e. Each
of these accesses is either a cache hit, which means that the state of the cache does not
change (and the memory block accessed may potentially reside in the cache for all of the
reuse distance of e), or a cache-miss, which means that the memory block of element e
is evicted with probability 1/N. The worst-case situation is given by k misses (as shown
by Theorem 4 in the appendix of (Davis et al, 2013), and discussed further in Section 5)

k N .
and hence, the probability of a cache hit at e is given by (%) and thus PP (k) < P(e"")
holds, as any access to an intermediate element ¢’ resulting in a cache hit will only
improve the hit-probability of the remaining elements. O

Theorem 2 The value obtained from the product of the approximated probabilities PP (k)
for any subset of accesses E on any trace T describing the probability that all elements in
the subset are a hit, is at most the precise probability of such an event occurring. (C2)

VE Clei,...,en): P(/\ eh") > l_[PP
ecE ecE
Proof (Theorem 2)
We prove Theorem 2 by induction over the set of accesses E.
Base case: For a set E with cardinality one (|[E| = 1) there is only one element and (Aeer €) >

[Teer PP(€"") holds by Theorem 1.
Induction step: assuming that (/\eEE eh”) > [1oer PP (") holds for a set of elements E with

cardinality i, we show that (Neerr e’"") > [oerr PP (") holds for E” with E' = E U {¢’} and
cardinality i + 1. Note, we assume without loss of generality that ¢’ occurs later in the trace
than any element of E.

Let k be the reuse distance of element ¢’. We can conclude that the induction hypothesis
trivially holds for E’, if (i) k > N, or (i) [],ez PP(e"™) = 0, since in both these cases,
[Toerr PP(e"") = 0. We therefore only need to show the correctness of the theorem assum-
ing that k < N and [],cz PP(e"") > 0.

We note that the reuse distance of each element e € E is independent of the selection of
¢’ and that since k < N and [],cx PP(¢"") > 0 the reuse distance of each element in E’ is
less than N. If we assume a cache-state evolution in which elements are evicted in Least-
Recently Used (LRU) order (note any specific order including LRU is possible for a random
replacement cache), then all accesses in E’ can result in cache hits during the same sequence
of accesses (this is the case because an element is only evicted in an LRU cache if the reuse-
distance is greater than or equal to N), and hence (Aver e’”’) > 0 holds. Further, since

Theorem 1 also holds for element ¢’, we know that PP(k) < P(¢’™") where k is the reuse
distance of element ¢’. As PP (k) lower bounds the probability of a hit for e’ for any pattern
of hits or misses prior to access e’ then it follows that (Aeep €) > (NeeE ehi’) -PP(k). Since

(Acer @) 2 Teer PP(e") it follows that (A ep €7) 2 [Toep PP(M). O
3.3 Optimality of Equation (3)

We can derive an estimate of the probability of a cache hit that is more precise than (3) as
we can simply enumerate all possible cache states and the associated probabilities; however,

12 Sebastian Altmeyer et al.

this solution is computationally intractable, as we will explain in Section 6. If we aim at
an estimate using only the reuse distances and on which we can apply the convolution for
independent events, then (3) is optimal in the sense that there is no function of only £ and N
that is valid and returns any larger value.

Theorem 3 The lower bound on the probability of a cache hit PP(k) is optimal for the
information it uses, i.e., the reuse distance k and the associativity N.

Proof (Theorem 3)
We assume that (k) is a probability function such that P’ (k) is more precise than PP(k).
Hence:

Jk: P'(k) = PP(k) + € (12)

for some € > 0. We assume that the only input to PP and P’ is the reuse distance k& which
must be valid for any sequence of accesses [ej, ..., e,], and the associativity N. We make a
case distinction on k:

Case k < N: Assume the following ordered sequence with accesses to k pairwise distinct
elements

[ex,er,ea,e3,. .. k1,6, ex]

and an initially empty cache. The reuse distance of the second access to e, is k. Each
access to any of the other elements results in a cache miss, the probability of a cache hit
P(ef”) is exactly PP(k) and the assumption that € > 0 contradicts C1.

Case k > N: Assume the access pattern to k + 1 memory blocks repeated twice:

[er,er,e3,... e, erv1,€1,€2,€3, ... €, e41]

for each second access to ¢;, the reuse distance is k. Since the cache can store at most N
elements and k+1 > N, we know that the probability of k+1 hits is 0, i.e, P (Ne; ef.”’) =0.

However, since € > 0 and PP(k) > 0, we can conclude that [],cz P’'(¢"*) > 0, which
contradicts C2.

Hence, we can construct for any k and any N, an access sequence where PP (k) is optimal
in the sense that it provides the largest valid value of any function relying only on the reuse
distance and the associativity. O

4 Stack Distance

In the previous section, we showed that PP(k)ie. (3)is optimal in the sense that there is no
function of the reuse distance k and the associativity N that is valid and returns any larger
value. In this section, we show how additional information can be used to obtain an alternate
formula for the probability of a cache hit.

We note that PP (k) can be pessimistic in the commonly observed case of sequences with
repeated accesses (e.g. loops). For example, the trace a, b, ¢, d, chd,el,d',d, b’ repeats the
accesses ¢, d three times within the reuse distance of the final accesses to a and b. Assuming
an associativity of 4, then PP(k) gives zero probability of a cache hit for these accesses,
since their reuse distance exceeds the associativity of the cache. However, it is possible for
the cache to contain all four distinct memory blocks a, b, ¢, d accessed in this sequence,
and so a zero value for the probability of a cache hit for the final accesses to a and b is
pessimistic.

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 13

In this section we derive a simple, alternative formula PA(4, k) that is effective in such
cases. Let 4 be the stack distance? of element ¢, i.e., the total number of pair-wise distinct
memory blocks that are accessed within the reuse distance k of element ¢;. The maximum
number of distinct cache locations loaded during the reuse distance of e; is upper bounded
by 4 (proved below), hence it follows that a lower bound on the probability that e; will
survive all of the loads and remain in the cache is given by:

(54) (N >) A (k # o)

. (13)
0 otherwise

ﬁu@:{

Observe that the lower bound probability is zero if the reuse distance is infinite (i.e. ¢;

was never previously loaded into the cache) or if the stack distance is larger than or equal

to the associativity (4 > N), i.e., the number of distinct memory blocks that may be loaded
into the cache within the reuse distance of ¢; is sufficient to fill the cache.

Theorem 4 The total number of distinct cache locations loaded with memory blocks during
the reuse distance of element e;, is no greater than the stack distance.

Proof (Theorem 4)
The proof of Theorem 4 can be obtained by induction. Let r = [— rd(e;) be the index of
the element immediately following the previous access to the same memory block as e;.
(Note if rd(e;) = oo then r = 0 and e, identifies the first element in the trace). Let X; be the
set of distinct cache locations that are loaded with memory blocks due to accesses e, .. . ¢;
inclusive (where r < i < [). Further let M; be the set of distinct memory blocks cached in
the locations given by X; after element e; has been accessed.

We show that independent of the access history, Ve; € [e,,...,e1-1]: |X,| <4.

Base case: initially, we have X; = 0 and M; = (), hence |Xi| = 0 < 4 prior to access e,.

Inductive step: assuming that |Xl~| < 4, we show that |X,-+1| < 4. There are three cases to
consider:

(i) ei41 is in the cache. In this case, no eviction takes place and no new memory block is
loaded, hence |Xi+1| = |X,| <A4.

(i) e;4+1 is not in the cache and the eviction and load of a memory block takes place in
a location that is not in X;. In this case, |X;+1| = |Xi| + 1 and M;;; = M; U e;;,. Note that
|Xi+1| = |Mi+1| and since M;;| can contain only unique memory blocks, then 'Xi+1| < 4.

(iii) e;41 is not in the cache and the eviction and load of a memory block takes place in
a location that is in X;. In this case, |Xi+1| = |X,| < 4. Further, M1 = (M; \ e.,) U e;+1 Where
e,y 1s the unique memory block evicted from the location into which e;,; is loaded. Note that
|Xi+1| = |Mi+1|~

Induction over e; € [e,,...,e;_1] is sufficient to prove that Ve; € [e,,...,e1-1]: |X,-| <A4a.
O

Theorem 5 The lower bound on the probability of a cache hit PA(4,k) is incomparable
with the lower bound on the probability of a cache hit PP (k) derived by Davis et al (2013).

Proof (Theorem 5)
Theorem 5 can be proven by considering two extremes.

Firstly when the reuse distance is large (k > N) then PP(k) = 0; however, in this case,
the stack distance may be small. As an example, consider the final accesses to a and b in

2 The term stack distance of an element e; refers to the position of the element on a stack with least-recently
used ordering.

