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We describe and evaluate explicit reservation of cache memory to reduce the cache-related preemption de-

lay (CRPD) observed when tasks share a cache in a preemptive multitasking hard real-time system. We

demonstrate the approach using measurements obtained from a hardware prototype, and present schedu-

lability analyses for systems that share a cache by explicit reservation. These analyses form the basis for a

series of experiments to further evaluate the approach. We find that explicit reservation is most useful for

larger task sets with high utilization. Some task sets cannot be scheduled with a conventional cache, but

are schedulable with explicit reservation.

1. INTRODUCTION

In this paper, we apply earlier work on explicit reservation of local memory [Whitham
and Audsley 2012] to the problem of reducing worst-case cache-related preemption de-
lay (CRPD) [Busquets-Mataix et al. 1996]. CRPD is observed in preemptive multitask-
ing systems. When a task τ1 preempts another task τ2, some of the cache blocks in use
by τ2 may be replaced by task τ1. In this case, τ2 will be forced to reload those blocks.
The time required to do this is known as CRPD. CRPD is highly relevant in hard real-
time systems with shared caches because it increases the running time of preempted
tasks, and is a potential cause of deadline misses.

Note that cache misses due to CRPD are distinct from cache misses that occur dur-
ing normal, non-preempted task execution. These are taken into account by conven-
tional worst-case execution time (WCET) analysis. CRPD accounts for additional cache
misses that may occur in worst-case scenarios when a task is preempted by other tasks.
The state of cache memory can be saved before each preemption, and restored after

the preempting task completes. We call this explicit reservation of cache memory. Sav-
ing and restoring the cache state incurs a time cost just like the usual implicit form of
CRPD. However, the cache state is restored in a single operation before the preempted
task resumes, instead of multiple cache misses while the preempted task is running.
This is more efficient, and means that the preempted task experiences less CRPD.

This paper contributes (1) a description of a hardware mechanism for explicit reser-
vation of cache memory, which is prototyped in FPGA hardware; (2) measurements
from the prototype that clearly demonstrate the benefits for simple systems; and (3)
exact and sufficient schedulability analysis for large task sets using explicit reserva-
tion. The results of various experiments are used to compare and contrast the explicit
reservation approach with the conventional non-reserved cache approach.

The paper is structured as follows. Related work and details of the problems being
solved are given in section 2. Section 3 introduces explicit reservation of cache memory
as a solution. Section 4 describes how explicit reservation is implemented in hardware.
Section 5 provides an experimental demonstration of the explicit reservation approach
as executed on our hardware prototype. Section 6 gives exact and sufficient schedula-
bility analyses for the approach and section 7 uses schedulability analysis to evaluate
the approach with large task sets. Section 8 is a discussion of the assumptions we
made, with a qualitative evaluation, and section 9 concludes.
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CREST, number 288008. Authors’ address: Department of Computer Science, University of York. Email:
jack@jwhitham.org / neil.audsley@york.ac.uk / rob.davis@york.ac.uk
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Fig. 1. The real-time system used to illustrate section 2. There are two tasks, foo and bar. bar has 9.8ms to
complete its work. foo has 7.8ms, as it can only begin 2ms after the beginning of bar.

Fig. 2. Example tasks executed on dedicated CPU resources.

2. BACKGROUND

A hard real-time system is composed of a hardware platform and one or more hard
real-time tasks. Each invocation (job) of each task must complete its work before a
deadline [Burns and Wellings 2009]. The classic real-time systems problem is to prove
that a particular task set on a particular system will always meet its deadlines. This
property is called schedulability. A system is schedulable if the deadlines are met.
In order to achieve schedulability, we assume that we can compute the worst-case

execution time (WCET) of each task, running in isolation without any resource shar-
ing with any other task. The WCET may be computed using various analysis meth-
ods [Wilhelm et al. 2008] or by simple measurement in certain special cases, e.g. single
path programs [Puschner 2005]. The WCET of a task depends on its functionality, on
its implementation (e.g. machine code) and on the platform on which it runs.

2.1. Running Example

We illustrate the remainder of this section by introducing an example task set contain-
ing two tasks, named foo and bar. In the example, the tasks have a shared deadline
of 9.8ms, but foo has an offset of 2ms after bar’s release, because it depends on some
input from the environment. These facts can be represented within a timing diagram
(Figure 1) which shows the time available to run each task.

2.2. Real-time Systems with Dedicated Resources

Ideally, each task would be given dedicated resources: CPU, memory, and so on. If the
tasks must communicate, they can do so through dedicated, non-blocking channels. No
task is ever blocked by any other task, so it is straightforward to determine whether
tasks meet their deadlines, because only the WCET and deadline are required for the
proof. If foo and bar are executed with dedicated resources, the result is as shown in
Figure 2. The two run in parallel and both complete long before the deadline, because
the WCET of foo is 4ms and the WCET of bar is 5ms.
This arrangement is not unknown in real implementations, such as cell phone

chipsets, but real-time systems sold in smaller markets often avoid dedicated resources
to reduce engineering costs. Usually, an off-the-shelf platform is used, and a single
CPU is shared between multiple tasks.
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Fig. 3. Example tasks executed by a cyclic executive.

Fig. 4. Example tasks sharing a CPU with preemptive multitasking.

2.3. Real-time Systems Sharing the CPU

Schedulability analysis determines if a CPU can be shared by multiple hard real-time
tasks [Burns and Wellings 2009]. The analysis computes the worst-case response time
(WCRT) of each task. The WCRT of a task is the longest possible interval between the
time when that task is released (becomes runnable) and the point where it completes.
In a hard real-time system, the task WCRT must be no greater than the task deadline.
The simplest schedulability analysis is possible when jobs run in a predefined order

with a cyclic executive (Figure 3). However, this is restrictive, because it cannot eas-
ily accommodate task sets with widely differing WCETs, offsets and deadlines. It only
works for our example because the example is so simple. bar has a WCRT of 5ms, com-
pleting 5ms after release, and foo has a WCRT of 7ms, completing 7ms after release.
The restriction is relaxed by using preemptive multitasking as the sharing policy

(Figure 4). This involves more complex schedulability analysis, because higher-priority
jobs suspend (preempt) the execution of lower-priority jobs in response to externally-
generated events [Audsley et al. 1993; Tindell et al. 1994]. For our example, foo is
assigned a higher priority, and when it becomes runnable at 2ms, it preempts bar.
The WCRT includes the maximum time that each task may be delayed by higher-

priority tasks (interference time). It may also include the maximum time that each
task may have to wait for uninterruptible sections of lower-priority tasks (blocking
time), and the overhead of switching between tasks, which is carried out by the real-
time operating system (RTOS). For Figure 4, we assume that there is no blocking and
context-switching is free, so bar has a WCRT of 9ms and foo has a WCRT of 4ms.

