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ABSTRACT 
This paper was written to accompany a talk at the ETR 
Summer School in Toulouse 2013. It provides a background 
and primer to scheduling and schedulability analysis for hard 
real-time single processor systems. The paper focuses on the 
two main scheduling algorithms used: Fixed Priority and 
Earliest Deadline First. The paper has two broad aims: Firstly 
to provide a guide to the fundamental results for these real-
time scheduling algorithms. Secondly to provide a brief review 
of extensions aimed at (i) limiting the effects and overheads of 
pre-emption and (ii) accounting for the effects of pre-
emptions; specifically cache related pre-emption delays. The 
paper also briefly looks back at success stories in real-time 
scheduling, and forwards at the current hot topics in this 
research area. 

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems. 

General Terms
Algorithms, Performance, Theory, Verification. 

Keywords
Real-time; scheduling; schedulability analysis; fixed priority; 
EDF; single processor; uniprocessor; survey; limited pre-
emption; cache-related pre-emption delays. 

1 INTRODUCTION 
This paper was written to accompany a talk at the ETR 
Summer School in Toulouse 2013. It aims to provide a brief 
guide and review of scheduling and schedulability analysis for 
hard real-time uniprocessor systems. This is a broad field 
which has been the subject of extensive research, starting in 
the 1970’s and 1980’s, gathering pace in the 1990’s through to 
the present day.  

In this paper, we necessarily cannot give full coverage of the 
field; instead, we seek to provide a primer covering the 
fundamental results, complemented by a brief review 
highlighting two interesting topics or themes that build upon 
these foundations. For the interested reader, we provide 

references to further reading in the form of books, surveys, and 
the original sources. We hope that readers will be curious to 
find out exactly how some of the techniques mentioned, but 
not covered in detail, actually work and so go on to read the 
cited literature. 

2 ADDITIONAL READING 
Burns and Wellings Book “Real-Time Systems and 
Programing Languages: Ada 95, Real Time Java and Real 
Time Posix” [19] provides a useful introduction to real-time 
scheduling. For an excellent description of early work, the 
interested reader is also referred to two surveys: “Fixed 
Priority Scheduling An Historical Perspective” [6], and 
“Real-Time Scheduling Theory A Historical Perspective” [62], 
both published in Real-Time Systems which is the main journal 
covering this field. An up-to-date source of further reading can 
be found on the IEEE Technical Committee on Real-Time 
Systems (TCRTS) website via the list of seminal papers 
recommended for education (see 
http://tcrts.org/education/seminal-papers/). 

3 BACKGROUND 
Real-time systems are characterised not only by the need for 
functional correctness, but also the need for temporal or timing 
correctness. Real-time systems continually monitor and 
respond to stimuli from the environment and the physical 
systems that they control. In order for such systems to behave 
correctly, they must not only execute the correct computations, 
but also do so within predefined time constraints. These time 
constraints are typically expressed in terms of end-to-end 
deadlines on the elapsed time between a stimuli and the 
corresponding response. Applications in real-time systems 
may be classified as hard real-time, where failure to meet a 
deadline constitutes a failure of the application; or soft real-
time, where latency in excess of the deadline leads only to a 
degraded quality of service. Today, hard real-time systems are 
found in many diverse application areas including; automotive 
electronics, avionics, space systems, medical systems, 
household automation, and robotics. 

Many real-time systems are composed of tasks. Tasks are 
software components (programs) that execute in response to 
some stimulus and output a response. Often the stimulus is 
periodic (e.g. time-driven) thus a periodic task might execute 
once every 50ms. Tasks can also be event-driven from some 
stimulus that does not necessarily occur with a fixed period, 
but instead has some minimum inter-arrival time, for example 
an interrupt that occurs from a sensor triggered on each cycle 
or rotation of an engine. Such tasks are referred to as sporadic. 
Each instance or execution of a task is referred to as a job of 
that task. Thus each task can give rise to a potentially 
unbounded sequence of jobs. 



Time constraints in a real-time system typically put a limit on 
the maximum permitted response time from the arrival of the 
event (or timer tick) that subsequently leads to the release of a 
job of a task by the operating system, until the job completes 
its execution and outputs its response. This time limit is the 
relative deadline (or just deadline) of the task. The arrival time 
of the triggering event or timer tick plus the relative deadline 
of the task gives the absolute deadline of the job. More 
complex behaviours may be implemented such that the time 
constraint is from the stimulus for one task, through to the 
response of a different task. This time interval is referred to as 
the end-to-end response time and it must meet the 
corresponding end-to-end deadline if the system is to operate 
correctly. 

In a single processor system, the processor can only run a 
single task at any given time, hence there is an important 
choice to be made as to which job to run when there is more 
than one job that is ready to execute. The scheduling policy 
employed determines this choice, which is then implemented 
by the scheduler, which is part of the real-time operating 
system. 

Scheduling policies may be classified according to whether 
they make scheduling decisions online (depending on the 
current state of the active jobs) or offline (using a pre-
computed table). The latter approach is referred to as static 
cyclic scheduling. Static cyclic scheduling was used in early 
real-time systems, and is still used today in very simple 
systems, and also in many safety critical systems (e.g. aircraft 
flight control systems). Static cyclic scheduling lacks 
flexibility and has a number of other disadvantages stemming 
from the use of pre-computed tables. For these reasons in has 
been supplanted in many real-time systems by online 
scheduling policies. In this paper, we focus soley on online 
scheduling and in particular two scheduling policies that both 
use priorities to determine which job to execute. 

1. Fixed Priority (FP) scheduling 
2. Earliest Deadline First (EDF) scheduling 

With fixed priority scheduling, each task is assigned a static 
priority which is then inherited by all jobs of that task. By 
contrast, with EDF scheduling the priority of each job is 
derived from its absolute deadline, such that the job with the 
earliest absolute deadline has the highest priority. Fixed 
priority scheduling has fixed task priorities, whereas EDF has 
fixed job priorities. Other scheduling algorithms such as 
Shortest Remaining Processing Time First (SRPT) [40], [64]
and Least Laxity First (LLF) [60] have dynamic job priorities 
that change as each job executes. 