14 Sebastian Altmeyer et al.

the sequence a,b,c,d,c',d",c',d",a’,b” with an associativity of N = 4. Here, we have
PP(k) = Osince N = 4and k = 7, yet PA(4,k) = 1/4 since there are only three distinct
memory blocks accessed within the reuse distance.

Secondly, consider the case where 1 < k < N and all of the accesses within the reuse
distance are to different memory blocks. In this case, 4 = k and we have:

k
PAL k) = (NT_") < (NT_I) = PPk) (14)

The correctness of (14) can be shown by induction over values of i from 1 to k.
Base case: for i = k = 4 = 1 then trivially, PA(i, i) = PP(i).
Inductive step: assuming that PA(i, i) < PD(i), then for 0 < i < N — 1, we have:

. . N-(G+1
PAG+1,i+1) = PAG, i)(L,)) (15)
N-—i
A o N-1
PP+ 1) = PD(i)() (16)
N
Since (2522) < (%) holds for 0 < i < N — 1 then PAGi + 1,i+ 1) < PP(i + 1)
Induction over all integer values of i from 1 to k suffices to prove (14). O

As PA(4, k) and PP (k) are incomparable, yet both give valid lower bounds on the proba-
bility of a cache hit, then, we may use the maximum of them to compute an improved lower
bound that dominates each individually.

5 Cache Contention

Equation (14) shows that PP(k)i.e. (3) can often give a larger lower bound for the probability
of a cache hit compared to PA4, k) i.e. (13). Indeed, the value at which PP(k) is forced to
zero to ensure correctness with respect to constraint C2 is (%)N which tendsto 1/e = 0.367
for large N, (where e is Euler’s number). This illustrates the significant loss of precision that
can potentially result from the simple approach taken to ensuring the validity of the formula.
While (3) provides a lower bound on the probability of a cache hit, it is thus imprecise even
for simple access sequences. If we consider a cache with associativity 4 and the following

access sequence,
4 34 4 A4 o4
a,b,c,d, f,a”,b",c",d", f

all accesses are considered cache misses. The reason for this is that for each of the last
five accesses, the probability of a cache hit is set to O to ensure correctness with respect to
constraint C2, i.e, that the probability of the last five accesses all being hits is zero.

The proof that Davis et al (2013) give for the correctness of (3) is based on modelling
the set of intervening accesses (i.e. within the reuse distance k of an element ¢; in the trace)
as all having the possibility of either being hits or misses. Misses are assumed to result in
evictions which reduce the probability of element ¢; remaining in the cache. By contrast,
hits are assumed not to cause evictions, but instead to reduce the number of cache locations
available to ¢;, since a hit could imply that a memory block is present in the cache for the
entire reuse distance. If there are 7 > N such memory blocks, then there can be no locations

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 15

available for ¢;, and hence the only safe assumption is that the probability of a cache hit is
zero. Otherwise, for i < N, the probability of a cache hit for ¢; is lower bounded by:

k—h
N_—h_l) A7)

dh _

Davis et al (2013) showed that P"(k) takes its smallest value for 4 = 0. Equation (3) then
follows from the safe assumption that z could take any value from O to k.

We now build on this previous work, refining the limit on the number of contending
memory blocks that need to be considered (Davis et al (2013) assume this could be as high
as k). To this end, we define the concept of the cache contention (con(e;, T)) of an access ¢;
which denotes the number of accesses within the reuse distance of ¢; in trace T that could
potentially contend with ¢; for locations in the cache.

We only need to set the probability of a cache hit for an access e; to zero when the cache
contention is greater than or equal to the associativity N.

N 0 con(e;, T) > N
PRE™) =Y ax (f’A(A,k), (%)k) otherwise (18)

The cache contention and the probability 2V are mutually dependent; but the cache con-
tention of an element e; depends only on the probability of a cache hit for the preceding
elements, which enables the cache contention and the probability PV to be computed effi-
ciently.

We present two different methods of computing cache contention, first a basic approach,
and second an improved one that uses a form of cache simulation.

5.1 Basic Cache Contention

The basic approach to cache contention models each of the accesses within the reuse dis-
tance of ¢; that have been assigned non-zero probability of being a hit as requiring its own
separate location in the cache. Further, it is also assumed that the first element e, within the
reuse distance of ¢; (i.e. where r = [— rd(ey, [ey, . .., e;-1]) also requires a separate location
in the cache regardless of its assigned probability.

con: ExT - N

o rd(el’[e]""»el—l])zoo

con (e, ler,ez,...,e1-1]) :{ (19)

|c0nS | otherwise
with
conS ={e; € [er,....er1]|(I - rd(esler,...,e11]) < i A P(el™) # 0))
U {er €ler,....e1] |(l— rd(ey, [er,...,e-1]) = r}
Table 1 presents the probability PV for the elements of the example sequence
a,b,c,d, f,a,b,c,d, f

In contrast to (3), only one of the five elements with finite reuse distance is assumed to have
zero probability of being a cache hit.

16 Sebastian Altmeyer et al.

‘a, byc,d, f, a, b, ¢ d, f
rdjcocococooco 4 4 4 4 4
con|oo co 00 00 0o | 2 3 4 3
PPlOOOOO O O O 0 O
PAIOOOOO O 0 0 0 O
PM0 000 0G)¢ErErod)

Table 1 Probabilities ISN, PP and P” for the access sequence a, b, c,d, f,a,b,c,d, f, with reuse distances
(rd) and cache contentions (con).

Theorem 6 The cache contention defined in Equation (19) eliminates all combinations of
cache hits that are infeasible due to the finite associativity of the cache.

Proof (Theorem 6)

To prove Theorem 6, we must show that there is an evolution of the cache state for the entire
trace T that permits all accesses assigned a non-zero probability to all be hits. (It follows
trivially that any subset of these accesses could also all be hits). To do so, we consider the
evolution of the set Z which contains the subset of the cache state that is necessary to support
cache hits for all of the accesses assigned non-zero probabilities. Let Z; be this subset of the
cache state, immediately following access e;.

We construct the set Z as follows:

Z; = {e1}

7 - {(Zil \{ei1) U e} if conen, . T) = N

(Zi—y Ule}) if con(e,, ,,T) <N (20)

where e,,_, denotes the next access to element e;_;. (Note if there is no such next access,
then we assume that con(e,,_,T) = co0). We now prove that the set Z is always a subset
of a feasible cache behaviour. Specifically, (i) it always contains the least recently accessed
element, (ii) all elements in Z; have been accessed prior to element ¢; and (iii) the set always
contains at most N elements:

(1) Yi: e,»eZ,-,
(ii) Vi: Vej€Z;: A <i: e; = ¢, and
(iii) Vi: |Z] < N.

Conditions (i) and (ii) hold by construction. Further, each element e¢; € Z; where e; # e;
must have a non-zero probability of being a hit at its next reuse and thus a cache contention
smaller than N, otherwise it would have been removed from Z; thus:

Ve €Z;:ej # e = conle,,, T) <N 201

We now prove condition (iii) by contradiction. We assume (for contradiction) that i is
the smallest index such that |Z;| > N holds. It follows that |Z;_;| = N and |Z;| = N+1, since at
most one element can be added to Z;_; to form Z; (see (20)). As |Z;_1| > |Z;], then from (20),
e;—1 must be a member of Z; with e; # ¢;_;. It must also be the case that con(e,,_,,T) < N,
otherwise e¢;_; would have been removed and we would instead have |Z;_;| = |Z;].

As con(ey, ,,T) < N, it follows that Z;_; contains N elements, all of which have a non-
zero probability of being a hit at their next reuse. Further, we know that e; is not one of these
elements, since otherwise we would again have |Z;| = |Z;_,].

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 17

Let ¢; € Z; be the element with the highest index #; for its next reuse of all those
elements in Z; with a non-zero probability at their next reuse. (Recall that the next access to
the same memory block as e; is denoted by e,,). Since Z;_; contains N elements all of which
have a non-zero probability of being a hit on their next reuse, but does not contain e;, then
we conclude that there must be at least N — 1 accesses between e; and e, that are assigned
non-zero probabilities.

There are two cases to consider:

Case 1: j = i. In this case, we know that ¢; ¢ Z;_; and that all N elements of Z;_; have
non-zero probabilities on their next reuse, it must therefore be the case that there are N
accesses between e; and e, with non-zero probabilities. Hence the cache contention of e,
is at least N which contradicts the assumption that e,, has a non-zero probability of being a
cache hit. Hence it cannot be the case that j = i.