2.4. Real-time Systems Sharing the Cache

The CPU is not the only resource that is shared by all tasks. Today, caches are ubiq-
uitous. A cache is a small CPU-local memory that stores recently-accessed code and
data [Hennessy and Patterson 2006]. When a task accesses memory, the cache is
checked first. If the required information is already in cache (a cache hit), the access
completes immediately. If it is not in cache, then a cache miss occurs, and the informa-
tion is fetched from external memory. Caches are highly beneficial, greatly reducing
the WCET of a task in comparison to its WCET if executed directly from external
memory, provided they are well-designed [Heckmann et al. 2003; Wilhelm et al. 2009].
The cache must be considered during schedulability analysis if one task can cause

cache misses within another. This can easily occur when two tasks use the same stor-
age space within the cache. In Figures 2-4, the two tasks were given independent
caches of identical size. When the two share a cache and CPU, the results are as shown
in Figure 5. There is an increase in the execution time of bar because foo reused bar’s
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Fig. 5. Example tasks sharing a CPU and cache. foo evicts the cache blocks used by bar, creating a cache-
related preemption delay (CRPD) of 1ms. This delay is sufficient to cause bar to miss the deadline.

cache blocks, forcing bar to fetch the blocks again after resuming. This delay (total
1ms) is the cache-related preemption delay (CRPD) [Busquets-Mataix et al. 1996].

The CRPD cost can be bounded by CRPD analysis. The crudest approach to CRPD
analysis is to assume that every preemption causes a complete flush of the entire
cache; a safe but often imprecise assumption. Successively more precise estimates have
been achieved by researchers [Busquets-Mataix et al. 1996; Lee et al. 1998; Staschulat
et al. 2005; Tan and Mooney 2007; Altmeyer and Maiza 2010; Altmeyer et al. 2011;
2012]. Estimates are generated by examining which cache blocks are definitely reused
by lower-priority tasks (useful cache blocks) and which cache blocks are accessed by
higher-priority tasks (evicted cache blocks).

2.5. Reducing CRPD

Sharing a cache reduces the available utilization of a real-time system [Altmeyer and
Maiza 2010]. CRPD may increase the WCRT of any task that is preempted. In some
cases, a high-utilization task set may not be schedulable because of CRPD. Therefore,
it is worth considering more efficient ways to share the cache which incur a lower
CRPD and allow higher-utilization task sets to be executed.
The impact of CRPD may be reduced in at least four ways, none of which are mu-

tually exclusive. Firstly, we may improve CRPD analysis (section 2.6), which does not
actually reduce CRPD, but does reduce task WCRTs as determined by schedulability
analysis, which is equally important when demonstrating the system’s schedulability.
Secondly, we may use static cache partitioning to give each task a dedicated area of

cache (section 2.7). This means that there will be no CRPD. We may also choose the
memory addresses of the code and data used by a task to reduce CRPD (section 2.8).
Finally, we may reduce the cost of reloading the useful cache blocks by pipelining

the cache fill operations (section 2.9). This means that there is still some CRPD, but
the worst-case cost is smaller.

2.6. Reducing CRPD by Better Analysis

In previous work [Altmeyer et al. 2011; 2012], the approach taken improved the qual-
ity of CRPD analysis rather than reducing CRPD itself. CRPD analysis is potentially
pessimistic, i.e. the true CRPD is overestimated. To carry out CRPD analysis, we look
at pairs of tasks within the task set, where one task may preempt the other. We deter-
mine the cache footprint of the preempting task. This is the set of cache blocks that the
preempting task might evict: the evicting cache blocks or ECBs. We also determine the
set of cache blocks that will be reused by the preempted task (the useful cache blocks
or UCBs) [Altmeyer and Maiza 2010].
The earliest CRPD analyses used only ECB sets to determine a pessimistic upper

bound on the CRPD [Busquets-Mataix et al. 1996]. Subsequent analyses introduced
UCB sets to the analysis [Tan and Mooney 2007; Altmeyer and Maiza 2010], which
can be used in different ways (e.g. ECB-Union, UCB-Union) to produce a more accu-
rate CRPD estimate [Altmeyer et al. 2011]. Recent analyses reduce the pessimism in
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these approaches in terms of the way they account for nested preemptions, but do not
eliminate it entirely [Altmeyer et al. 2012].

To take advantage of this method of reducing the effective CRPD, we would need
to find and eliminate a source of overestimation remaining in the most recent CRPD
analysis research.

2.7. Reducing CRPD by Cache Locking and Partitioning

We can reduce CRPD to zero by preventing any task causing cache misses in another.
This may be achieved by cache locking [Vera et al. 2007].

A locked cache is not updated by cache misses during application execution. Instead,
it is explicitly filled by the OS [Liu et al. 2012]. Liu et al. classify locking techniques
as static (filled once at boot time), semi-dynamic (filled at each context switch) and
dynamic (filled at each context switch and at predetermined reload points during each
task). The static approach grants a fixed area of cache space to each task; the dynamic
approaches allow each task to use different areas of cache space according to their
needs. Algorithms have been specified to determine cache allocations to minimize task
WCETs [Arnaud and Puaut 2006; Falk et al. 2007] and to maximize schedulability of
all tasks [Campoy et al. 2002; Liu et al. 2012]. The static approach prevents all CRPD,
while the dynamic approaches replace it with the cache fill penalty incurred during
each context switch.

Cache partitioning is similar to locking in that each task gets a preallocated area
of cache space and cannot update any other part. However, the preallocated area can
be updated by cache misses [Mueller 1995]. Therefore, there is no need to add reload
points to a task in order to use the cache efficiently. CRPD applies only if there is a
shared area of cache [Kirk 1989].

Static cache locking and partitioning are only effective when every task can be given
a cache budget that is sufficient to meet its needs. The amount of available cache space
has a major impact on WCET when the available space is insufficient for the task’s
working set, because the number of cache misses is dramatically increased [Hill and
Smith 1989]. In some cases, the task effectively runs from external memory, because
no cache blocks can be reused. This is very slow.

For the purposes of our example, we may assume that any reduction in the cache
space available to foo and bar will cause such a slowdown, and deadlines will not be
met, even though the CRPD will be zero.

Dynamic cache locking is potentially better, but because it involves partitioning a
task by adding reload points, it relies on partitioning algorithms to minimize the
WCET [Liu et al. 2012; Arnaud and Puaut 2006]. As yet, there is no evidence that
such algorithms produce results that are competitive with cache when state-of-the-art
WCET analysis is used.

To take advantage of static cache partitioning or locking as a method of reducing
the CRPD, we would need a task set (or a task subset) that could fit entirely in cache
without significantly increasing the WCET of any task.

2.8. Reducing CRPD by Optimizing Task Memory Layout

ECB and UCB sets depend on the code and data addresses used by each task. Code
and static data addresses are determined by the linker in the final stage of compilation;
dynamic data addresses are determined at runtime but may still be constrained by a
suitable memory allocator [Herter et al. 2011].

It is possible to reduce CRPD by choosing the addresses making up the task’s mem-
ory layout so as to minimize the overlap determined by CRPD analysis. Recent work
used simulated annealing to search for task layouts that minimized CRPD [Lunniss
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Fig. 6. Detail of Figure 5 showing that the CRPD of 1ms is actually composed of 4 separate cache misses,
each occurring at sporadic intervals and each requiring 250µs to complete.
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Fig. 7. If the addresses to be fetched are known in advance, and the memory subsystem is pipelined, the
total time to restore the cache state of bar is 490µs, less than half the combined cost of individual cache
misses in Figure 6.

et al. 2012]. The most significant benefits come from changing the order that the tasks
are placed in memory. For n tasks, there are n! possible orderings.
To take advantage of this method of reducing the effective CRPD, we would need to

search a large number of possible task layouts.