Scheduling policies are classified as pre-emptive, if they allow 
an already running job to be suspended so that another (higher 
priority) job may execute, or non-pre-emptive if they do not. 
Thus there are pre-emptive and non-pre-emptive variants of 
both fixed priority and EDF scheduling. 

In hard real-time systems, timing correctness (meeting all 
deadlines) is an essential aspect of correct system behaviour, 
hence it is important to be able to ensure before the system is 
deployed that all deadlines will be met during operation1 – 

1 In practice often what is required is an assurance that there is 
only a very small probability that deadlines will be missed. 
Probabilistic analysis which seeks to address this more refined 
view is the topic of another talk at ETR 2013.

assuming that the system behaves as expected (i.e. no faults, 
correct functional behaviour etc.). 

Schedulability analysis is the name given to a mathematical 
approach used to determine offline if deadlines can be 
guaranteed to be met at runtime.  

Schedulability analysis requires information about: 
(i) The possible scenarios and patterns of arrivals of the 

jobs of each task.  
(ii) The execution behaviour of the tasks, in particular, an 

upper bound on the longest time a job of each task 
could take to execute non-pre-emptively, referred to 
as the worst-case execution time (WCET), and any 
interactions between the tasks (e.g. mutually 
exclusive access to shared resources). 

(iii) The scheduling policy used (e.g. fixed priority) and 
any modifications to this (e.g. when jobs may 
temporarily execute at a higher priority, due to non-
pre-emptive behaviour, or when accessing shared 
resources etc.). 

In this paper, we will assume that an upper bound on the 
WCET of each task is known. We note that WCET analysis is 
an active field of research, and the problem of determining an 
accurate estimate of the WCET is a difficult one, particularly 
for processors with hardware acceleration features such as 
pipelines and caches [71]. 

We now introduce some terminology that is used in research 
focused on scheduling and schedulability analysis. We define 
what is meant by schedulable and feasible task sets, optimal
scheduling algorithms and optimal priority assignment 
policies, and different types of schedulability test, including 
exact ones. 

We say that a task set is schedulable with respect to some 
scheduling algorithm, if all valid sequences of jobs that may be 
generated by the task set can be scheduled by the scheduling 
algorithm without any missed deadlines. Further, we say a task 
set is feasible if there exists some scheduling algorithm that 
can schedule all possible sequences of jobs that may be 
generated by the task set without missing any deadlines. A 
scheduling algorithm is said to be optimal with respect to a 
task model if it can schedule all of the feasible task sets that 
comply with the model. 

A schedulability test is said to be sufficient, with respect to a 
scheduling algorithm, if all of the task sets that are deemed 
schedulable according to the test are in fact schedulable under 
the scheduling algorithm. Similarly, a schedulability test is 
said to be necessary, if all of the task sets that are deemed 
unschedulable according to the test are in fact unschedulable 
under the scheduling algorithm. A schedulability test that is 
both sufficient and necessary is referred to as exact. Thus our 
aim in schedulability analysis research is to find efficient, 
exact schedulability tests; however, there is typically a trade-
off between the computational complexity of the tests and their 
effectiveness. Hence sometimes we need to use efficient tests 
that only give sufficient results rather than exact tests that take 
too long to compute. 

In fixed priority scheduling, a priority assignment policy P is 
said to be optimal with respect to some class of task sets (e.g. 
those with arbitrary deadlines), and some class of fixed 
priority scheduling algorithm (e.g. pre-emptive) if there are no 
task sets in the class that are schedulable under the scheduling 



algorithm using any other priority ordering policy that are not 
also schedulable using the priority assignment determined by 
policy P. Using an optimal priority assignment policy we can 
schedule any task set that is schedulable using any other 
priority assignment policy; hence in analysis of fixed priority 
systems, we always aim to find and use optimal priority 
assignment policies. 

The rest of the paper is organised as follows. In Section 4, we 
outline the fundamental research into schedulability analysis 
for single processor systems using fixed priority and EDF 
scheduling. In Section 5 we provide a formal tasking model 
and describe general forms of schedulability analysis for both 
fixed priority and EDF scheduling of sporadic task sets. These 
are the building blocks that researchers working in this area 
need to be aware of. In Section 6, we provide a guide to 
research along two themes that build upon the fundamental 
schedulability analysis research: limiting pre-emption, and 
accounting for its costs. Section 7 concludes the paper with a 
brief look at success stories for real-time schedulability 
analysis and hot topics of future research. 

4 FIXED PRIORITY AND EDF 
SCHEDULING 

In this section, we provide an overview of the fundamental 
work on schedulability analysis for single processor systems 
using fixed priority and EDF scheduling. 

4.1 Pre-emptive scheduling 
In 1973, Liu and Layland [56] considered fixed priority pre-
emptive scheduling of synchronous2 task sets comprising 
independent periodic tasks, with bounded worst-case execution 
times, and deadlines equal to their periods (so called implicit-
deadlines). Liu and Layland showed that rate monotonic
priority ordering, where tasks are assigned priorities in order 
of their periods, with a shorter period implying a higher 
priority, is the optimal priority assignment policy for such task 
sets. They further proved that that using rate monotonic 
priority ordering, fixed priority pre-emptive scheduling can 
schedule any implicit-deadline task set that has a total 
utilisation 693.0)2ln( ≈≤U , where the utilisation of a task is 
its worst-case execution time divided by its period, and the 
total utilisation of the task set is simply the sum of the 
individual task utilisations. Liu and Layland [56] also showed 
that that EDF can schedule any task set that has a total 
utilisation 1≤U . 

In 1974, Dertouzos [41] showed that pre-emptive EDF is an 
optimal single processor scheduling algorithm, in the sense 
that if a valid schedule exists for a task set, then the schedule 
produced by EDF will also meet all deadlines. Least Laxity 
First [60] is another such optimal algorithm. 

Research into real-time scheduling during the 1980’s and early 
1990’s focused on lifting many of the restrictions of the Liu 
and Layland task model. Task arrivals were permitted to be 
sporadic, with known minimal inter-arrival times, (still slightly 
confusingly referred to in the literature as periods), and task 
deadlines were permitted to be less than or equal to their 
periods (so called constrained deadlines) or less than, equal to, 
or greater than their periods (so called arbitrary deadlines). 