Case 2: j < i. In this case, we know that e; € Z;_y, e; # ¢;, and that there must be at least
N — 1 accesses between ¢; and e,,; that are assigned non-zero probabilities and so contribute
to the cache contention of e,,. Further, there is also the access ¢;,1 immediately following e;
(where j + 1 < i), which also contributes 1 to the cache contention of e,, irrespective of the
probability assigned to it. Hence the cache contention of e, is at least N which contradicts
(21).

Both cases lead to contradictions, hence the assumption that 3i: |Z;| = N + 1 is wrong,
and thus condition (iii) Vi: |Z;] < N holds. m]

The cache contention embodied in (19) is therefore sufficient to ensure that there is
a feasible evolution of the cache state, following the construction rules given in (20) that
permits all accesses assigned a non-zero probability to be cache hits.

5.2 Improved Cache Contention

The cache contention as defined in Equation (19) is pessimistic in that it assumes that each
access with a non-zero probability of being a cache hit, within the reuse distance of ¢; con-
tends separately with e; for space in the cache; however, this may not necessarily be the case.
Consider the trace a, b, ¢, d, f,d, f, g, h, g, h, a, b and a cache with an associativity of 4. Here
blocks d and f need to remain in the cache for two accesses, as do blocks g and &, but g and
h could potentially replace d and f leaving the possibility that the last two accesses, to a and
b, are also hits. This potential reuse of cache space is not captured by the basic method of
determining cache contention given in the previous section.

Table 2 illustrates this pessimism. The second accesses to d, f, g, h, a and b could
all potentially be hits within the trace a,b,c,d, f,d, f,g,h, g, h,a,b and could therefore be
assigned non-zero probabilities; however this is not captured by PV.

la, b, ¢, d, f, d, f, g h, g h, a, b
rdloococoocooo 1 1 cooco 1 1 1010

confoocoowoooo 1 1 cooco 1 1 5 5

PMloooooGHoodE) oo

Table 2 Probabilities PV for the access sequence a, b, ¢, d, f,d, f, g, h, g, h, a, b, with reuse distances (rd) and
cache contentions (con).

18 Sebastian Altmeyer et al.

To overcome this pessimism, as well as pessimism due to repeated accesses to the same
set of memory blocks, we propose an alternative cache contention based on a simulation of
a feasible cache behaviour. We conceptually simulate one valid cache behaviour to check
which elements may be cached simultaneously, and thus, for which accesses we can assign
non-zero probabilities of being a cache hit. In the case of an eviction, we assume that the
element with the maximum reuse distance at its next reuse will be evicted. By doing so, we
aim to have the smallest possible impact on the overall cache hit/miss distribution, and thus
the least pessimism. We note that this is a heuristic and we do not claim optimality.

We use the term forward reuse-distance rd~ (e) to denote the reuse distance of an ele-
ment at its next reuse, with a forward reuse-distance of co in the case that there is no next
access to that memory block.

rd”: EXTxXxN — NU {co}

rd (e, [er,...e—1]) if dej: e = 61/\l>l'/\v,‘<j<12 e+e;

00 otherwise (22)

rd” (e, [er,...e,],0) :{

Let S; be the set of potentially cached elements immediately before the access to e;. We
define the set S; recursively and start with an initially empty cache:

So=0 (23)
S,‘ ifel'ES,'
Sy = S Ule} if IS/ <N (24)
S\ |argmax (rd™ (e,T,i)))U{e,—} if [S;[=N
e€S;

The three different cases in (24)) are as follows: First case: if we access an element ¢; that
is currently cached, i.e, ¢; € §;, then we do not need to update the cache contents. Second
case: if the set §; contains less then N elements at the previous access, we only need add the
currently accessed element e¢;. Third case: if the set S; contains N elements at the previous
access, we first remove the element with the largest forward reuse-distance from the set S;
and then add element ¢;. (For completeness, we break ties deterministically by assuming that
the memory block with the lowest address is evicted). By construction, V;: |S;| < N holds.
Hence S, represents a feasible evolution of the cache state for i = 1 to n (i.e. over the entire
trace).

Using the definition of the potentially cached elements, we can safely set the probabil-

N k
ity of a cache hit for an access e; to max (PA(A, k), (%)) when the accessed element is
contained in S;
N I
peehiy — [max (PA(A,k), (%)) ife €S, 05)
’ 0 ife;¢S;

Theorem 7 The improved cache contention as defined in Equation (25) eliminates all com-
binations of cache hits that are infeasible due to the limited associativity of the cache.

Proof (Theorem 7)
Proof of Theorem 7 is trivial as S; represents a feasible evolution of the cache state over the
entire trace.

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 19

Table 3 shows the probabilities of a cache hit according to (25) for the access sequence
a,b,c,d, f,d, f,g,h,g,h,a,b for a cache with an associativity of 4. The evolution of §; is
as follows S5 = {a, b, f, d}, since f replaces ¢ which has an infinite forward reuse distance.
So ={a, b, g, h}, since g and h replace d and f which have an infinite forward reuse distance
by the time g is first accessed. Hence the second accesses to d, f, g, h, and a and b are all
assigned a non-zero probability of being a cache hit.

a, b, c, d, f, d', fl, g h, gl, h, a9, pio
PPlooo oo @oo@ @ 0 0
PALO0O0O0O0 (3) 3003 (3 0 0
PNNO0000 () (500G (3 0 0
PEL00000 () (500G DD

Table 3 Probabilities P€ and PV for the access sequence a, b, ¢,d, f,d, f,g,h, g, h,a,b.

6 Exhaustive State-Enumeration

We now describe a simple analysis that computes the exact probability distribution of cache
hits. This analysis is different from the approaches presented in previous sections. Here, we
exhaustively enumerate all cache states that may occur during the execution of a given trace.

The domain of the analysis is a set of cache states defined as follows: A cache state CS
is a triple (E, P, D) consisting of a set of memory blocks E C E, a probability P € R

and a distribution of cache misses D: (N — R). A cache state CS = (E, P, D) has the
following meaning: the cache contains exactly the elements E with probability P, and D
denotes the distribution of cache misses when the cache is in this state. The set of all cache
states is denoted by CS. Note that we model a distribution by the function N — R which
assigns each possible number of cache hits a probability. We start with an initially empty
cache, i.e. CS ;,;; = (0,1, D) with

lifx=0
D(x) = {0 otherwise

Hence, our initial state space is the set containing the initially empty cache: {CS ;,;;}.
The update function u describes the cache update when accessing element e for a single
cache state as follows:
u: CSXE — 2%

{(E, P,D)} ifeeE

miss((E, P,D),e) otherwise (26)

u((E,P,D),e) :{

If the accessed element e is a cache hit, then the cache state remains unchanged, and the
output is the set containing the input cache state. However, if the accessed element e is a
cache miss, then the update function generates a set of possible cache states as follows:

miss((E,P,D),e) ={(E\ e Uf{e},P-1/N,D")|e’ € E}
U{(EU{e},P-(N - |E])/N,D")|if |[E| < N} (27)

20 Sebastian Altmeyer et al.

with D’(0) = 0 and Vx > 0: D’(x) = D(x — 1).

Each element ¢’ from the set £ may be evicted from the cache with probability 1/N and
the element e, which is now cached, is added to E. In the case that the set E is smaller than
the associativity of the cache, an empty cache line or a cache line with unknown content will
be evicted with probability (N — |E|)/N. In either case, the miss-distribution will be shifted
by one to account for the additional cache miss.

In order to reduce the state space, we merge two cache states if they contain exactly the
same memory blocks. We thus define the merge operation & for cache states as follows:

W: CS xCS — 2°°

(E1, P1,D1) W (Ey, Py, D)) =

{{(EI,PI + Py, (55 - D) & (55 - D)} if Ey = E;

. (28)
{(E\, P1, D), (E2, P2, D)} otherwise

where @ denotes the summation of two distributions (i.e. D; ® D; := Ax.D1(x) + D>(x)) and
p - D denotes the multiplication of each element in D by p (i.e. p - D := Ax.p - D(x)). This
step is necessary to weight each distribution by its probability.
We can lift the update function u from single cache states to a set of cache states as
follows:
U:2% xE — 2%

U(S,e) = L—lj {u(CS,e)ICS €5} (29)

By construction of the update function, the sum of the probabilities of the indiviual cache
states (E, P, D) within the set of cache states S holds:

Pi=1 (30)
(E;,P;,D;)eS

The set of cache states S ,.; generated by a trace T = [ey, ..., ¢,] executed on the initial
cache state CS j,;; is thus given by the composition of U:

Sres 1= U(-~-(U(U(Csinit’el)’eZ)s--wen) 3D

The final distribution of all cache states in S ., is then given by the summation of all indi-
vidual distributions of each cache state weighted by their probabilities:

Dyes = @D - PIE,P.D) € 5 1.,) (32)

See Figure 1 for an example of the exhaustive enumeration of all cache states, for a cache
with associativity 4. Here, we assume an initially empty cache. The access to block a leads
with probability 1 to the next cache state (where only a is cached). The next access to b
evicts memory block a with probability 1/4 or is stored in a different cache line to a with
probability 3/4, and so on.