2.9. Reducing CRPD by Pipelining Cache Fills

Figure 5 shows the 1ms CRPD imposed on bar by foo. We now look more closely at
the events shortly after the completion of foo (Figure 6). The cache misses do not occur
together. They are sporadic events triggered by bar’s execution, with total time 1ms.

The total time can be reduced if these cache miss operations are carried out together,
because each subsequent cache fill can be started while the previous one is still run-
ning. A pipelined bus and pipelined memory make this possible, provided that the
addresses to be fetched are known in advance. Each miss requires a total of 250µs, but
the second, third etc. can be initiated after 80µs. Figure 7 shows what happens when
pipelining is used.
To take advantage of this method of reducing the CRPD, we would require a

pipelined memory subsystem, and perfect knowledge of the addresses of the cache
blocks to be fetched from external memory by the preempted task as a result of CRPD.
However, both of these are available. Pipelined access to memory is now a common
hardware feature, and the cache blocks to be fetched are the cache blocks in use at the
time the task was preempted.

3. EXPLICIT RESERVATION OF CACHE MEMORY

In this paper, we apply an explicit reservation approach to reduce CRPD. When a task
is preempted, the state of the cache is saved on a stack. When the task continues
execution, the state of the cache is restored from that stack. The restoration process
takes advantage of pipelined access to memory and therefore completes earlier (in the
worst case) than the series of separate cache misses which would be required with a
conventional non-reserved cache.

3.1. Overview of the Approach

Each task τi has a cache budget Si, which is a number of cache blocks ranging from 1
to the cache size S cmax. Cache blocks are of equal size.
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Fig. 8. Explicit memory reservation example. foo has a cache budget of 4 blocks. 100µs are spent saving the
state of these blocks just after preemption. 490µs are spent restoring that state after completion. The result
is a 410µs reduction in CRPD in comparison to sharing a cache implicitly (Figure 5). The deadline is now
met by both tasks.

On each context switch to a new task τi, cache space is explicitly reserved by the
RTOS to meet the cache budget for τi. This means saving the state of Si cache blocks
on a stack. The remaining S cmax−Si blocks are locked so that they cannot be updated.

On completion of τi, the cache space is restored to its previous state. Each of the Si

blocks is refilled with its earlier contents, taken from the stack. The previous lock state
of the Si blocks is also restored.
The state of a cache block is (1) its lock state (locked/unlocked) and (2) the address

in external memory that it was loaded from.
Figure 8 illustrates the idea when applied to our example task set. bar and foo are

each given a cache budget of 4 blocks.

3.2. Related Approaches

As the restore step loads Si blocks in quick succession, the memory operations can
be pipelined. Each cache fill operation may be requested before the previous one com-
pletes. This brings similar advantages to the well-known technique of cache prefetch-
ing [Hennessy and Patterson 2006]. This is typically driven by heuristics, such as
fetching cache blocks sequentially, though special CPU instructions may be used to
provide hints to the prefetching process [Cepeda 2009]. Indeed, explicit reservation
of cache memory could be regarded as a special case of cache prefetching, and cache
prefetching instructions could be used to implement the restore process.

But cache prefetching is very different to explicit reservation of cache memory.
Prefetching is not intended to improve the worst case for real-time systems. It is not
aware of context switches. Being an heuristic process, it may make mistakes which
could increase task WCETs or WCRTs, such as evicting useful cache blocks under rare
circumstances. Conventional prefetching suffers from a potential to misuse resources,
slowing a system down [Tse and Smith 1998].
The restore process does not rely on heuristics to determine likely future cache

states, because it conservatively restores the cache state exactly as it was at preemp-
tion. It cannot introduce any CRPD beyond the time taken to save and restore. There
will be no additional cache misses as a result of preemption.

3.3. Weaknesses of the Approach

The main disadvantage of explicit reservation of cache is that any preemption by task
τi always imposes the same CRPD regardless of the preempted task τj . This could be
regarded as a strength, making execution more predictable, but it is possible that this
CRPD may be greater than the CRPD for a conventional cache.
In the conventional non-reserved arrangement, CRPD depends on both the pre-

empted and the preempting task, and may be zero if the two have no cache blocks
in common. Furthermore, if the preempted task does not reuse a block in cache, it
is never loaded at all. Therefore, the technique may increase a task’s WCRT by pes-
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Fig. 9. Direct-mapped Cache [Xilinx 2008].

simistically assuming that all the cache blocks need to be restored, whether evicted or
not, and whether reused or not.
Furthermore, new hardware is required to implement an appropriate explicitly

reservable cache. There is no practical way to work around this requirement using
software, because of the need to save the state of the cache upon preemption.

Finally, any cache budget in the range 1 ≤ Si ≤ S cmax can be implemented in
principle, but only integer powers of two can be supported efficiently, because other
values would require a hardware division unit within each cache. This would introduce
an unacceptably high access latency as well as significantly increasing hardware costs.

4. EXPLICITLY RESERVABLE CACHE HARDWARE

In this section we describe cache hardware that supports the explicit reservation proto-
col. This protocol consists of the save and restore operations to be used at each context
switch, plus a locking protocol for use with low-priority tasks. The protocol cannot be
usefully implemented in software as the save/restore overhead must be minimized.
The cache is a direct-mapped, write-through data cache. This is a very simple type

of cache design [Hennessy and Patterson 2006], but it can be extremely effective [Hill
1988]. Direct-mapped caches are often used in simple embedded systems due to their
relatively low area and power costs [Xilinx 2008].

4.1. Conventional Direct-mapped Cache

A conventional direct-mapped cache design forms the basis for the implementation of
the explicit reservation protocol. Like any direct-mapped cache, two RAMs are used: a
data RAM, and a tag RAM (Figure 9).
Figure 9 shows some of the internal components of a direct-mapped cache. The CPU

sends an address a to the cache, which consists of T +B +W bits: a tag t (size T bits),
a block number b (size B bits) and a word number w (size W bits). The data RAM
receives address (b, w) and the tag RAM receives address b. On the next clock cycle,
the output of the tag RAM will be tag[b] - the current value of the tag for block b.
If tag[b] = t, then the cache access is a hit. A signal is sent to the CPU, along with

the requested data (data[b, w]). If tag[b] 6= t, then the cache access is a miss. Additional
hardware, not shown in Figure 9, sends the address a to the external memory. After
a delay (the cache miss time) the external memory responds with the requested data.
tag[b] is updated to t, and data[b, 0] through data[b, 2W − 1] are filled.

The cache is no-write allocating, i.e. cache misses cannot be generated by store op-
erations. However, store operations may update (write-through) cache blocks if the
accessed address is already in cache.
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Fig. 10. Direct-mapped Cache with support for Explicit Reservation.

4.2. Direct-mapped Cache with Explicit Reservation

To adapt the basic direct-mapped cache design for the explicit reservation protocol, we
make two modifications to the subsystem that decodes address a as shown in Figure
10. t and b are combined into a single bitfield (t, b) to be used as the tag input.

Firstly, a cache budget register (CBR) is added. The CBR holds the value of the cache
budget Si for the current task τi. The CBR value must be an integer power of two in
the range [1, S cmax]. The initial state of the CBR is S cmax.
Secondly, a logical function is added to decode the bitfield (t, b) into the effective

block address b′. The decoding operation is efficiently implemented in hardware as it
involves just one fast operation (logical AND):

b′ = (t, b) AND (CBR − 1) (1)

This makes data RAM with a block address outside [0, CBR −1] inaccessible.
Two further additions are the save/restore stack (SRS) and control logic. The SRS

stores the tag values used by lower-priority tasks while higher-priority tasks are run-
ning. The control logic implements a state machine to control cache filling and a control
port to allow software running on the CPU to initiate operations, such as save and re-
store. The control port receives instructions in the form of operation codes (opcodes).