2 A task set is referred to as synchronous if all of the tasks can 
share a common release time.

In 1982, Leung and Whitehead [53] showed that deadline 
monotonic priority ordering, where tasks are assigned 
priorities in order of their deadlines, with a shorter deadline 
implying a higher priority, is the optimal priority ordering for 
constrained-deadline task sets. Exact schedulability tests for 
pre-emptive fixed priority scheduling of constrained-deadline 
task sets were introduced by Joseph and Pandya in 1986 [48], 
Lehoczky et al. in 1989 [55], and Audsley et al. in 1993 [5]. 

In 1990, Lehoczky [54] showed that deadline monotonic 
priority ordering is not optimal for task sets with arbitrary 
deadlines; however, an optimal priority ordering can be 
determined in this case, in at most 2/)1( +nn  task 
schedulability tests using Audsley’s optimal priority 
assignment (OPA) algorithm3 [4], [7]. 

Exact schedulability tests for task sets with arbitrary deadlines 
were developed by Lehoczky [54] in 1990, and Tindell et al. 
[67] in 1994.  

The release jitter problem was first address by Audsley et al. 
[5] in 1993 for constrained deadline task sets, and later by 
Tindell et al. [67] for the arbitrary deadline case. Here, jobs of 
a task may follow a periodic or sporadic arrival pattern, but do 
not necessarily become ready to execute immediately, instead 
their release may be delayed by up to a maximum time 
referred to as the Release Jitter of the task. This is a typical 
behaviour in real systems where there may be some latency in 
responding to the event that triggers task execution. Zuhily and 
Burns [75] showed that for constrained deadline task sets with 
release jitter, Deadline minus Jitter monotonic priority 
ordering is optimal. 

Exact schedulability tests for constrained and arbitrary-
deadline task sets scheduled using pre-emptive EDF were 
introduced by Baruah et al. [10], [11] in 1990. Subsequently, 
exact tests for EDF have been developed by George and 
Hermant [43] and Zhang et al. [73], [74] that are more efficient 
in practice. 

4.2 Resource sharing 
In pre-emptive systems, mechanisms are required to ensure 
that jobs access shared resources in mutual exclusion, 
otherwise data corruption, or erroneous behaviour of hardware 
devices could ensue. If simple semaphores are used to serialise 
resource access, then unbounded priority inversion can occur. 
Priority inversion is the name given to the situation where a 
high priority job attempting to lock a resource has to wait not 
only for the low priority job that currently holds the resource, 
but also any jobs of intermediate priority that may pre-empt it. 
A number of concurrency control protocols have been 
developed which avoid this problem. These include the 
Priority Inheritance Protocol (PIP) [63] and the Priority 
Ceiling Protocol (PCP) [63] originally developed for fixed 
priority scheduling and the Stack Resource Policy (SRP) [8]
introduced by Baker in 1991, which is applicable to both fixed 
priority and EDF scheduling. SRP is the most effective 
protocol and has been adopted by the OSEK and Autosar 
operating system standards. 

The Stack Resource Policy [8] associates a pre-emption level 
with each resource. In EDF (FP) scheduling, this pre-emption 

3 This algorithm is optimal in the sense that it finds a 
schedulable priority ordering whenever such an ordering 
exists.



level corresponds to the shortest relative deadline (highest 
priority) of any task that accesses the resource. At run-time, 
when a job locks a resource, its current priority is saved (on a 
stack), and it continues to execute at the higher of its previous 
priority and the pre-emption level of the resource. On 
unlocking the resource the job returns to its previous priority 
(obtained from the stack). Thus SRP allows resource locking 
to be properly nested. 

The Stack Resource Policy [8] has a number of important 
properties: 
o Once a job starts executing it never has to wait to access a 

resource. This means that with SRP, resource accesses 
add no additional context switches, and single stack 
execution is possible saving memory. 

o No job j can be delayed from executing by lower pre-
emption level jobs for longer than the maximum single 
resource access time of any such lower priority job, where 
the resource is shared with other jobs of the same or a 
higher pre-emption level than job j. 

o The system is deadlock free. 

These properties strictly bound the blocking time for which 
higher priority jobs can be delayed by the execution of lower 
priority jobs. 

Baker [8] initially provided a sufficient schedulability test for 
EDF and SRP. Later, in 1996 Spuri [65] modified the exact 
test for EDF scheduling to account for resource locking under 
SRP. Exact tests for fixed priority scheduling with either PCP 
or SRP where introduced by Audsley et al. in 1993 [5] for 
constrained deadline task sets, and Tindell et al. [67] in 1994 
for arbitrary deadline task sets. 

4.3 Non-pre-emptive scheduling 
In 1980, Kim and Naghibdadeh [50], and in 1991, Jeffay et al. 
[47], gave exact schedulability tests for implicit-deadline task 
sets under non-pre-emptive EDF scheduling. These tests were 
extended by George et al. [44] in 1996, to the general case of 
sporadic task sets with arbitrary deadlines. 

While pre-emptive EDF is an optimal single processor 
scheduling algorithm, in the non-pre-emptive case no work-
conserving algorithm is optimal. (A work-conserving 
scheduling algorithm is one that does not idle the processor 
when there are tasks ready to be executed). This is because in 
general, with non-pre-emptive scheduling, it is necessary to 
insert idle time to achieve a feasible schedule. The interested 
reader is referred to [44] for examples of this behaviour. In 
1995, Howell and Venkatrao [46] showed that for non-
concrete strictly periodic task sets, where the times at which 
each task may be first released are unknown, the problem of 
determining a feasible non-pre-emptive schedule is NP hard. 
Further, they showed that for sporadic task sets, no optimal on-
line inserted idle time algorithm can exist. In other words, 
clairvoyance is needed to determine a feasible non-pre-
emptive schedule. 

While no work-conserving algorithm is optimal in the strong 
sense that it can schedule any task set for which a feasible non-
pre-emptive schedule exists; in 1995, George et al. [45]
showed that non-pre-emptive EDF is optimal in the weak 
sense that it can schedule any task set for which a feasible 
work-conserving, non-pre-emptive schedule exists. 