The presented method computes all possible behaviours of the random cache with the
associated probabilities. It is thus correct by construction as it simply enumerates all states
exhaustively.

Unfortunately, a complete enumeration of all possible cache states is computationally
intractable. Due to the behaviour of the random replacement policy, each element that was
cached once, may still be cached. Thus the number of different cache states grows exponen-
tially.

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 21

(©0.1,D)
a !
({a}, 1,D)
4" Y
b ks “
(a,b},3/4,D) ({b},1/4, D)
X 34 306 1/16
({a,b},15/16, D) ({a}, 1/16,D)
. 15/32.-7 15/64° 15/64~ . _ /364~ 1/64

1 hY Ny A

(a,b,c},15/32,D) ({b,c},15/64,D) ({a,c}, 18/64,D) ({c}j 1/64,D)

Fig. 1 The first four steps of exhaustive enumeration of all cache states for the access sequence
a,b,a,c,d,b,c, f,a,c The dotted arrows show the evolution of the different cache states, annotated with
the corresponding probability.

7 Combined Approach

So far, we presented a precise but computationally intractable approach, and two imprecise
yet efficient approaches based on cache contention and cache simulation.

In this section, we show how these approaches can be combined to form a new approach
with scalable precision. The idea is to use the precise approach for a small subset of relevant
memory blocks, while using one of the imprecise approaches for the remaining blocks. So,
instead of enumerating all possible cache states, we abstract the set of cache states and focus
only on the m most important memory blocks, where m can be chosen to control both the
precision and the runtime of the analysis. In this way, we effectively reduce the complexity
of the precise component of the analysis for a trace with / distinct elements from 2/ to 2™
(typically with m < [).

7.1 Heuristic to select relevant Memory Blocks

We use the number of occurrences of a memory block e within a trace T as a simple heuristic
indicating relevance. We therefore order the memory blocks within a trace 7' by the number
of occurrences and select the m blocks with the highest frequency. Let R C E be the set of
these m blocks. For the access sequence

a,b,a,c,d,b,c, f,a,c

and m = 2, R = {a, c}. Thus, the state exploration conceptually computes a precise probabil-
ity distribution for the sequence

a,-a,c, ¢ - a,C

while the imprecise calculation is used to compute the probability of cache hits for the
sequence
~b, ., d.b, f, -

22 Sebastian Altmeyer et al.

7.2 Update Function for the Combined Approach

We have to change the update function of the precise analysis (see (26)) such that only el-
ements from the set R are represented explicitly, i.e. Y(E, P,D) € CS: E C R. Each access
to a memory block e which is not contained in the set R will be considered a cache miss;
however, e will not be added to the set E (to ensure that £ C R). Further, as we use (18) to
compute the probability of a hit for access e, and include the distribution for e via convolu-
tion, we do not increase the miss counts of the cache states in respect of e, i.e., we do not
update the miss-distributions D of a cache state (E, P, D).

u: CSXE — 2%

{(E, P,D)} ifee E
u((E,P,D),e) = s miss(E,P,D),e) ife¢ EANe€R (33)
miss’((E,P,D)) ifeé¢R

with

miss'(E.P,D)) = {(E\ ¢,P-1/N,D)e’ € E}
U{(E,P- (N - |ED/N,D)Iif |[E| <N} (34)
The function miss’ computes the resulting set of cache states in the case of a miss, without

inserting the accessed element e as it is not an element of R. Figure 2 shows the reduced
cache state exploration on the example sequence with R = {a, c}.

@,1,D)
1
a l
(fa}, 1, D)
: w T
({a},3/4, D) ©,1/4,D)
. \3\/4\1J L//,/f/4
({a}, 1,D)
c §//4,/ 1/2»\\\
(fa, c1,3/4, D) ({c},1/4,D)
. 3167 38\ l6~. 316/ 1/16+.

\ N /

({a},3/16i D) ({a,c},3/8,D) (Ec}, 3/L8,D) ((Z),N1/16, D)

Fig. 2 The first five steps of the reduced cache state enumeration for the access sequence
a,b,a,c,d,b,c, f,a,c with R = {a,c}. The dotted arrows show the evolution of the different cache states,
annotated with the corresponding probability. The access to memory block b is considered as cache miss, but
this block is not added to the cache states, since b ¢ R.

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 23

We also have to update the definition of cache contention (19) to consider all memory
blocks of R as potentially cached:

con:ExXxT—->N

0o rd(e;, [er,...,e11]) = o

con(es,ler, €2, 1) = {'conS' + |R| otherwise (35)

with
con$ = le; € ler,....epi1| (1= rd(erler.....e1]) < i A Pe[") # 0 A i € R)

U {e, €ler,...,e1] |(l— rd(e, ler,...,e_1]) =rAhe ¢ R}

And also the cache simulation (24) accordingly:

S ife; €8]
, §7 U {e;} if S|+ |RI <N
Siv1 = (36)
S\ |argmax (rd~ (e, T,0)) | U {e;} if S]]+ |R| = N
e€S’

Furthermore, we must assume that each relevant memory block e¢; € R constantly uses a
cache location and thus add the number of relevant blocks to the stack distance A:

4 =4+|R| 37)

Table 4 presents the probability PV for the elements of the example sequence, assuming
N =4.

b, d b _f __
rd|_co _ _oc0o 3 _oco __
con|_oco _ _o0 2 _ oo _ _
P00 - _0(CGY -0 __
PCI_0__0@P_0.

Table 4 Probabilities PV for the access sequence a,b, a,c,d,b,c, f,a,c and R = {a, c}, with reuse distances
(rd) and cache contentions (con).

In the last step, we convolve the resulting distributions of both approaches to obtain the
final distribution of cache misses.

7.3 Alternative Heuristic

Instead of defining one fixed set of relevant blocks for the complete trace, we can define
the set of relevant blocks depending on the position within the trace. We first determine all
reused memory blocks in the complete trace, and the points at which they are last used.
Then starting from the beginning of the trace, we greedily collect the reused memory blocks
until we have a set of ¢ relevant blocks. When we encounter the last reuse of a block, that
block is removed from the set of relevant blocks. Further, whenever the set of relevant blocks

24 Sebastian Altmeyer et al.

contains fewer than g relevant blocks, the next reused block encountered is added to the set.
This heuristic accounts for memory blocks with a high locality that occur frequently in one
sub-trace and infrequently in others. By construction, at most ¢ memory blocks are relevant
at any point in the trace, limiting the number of different cache states to 2. (We note that the
number of relevant blocks is often significantly lower than g for some sub-traces). Table 5
shows the set of relevant memory blocks on an example trace for the trace-based and the
occurrence-based heuristic.

|a, b, a b, a ¢ d b f ¢ d_ f
reused?| y y y y n y y n y n n n
H™e | {a} {a,b} {a,b} {a,b} (b} {(b,c}{b.c} {c} {c.f} {f} {f} O
HO |{a,b} {a, b} {a, b} {a,b) {a,b} {a,b} {a, b} {a,b} {a,b} {a, b} {a, b} {a, b}

Table 5 Sets of relevant memory blocks on trace a, b, a, b, a, c,d, bf, c,d, f for the occurrence-based (HOCC)

and trace-based heuristic (H173®). The first line of the table indicates whether or not a memory block will be
reused.

We note that the set of relevant memory blocks is not fixed in the case of the alternative
heuristic, but depends on the position in the trace. We therefore replace the global set R with
the local set of relevant memory blocks per access in (35) as follows: in the second line we
have e; ¢ R; and in the third line e, ¢ R,, while still adding the maximum number of relevant
memory blocks |R|

8 Evaluation

This section presents an evaluation of the precision and performance of the analyses for
random replacement caches described in this paper based on two different sets of bench-
marks. We also made comparisons against analysis for an LRU cache of the same associa-
tivity, using the stack distance’. The first set of benchmarks are those used in a previous
publication (Davis et al, 2013) and are based on hand-crafted access sequences, which are
limited in size. The second set of traces were automatically generated using the gem5 sim-
ulator (Binkert et al, 2011) and are significantly larger.

8.1 Milardalen benchmarks

We first present results for all four Mélardalen benchmarks considered by Davis et al (2013):
binary search, fibonacci calculation, faculty computation and insertion sort. The execution
traces for these benchmarks were manually extracted using the libFirm compiler frame-
work* and only contain memory blocks compiled from the source files (i.e. not including
any library or operating system calls).