4.3. Opcodes

The explicit reservation protocol has two opcodes, which can be sent by software to
the cache control logic. The Save opcode has an operand Si which specifies the cache
budget for the next task. It initiates the following operation sequence:

—Push the current CBR value onto the SRS.
—For i from CBR −1 to 0: push tag[i] (the value of tag i) onto the SRS.
—Set the CBR to Si.

The Restore opcode undoes the effects of the previous Save opcode. It initiates the
following operation sequence:

—For i from 0 to CBR −1: pop tag[i] from the SRS.
—For i from 0 to CBR −1: fetch cache block i from external memory.
—Pop the new CBR value from the SRS.

4.4. Example

Suppose foo preempts bar as in Figure 8. The sequence of events is shown in Figure

11. The sequence includes the context switch time imposed by the OS (CS to, CS from)
and the Save and Restore operations. The result of the Restore operation is that the
cache returns to the state it was in at the beginning of the Save operation.
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Fig. 11. Sequences of sub-operations executed for Save and Restore when foo preempts bar in Figure 8. For
clarity, the Restore operations are shown here without pipelining: in reality, they overlap.

4.5. Prototype Implementation

In order to evaluate the explicitly reservable cache, we need realistic data about the
cost of various operations, such as the latency of cache misses and the time taken to
Restore a specific number of blocks. Tiny measurement errors in this data can lead
to seriously flawed results, making explicit reservation seem better (or worse) than it
should be. This is a very high risk when deriving results from simulators, which are
rarely perfectly accurate. To minimize this risk, we implemented the explicit reserva-
tion cache using field-programmable gate array (FPGA) hardware.
Our implementation of the explicitly-reservable cache is built upon a Xilinx Spartan-

6 FPGA on the Digilent Atlys prototyping board [Digilent 2013]. The cache is built as
a component with three external bus connections:

—A local memory bus (LMB) for connection to a CPU such as Microblaze [Xilinx 2008].
The CPU uses this bus to access the cache. Addresses sent via this bus are decoded
into the (t, b, w) tuple (section 4.2).

—A Fast Simplex Link (FSL) bus for sending opcodes to the cache (section 4.3).
—An Advanced Extensible Interface (AXI) bus connection to the memory controller [Xil-

inx 2012]. The AXI bus provides high-speed pipelined access to the DDR2 RAM on
the Atlys prototyping board, via a Xilinx memory controller IP core.

Our hardware design is an embedded system capable of running a preemptive multi-
tasking RTOS (Figure 12). The CPU is a Xilinx Microblaze IP core [Xilinx 2008]: the
CPU is connected to two copies of the explicitly reservable cache, one for instructions
and another for data. The hardware design also features two timers, one for measure-
ments and another for generating interrupts. There is a small scratchpad memory
(SPM) which is used to store the RTOS kernel.
Each cache is implemented as shown in Figure 10. The block size is 32 bytes (W = 3),

and the valid range of B is 1 to 6, so Si ∈ {1, 2, 4, 8, 16, 32, 64}. This gives a maximum
size of 2048 bytes (64 blocks) for the instruction cache and data cache, and a minimum
size of 32 bytes (1 block).
As an indication of area overheads, an instruction/data pair of 32kbyte direct-

mapped caches requires 330 FPGA slices. Replace these with explicitly reservable
caches of the same size, and the area requirement is 710 slices, a two-fold increase.
This is primarily because of the size of the save/restore control logic. It includes debug-
ging features, and we have not made any attempt to reduce the size.
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Fig. 12. Components and interconnections in our FPGA design.

4.6. Applications

Our experiments are based on the integer benchmarks from the MRTC collec-
tion [Gustafsson et al. 2010]. The benchmark collection contains 35 programs, all writ-
ten in C, all single path, and all intended as examples of real-time tasks.

We used the Microblaze C compiler, which is based on GCC, to compile each bench-
mark. Our RTOS and our hardware does not currently support floating-point oper-
ations, so we omitted the 11 MRTC programs that use floating-point1 but kept the
remaining 24 programs that use only integer operations.

We modified each source file to rename the main() function to include the benchmark
name (e.g. matmult main()). This allows the benchmark to be invoked as an RTOS task
rather than a standalone program.

Some benchmarks have different behavior if invoked more than once. For instance,
the crc benchmark generates a lookup table when invoked for the first time. We wanted
the same (worst-case) behavior on each invocation, so we added code to reset the “ini-
tialized” flag on each execution.

Some benchmarks have symbol names that conflict when the benchmarks are linked
together. We modified the code so that these were declared static, making them local
to a single C source file.

4.7. Task Timings

In subsequent experiments, a task τi is created from a benchmark program. For each
τi, we require a WCET C nr

i for execution with a conventional non-reserved cache, and
a WCET C er

i with explicit reservation.
We determined the WCET C nr

i for each task τi by running the task on our FPGA
platform without preemption, starting in a “cold” state in which the cache is completely
empty. This produces a valid approximation for theWCET because the benchmarks are
single path. The maximum execution time was measured across 100 runs.

C er
i was determined in a similar way, but because this is the WCET with ex-

plicit reservation, it depends on the cache budget allocated to the task. Therefore, we
searched all possible cache budgets in order to find the arrangement that minimized

C er
i +C save

i +C restore
i , being the total running time for task τi. Two cache budgets SI

and SD apply to each task, because we have both an instruction cache and a data cache
(Figure 12). There are 49 configurations to be tested, because SD and SI can each take
7 possible values (1, 2, 4, 8, 16, 32, 64) and there are two caches (72 = 49).

1fft1, lms, ludcmp, minver, qsort-exam, qurt, select, sqrt, statemate, st and ud.
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Table I. Benchmarks used in this paper, with WCET data

Task τi Cnr
i

(ns) Cer
i

(ns) SI

i
SD

i
Csave

i
(ns) Crestore

i
(ns)

adpcm 3565897 3565817 64 64 1813 17612
binarysearch 6839 6666 8 1 226 1746
bsort100 1098612 1098332 8 16 426 3746
cnt 120170 120876 8 1 226 1746
compress 170115 170529 16 32 746 6946
cover 53651 54865 8 1 226 1746
crc 499160 504574 16 16 533 4813
duff 24986 25479 8 1 226 1746
edn 907577 908017 32 64 1386 13346
expint 118503 118903 4 1 173 1213
fac 5799 5626 4 1 173 1213
fdct 45358 46425 16 16 533 4813
fibcall 7293 7119 4 1 173 1213
fir 55491 55891 8 8 319 2679
insertsort 20572 20506 4 4 213 1613
janne 7466 7399 4 1 173 1213
jfdctint 91717 92557 16 32 746 6946
lcdnum 6226 6053 8 1 226 1746
matmult 2913393 2912593 16 64 1173 11213
ndes 971295 971229 64 64 1813 17612
ns 156849 156676 8 1 226 1746
nsichneu 704809 704609 1 8 226 1746
prime 325258 325085 8 4 266 2146
recursion 45465 45358 8 8 319 2679

Note: Cnr
i

is the non-reserved cache WCET, assuming the entire cache is shared
between all tasks. Cer

i
is the WCET assuming that a cache budget is imposed.