For fixed priority non-pre-emptive scheduling of arbitrary-
deadline task sets, George et al. [44] derived an exact 

schedulability test based on the approach of Tindell et al. [67]
for the pre-emptive case. George et al. showed that unlike in 
the pre-emptive case, deadline monotonic priority ordering is 
not optimal for constrained-deadline task sets scheduled non-
pre-emptively. Further, they showed that Audsley’s optimal 
priority assignment algorithm [7] is applicable, and can be 
used to determine an optimal priority ordering in this case. 

Subsequent research by Bril et al. [17] has refined exact 
analysis of non-pre-emptive fixed priority scheduling, 
correcting issues of both pessimism and optimism, and 
extending the schedulability tests to co-operative scheduling 
where each task is made up of a number of non-pre-emptive 
regions. There are various approaches that allow limited pre-
emption and thus represent a compromise between fully pre-
emptive and fully non-pre-emptive scheduling. We return to 
these in Section 6. 

5 SCHEDULABILITY TESTS 
In this section we first describe the sporadic task model, which 
is commonly used in real-time scheduling research, and forms 
the basis for the schedulability analysis that we then 
recapitulate. We also provide details of the defacto standard 
notation sometimes referred to as Burns’ Standard Notation
[32], which is used in this area. 

5.1 Task model and notation 
We consider the scheduling of a set of sporadic tasks (or task 
set) on a single processor. Each task set comprises a static set 
of n tasks ( nττ ..1 ), where n is a positive integer. Without loss 
of generality, we assume that the index i of task iτ  also 
represents the task priority used in fixed priority scheduling, 
hence 1τ  has the highest fixed-priority, and nτ  the lowest. 

We use the notation )(ihp  (and )(ilp ) to mean the set of tasks 
with priorities higher than (lower than) i, and the notation 

)(ihep  (and )(ilep ) to mean the set of tasks with priorities 
higher than or equal to (lower than or equal to) i. 

Each task iτ  is characterized by its bounded worst-case 
execution time iC , minimum inter-arrival time or period iT , 
relative deadline iD , and release jitter iJ . Each task iτ
therefore gives rise to a potentially unbounded sequence of 
jobs, each of which has an execution time upper bounded by 

iC , an arrival time at least iT  after the arrival of the previous 
job of the same task, and an absolute deadline that is iD  after 
its arrival. Due to release jitter, release of each job may be 
delayed for a variable amount of time from 0 to iJ  after its 
arrival. 

In an implicit-deadline task set, all tasks have ii TD = . In a 
constrained-deadline task set, all tasks have ii TD ≤ , while in 
an arbitrary-deadline task set, task deadlines are independent 
of their periods. The set of arbitrary-deadline task sets is 
therefore a superset of the set of constrained-deadline task sets, 
which is itself a superset of the set of implicit deadline task 
sets. 

The worst-case response time iR  of a task iτ is given by the 
longest possible time from the arrival of the task until it 
completes execution. Thus task iτ  is schedulable if and only if 

ii DR ≤ , and a task set is schedulable if and only if 
ii DRi ≤∀ . The utilization iU , of a task is given by its 

execution time divided by its period ( iU = iC / iT ). The total 
utilization U, of a task set is the sum of the utilizations of all of 
its tasks. 



The following assumptions are made about the behaviour of 
the tasks: 
o The arrival times of the tasks are independent and 

unknown a priori, hence the tasks may share a common 
release time. 

o The tasks may access mutually exclusive shared resources 
according to the Stack Resource Policy [8]. Thus each 
task iτ  may be subject to a maximum amount of blocking 

iB  that equates to the longest time that a job of a task of 
lower priority (pre-emption level) may lock a resource 
that is shared with tasks of the same or higher priority 
(pre-emption level) than task iτ . 

o The tasks are otherwise independent, and do not 
voluntarily suspend themselves. 

A job is said to be ready if it has outstanding computation 
awaiting execution by the processor. 

Under pre-emptive EDF scheduling, at any given time the 
ready job with the earliest absolute deadline is selected for 
execution by the processor. In contrast, under pre-emptive 
fixed priority scheduling, at any given time the earliest 
released unfinished job of the highest priority ready task is 
selected for execution. 

Similarly, under non-pre-emptive EDF, at any given time 
when there is no currently executing job then the ready job 
with the earliest absolute deadline is selected for execution by 
the processor. Under non-pre-emptive fixed priority 
scheduling, at any given time when there is no currently 
executing job then the earliest released unfinished job of the 
highest priority ready task is selected for execution. 

5.2 Analysis for pre-emptive FP 
scheduling 

We now give a summary of Response Time Analysis [5] used 
to provide an exact schedulability test for fixed priority pre-
emptive scheduling of constrained-deadline task sets. We then 
recapitulate the somewhat more complex response time 
analysis for arbitrary-deadline task sets [67]. 

First, we introduce the concepts of a critical instant, and busy 
periods, which are fundamental to response time analysis. 

The critical instant for a task iτ  is defined as a point in time 
when the arrival of a job of that task will have the longest 
possible response time, given any valid pattern of arrivals and 
execution behaviour of the tasks in the task set. 

The term priority level-i busy period refers to a period of time 
),[ 21 tt  during which tasks, of priority i or higher, that were 

released at the start of the busy period at 1t , or during the busy 
period but strictly before its end at 2t , are either executing or 
ready to execute. 

Under fixed priority pre-emptive scheduling, the critical 
instant for a task iτ  occurs within the longest priority level-i
busy period, which is associated with an arrival sequence such 
that the first jobs of task iτ  and all higher priority tasks are 
released simultaneously after their maximum permitted release 
jitter, and subsequent jobs of the same tasks are released as 
soon as possible thereafter. For tasks with arbitrary deadlines 
and large release jitter, this means that more than one job of 
the task may be released at the same time. In this case, we 
assume that jobs of the same task are nevertheless released in 
order of their arrival, and that a later arriving job cannot 

overtake an earlier arrival and so be released first. Further, we 
assume that later arriving jobs of the same task effectively 
have lower priority, and are executed after earlier arrivals. 
Finally, we assume that just prior to the initial simultaneous 
release, a lower priority task locks the resource resulting in the 
maximum blocking time iB . 