Our experiments assumed a fully-associative instruction-only cache with a block-size of
8 and an associativity of (i) 8 and (ii) 16. (Note, we selected a small block size to compensate

3 Each memory access with a stack distance larger than or equal to the associativity results in a cache miss
in the case of an LRU cache, while each memory access with a smaller stack distance results in a cache hit.

4 http://pp.ipd.kit.edu/firm/Index

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 25

0.001

0.0001

probability

1e-05

1e-06

1e-07

1e-08

1e-09

1-CDF (#misses)

reuse distance

stack distance —w—

cache contention —A—
impr. cache contention —¥—
state enum.(4) —>—

state enum.(8) —¥—

state enum.(12) —5—

LRU
simulation

86 88 90 92 9 (3 98 100
misses

Fig. 3 Binary search. 132 memory accesses in total, 25 distinct memory blocks. (Associativity = 8)

0.001

0.0001

probability

1e-05

1e-06

1e-07

1e-08

1e-09
55

1-CDF (#misses)

reuse distance
stack distance —w—
cache contention —A—
impr. cache contention —¥—

state enum.(12) —E5—
LRU —@—

U
simulation

misses

Fig. 4 Binary search. 132 memory accesses in total, 25 distinct memory blocks. (Associativity = 16)

0.001

0.0001

probability

1e-05

1e-06

1e-07

1e-08

1e-09

1-COF (#misses)

62 64 66 68 70 72 74
misses

Fig. 5 Faculty computation. 99 memory accesses in total, 25 distinct memory blocks. (Associativity = 8)

1-CDF (#misses)

1
01t
001 f
0001 f
>
£ o.0001 |
3
2
2
2 1eos| y
5 reuse distance
stack distance —5—
1e-06 | cache contention —A—
impr. cache contention —¥- \
state enum.(4) —> \
1e07 | state enum.(8) —¥— \|
state enum.(12) —&—
RU —@
1e-08 | simulation
1e.09)
45 50 55 60 65 70 75

Fig. 6 Faculty computation

misses

. 99 memory accesses in total, 25 distinct memory blocks. (Associativity = 16)

26

Sebastian Altmeyer et al.

probability

Fig. 7 Insertion sort.

probability

Fig. 8 Insertion sort.

probability

1-CDF (#misses)

1f RIS I
o1f
001 F XV
0.001 | \
0.0001 [reuse distance K
stack distance —v—
\ cache contention —&—
1e05 | i \impr. cache contention —¥—
state enum.(4) —><— X
state enum.(8) —¥—
1e-06 | state enum.(12) —5— % \
RU —@— k \
teo7 [simulation \
X Y
1e-08 \‘
‘ |
1e-09 L L L L L L L
50 100 150 200 250 300 350 400 450
misses

500

707 memory accesses in total, 21 distinct memory blocks. (Associativity = 8)

1-CDF (#misses)

1p ' '
01f
0.01
0.001
0.0001
1e05 p reuse distance \
stack distance —— V
1e-06 |- cache contention —A— X
impr. cache contention —¥— \
state enum.(4) —>— ¥
1007 b state enum.(8) —¥— (
state enum.(12) —5— \
LRU —®—
1e-08 simulation
X \
1e09 Al L\ ,
o 50 100 150 200 250 300
misses

707 memory accesses in total, 21 distinct memory blocks. (Associativity = 16)

1-COF (#misses)

1 o
01f
0.01
0.001
0.0001 F
le-05 |
reuse distance
106 | stack distance —5—
cache contention —&—
impr. cache contention —¥—
1e-07 ¢ state enum.(4) —>
state enum.(8) —¥—
state enum.(12) —5—
1e-08 | e
simulation
1e:09
100 150

misses

Fig. 9 Fibonacci calculation. 340 memory accesses in total, 15 distinct memory blocks. (Associativity = 8)

0.

probability

1e-08

1e-09 L L L
0

1-COF (#misses)

0.001 |

.0001

1e-05

1e-06 |-

1e-07

reube distance'
stack distance ——

100 120
misses

140

180

200

220

Fig. 10 Fibonacci calculation. 340 memory accesses in total, 15 distinct memory blocks. (Associativity = 16)

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 27

for the limited size of the available benchmarks). The results are shown in Figures 3 to 10.
The y-axis denotes the absolute number of misses and the x-axis the exceedance probability
To derive an approximation to the actual performance of the cache, and thus a baseline for
our experiments, we performed 10° simulations of the cache behaviour for each benchmark
(red line). The other lines on the graphs are the imprecise approach using only the reuse
distance (3) (light blue line), only the stack distance (13) (orange line), the cache-contention
approach (18) (black line), the improved cache-contention (25) (grey line), and the combined
approach (with cache simulation (36)) using 4, 8 and 12 relevant memory blocks (green, dark
blue and pink lines respectively). The vertical green line depicts the performance of the LRU
cache.

When the number of pairwise distinct memory blocks exceeds the associativity of the
cache as is the case with binary search (see Figure 3 and 4) and faculty computation (see
Figure 5 and 6), then the cache-contention approaches significantly improve upon the im-
precise approaches that use only the reuse distance or only the stack distance. The improved
cache contention does not improve upon the basic cache contention and the stack distance
approach does not improve upon the reuse distance. Note for these benchmarks, the latter
approaches predict hardly any cache hits.

For the other two benchmarks: insertion sort (see Figure 7 and 8) and fibonacci calcula-
tion (see Figure 9 and 10), the number of distinct memory blocks accessed within a loop is
smaller than 16. In these case, the cache-contention approaches result in no improvement or
only a slight improvement over the reuse distance approach. The combined approach; how-
ever, with 8 relevant memory blocks reduces the over-approximation by 40 — 60%, and with
12 relevant memory blocks results in exact or nearly exact results. The difference between
the two cache contention approaches is limited in these cases, while the approach using the
stack distance performs considerably worse than the approach using the reuse distance.

The relative performance of the LRU replacement policy in these experiments strongly
depends on the number of distinct memory blocks and the cache associativity. If the num-
ber of distinct memory blocks is below the associativity, LRU outperforms random cache
replacement (see Figure 10), whereas random replacement outperforms LRU if the number
of distinct memory blocks exceeds the associativity (see Figure 9).

Figure 11 shows how the runtime of the combined analysis varies with the number of
relevant cache blocks. (Note the logarithmic scale on the graph). The experiments were

Runtime of the Analysis

Time (in minutes)

fibcall
bs —¥—
fac ——
insertsort ——

I I I I |
2 4 6 8 10 12 14 16 18
relevant blocks

Fig. 11 Runtime evaluation for the benchmarks fibonacci calculation, insertion sort, faculty computation and
binary search

28 Sebastian Altmeyer et al.

run on a 4-core 64-bit 1.2GHz CPU. The graph shows that the runtime of the analysis is
exponential in the number of relevant blocks. This indicates that a complete analysis, i.e.
where all blocks are considered relevant, is computationally infeasible: Even for the small
number of distinct memory blocks and the short access traces, a precise analysis for the
binary search and faculty computation benchmarks requires several hours of computation,
and so an approximation is necessary.

Observe that the runtime of the combined analysis for the insertion sort benchmark
remains constant for 14 or more relevant blocks as the total number of reused memory
blocks is 13 in this case. Hence, increasing the number of relevant blocks does not affect the
precision or the runtime of the analysis. The same holds for the fibonacci benchmark and
13 blocks. Here, the flattening of the runtime between 8 and 10 relevant blocks is caused
by the specific structure of this benchmark. The 9th and 10th most-frequent used memory
blocks only occur in the final tenth of the access trace, which means that the exponential
growth of the number of states does not fully affect the runtime when increasing the number
of relevant blocks from 8§ to 10.

8.2 Precision and Performance on Larger Traces

In addition to the benchmarks used by Davis et al (2013), we generated cache access traces
for the four largest Milardalen benchmarks (Gustafsson et al, 2010) using the gem5 simu-
lator (Binkert et al, 2011) assuming an ARM?7 processor’. Even though the benchmarks are
not single-path, the C-Code is provided with example inputs, which results in well-defined
traces and guarantee one single execution path. In contrast to the other benchmarks, the
gemS-traces contain library and operating-system calls and are thus significantly larger. We
assumed the same cache configuration: a fully-associative instruction-only cache with an
associativity of (i) 8 and (ii) 16 and a block-size of 8. The results are shown in Figures 13
to 19. For these larger traces, we used the alternative heuristic to select the relevant memory
blocks as described in Section 7.3.