Values are accurate to the nearest clock cycle (13.3ns).

We executed each task on our FPGA platform with each possible cache budget con-
figuration, capturing C er

i for each, again taking the maximum across 100 runs.

Table I gives C nr
i , C er

i , C save
i and C restore

i for each task.

4.8. System Timings

Our schedulability calculations require upper-bound timings for various important op-
erations, which we obtained either from architectural parameters, or by running test
applications within our RTOS. These timings are:

—A clock cycle – 13.3ns (75MHz clock).
—A cache miss – 547ns.
—Context switch to a task – CS to = 14µs.
—Context switch from a task – CS from = 14µs.

4.9. Software Downloads

The source code and hardware designs referenced in this paper may be downloaded
from http://www.cs.york.ac.uk/rts/rtslab/. They can be used immediately on a
Digilent Atlys FPGA board, and can be adapted to other hardware using the Bluespec
System Verilog compiler [Bluespec 2013].

5. EXPLICIT RESERVATION DEMONSTRATION

We now present experimental evidence to show the benefits of the explicitly reservable
cache. In this section, all data is obtained by measurements from our FPGA prototype.
Being intended for use within hard real-time systems, the explicit reservation ap-

proach is intended to provide a benefit to the worst case only. This worst case may only
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Fig. 13. The measured response time y for ndes when preempted by edn at time x is highly variable using
a conventional cache, but almost constant using an explicitly-reservable cache.

be observable through WCRT analysis, and may not be observable through execution
and measurement.

However, it is possible to demonstrate the benefits of explicit reservation using just
two tasks. Suppose that we pick ndes and edn from Table I and assign edn a higher
priority than ndes.

We now set the period of both tasks to a large value, so that the two never miss dead-
lines. The release offset of ndes is set to zero, so ndes begins executing immediately.

Let the release offset of edn be a variable x, so edn will preempt ndes at time x. Fur-
thermore, let y be the measured response time for the first execution of ndes, i.e. ndes
completes at time y.

Figure 13 shows how x and y are related, for a conventional cache and an explicitly-
reservable cache. The ndes task is preempted once when x is between 6.2µs and 953µs.
For x < 6.2µs, edn runs before ndes starts and there is no preemption. For x > 953µs,
edn runs after ndes finishes.

5.1. Discussion

With a conventional cache, the response time of ndes is highly dependent on x, the
point at which ndes is preempted (Figure 13).

If preemption occurs at an early point during execution (e.g. x < 62µs) then the con-
ventional CRPD cost is relatively low, yielding a measured response time y < 1877µs.
This is because relatively few cache lines used by ndes are evicted by edn. However,
if preemption occurs at a later time, then many of the cache lines in use by ndes will
be evicted. The measured response time increases accordingly: y > 1895µs. ndes takes
longer to run because it must reload cache lines that were evicted by edn.

With an explicitly-reservable cache, the measured response time is dependent only
upon the number of preemptions, and not upon the offset x. This is observed in Figure
13 where the data for the explicitly-reservable cache appears as a flat line (with some
noise due to jitter from memory refresh cycles and the interrupt timer). The response
time is almost constant: y ≈ 1878µs.

Preemption with the explicitly-reservable cache may be faster or slower than with a
conventional cache. In Figure 13, the conventional cache is preferable for x < 62µs, for
x ≈ 522µs, and for x > 909µs.

In a real-time system, there is no choice about when a task is preempted, as the
preempting task may be triggered by an external event. If deadlines are tight, and the
preemption occurs at a “bad” time, then the CRPD may be enough to cause a deadline
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miss in the preempted task. This is why the CRPD must always be an upper bound,
and why techniques to reduce this upper bound are worthwhile.
To better understand the properties of explicitly-reservable caches, we make use of

schedulability analysis to identify and evaluate more complex versions of worst-case
scenarios in which differences in CRPD may cause deadline misses. These worst-case
scenarios are likely to be extremely difficult to reproduce in our prototype system since
they rely on unlikely combinations of events, so analysis is used for the comparisons.

6. SCHEDULABILITY ANALYSIS WITH TASK-DEPENDENT CONTEXT SWITCH T IME

In this section, we describe exact and sufficient schedulability analyses for systems
using explicitly-reservable caches. The analysis determines worst-case response times
(WCRTs) for tasks executed with an explicitly-reservable cache.
In the classical model of a preemptive real-time system, context-switch costs are

constant [Burns and Wellings 2009]. Context switches are not interruptible and can
block execution of other tasks. But with explicit reservation of cache memory, context

switches include C save
i and C restore

i : the time taken to save and restore the memory
state. These are dependent on the number of cache blocks used by tasks (section 4.8).

6.1. System Model, Terminology and Notation

We consider the fixed priority preemptive scheduling of a set of sporadic tasks on a
single CPU. Each task set comprises a static set of n tasks τ1, τ2, ..., τn, where n is a
positive integer. We assume that task τi has priority i, hence τ1 has the highest priority,
and τn the lowest.
We use the notation hp(i) (and lp(i)) to mean the set of tasks with priorities higher

than (lower than) i, and the notation hep(i) (and lep(i)) to mean the set of tasks with
priorities higher than or equal to (lower than or equal to) i.
Each task τi is characterized by its bounded worst-case execution time Ci, minimum

inter-arrival time or period Ti, and deadlineDi (relative to the release time). Each task
τi therefore gives rise to a potentially infinite sequence of invocations (or jobs), each of
which has an execution time upper bounded by Ci, an arrival time at least Ti after the
arrival of its previous job, and an absolute deadline that is Di after its arrival. Task
utilization Ui is defined as Ui =

Ci

Ti
.

In an implicit-deadline task set, all tasks have Di = Ti. In a constrained-deadline
task set, all tasks have Di ≤ Ti, while in an arbitrary-deadline task set, task deadlines
are independent of their periods.
The tasks may block each other from executing by accessing mutually exclusive

shared resources. The blocking factor at priority level i, due to mutually exclusive
access to resources, is given by Bi and is equal to the length of the longest resource
access by a task of lower priority than i to a resource that is shared with task τi or a
task of higher priority.

In order to model C save
i and C restore

i , we assume that there are three phases of
execution related to each task τi. Before task τi can begin normal execution, we assume
that a non-preemptable phase of execution of maximum length C

pre
i must first be

completed. C
pre
i represents the cost of saving the cache state of any preempted task

C save
i , plus any other context-switching costs needed to begin executing τi.
Similarly, once task τi has completed its normal execution Ci (during which time it

may be preempted), then a non-preemptable phase of execution of maximum length

C
post
i must be completed. C

post
i represents the time required to restore the context of

any preempted task C restore
i , plus any other context-switching costs needed to switch

back to the preempted task.
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The worst-case response time (WCRT) Ri of a task τi is given by the longest possible
time from release of the task until it completes its normal execution. Thus task τi
is schedulable if and only if Ri ≤ Di, and a task set is schedulable if and only if
∀i.Ri ≤ Di.

The following assumptions are made about the behavior of the tasks: The arrival
times of the tasks are independent and unknown a priori; hence the tasks may share
a common release time. Each task is released (i.e. becomes ready to execute) as soon
as it arrives. The tasks do not voluntarily suspend themselves.