For a constrained deadline task iτ , the worst-case response 
time iR  corresponds to its release jitter plus the length of the 
priority level-i busy period described above. The busy period 
comprises three components, (i) the blocking time iB , (ii) the 
execution time of the task itself iC , and (iii) so called 
interference, equal to the time for which task iτ  is prevented 
from executing by all higher priority tasks. The length of the 
busy period iw , can be computed using the following fixed 
point iteration [5], with the summation term giving the 
interference due to the set of higher priority tasks hp(i).  
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m
i ww =+1  in which case 

the worst-case response time iR  is given by i
m
i Jw ++1 , or 

when ii
m
i JDw −>+1  in which case the task is unschedulable. 

The fixed point iteration is guaranteed to converge provided 
that the overall task set utilisation is less than or equal to 1. We 
note that iteration may be speeded up using the techniques 
described in [33]. 

Equation (1) provides an exact schedulability test for the fixed 
priority pre-emptive scheduling of constrained-deadline task 
sets with any fixed priority ordering. 

For fixed priority pre-emptively scheduled systems, where task 
deadlines are arbitrary, execution of one job of a task may not 
necessarily be completed before the next job is released. 
Hence a number of jobs of task iτ  may be present within a 
priority level-i busy period, with earlier jobs delaying the 
execution of later ones. In this case, the critical instant and 
hence the worst-case response time for task iτ  occurs for 
some job released within the priority level-i busy period 
corresponding to the sequence of releases previously 
described, but not necessarily the first job. The length iL  of 
this longest priority level-i busy period can be found via the 
following fixed point iteration: 
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Iteration starts with an initial value guaranteed to be no larger 
than the minimum solution, for example ii CL =0 , and ends 
when m

i
m
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In general it is necessary to compute the response times of all 
jobs of a task iτ  within the longest priority level-i busy period 
in order to determine the task’s worst-case response time. The 
completion time qiW ,  of the qth job (where q = 0 is the first 
job) of task iτ , with respect to the start of the busy period, is 
given by the following fixed point iteration: 
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which case job q, and hence task iτ  is unschedulable. 

To find the worst-case response time of task iτ , completion 
times qiW ,  need to be calculated for jobs 1,...3,2,1,0 −= iQq . 
The worst-case response time of task iτ  is then given by: 
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Task iτ  is schedulable provided that ii DR ≤ . 

Equations (4) and (5) give an exact schedulability test for the 
pre-emptive fixed priority scheduling of arbitrary-deadline 
task sets with any specified priority ordering. 

5.3 Analysis for non-pre-emptive FP 
scheduling 

We now recapitulate Response Time Analysis used to provide 
an exact schedulability test for fixed priority non-pre-emptive 
scheduling of arbitrary deadline task sets. This analysis has 
similarities to the pre-emptive case, but also some key 
differences. 

George et al. [44] and Bril et al. [17] showed that for fixed 
priority non-pre-emptive scheduling, the longest response time 
of a job of task iτ  occurs for some job of that task within a 
priority level-i busy period starting with the simultaneous 
release of jobs of task iτ  and all higher priority tasks that have 
been subject to the maximum release jitter, with subsequent 
jobs of those tasks released as soon as possible. Further, the 
minimum possible amount of time ∆ prior to the initial 
simultaneous release, a lower priority task kτ  is released, and 
this task has the longest execution time of any such lower 
priority task. (Note that in the following, we assume discrete 
time and so ∆ = 1). 

The worst-case length of the priority level-i busy period is 
again given by the minimum solution to (2), with iB  defined 
to be the longest time that task iτ  and any higher priority 
tasks can be blocked from executing by the non-pre-emptive 
execution of a lower priority task: 
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Note in (6) the maximum of an empty set is assumed to be 
zero. The number of jobs iQ  of task iτ  in the active period is 
given by: 
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The start time qiW ,  of the qth job (where q = 0 is the first job) 
of task iτ  measured with respected to the initial simultaneous 
release is given by the minimum solution to the following 
fixed point iteration: 
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Iteration starts with an initial value 0
,qiw , typically 
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case job q , and hence task iτ  is unschedulable. 

To find the worst-case response time, the start times qiW ,  need 
to be calculated for jobs 1,...3,2,1,0 −= iQq . The worst-case 
response time of task iτ  is then given by: 
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  (9) 
Task iτ  is schedulable provided that ii DR ≤ . 

Equations (8) and (9) give an exact schedulability test for non-
pre-emptive fixed priority scheduling of arbitrary-deadline 
task sets with any specified priority ordering. 

The exact analysis for both pre-emptive and non-pre-emptive 
fixed priority scheduling is pseudo-polynomial in complexity. 
In practice, the techniques described above based on fixed 
point iteration are fast enough to be used to determine task set 
schedulability, and even to perform sensitivity analysis by 
varying task parameters and determining if the task set remains 
schedulable. In cases where a significant trade-off between 
accuracy and speed is required, then Davis and Burns [35]
provide response time upper bounds for both pre-emptive and 
non-pre-emptive cases that are linear in complexity and can be 
computed in O(n) time for all n tasks in a task set. 

5.4 Priority assignment 
The schedulability tests given above for both fixed priority 
pre-emptive and non-pre-emptive scheduling are agnostic as 
far as the priority assignment policy is concerned; they work 
with any given assignment. However, priority assignment can 
have a very large effect on schedulability as shown by Davis et 
al. [30], hence it is important whenever possible to use an 
optimal priority assignment policy. 

Audsley’s Optimal Priority Assignment (OPA) algorithm [4], 
[7], reproduced below, provides an optimal priority assignment 
for arbitrary-deadline sporadic task sets with respect to both 
pre-emptive and non-pre-emptive fixed priority scheduling. 