In this set of experiments, the cache contention approaches always improved upon the
approaches that use only the reuse distance or only the stack distance: in the case of the
finite impulse filter benchmark (see Figure 13), the over-approximation compared to using
reuse distance only is reduced by around 3%, whereas in the case of the petri-net simulation
(see Figure 19) the improvement is around 21%. The approach using the stack distance
improves upon the approach using the reuse distance in all examples except for the petri-net
simulation (see Figure 17), where the situation is reversed. The evaluation clearly shows that
both approaches are incomparable.

In the case of an associativity of 16, the combined approach with 12 relevant blocks
provides highly accurate results, with an over-approximation of at most 6% (Figure 15) and
a near-optimal estimate for the petri-net simulation (see Figure 17). Similarly, in the case
of an associativity of 8, using 8 or 12 relevant blocks also provides accurate results (see
Figures 14 and 16). We note however, that in some cases, using a number of relevant blocks
that is equal to or higher than the associativity could be detrimental to the precision of the
results, this is because when the number of relevant blocks is equal to associativity, the
imprecise approach is unable to predict any cache-hits, as it has to assume that associativity-
many blocks are already cached.

5 http://www.arm.com/products/processors/classic/arm?7

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 29

1-CDF (#misses)

1f !
o1f
001 F
0.001 |
> X
£ oooo1 Y
2 X
S teos|
& reuse distance %
stack distance —v— ¥
1e-06 | cache contention —A— X
impr. cache contention —¥— ¥
state enum.(4) —>— L X
1e07 | state enum.(8) —¥— |
state enum.(12) —5— X
LRU \
1e-08 | simulation X
Le-09 . . . X .
800 1000 1200 1400 1600

misses

Fig. 12 Finite impulse response filter (fir). 3419 memory accesses in total, 393 distinct memory blocks.

(Associativity = 8)

1-CDF (#misses)

1F ' ' '
01|
001k
0.001 | X(
2 oo001 [w&(
3
H X
g teos| (
1e06 | |, cache contention —A— 8
imipr. cache contention —¥— {
state enum.(4) —<— v
1e07 [X state enum.(8) —k— \
state enum.(12) —5— v
X LRU —&— \
1e-08 simulation v
; X \
1e-09 . . . \ . . L .
700 800 900 1000 1100 1200 1300 1400 1500

misses

Fig. 13 Finite impulse response filter (fir). 3419 memory accesses in total, 393 distinct memory blocks.

(Associativity = 16)

1-CDF (#misses)

0.001 |

0.0001 £

probability

1e05 reuse distance
stack distance —z—
1e-06 - cache contention —A—
impr. cache contention —¥—

1e-07 state enum.(8) —¥—
state enum.(12) —5—
.

1e-08 simulation

1e-09 . . .
700 750 800 850 900 950 1000

misses

1050 1100

Fig. 14 Discrete-cosine transformation on a 8x8 pixel block (jfdctint). 2185 memory accesses in total, 347

distinct memory blocks. (Associativity = 8)

1-CDF (#misses)

01f
0.01
0.001
>
£ 0.0001 |
H
8 le-05 |
5 € reuse distance

1606 | cache contention
impr. cache contention
state enum.(4) —

1e07 | state enum.(8) —¥—
state enum.(12) —5—
RU —@—

1e-08 simulation

1e-09 - . - >
550 600 650 700 750

misses

950

Fig. 15 Discrete-cosine transformation on a 8x8 pixel block (jfdctint). 2185 memory accesses in total, 347

distinct memory blocks. (Associativity = 16)

30 Sebastian Altmeyer et al.

1-CDF (#misses)

0.001 |

0.0001 |

probability

1e-05 b

reuse distance
1e-06 stack distance —w—

1e07 | state enum.(4) —>—

state enum.(8) —k—
Le08 state enum.(12) —5—
€08 1 LRU —&—

simulation \
1e-09 L L L L L L L L i s
1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 1280
misses

Fig. 16 Automatically generated code (statemate). 1831 memory accesses in total, 394 distinct memory
blocks. (Associativity = 8)

1-CDF (#misses)

1 : % ' '
01|
001k
0.001 |
>
2 oo001 [Xy
3 \
Fi
g eos|
5 reuse distance (
stack distance —w— \
1e06 [cache contention —A— Y
impr. cache contention —¥— \
state enum.(4) —x— \
1e07 [state enum.(8) —¥— ¥
state enum.(12) —5— \
RU 9 \
1e-08 | simulation v
1e-0s \ .
900 950 1000 1050 1100 1150 1200

misses

Fig. 17 Automatically generated code (statemate). 1831 memory accesses in total, 394 distinct memory
blocks. (Associativity = 16)

1-CDF (#misses)

I ' &mﬁg\; ' '
01k 4
001} ‘v b
Vv Y
0.001 F) v 3 X’
> v 1%
2 o000 [Y
£ A
: 11
g 1e05 | reuse distance * A
stack distance S—
1606 [cache contention —A— vy 4
impr. cache contention ~¥— ! A
state enum.(4) < Y {
1e-07 ¢ state enum.(8) —¥— v A Q{
state enum.(12) —¥&—
RU & v A é{
1e-08 simulation —= ‘* i
1e:09 L . . L S Lt X '
1600 1800 2200 2400 2600 2800 3000 3200
misses

Fig. 18 Simulation of an extended Petri Net (nsichneu). 5202 memory accesses in total, 454 distinct memory
blocks. (Associativity = 8)

1-CDF (#misses)

1p ' ' ' | ' '
01|
001
0.001 |
>
£ o000 |
H
2 teosh
g 1 reuse distance LY
stack distance —v— v
1006 [¥ cache contention —A— Al
dnor. cache contention —¥— A
state enum.(4) —>— Y
1007 [state enum.(8) —¥— AL
state enum.(12) —=— LY
LRU —&— ¥
1e:08 | simulation Al
1009 . . L. . . AL,) ,
800 1000 1200 1400 1600 1800 2000 2200 2400 2600
misses

Fig. 19 Simulation of an extended Petri Net (nsichneu). 5202 memory accesses in total, 454 distinct memory
blocks. (Associativity = 16)

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 31

Runtime of the Analysis

100

1g

Time (in minutes)

fir
jfdctint —¥—
0.1 statemate —+—
nsichne‘u —=—

I I I I I I |
2 4 6 8 10 12 14 16 18
relevant blocks

Fig. 20 Runtime evaluation for the benchmarks fir, jfdctint, statemate and nsichneu

By construction, the combined approach is very precise if the number of relevant mem-
ory blocks is close to or larger than the number of distinct memory blocks (see Figures 3
to 10). But even the if the number of distinct memory blocks strongly exceeds the number of
relevant blocks, the combined approach is typically able to provide precise results. See for
instance the evaluation of the petri-net simulation (Figure 19). Despite a total of 454 distinct
memory blocks, only a subset of these blocks are simultaneously in the working set of the
task.

In the case of the more complex benchmarks, the LRU replacement policy outperforms
random replacement. Due to the complex structure of the larger traces, there are signifi-
cantly fewer sub-traces in which the number of distinct memory blocks accessed within a
loop marginally exceeds the cache associativity and hence, no cases overall where random
replacement outperforms LRU.

Figure 20 shows the runtime of the combined analysis for different numbers of relevant
memory blocks for each of the second set of benchmark traces. We note again the expo-
nential growth in runtime with an increasing number of relevant blocks; however, here the
runtime of the analysis is significantly higher due to the larger traces. The alternative heuris-
tic conceptually splits the traces into sub-traces enabling different sets of relevant blocks to
be defined per sub-trace, while damping the exponential growth in runtime. Since the num-
ber of pairwise distinct memory blocks significantly exceeds the number of relevant blocks,
we could not reach any saturation, in terms of relevant blocks, for any of these benchmarks
within a reasonable time (unlike the insertion sort and fibonacci benchmarks in Figure 11).

Figure 21 shows the runtime of the combined approach with 4, 8 and 12 relevant blocks
and the runtime of convolution using the reuse-distance for randomly generated traces of
different length. Each trace consists of random accesses to 32 distinct memory blocks and
the associativity is 16. The number of relevant blocks is the dominant factor, with the run-
time increasing exponentially with an increase in this parameter. However, conversely our
experiments on the benchmarks have shown that limiting the number of relevant blocks to 8
or 12 provides effective performance while limiting the growth in the runtime of the analy-
sis. The length of the trace has a slightly super-linear influence on the runtime caused by two
different factors: the convolution operation is quadratic in the number of accesses, while the
exhaustive state-space exploration grows linearly. We note that the quadratic growth in run-
time due to the convolution operation can be addressed via the use of re-sampling techniques
(Maxim et al, 2012) enabling the analysis of much larger traces.

32

Sebastian Altmeyer et al.