6.2. Exact Schedulability Test

In this section, we extend the schedulability analysis given by [Tindell et al. 1994] for
fixed priority preemptive scheduling of tasks with arbitrary deadlines to account for
the initial and final non-preemptive phases in our task model. We provide an exact
test valid for tasks with arbitrary deadlines.

The worst-case scenario for task τi occurs following a critical instant where τi is
released simultaneously with all higher priority tasks2, and subsequent releases of
task τi and higher priority tasks then occur after the minimum permitted time inter-
vals. Further, immediately prior to the start of this busy period, a lower priority task
either locks a resource shared with task τi or a higher priority task, or enters a non-
preemptive phase of execution. The length Li of the longest priority level-i busy period
can be found via the following fixed point iteration:

Lm+1
i = BCS

i +
∑

∀j∈ hep(i)

⌈

Lm
i

Tj

⌉

(C
pre
j + Cj + C

post
j ) (2)

where BCS
i is given by:

BCS
i = max(Bi, max

∀k∈ lp(i)
(C

pre
k , C

post
k )) (3)

Iteration starts with an initial value guaranteed to be no larger than the minimum
solution, for example L0

i = Ci, and ends when Lm+1
i = Lm

i . Convergence is guaranteed

provided that the adjusted task set utilization U∗ =
∑

∀i
1
Ti
(C

pre
i + Ci + C

post
i ) does

not exceed 1. The number of jobs Qi of task τi in the busy period is given by:

Qi =

⌈

Li

Ti

⌉

(4)

In general it is necessary to compute the response times of all jobs of a task τi within
the longest priority level-i busy period in order to determine the task’s worst-case re-
sponse time. The completion time Wi,q of the qth job (where q = 0 is the first job) of
task τi, with respect to the start of the busy period, is given by the following fixed
point iteration:

wm+1
i,q =BCS

i + q(C
pre
i + Ci + C

post
i ) + C

pre
i + Ci+

∑

∀j∈ hp(i)

⌈

wm
i,q

Tj

⌉

(C
pre
j + Cj + C

post
j )

(5)

Note that we are interested in the time at which the qth job completes its normal

execution. Therefore we include q(C
pre
i + Ci + C

post
i ) for the execution of q previous

2This is the worst case because the C
pre
i

and C
post
i

costs are incurred regardless of which tasks are pre-
empted (including no tasks).
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jobs of task τi in the busy period and similarly for interference from higher priority
tasks, but only C

pre
i + Ci for the qth job of task τi.

Iteration starts with an initial value w0
i,q, for example:

w0
i,q = BCS

i + q(C
pre
i + Ci + C

post
i ) + C

pre
i + Ci (6)

and ends when either wm+1
i,q = wm

i,q, in which case Wi,q = wm+1
i,q , or when wm+1

i,q − qTi >

Di, in which case job q (and hence task τi) is unschedulable. We note that the number
of iterations can be reduced by the use of appropriate initial values [Davis et al. 2008].
To find the WCRT of task τi, completion times Wi,q need to be calculated for jobs

q = 0, 1, 2, ..., Qi − 1. The WCRT of task τi is then given by:

Ri = max
q∈[0,Qi−1]

(Wi,q − qTi) (7)

Task τi is schedulable provided thatRi ≤ Di. We note that for our task model, this form
of analysis needs to be used even for constrained-deadline task sets. This is because

the non-preemptive phase C
post
i after the completion of the normal execution of a job

of task τi may cause push-through blocking on the next job of task τi, even if the job
finishes before its deadline Di ≤ Ti. This occurs when the busy period at priority level
i extends beyond the release of the next job. This has similarities to fixed priority
scheduling with deferred preemption [Bril et al. 2009].

6.3. Sufficient Schedulability Test

We now provide a sufficient schedulability test for task sets with constrained deadlines
(Di ≤ Ti) based on the approach used in section 3.4 of [Davis et al. 2007].
The response time of the first job of task τi in the busy period is given by:

wm+1
i,0 =BCS

i + C
pre
i + Ci +

∑

∀j∈ hp(i)

⌈

wm
i,0

Tj

⌉

(C
pre
j + Cj + C

post
j ) (8)

Assuming that this job completes its normal execution at or before its deadline, and
hence before the end of its period, then we have two scenarios to consider.

(1) If the priority level-i busy period ends by the time the next job of task τi is released,
then (8) gives the correct WCRT.

(2) Alternatively, if the busy period does not end by the time the next job of task τi
is released, then we must consider the response times of the next and subsequent
jobs of task τi.

First, we derive an upper bound on the maximum length of the interval between the
times fi,q and fi,q+1 at which two arbitrary but consecutive jobs q and q + 1 of task τi
finish their normal execution. We then show that this upper bound is also an upper
bound on the response time for job q + 1, and can therefore be used as the basis for a
sufficient schedulability test. We assume that:

(1) all q + 1 jobs fall within the same busy period,
(2) the first q jobs are schedulable – we will return to this point later.

We observe that at time fi,q, when job q finishes, there can be no tasks of higher pri-
ority than i that were released prior to fi,q and have any execution time remaining
(otherwise they would have preempted task τi). Thus, an upper bound on the length
of the time interval [fi,q, fi,q+1) can be found by making the potentially pessimistic as-
sumption that all higher priority tasks are released just after job q finishes its normal
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execution. The smallest solution to (9) thus provides an upper bound on the length of
this interval.

wm+1
i,q =C

post
i + C

pre
i + Ci +

∑

∀j∈ hp(i)

⌈

wm
i,q

Tj

⌉

(C
pre
j + Cj + C

post
j ) (9)

Here, C
post
i is the time taken to execute the non-preemptable phase after job q com-

pletes its normal execution and C
pre
i is the time to execute the non-preemptable phase

prior to the start of the (q+ 1)th job of task τi. The summation term represents the in-
terference from higher priority tasks, released during the interval, and executed before
the (q + 1)th job of task τi.

Given the assumption that the first q jobs in the busy period are schedulable, and
the constraint that Di ≤ Ti, then the normal execution of job q must finish before the
end of its period, and hence before the (q + 1)th job is released. This means that the
length of the interval [fi,q, fi,q+1) and hence also the response time for the (q+1)th job
is bounded by the solution to (9).

We now return to the assumption that the first q jobs are schedulable. Schedulability
of the q = 0 job can be determined using (8); while the schedulability of the second and
all subsequent jobs within the busy period can be determined, by induction, using (9).

Intuitively, we might say that the second and subsequent jobs of task τi are subject

to push-through blocking of at most C
post
i due to the previous job of the same task.

This result suggests a simple sufficient but not necessary schedulability test, formed
by combining (8) and (9) into a single equation:

wm+1
i =max(BCS

i , C
post
i ) + C

pre
i + Ci +

∑

∀j∈ hp(i)

⌈

wm
i

Tj

⌉

(C
pre
j + Cj + C

post
j ) (10)

We observe that the schedulability analysis embodied in (10) equates to assuming that
a job of task τi can be subject to blocking; either of BCS

i due to lower priority tasks, or

C
post
i due to the previous job of the same task, but not both. Hence, a sufficient but

not necessary definition of WCRT is:

Ri = max(BCS
i , C

post
i ) + C

pre
i + Ci +

∑

∀j∈ hp(i)

⌈

Ri

Tj

⌉

(C
pre
j + Cj + C

post
j ) (11)

7. EXPERIMENTAL EVALUATION

In this section, we evaluate explicit reservation of cache memory using benchmark
programs (Table I) by applying schedulability analysis (section 6). The comparisons
use timing data captured from our prototype hardware (section 4.8) but due to the dif-
ficulty of reproducing the worst-case scenarios that are of interest, they otherwise rely
entirely on analysis. Task sets found to be schedulable by experiments in this section
can be executed on our prototype system, but even if a deadline miss is theoretically
possible according to analysis, we may not find it by execution, since analysis deals
with theoretical worst cases.