This greedy approach requires at most n(n+1)/2 task 
schedulability tests to determine a schedulable priority 
ordering whenever such an ordering exists. This compares 
favourably with the n! tests that would otherwise be required, 
assuming a brute force approach that checks every possible 
combination of priorities. 

for each priority level k, lowest first {
 for each unassigned task τ { 
  if(τ is schedulable at priority k with all 
  other unassigned tasks assumed to have  
  higher priorities) { 
   assign τ to priority k
   break (continue outer loop) 
  } 
 } 
 return unschedulable 
} 
return schedulable

Algorithm 1: Optimal Priority Assignment Algorithm 
While it provides an optimal priority assignment, the OPA 
algorithm has one significant drawback: it does not make any 
choice about priority ordering other than to ensure 
schedulability. Thus using the OPA algorithm the priority 
assignment obtained can leave the task set of the edge of un-
schedulability, with any small increase in the execution time of 
a task resulting in a deadline miss. Davis and Burns addressed 



this issue with the Robust Priority Assignment algorithm 
(RPA) [34]. This algorithm is based on Audsley’s OPA 
algorithm; however, it makes use of a scaling factor α which is 
used to characterise additional interference. This additional 
interference may take a very general form provided that it is 
monotonically increasing with the priority level, and the time 
interval considered. For example the scaling factor α might 
characterise an increase in the execution time or one, or all of 
the tasks, or of some additional interference at the highest 
priority level. Using an appropriate choice of additional 
interference, the RPA algorithm provides a priority assignment 
that is not only optimal, but also as robust as possible to 
increases in interference. The RPA algorithm is shown below. 

for each priority level k, lowest first { 
for each unassigned task τ { 
  binary search for the largest value of α

  for which task τ is schedulable at 
  priority k

} 
if no tasks are schedulable at priority k { 
  return unschedulable 
} 
else { 
  assign the schedulable task that tolerates 

  the  max α at priority k to  priority k 
} 

} 
return schedulable

Algorithm 2: Robust Priority Assignment Algorithm 
For more information on priority assignment, the interested 
reader is directed to the presentation that accompanied the 
keynote talk “Getting ones priorities right” at RTNS 2012 
[26]. 

5.5 Analysis for pre-emptive EDF 
We now recapitulate schedulability analysis for arbitrary-
deadline task sets under pre-emptive EDF. In the analysis of 
EDF scheduling, we use the concept of processor demand. 
bound. This is defined for an interval of length t, as the 
maximum possible processor demand from jobs with both 
their release times and their deadlines in the interval. A 
necessary condition for schedulability is that for any interval 
of length t, the processor demand bound must not exceed the 
length of the interval. Otherwise the processor could not 
possibly complete all of the jobs that are released in the 
interval and also need to finish within the interval. 

Exact tests for EDF were first given by Baruah et al [10], [11]. 
Below, we provide extended versions, including blocking and 
release jitter due to Spuri [65] and Zhang and Burns [74]. 

The processor demand bound function h(t) is given by:  
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A task set is schedulable under pre-emptive EDF if and only if 
1≤U  and the processor LOAD  is 1≤  where the processor 

LOAD  is given by: 
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where resource access is accounted for by the blocking term: 

( )tJDtJDCtb kkaaka ≤−>−= ,|max)( ,   (12) 

In which kaC ,  is the maximum amount of time that a task aτ
may spend accessing a resource also used by some task kτ
with a higher pre-emption level. (Note that the pre-emption 
level corresponds to kk JD − ). 

If LOAD 1≤  for all values of t in the interval ],0( L , where 
L is defined as follows, then the task set is schedulable. 
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Note the length L of the interval that needs to be examined is 
also limited to the length of the longest priority level-n busy 
period, which may be computed using (2) and should be used 
instead of (13) in the case that U = 1. The only values of t that 
need to be checked in the interval ],0( L  are those where the 
LOAD  can change, i.e. iii JDkTti −+=∀  for integer 
values of k. However, there can still be a very large number of 
such values that need to be checked. 

Zhang and Burns [73], [74] used the fact that h(t) + b(t) is 
monotonically non-decreasing with respect to t as the basis for 
a highly efficient exact schedulability test for pre-emptive 
EDF, called Quick Processor-demand Analysis (QPA). The 
QPA algorithm is reproduced below. In practice, this 
algorithm typically checks a far small set of values in order to 
ascertain schedulability than the classical method. 

QPA schedulability test for pre-emptive EDF: An arbitrary 
deadline sporadic task set is schedulable under pre-emptive 
EDF scheduling if and only if 1≤U  and the result of the 
following iterative algorithm is min)()( DJtbth ≤+ , where 

minDJ  is the smallest deadline minus jitter of any of the tasks, 
and id  is an absolute task deadline, i.e. 

iiii JDkTdi −+=∀  for integer values of k. 

1 }|max{ Lddt ii ≤=
2 while( min)()()()( DJtbthttbth >+∧≤+ ) { 
3  if( ttbth <+ )()( ) 
4   { )()( tbtht +=  } 
5  else  
6   { }|max{ tddt ii <=  } 
7 } 
8 if( min)()( DJtbth ≤+ )⇒  task set is schedulable 
9 else ⇒ task set is unschedulable

Algorithm 3: QPA for EDF 

5.6 Analysis for non-pre-emptive EDF 
George et al. [44] extended the schedulability test for pre-
emptive EDF to the non-pre-emptive case via the use of a 
revised blocking factor b(t). 
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Note in (14) the maximum of an empty set is assumed to be 
zero.  

Effectively, non-pre-emptive EDF scheduling may be 
considered a special case of resource sharing in pre-emptive 
EDF and thus the QPA schedulability analysis (Algorithm 3) 
may also be used in this case [74]. 



5.7 Comparisons between FP and EDF 
Fixed priority and EDF scheduling are in some respects 
competing techniques. A theoretical comparison between the 
effectiveness of fixed priority and EDF scheduling has been 
derived by considering the speedup factor: the maximum 
processor speed necessary so that fixed priority scheduling can 
schedule any task set that is schedulable on a processor of unit 
speed under EDF. This gives a measure of the worst-case sub-
optimality of fixed priority scheduling. 

Liu and Layland’s utilisation bounds [56] effectively show that 
the speedup factor required to guarantee that pre-emptive fixed 
priority scheduling can schedule any implicit-deadline task set 
schedulable by EDF is 44270.1)2ln(/1 ≈ . Davis et al. [37]
showed that the exact speedup factor for the constrained 
deadline case is 76322.1/1 ≈Ω (where Ω  is the 
mathematical constant defined by the transcendental equation 

Ω=Ω)/1ln( , hence, 0.567143≈Ω ). Further, for the arbitrary 
deadline case [38], the speedup factor is lower bounded by 

Ω/1 and upper bounded by 2. These upper and lower bounds 
also hold for a comparison between non-pre-emptive fixed 
priority and non-pre-emptive EDF scheduling [39]. It remains 
an interesting open problem what the exact speedup factors are 
in these cases. 