Time (in minutes)

100

0.1

0.01

Runtime of the Analysis

state enum.(12) —5—
state enum.(8) —¥—
state enum.(4) —>¢—

reuse-distance

0 5000

10000 15000 20000 25000 30000 35000 40000 45000 50000
Trace length (#number of accesses)

Fig. 21 Runtime evaluation depending on the length of the trace.

probability

probability

probability

0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08
le-09

probability

Associativity 8

1000

1500 2000

Associativity 16

2000 2500 3000

L L

|

2000 2500 3000

Associativity 64

reuse distance

stack distance

cache contention

impr. cache contention
state enum.(4)

state enum.(8)

state enum.(12)

LRU

| ek abs

))) simulation

1000

1500 2000 2500 3000
misses

Fig. 22 Influence of the associativity on the precision of the various analyses.

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches

33

probability

probability

probability

probability

probability

block-size 4
1 |
0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08
le-09 L L L v L
0 500 1000 1500 2000 2500 3000 3500
block-size 8
1 I
0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08
1e,09 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
block-size 16
1 I
0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08
1E’09 1 1 1 1
0 1000 1500 2000 2500 3000 3500
block-size 32
|
L 1 1 1 1 1
1000 1500 2000 2500 3000 3500
block-size 64
‘ ‘ reuse distance ‘
ckastanee X
impr. cache contention —y—
state enum.(4) —¢—
state enum.(8) —¥—
state enum.(12) -
U -0
simulation ——
v “‘ 1 1 1 1 1
1000 1500 2000 2500 3000 3500
misses

Fig. 23 Influence of the block-size on the precision of the various analyses.

34 Sebastian Altmeyer et al.

Figures 22 and 23 show how the precision of the analyses depend on the associativity of
the cache and on the block-size . In both cases, we have used the largest of our benchmarks,
i.e, the simulation of an extended Petri Net (nsichneu). With increasing associativity, the
precision of the convolution-based approaches (using re-use distance, stack distance and
cache contention) increases as the lower bounds on the cache-hit probabilities are less likely
to be zero. By contrast, the precision of the combined approaches using exhaustive state
enumeration decreases slightly with increasing associativity. This is because the number
of relevant blocks remains constant, and hence a smaller share of the complete cache is
modelled explicitly. The block-size mostly influences the overall length of the trace and
affects all approaches in a similar fashion.

The evaluation indicates that the precision is very high if the number of relevant blocks
is close to or larger than the associativity of the cache. We note that in practice, this will
often be the case, since the associativity is typically lower than 16 for most cache designs.

8.3 Comparison with LRU Caches — Synthetic Benchmarks

As discussed in Section 1.1 Reineke (2014) compared simple probabilistic analyses
(Davis et al, 2013) for evict-on-miss random replacement (referred to by Reineke as Ran-
dom) with analysis for LRU replacement. Reineke makes a number of interesting observa-
tions and conclusions as follows:

Observation R. 1. With the same information about an access sequence, i.e. (only) upper
bounds on the reuse distances of accesses, the hit probabilities for LRU are always greater
than or equal to the hit probabilities for Random.

Observation R.2. In case of LRU, and in contrast to Random, current cache analyses can
profit from bounding stack distances, which can be arbitrarily lower than reuse distances.

Conclusion R.1. With simple, state-of-the-art analysis methods, LRU replacement is
preferable over Random replacement in static (probabilistic) timing analysis.

Reineke (2014) also describes so called “’payroll sequences” which are loops where the
number of accesses exceeds the cache associativity. For such sequences Reineke notes that
LRU incurs only cache misses, and so will be outperformed by Random with a very high
probability; however to profit from Random replacement in such cases, more sophisticated
analysis techniques are required.

We agree with these observations and conclusions. Regarding Observation R.2 in this
paper we have described new analysis for random replacement caches based on stack dis-
tance. We note that the following modification to observation R.1 applies to that analysis.

Observation R.1b. With the same information about an access sequence, i.e. (only) upper
bounds on the stack distances of accesses, the hit probabilities for LRU are always greater
than or equal to the hit probabilities for Random.

The validity of Observation R.1 and Observation R.1b are demonstrated by our previous
results where the number of misses computed for random replacement using the reuse dis-
tance and stack distance analyses are never below the number of misses obtained assuming
the LRU replacement policy.

In this paper, we also derived combined analysis techniques that do not dependent en-
tirely on convolving probability distributions for individual accesses. For these analyses, our
experiments show that in the case of benchmarks that contain accesses with stack distances
greater than the associativity of the cache, then random replacement can sometimes provably
exceed the performance of LRU replacement. We note that there are also many cases when

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches

4 distinct memory blocks

probability

1 1 1 1]
200 400 600 800 1000

8 distinct memory blocks

0.01
0.001
0.0001
le-05
le-06
le-07
le-08
le-09

0. 01
0.001
0.0001
le-05
le-06
le-07
le-08
le- 09
0

probability

(=)

400 600 800 1000

probability

1000

0. 01
0.001
0.0001
le-05
le-06
le-07
le-08
le-09

probability

|

200 400 600 800 1000

64 distinct memory blocks

I I
0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08
le-09

reuse distance
stack distance ——
cache contention —A—
impr. cache contention —y—
state enum.(4) —¢—
state enum.(8) —¥—
state enum.(12) =
LRU —&-
simulation ——))

200 400 600
misses

probability
-
O [T T T I

1000

Fig. 24 Influence of the number of distinct blocks on the precision of the various analyses.

36

Sebastian Altmeyer et al.

probability

probability

probability

probability

probability

loop body with 4 blocks

200 300 400 500

0.01
0.001
0.0001
le-05
le-06
le-07
le-08

600

le-09

400 500

loop body with 16 blocks

600

0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08

le-09 L L

0

100 200 300 400 500

loop body with 32 blocks

1

le-06
le-07
le-08

600

1 I
0.1
0.01
0.001
0.0001
le-05
le-09
0

1
300 400 500

N
Sk
o

100

loop body with 64 blocks

I I
0.1
0.01
0.001
0.0001
le-05
le-06
le-07
le-08

reuse distance

stack distance —7—

cache contention —A—
impr. cache contention —y—
state enum.(4) —¢—

state enum.(8) —¥—

state enum.(12) =

-@-

simulation
L L L 1

600

1le-09

-
O [T

100 2

o

0 300 400 500

misses

Fig. 25 Influence of the size of the loop body on the precision of the various analyses.

600

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 37

Associativity 8

30 -

20

15 -

10 -

of blocks within loop body

0 50 100 150 200 250 300 350

Associativity 16

25 -

20 -

reuse distance
stack distance ——
cache contention —A—
impr. cache contention —%—
state enum.(4)
state enum.(8) —¥—
state enum.(12) —H—
LRU
simula‘tion

15 |

10

of blocks within loop body

0 1 1 1 1 1
0 50 100 150 200 250 300 350

Fig. 26 Number of misses with exceedance probability 10~ with varying loop-body size. 10 iterations of
the loop.

LRU outperforms random replacement, hence the two policies and their more sophisticated
analyses are incomparable.

In this section, we specifically investigate the different performance of LRU and random
replacement policies using synthetic benchmarks.

The first synthetic benchmark Random Sequence aims to be representative of straight-
line code. It consists of traces of 1000 random accesses to x distinct memory blocks where
we have varied x from 4 to 64. The results are shown in Figure 24. Note, we assume a
cache associativity of 16. For all values of x, LRU outperforms random replacement on the
Random Sequence benchmark, with the relative performance difference between the two
remaining largely constant.

The second synthetic benchmark LoopK was used to evaluate the influence of the size
of a loop body on the relative performance of LRU and random replacement. To this end,
we generated 5 traces with 512 accesses each. These 512 accesses are within a loop body of
size 4, 8, 16, 32 and 64 respectively. The number of loop iterations was varied to keep the
total number of accesses constant (i.e. the loop with size 4 was repeated 128 times, while
the loop with size 64 was repeated only 8 times). We again assumed an associativity of 16.
The results are shown in Figure 25. On the LoopK benchmark, LRU outperforms random
replacement when the size of the loop body is less than or equal to the associativity, whereas
random replacement outperforms LRU as soon as the size of the loop body exceeds the
associativity.

We also modified the LoopK benchmark to iterate a constant number of times (10) and
presented the results in a different way in Figure 26. This figure shows execution time esti-

38

Sebastian Altmeyer et al.

mates with an exceedance probability of 10~ depending on the loop body size assuming an
associativity of 8 and 16. Here, we can see a smooth progression in the performance of the
random replacement policy which is in stark contrast the LRU replacement policy, where
the performance rapidly degrades when the loop body size exceeds the associativity.

