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Speedup factor
QUESTION:

What is the speedup factor
 

by which the processing speed 
of a single processor would need to be increased, so that any 
taskset that was previously schedulable according to an 
optimal scheduling algorithm (i.e. any feasible taskset), can 
be scheduled using fixed priority pre-emptive scheduling, 
assuming optimal priority assignment?



Problem scope
Single processor systems

Pre-emptive scheduling
Execution time of all tasks scales linearly with processor 
speed

Sporadic task model

Static set of n tasks τi with priorities 1..n 
Bounded worst-case execution time Ci

Sporadic/periodic arrivals: minimum inter-arrival time Ti

Relative deadline Di

Utilisation Ui=Ci /Ti

Independent execution



Outline of presentation
Different speedup factors for different classes of 
taskset

Implicit-deadline tasksets (Di=Ti) [1]
Constrained-deadline tasksets (Di≤Ti) [1]
Arbitrary-deadline tasksets (Di≤Ti , Di>Ti) [2]

[1] R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Exact Quantification of the 
Sub-optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling”. Real-

 Time Systems, Volume 43, Number 3, pages 211-258, November 2009. 
(Published online 17th July 2009). 

[2]

 

R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Quantifying the Sub-

 optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling for Sporadic 
Tasksets with Arbitrary Deadlines”. RTNS’09, October 26-27th, 2009.



Background
Feasibility and Optimality 

A taskset is said to be feasible if there exists some 
scheduling algorithm that can schedule the taskset 
without missing a deadline
A scheduling algorithm is said to be optimal if it can 
schedule all feasible tasksets

EDF is optimal
Dertouzos (1974), proved that EDF is an optimal
uniprocessor pre-emptive scheduling algorithm for 
arbitrary-deadline tasksets that comply with the sporadic 
task model
EDF can schedule all feasible tasksets that comply with 
our model
So we can use a comparison with EDF to determine the 
speedup factor for fixed priority pre-emptive scheduling



Background
FP scheduling: Optimal Priority Assignment 

A priority assignment policy Q is said to be optimal if there 
are no tasksets that are schedulable using some other 
priority assignment policy P which are not also schedulable 
using policy Q.

Optimal priority assignment policies
Implicit-deadline tasksets – Rate-Monotonic (Liu & Layland, 
1973)
Constrained-deadline tasksets – Deadline Monotonic (Leung 
& Whitehead, 1982)
Arbitrary-deadline tasksets – Optimal Priority Assignment 
algorithm, (Audsley, 1993)



Speedup factor
Two perspectives and definitions

#1 Speedup factor is the maximum factor by which it is 
necessary to increase the processor speed so that any 
taskset that was schedulable under EDF becomes 
schedule under FP.
#2 Speedup factor is the maximum factor by which the 
execution times of a set of tasks, that are only just 
schedulable under FP can be increased and the taskset 
remain schedulable under EDF.
A taskset is said to be speedup-optimal if it exhibits the 
(maximum) speedup factor.



Speedup-optimal tasksets
Speedup optimal tasksets are key to finding speedup 
factors
Properties of speedup-optimal tasksets for implicit-
deadline and constrained-deadline cases [1]

[1] R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Exact Quantification 
of the Sub-optimality of Uniprocessor Fixed Priority Pre-emptive 
Scheduling”. Real-Time Systems, Volume 43, Number 3, pages 211-258, 
November 2009. (Published online 17th July 2009). 

Lemma 1: τn must be a constraining task, with the 
longest deadline and the lowest priority.
Lemma 2: τn must have the longest possible period 
(infinite in the constrained-deadline case).
Lemma 3: Dn must be the start of an idle period.
Lemma 4: All tasks τi ≠ τn must have Di <Tn
Lemma 5: All tasks τi ≠ τn must have Di =Ti



Speedup-optimal tasksets
Properties of speedup-optimal tasksets for implicit-
deadline and constrained-deadline cases

Lemma 6: All tasks τi ≠ τn must have Ti >Dn/2
Lemma 7: Following a critical instant, τn executes 
continuously from when it first starts execution until it 
completes.
Lemma 8: The task parameters must comply with the 
following equation

Lemma 9: High priority task execution time is divided into 
an infinite number of tasks each with an infinitesimal 
execution time.
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Normalised speedup-optimal 
taskset 

Speedup-optimal taskset V
Limit as n→∞ of:

X is as yet an unknown value
Implicit-deadline case: 
Constrained-deadline case:

ε X

D1
FP schedule (only just schedulable) Dn

T1

ε ε ε ε ε

D2

T2

ε ε ε ε ε

D3

T3

D4

T4

ε ε

)1/()1(1 −−++==≠∀ niXTDni ii
)1/(1 −= nCi

XCn = XDn += 2

∞=nT
nn DT =

1



Normalised speedup-optimal 
taskset

Utilisation of high priority tasks:

Substituting k=n-1

This is a left Riemann sum of y=1/z over the partition 
[(1+X), (2+X)]
Limit as k→∞ is given by the integral:

Utilisation of lowest priority task:
Constrained-deadline case: Un=0
Implicit-deadline case:  
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Speedup factor:  Implicit-deadline tasksets
Total utilisation of speedup-optimal taskset

Exact EDF schedulability test for implicit-deadline 
tasksets: 