The average case sub-optimality of pre-emptive fixed priority 
scheduling has also been investigated by Lehoczky et al. [55]
who used task set average breakdown utilisation as a metric. 
The breakdown utilisation is obtained by scaling task 
execution times until the task set is only just schedulable and 
then recording the utilisation. For large implicit-deadline task 
sets they found that the breakdown utilisation for is approx. 
88%, corresponding to a penalty of approximately 12% in 
processing capacity compared to pre-emptive EDF. Bini and 
Buttazzo [16] later showed that breakdown utilisation suffers 
from a bias which tends to penalise fixed priority scheduling 
by favouring task sets where the utilisation of individual tasks 
is similar. They introduced an optimality degree metric which 
gives a fairer comparison and shows that the average penalty 
for using fixed priority-pre-emptive scheduling is significantly 
smaller. 

In the paper “Rate Monotonic vs. EDF: Judgment Day”, 
Buttazzo [23] provided a comprehensive comparison and 
review of the advantages and disadvantages of fixed priority 
versus EDF scheduling policies; looking at factors such as 
implementation complexity, runtime overhead, number of pre-
emptions, robustness during overload, jitter on task execution, 
and responsiveness when handling aperiodic (soft real-time) 
tasks. While EDF has many advantages, it is notable that to 
this day, the overwhelming majority of commercial Real-Time 
Operating Systems implement fixed priority rather than EDF 
scheduling. This is done for reasons of simplicity and lower 
overheads: in particular, the number of priority levels is often 
limited allowing a bit-map representation of the ready queue to 
be used, resulting in O(1) queuing and de-queuing operations. 

6 BUILDING ON THE 
FUNDAMENTALS 

In the previous section, we recapitulated schedulability 
analysis for fixed priority and EDF, pre-emptive and non-pre-
emptive scheduling. In the majority of theoretical work on 
real-time scheduling, the overheads of pre-emption are 
assumed to be negligible. Indeed this assumption is made in 
the analysis presented so far. In real systems; however, the 

overheads of pre-emption can be large and have a significant 
impact on system schedulability.  

There are two main threads of research that address this 
problem. Firstly, work that seeks to minimise the number of 
pre-emptions via the use of fixed or floating non-pre-emptive 
regions (e.g. co-operative scheduling), or via pre-emption 
thresholds, and non-pre-emption groups, where tasks compete 
for the processor at a different priority to the one at which they 
actually execute. Secondly, work that seeks to account for and 
reduce the cost of pre-emptions, in particular cache related pre-
emption delays, via the integration of CRPD analysis into 
schedulability tests, and via manipulating task layouts and 
cache partitioning to improve schedulability. 

6.1 Limiting pre-emption 
Pre-emptive and non-pre-emptive scheduling can be 
considered as two extremes. It may be argued that fully pre-
emptive scheduling allows too many pre-emptions, which can 
have a high cost if permitted at any arbitrary point. By 
contrast, non-pre-emptive scheduling permits no pre-emptions, 
and can have a severe effect on schedulability when some 
tasks have much shorter deadlines than others. Indeed, with 
just two tasks one of which has an execution time that is 
longer than the other’s deadline, then non-pre-emptive 
scheduling is simply not viable. 

Limited pre-emption scheduling is the general term given to a 
collection of different scheduling policies aimed at reducing 
the number of pre-emptions, and hence their overall cost, 
while ensuring that the additional blocking introduced does not 
make the system unschedulable. 

The first approach is deferred pre-emption. Two different 
models of scheduling with deferred pre-emption have been 
developed in the literature. In both cases, non-pre-emptive 
regions are used to limit pre-emption. This is particularly 
effective towards the end of a task’s execution where a final 
non-pre-emptive region may prevent any further context 
switches and consequent pre-emption related overheads before 
the task completes. 

In the fixed model, introduced by Burns in 1994 [20] for fixed 
priority scheduling, the location of each non-pre-emptive 
region is statically determined prior to execution. Pre-emption 
is then only permitted at pre-defined locations in the code of 
each task, referred to as pre-emption points. This method is 
also referred to as co-operative scheduling, as the tasks co-
operate, providing re-scheduling / pre-emption points to 
improve schedulability. Exact schedulability analysis for co-
operative fixed priority scheduling was derived by Bril et al. in 
2009 [17]. Since then, Bertogna et al. have integrated pre-
emption costs into analysis of the fixed model, considering 
both fixed [13] and variable [14] pre-emption costs, for both 
EDF and fixed scheduling. Bertogna et al. [15], also derived a 
method of computing the optimal length of the final non-pre-
emptive region of each task in order to maximize 
schedulability for a given priority assignment. Finally, in 2012, 
Davis and Bertogna [29] introduced an optimal algorithm that 
is able to find a schedulable combination of priority 
assignment and final-non-pre-emptive region lengths 
whenever such a schedulable combination exists. This 
algorithm improves upon the schedulability that can be 
obtained by either fully pre-emptive or fully non-pre-emptive 
fixed priority scheduling. 



In the floating model of non-pre-emptive regions, introduced 
by Baruah in 2005 [12] for EDF scheduling, an upper bound is 
given on the length of the longest non-pre-emptive region of 
each task. However, the location of each non-pre-emptive 
region is not known a priori and may vary at run-time, for 
example under the control of the operating system. Analysis 
for the floating model under fixed priority scheduling was 
given by Yao et al. [72]. 

Alternative approaches to limiting pre-emption include Pre-
emption Thresholds (FPTS) [69], [61] and Non-pre-emption 
Groups [28] in which each task has a base priority at which it 
competes for the processor, and a threshold priority at which it 
executes, thus limiting pre-emption to those tasks with a base 
priority higher than the threshold. In [69], [61] Saksena and 
Wang attempted to derive an integrated approach to priority 
and pre-emption threshold assignment, but did not succeed in 
finding an optimal algorithm with less than exponential 
complexity. Research by Bril et al. [18] in 2012 combines the 
ideas of deferred pre-emption and pre-emption thresholds, 
generalising both into a single scheme with pre-emption 
thresholds between a set of sub-jobs which execute non-pre-
emptively.  

For further information on limited pre-emption scheduling the 
reader is referred to the survey in [22]. 