9 Conclusion and Future Work

In this paper, we investigated the correctness, optimality and precision of Static Probabilis-
tic Timing Analysis (SPTA) for systems that use a cache with an evict-on-miss random
replacement policy.

The main contributions of this paper are:

. Showing that the formula for the probability of a cache hit previously published in

DATE (Kosmidis et al, 2013) is not sound for use in SPTA, since it can produce re-
sults in the form of probabilistic Worst-Case Execution Time (pWCET) distributions
that are optimistic by orders of magnitude and thus unsafe.

. Proving the optimality of the probability function given by Davis et al (2013) with re-

spect to the limited information (reuse distance and associativity) that it uses.

. Deriving an alternative probability function based on the stack distance (the number of

pair-wise distinct memory blocks accessed within the reuse distance). This approach is
incomparable to that of Davis et al (2013).

. Providing two new cache contention methods; a basic method, and an improved one

based on a conceptual cache simulation, that can be used to improve upon the pre-
vious analyses that use reuse distance and stack distance. The basic cache contention
presented in this paper corrects an omission in the formulation given by Altmeyer and
Davis (2014). Both approaches are proven correct by showing that there exists a feasi-
ble evolution of the cache state that supports cache hits for all accesses where the cache
contention is less than the associativity.

. Introducing an approach with scalable precision, combining precise analysis for fre-

quently used memory blocks with imprecise analysis for those memory blocks that are
used less often.

. An evaluation on a set of benchmark programs, showing the performance of the different

approaches, and in particular that the scalable approach is highly effective in reducing
pessimism in SPTA without the problems of exponential complexity inherent in an ex-
haustive cache state exploration.

. A comparison between the LRU replacement policy and the Evict-on-Miss random re-

placement policy, showing that when the sophisticated combined analysis for random
replacement (introduced in this paper) is used, the two are incomparable, with random
replacement having provably better hard real-time performance when the number of
distinct memory blocks in a loop exceeds the associativity, and LRU having better per-
formance otherwise.

The SPTA methods described in this paper, including the scalable combined approach,

are extendable to multipath programs. Such extension is the subject of further work by the
authors.

Static Probabilistic Timing Analysis for Real-Time Systems using Random Replacement Caches 39

Acknowledgments

This work was partially funded by COST Action IC1202: Timing Analysis On Code-Level
(TACLe), the UK EPSRC Project MCC (EP/K011626/1), and the EU FP7 Integrated Project
PROXIMA (611085).

References

Abella J, Hardy D, Puaut I, Quinones E, Cazorla F (2014) On the comparison of deterministic and probabilis-
tic WCET estimation techniques. In: Proceedings of the 2014 26th Euromicro Conference on Real-Time
Systems, ECRTS ’14, pp 266-275

Altmeyer S, Davis RI (2014) On the correctness, optimality and precision of static probabilistic timing analy-
sis. In: Proceedings of the Conference on Design, Automation & Test in Europe, DATE ’ 14, pp 26:1-26:6

Bernat G, Colin A, Pettersreal-time SM (2002) WCET analysis of probabilistic hard real-time systems. In:
Proceedings of the 23rd IEEE Real-Time Systems Symposium, RTSS ’02, pp 279-288

Bernat G, Colin A, Petters S (2003) pwcet: A tool for probabilistic worst-case execution time analysis of
real-time systems. Tech. Rep. YCS-353-2003, Department of Computer Science, The University of York

Bernat G, Burns A, Newby M (2005) Probabilistic timing analysis: an approach using copulas. Journal of
Embedded Computing 1(2):179-194

Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR, Krishna T, Sardashti
S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The gemS5 simulator. SIGARCH
Comput Archit News 39(2):1-7

Burns A, Edgar S (2000) Predicting computation time for advanced processor architectures. In: Proceedings
of the 12th Euromicro Conference on Real-time Systems, Euromicro-RTS’00, pp 89-96

Cazorla FJ, Quifiones E, Vardanega T, Cucu L, Triquet B, Bernat G, Berger ED, Abella J, Wartel F, Houston M,
Santinelli L, Kosmidis L, Lo C, Maxim D (2013) Proartis: Probabilistically analyzable real-time systems.
ACM Trans Embedded Comput Syst 12(2s):94

Cucu-Grosjean L (2013) Independence - a misunderstood property of and for probabilistic real-time systems.
In: Audsley N, Baruah S (eds) In Real-Time Systems: the past, the present and the future, pp 29-37

Cucu-Grosjean L, Santinelli L, Houston M, Lo C, Vardanega T, Kosmidis L, Abella J, Mezzetti E, Quiones E,
Cazorla FJ (2012) Measurement-based probabilistic timing analysis for multi-path programs. In: Proceed-
ings of the 2012 24th Euromicro Conference on Real-Time Systems, ECRTS *12, pp 91-101

Davis R (2013) Improvements to static probabilistic timing analysis for systems with random cache replace-
ment policies. In: Real-Time Scheduling Open Problems Seminar (RTSOPS), pp 22-24

Davis R, Santinelli L, Altmeyer S, Maiza C, Cucu-Grosjean L (2013) Analysis of probabilistic cache re-
lated pre-emption delays. In: Proceedings of the 2013 25th Euromicro Conference on Real-Time Systems,
ECRTS ’13, pp 168-179

Edgar S, Burns A (2001) Statistical analysis of WCET for scheduling. In: Proceedings of the 22nd IEEE
Real-Time Systems Symposium, RTSS *01, pp 215-225

Ferdinand C, Martin F, Wilhelm R, Alt M (1999) Cache behavior prediction by abstract interpretation. Science
of Computer Programming 35(2-3):163-189

Griffin D, Burns A (2010) Realism in Statistical Analysis of Worst Case Execution Times. In: 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET’10), pp 49-57

Grund D, Reineke J (2010a) Precise and efficient FIFO-replacement analysis based on static phase detection.
In: Proceedings of the 2010 22nd Euromicro Conference on Real-Time Systems, ECRTS *10, pp 155-164

Grund D, Reineke J (2010b) Toward precise PLRU cache analysis. In: 10th International Workshop on Worst-
Case Execution Time Analysis (WCET’10), pp 28-39

Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Mélardalen WCET benchmarks — past, present and
future. In: 10th International Workshop on Worst-Case Execution Time Analysis (WCET’10), pp 136-146

Hansen J, Hissam S, Moreno GA (2009) Statistical-based wcet estimation and validation. In: 9th International
Workshop on Worst-Case Execution Time Analysis (WCET’09), pp 1-11

Hardy D, Puaut I (2013) Static probabilistic worst case execution time estimation for architectures with faulty
instruction caches. In: Proceedings of the 21st International Conference on Real-Time Networks and Sys-
tems, RTNS *13, pp 35-44

Kosmidis L, Abella J, Quifiones E, Cazorla FJ (2013) A cache design for probabilistically analysable real-
time systems. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’13, pp
513-518

40 Sebastian Altmeyer et al.

Li YT, Malik S (2006) Performance analysis of embedded software using implicit path enumeration. Trans
Comp-Aided Des Integ Cir Sys 16(12):1477-1487

Maxim D, Houston M, Santinelli L, Bernat G, Davis RI, Cucu-Grosjean L (2012) Re-sampling for statistical
timing analysis of real-time systems. In: Proceedings of the 20th International Conference on Real-Time
and Network Systems, RTNS *12, pp 111-120

Quifiones E, Berger ED, Bernat G, Cazorla FJ (2009) Using Randomized Caches in Probabilistic Real-Time
Systems. In: Proceedings of the 2009 21st Euromicro Conference on Real-Time Systems, ECRTS ’09, pp
129-138

Refaat K, Hladik PE (2010) Efficient stochastic analysis of real-time systems via random sampling. In: Pro-
ceedings of the 2010 22nd Euromicro Conference on Real-Time Systems, ECRTS ’10, pp 175-183

Reineke J (2014) Randomized caches considered harmful in hard real-time systems. LITES 1(1):03:1-03:13

Theiling H, Ferdinand C, Wilhelm R (2000) Fast and precise wcet prediction by separated cache and path
analyses. Real-Time Syst 18(2/3):157-179

Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, GBernat, Ferdinand C, RHeckmann,
Mitra T, Mueller F, Puaut I, Puschner P, Staschulat G, Stenstréem P (2008) The worst-case execution time
problem: overview of methods and survey of tools. Trans on Embedded Computing Systems 7(3):36:1—
36:53

Yue L, Bate I, Nolte T, Cucu-Grosjean L (2011) A new way about using statistical analysis of worst-case
execution times. ACM SIGBED Rev 8(3):11-14

Zhou S (2010) An efficient simulation algorithm for cache of random replacement policy. In: the 7th IFIP
international conference on Network and parallel computing (NPC2010), pp 144-154