U ≤
 

1
(Maximum) speedup factor as a function of X

f(X) is a monotonic non-increasing function of X
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Exact speedup factor
for FP scheduling of 
implicit deadline 
tasksets is 1/ln(2) ≈
1.44270
As EDF can schedule any 
taskset with U ≤ 1 
Speedup factor implies FP 
can schedule any taskset 
with U ≤ 1/ln(2)
In agreement with and 
diverse proof of Liu & 
Layland’s seminal  result 
from 1973
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Speedup factor:  Implicit-deadline  tasksets

Maximum value at X=0, 
f(0) = 1/ln(2)



Speedup factor:  Constrained-deadline  tasksets

Constraints on EDF schedulability when scaled by a 
factor of f
(i)

 
Lowest priority task τn

 

and one invocation of each higher 
priority task i.e. f(1+X)

 
must complete by 2+X:

(ii) The total utilisation must not exceed 1:
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Speedup factor:  Constrained-deadline tasksets
Intersection of the lines
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Speedup factor:  Constrained-deadline tasksets
Maximum speedup factor

Can be written as:

Similar to the transcendental equation: ln(1/Ω) = Ω
defining the mathematical constant Ω ≈ 0.567143

Upper bound on speedup factor is 1/ Ω ≈ 1.76322
Note upper bound as constraints used are necessary for 
EDF schedulability, but not sufficient
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Speedup factor:  Constrained-deadline tasksets
Exact speedup factor
Need to prove that the speedup-optimal taskset scaled 
by a factor of 1/ Ω ≈ 1.76322 is schedulable under EDF

Rather elegant, but lengthy proof in the RTS paper
Uses Exact schedulability analysis for EDF (Baruah 1990)
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Proof:
Represents h(t) by an 
infinite series of piecewise 
linear functions
Shows that maxima in  
processor load occur at one 
end of these functions
t = k(2+X) and minima at the 
other end t = j(1+X) 
Shows that maxima are 
non-decreasing for k ≥ 6, 
tend to 1 as k→∞, and are 
≤ 1 for k ≤ 6 => h(t)/t ≤ 1

Exact speedup factor is 
1/ Ω ≈ 1.76322 for 
constrained-deadline 
tasksets

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10
t/(2+X)

h(t)/t

Speedup factor:  Constrained-deadline tasksets
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Conclusions
Liu & Layland (1973):

Characterised the maximum performance penalty (or 
sub-optimality) of using FP scheduling rather than an 
optimal algorithm for implicit-deadline tasksets

This research
Characterises a similar maximum performance penalty (or 
sub-optimality) based on processor LOAD for the 
constrained-deadline case
Also provides a disparate proof of the Liu and Layland 
result

Other work
Upper and lower bounds on the speedup factor for

Arbitrary-deadline tasksets

Non-pre-emptive scheduling



Speedup factor: Summary
Speedup factor: increase in processing speed required so that 
any feasible taskset (schedulable by an optimal algorithm) 
can be scheduled using Fixed Priority scheduling

Taskset 
Constraints
[Priority ordering]

FP-P
Speedup factor

Lower bound Upper bound

Implicit-deadline
[RM] [OPA]

1/ln(2) 
≈

 
1.44269 

Constrained-deadline
[DM] [OPA]

1/Ω
 ≈

 
1.76322 

Arbitrary-deadline
[OPA] [OPA]

1/Ω
 ≈

 
1.76322

2 

FP-NP
Speedup factor

Lower bound Upper bound

1/Ω
 ≈

 
1.76322

2 

1/Ω
 ≈

 
1.76322

2 

1/Ω
 ≈

 
1.76322

2 



Future work / open questions
Determining exact speedup factors for FP-NP,
and for FP-P with arbitrary deadline tasksets

These are where optimal priority assignment requires 
Audsley’s OPA algorithm – complicates proof of speedup 
optimal taskset attributes

Determining the exact speedup factor as a function of 
the number of tasks
Empirical investigation

Try to find tasksets that require a speedup factor > 1/Ω
Is 1/Ω ultimately the limit ???



Questions
[1] R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Exact Quantification of the 
Sub-optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling”. Real-

 Time Systems, Volume 43, Number 3, pages 211-258, November 2009. 
(Published online 17th July 2009). 
Gives the Exact speedup factor for implicit-

 

and constrained-deadline 
tasksets (pre-emptive scheduling)

[2]

 

R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns “Quantifying the Sub-

 optimality of Uniprocessor Fixed Priority Pre-emptive Scheduling for Sporadic 
Tasksets with Arbitrary Deadlines”. RTNS’09, October 26-27th, 2009.
Gives upper and lower bounds for arbitrary-deadline tasksets (pre-emptive 
scheduling)

[3]

 

R.I. Davis, L. George, P. Courbin “Quantifying the Sub-optimality of 
Uniprocessor Fixed Priority Non-pre-emptive Scheduling”. RTNS’10, 
November 4-5th, 2010.
Gives upper and lower bounds for implicit, constrained, and arbitrary-

 deadline tasksets (non-pre-emptive scheduling)



Speedup factor:  As a function of cardinality
For constrained-deadline 
tasksets
Upper bound
Based on proof using 
Hyperbolic Bound (Bini et al. 
2003)
Lower bound
Based on generation of 
tasksets requiring these 
speedup factors

Note improvement over 
value for arbitrary n of 
1/ Ω ≈ 1.76322
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