6.2 Accounting for pre-emption costs 
There is a runtime overhead when the processor switches from 
the execution of one job to another. There are various 
components that make up this overhead. These include: 

o The cost of scheduler operations (e.g. run-queue 
manipulation, timer interrupts etc.). 

o The cost of the context switch from one task to 
another (saving and restoring registers etc.). 

o For processors with cache, the cache related pre-
emption delay (CRPD). 

With careful RTOS design, the first two components can often 
be tightly bounded and either included in the execution time of 
each task, or modelled as virtual high priority tasks. Further, 
the additional blocking effects caused by the operating system 
can also be modelled and included in the analysis – see for 
example the work of Whitham et al. [70]. Cache related pre-
emption delays can however be a substantial proportion of a 
tasks’ execution time, and are highly dependent on both the 
pre-empting task and the pre-empted task. Cache is fast local 
memory, which is used to store instructions (and data) 
improving access times and hence bridging the large gap that 
exists between the speed of main memory and the speed of 
high performance processors. Memory requests that can be 
serviced by the cache can be significantly faster (10 to 100 
times faster in some cases) than accesses that have to go to 
main memory. However, cache is typically much smaller than 
main memory and so not all of the instructions and data 
needed by all tasks can be held in cache at the same time. 

Analysis of cache related pre-emption delays uses the concept 
of useful cache blocks (UCBs) and evicting cache blocks 
(ECBs) based on the work by Lee et al. [52]. The ECBs for a 
task are the cache blocks that may be loaded into cache by the 
task during its execution. Whereas, UCBs are blocks that are 
not only loaded into cache by the task, but are certain to be 
reused before potentially being evicted by the task, not 
counting evictions from pre-empting tasks. If a UCB is evicted 
by a pre-empting task, then an additional delay may be 
introduced if the UCB needs to be re-loaded when it otherwise 

would not have been. This is termed a cache related pre-
emption delay. 

Depending on the approach used, CRPD analysis combines 
information about the UCBs belonging to the pre-empted 
task(s) with the ECBs of the pre-empting task(s). Using this 
information, the total number of cache blocks that are evicted, 
which must then be reloaded after pre-emption, can be 
calculated and combined with the cost of reloading a block to 
give the CRPD.  

A number of approaches have been developed for calculating 
the CRPD under pre-emptive fixed priority scheduling. These 
include the UCB-Only approach of Lee et al. [52], which 
considers only the pre-empted task(s), and the ECB-Only 
approach of Busquets et al. [21] which considers only the pre-
empting task. Approaches that consider both pre-empted and 
pre-empting tasks include the UCB-Union approach of Tan 
and Mooney [66] and the ECB-Union approach of Altmeyer et 
al. [1] and their multi-set extensions [3].  

Until recently, there has been significantly less work in 
developing CRPD analysis for pre-emptive EDF scheduling. 
In 2007, Ju et al. [49] considered the intersection of the pre-
empted task’s UCBs with the pre-empting task’s ECBs; 
however, this method has significant pessimism as each pair of 
tasks is considered separately. In 2013, Lunniss et al. [58]
adapted the state-of-the-art approaches [1], [3] for calculating 
CRPD for fixed priority scheduling to work with EDF. 

Cache related pre-emption delays can have a significant effect 
on schedulability. They can vary substantially depending on 
how the code of tasks is laid out in memory and hence how it 
is mapped to the cache, thus providing scope for optimising 
schedulability via manipulating the position of tasks in 
memory [59]. 

One way of eliminating CRPDs is to partition the use of cache 
so that each task has its own cache partition, hence ensuring 
that the ECBs of a pre-empting task do not overlap with the 
UCBs of any pre-empted task. However, such partitioning 
comes at a price. The smaller cache partition allocated to each 
task increases the non-pre-emptive WCET of the task. Recent 
work by Altmeyer at el. [2] has investigated this trade-off 
concluding that in many cases, even optimal cache partitioning 
is less effective than sharing the cache and accounting for 
CRPD via integrated analysis [1], [3]. 

7 SUMMARY AND CONCLUSIONS 
In this paper, we have provided a guide to the fundamental 
schedulability analysis results for pre-emptive and non-pre-
emptive, fixed priority and EDF, scheduling of sporadic task 
sets. We have also briefly covered extensions to this work that 
relax the rather unrealistic assumption that scheduling and pre-
emption costs are negligible. In real systems, particularly those 
running on processors with cache, the costs of pre-emption can 
be relatively high when compared with the non-pre-emptive 
WCETs of the tasks. Thus techniques for limiting pre-emption 
are needed, as well as analysis that accounts for the cost of 
pre-emption overheads.

7.1 Looking back: success stories 
Despite the advent of multicore processors and substantial 
research into multiprocessor scheduling, research into real-
time scheduling on single core systems still thrives. One of the 
hardest challenges in this area is to progress from simple 



models of the system and tasks to more complex models that 
capture the important behaviours of real systems and 
applications. 

A good example of where this has happened and a major 
success story for research into schedulability analysis is 
Controller Area Network. This is a simple broadcast network 
used to connect Electronic Control Units in automotive 
systems. (CAN is used in the vast majority of cars 
manufactured today, with sales of CAN enabled 
microprocessors approaching 1 billion per year). From the 
perspective of analysing message response times, the 
broadcast behaviour of CAN means that its analysis resembles 
that of a single processor with fixed priority non-pre-emptive 
scheduling. Precise schedulability analysis has been derived 
for Controller Area Networks [36] that makes certain 
assumptions in terms of the behaviour of the nodes connected 
to the bus (perfect priority queues); however, in practice these 
assumptions may not always hold. Recent work has sort to 
address particular features of the hardware such as non-
abortable transmit requests [51], and the fact that FIFO 
queuing policies are often used [30], [31]. These extensions 
make the analysis more flexible and better suited to 
commercial use. 

7.2 Looking ahead: research directions 
Within the theme of single processor real-time scheduling, hot 
research topics today include: 

(i) The integration of schedulability analysis, and 
WCET analysis, and the development of integrated 
techniques such as limited pre-emption to improve 
schedulability (see Section 6). 

(ii) Scheduling of Mixed Criticality Systems based on 
fixed priority [68], [9] and EDF [42]. 

(iii) Probabilistic approaches to schedulability analysis 
[57] and WCET analysis [25], [24], and their 
integration [27]. 
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