7.1. Generating Task Sets

Our task sets are generated randomly, but based on the benchmarks from Table I. The
task set generator parameters are the task set size n and the task set utilization U .

We generate a task set of size n as follows. The first step is to choose n utilization
values for the tasks τ1, τ2, ..., τn. This is done using the UUnifast algorithm [Bini
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Table II. The ECB and UCB set sizes for each benchmark

Task τi |ECBI

i
| |ECBD

i
| max |UCBI

i
| max |UCBD

i
| SI

i
SD

i

adpcm 64 35 64 32 64 64
binarysearch 5 3 5 0 8 1
bsort100 7 15 5 14 8 16
cnt 12 18 8 0 8 1
compress 32 35 22 22 16 32
cover 11 25 10 1 8 1
crc 19 22 18 22 16 16
duff 11 5 9 0 8 1
edn 64 45 58 43 32 64
expint 10 1 5 0 4 1
fac 4 2 3 0 4 1
fdct 30 7 26 6 16 16
fibcall 4 1 3 0 4 1
fir 11 10 7 8 8 8
insertsort 8 3 4 3 4 4
janne 5 1 4 0 4 1
jfdctint 30 11 28 10 16 32
lcdnum 5 1 5 0 8 1
matmult 11 64 11 64 16 64
ndes 64 42 60 41 64 64
ns 6 64 5 15 8 1
nsichneu 64 4 0 4 1 8
prime 9 3 7 3 8 4
recursion 6 13 5 8 8 8

and Buttazzo 2005] which generates U1, U2, ..., Un such that the task set utilization
U =

∑

i∈[1,n] Ui.

A benchmark program is then assigned to each one of the n tasks. Every row of Table
I has an equal chance of selection for each task τi. This also gives the various WCETs:

C nr
i , C er

i , C save
i and C restore

i .
For each task τi, we evaluate the ECB and UCB sets using techniques from [Alt-

meyer et al. 2011]. The sets are evaluated separately for instruction and data caches,
so this produces ECBI , ECBD, UCBI and UCBD sets. We choose the largest UCBI

and UCBD sets found at any point within the task and discard the others, introducing
a minor source of pessimism which is also present in previous work [Altmeyer et al.
2011]. Table II shows the ECB and UCB set sizes for each task.
We rotate the ECB and UCB sets by a random number of cache sets. This effectively

changes the assumed placement of the task in memory, so that particularly bad (or
good) placements are equally likely. A bad task placement would be one that causes
a higher CRPD when preemption takes place; experiments with manipulating task
placements to reduce CRPD are described in [Lunniss et al. 2012].

Finally, we assign a period Ti to each task based on the task utilization: Ti =
1
Ui
C nr

i .

We note that tasks have implicit deadlines (Di = Ti) and that Ui does not include the

processor utilization contributed by C
pre
i and C

post
i .

7.2. Schedulability Test: Non-reserved Configuration

Our comparisons use schedulability tests to determine if a particular task set is
schedulable with a conventional non-reserved cache and with explicit reservation of
cache. We expect to find task sets that are schedulable with one approach but not the
other. Our schedulability tests are as described in section 6.
For the non-reserved approach, we use CRPD analysis to find the upper bound on

the impact of each task on another, and then determine R nr
i , the WCRT of task τi

assuming non-reserved cache memory.
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Without Save/Restore operations, C
pre
i = CS to and C

post
i = CS from. This simplifies

(3) to BCS
i = max(CS to, CS from). There is no other source of blocking in any task set.

CRPD analysis gives a value γi,j to represent the CRPD imposed upon τi as a result
of preemption by τj . The Combined ECB-Union/UCB-Union approach, described in
full by [Altmeyer et al. 2011], is used to compute γi,j as the maximum number of
cache misses multiplied by the cache miss time (section 4.8). γi,j is incorporated into a
sufficient schedulability test alongside the other time costs of τj . The definition of R nr

i

is based on (11) which is extended as in [Altmeyer et al. 2011]:

R nr
i = max(BCS

i , C
post
i ) + C

pre
i + C nr

i +
∑

∀j∈ hp(i)

⌈

R nr
i

Tj

⌉

(C
pre
j + C nr

j + C
post
j + γi,j)

(12)

A task τi is known to be schedulable in the non-reserved case if R nr
i ≤ Di. The task

set is schedulable if every task is schedulable.

7.3. Schedulability Test: Explicitly Reserved Configuration

R er
i is the the WCRT of task τi with explicit reservation of cache blocks.
The lowest-priority task τn never preempts, and therefore has no Save or Restore

cost. For this task, C
pre
n = CS to and C

post
n = CS from.

For any other task τi 6= τn, C
pre
i = CS to + C save

i and C
post
i = CS from + C restore

i .
There is no γi,j term. The definition of R er

i is based on (11):

R er
i = max(BCS

i , C
post
i ) + C

pre
i + C er

i +
∑

∀j∈ hp(i)

⌈

R er
i

Tj

⌉

(C
pre
j + C er

j + C
post
j ) (13)

A task τi is known to be schedulable with explicit reservation of memory if R er
i ≤ Ti.

7.4. Task Set Utilization

Figure 14 shows how the non-reserved and explicitly-reserved configurations benefit
task sets of different utilization U . (The utilization of a task set U is the sum of the
utilization of each task within it: U =

∑

i∈[1,n] Ui.)

We varied the task set utilization U ∈ [0.01, 0.99] with a step size of 0.01. For each
U , we generated 10000 task sets of size n = 20 and tested their schedulability in both
configurations. The schedulability tests used equations (12) and (13).
Figure 14 tells us that the explicitly-reservable approach increases the ability of a

system to schedule task sets. The number of schedulable task sets is often higher when
an explicitly-reservable cache is used. The difference is greatest for U ∈ [0.3, 0.7].

Figure 15 gives an alternate view of the same data: this is the number of task sets
that were schedulable with one approach and not the other. In higher-utilization sys-
tems (e.g. U > 0.3) a significant proportion of task sets are not schedulable with a
conventional cache, but can still be scheduled if we use an explicitly-reservable cache.

7.5. Number of Tasks

The success of explicit reservation depends on the CRPD incurred by the task set.
CRPD is typically lower for explicit reservation when the cache memory is heavily over-
utilized, i.e. the number of tasks requiring each cache block is large. This situation is
most likely with larger task set sizes, e.g. n > 5, though it can occur with any task set
containing at least two tasks.

Figure 16 shows how the total number of schedulable task sets is affected by the
number of tasks, n. To compute each point on this graph, we generated 10000 task
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Fig. 14. Comparison of the non-reserved and explicitly-reserved configurations for task sets of size n = 20.
The data points on this graph are discrete, but we find that a continuous line through them aids presenta-
tion, making trends more readily visible, so we have opted to add such lines to this graph and those that
follow it.
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Fig. 15. Further comparison of the non-reserved and explicitly-reserved configurations for task sets of size
n = 20. Here, we plot the number of task sets that were only schedulable with one approach or the other at
each utilization.

sets of size n for each utilization U ∈ [0.01, 0.99] in steps of 0.01. This gave a total of
980, 000 task sets, which were then tested for schedulability with equations (12) and
(13), giving a total number of schedulable tasks for both the explicitly-reserved and
conventional caches.
Figure 16 clearly shows that the benefits of the explicitly-reservable cache are re-

lated to the size of the task set. The benefit is less significant for small task sets
(e.g. size n < 5). Figure 16 also suggests that both curves approach some limit as
the number of tasks increases towards infinity. Our experiments with very large task
sets (not shown) suggest that this is indeed what happens. The limit value is related
to the cost of CRPD, and similar to the value for n = 50, so explicit reservation is also
preferable for scheduling very large task sets.

7.6. Incomparability

Explicit reservation of cache memory is quite different to conventional CRPD analysis.
There is no dominance relationship; some task sets are schedulable with one but not
the other, and neither approach is certain to be preferable. Figures 14 to 16 show
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Fig. 16. Schedulability comparison for task sets of size n.
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Fig. 17. Comparison of different explicitly-reserved cache implementations for task size n = 20.

many cases where explicit reservation is preferable, but it is possible to find task sets
that are schedulable with a conventional cache and not schedulable with an explicitly-
reservable cache. These cases are more likely to occur for small task sets (e.g. n < 5).
One example task set consists of τ1 = fibcall (high priority) and τ2 = fir (low priority).

Both of these tasks have a small footprint in cache, and so it is likely that their ECB
and UCB sets will have no elements in common. If this occurs, conventional CRPD
analysis determines a CRPD of zero. However, the combined Save and Restore cost is
1386ns (Table I). When using an explicitly-reservable cache, each preemption of fir in-
curs a CRPD of 1386ns. For cases like this, the conventional cache is always preferable.

7.7. Dependence on Pipelining

Explicit reservation of cache memory reduces CRPD because the Restore operation
is more efficient than the series of separate cache misses that would otherwise be
required. This is clearly illustrated by adjusting the time required for Restore.

For Table I, C restore
i was determined by measurements on our hardware prototype.

But the relationship between C restore
i and SI

i + SD
i is linear and can be accurately

modeled as C restore
i = (SI

i + SD
i )a+ b, where a = 133ns and b = 547ns.

Roughly speaking, 1
a
is the bus bandwidth (cache blocks per second) and b is the bus

latency. a and b are properties of the implementation, just like the cache miss time
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Fig. 18. Comparison of non-reserved and explicitly-reserved configurations without pipelining Restore oper-
ations. Due to cache footprint effects (section 7.8) the non-pipelined explicitly-reserved cache still improves
on the conventional cache in some cases.

(547ns for our prototype). Figure 17 shows the effect of adjusting a and b. We show four
scenarios for reducing CRPD:

(1) with a fully pipelined explicitly-reserved cache implementation (same as Figure
14);

(2) with a semi-pipelined implementation where a = 267ns and b = 547ns;
(3) with a non-pipelined implementation where a = 547ns and b = 0; and
(4) with a conventional non-reserved cache (same as Figure 14).

As Figure 17 shows, both pipelined implementations improve upon the conventional
non-reserved cache and the fully pipelined implementation is best. The non-pipelined
implementation is usually worse than the non-reserved cache. This highlights the im-
portance of pipelining.

7.8. Cache Footprint Effect

Even without pipelining Restore operations, the explicitly reservable cache approach
has some benefit. Figure 18 gives an alternate view of scenarios 3 and 4 in Figure
17. It shows the number of task sets that were schedulable with the non-pipelined
implementation, and not schedulable with a conventional non-reserved cache.

These task sets are a small minority of those tested. One example consists of
τ1 = cover (high priority) and τ2 = matmult (low priority). The cover benchmark ac-
cesses many different data elements as part of the implementation of a switch state-
ment, but each of these elements is only accessed once. This means that cover has a
large |ECBD| set, containing 25 elements, and a small |UCBD| set, containing at most
1 element (Table II). Consequently the benchmark requires no more than 1 data cache
block, but it can nevertheless evict up to 25 blocks belonging to lower-priority tasks
such as matmult.
The explicitly-reserved cache implementation restricts each task τi to use no more

than SD
i blocks of data cache. For cover, SD = 1. The Restore operation only transfers

1 block, whereas with the conventional cache, the CRPD may be as high as 25.
The apparent success of the non-pipelined explicitly-reserved cache (Figure 18) is

entirely due to this cache footprint effect. If we reduce the cache footprint of tasks
running on the conventional cache, the apparent benefit disappears. One way to do
this would be to introduce dynamic cache locking with the aim of restricting the size
of the ECB sets for each task.
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As far as we know, this approach has not yet been attempted as a way to reduce
CRPD, other than as a part of the explicitly-reservable cache. However, it may be fruit-
ful for systems where tasks have large ECB sets and small UCB sets, since caches may
be locked to allow access to no more than |UCB| blocks. No hardware support will be
required beyond the capability to lock caches on a per-block basis. According to our ex-
periments, the benefits are not as great as those obtained from the explicitly-reservable
cache, but CRPDs may still be reduced.

7.9. Exact Schedulability Tests

If we substitute the exact schedulability test (section 6.2) for the sufficient test (section
6.3) we get results that are visually indistinguishable to Figures 14-16.
The difference between the exact test and the sufficient test is greatest for smaller

task sets. An examination of all the data gathered for Figures 14-16 revealed that the
greatest difference was observed for task set size n = 9, and this was tiny in relation
to the total number of experiments, affecting only 12 out of 980, 000 task sets. This tells
us that the sufficient test is close enough to the exact test to be useful in practice. This
is a good thing as the exact test requires significantly more computation time.

8. COMMENTARY

Explicit reservation of cache memory can be extremely beneficial. In the worst case,
the Restore process requires less time than cache misses carried out separately, as
shown in Figure 13. When explicit reservation is applied to large task sets, it typically
improves schedulability (Figures 14-16). Task sets that are not schedulable with a
conventional non-reserved cache may nevertheless be schedulable with explicit reser-
vation. This is primarily due to the improved efficiency of the Restore process (section
7.7). There is a smaller, secondary effect due to restricting the cache footprints of the
tasks (section 7.8).

It is possible to find examples where a conventional cache is preferable because the
ECB and UCB sets of the tasks do not coincide and therefore the CRPD is zero (section
7.6). The explicit reservation approach is not universal and a conventional cache may
be preferable for some task sets.

Explicit reservation of cache blocks depends critically on the speed of the hardware
that implements it. It is very important that this hardware allows the Restore opera-
tion to be pipelined, so that a Restore operation for m cache blocks can be achieved in
less time than m cache misses, at least for m > 1.

We note some approximations in our experiments. The periodic memory refresh is ig-
nored on the grounds that it applies equally to all experiments. We use only the largest
UCB set in every task for CRPD analysis of non-reserved caches, a technique which
has been used in earlier work [Altmeyer et al. 2011]. This is not entirely accurate. We
assume that large numbers of schedulability tests will cause the impact of inaccuracy
to tend towards 0. Improved CRPD analysis techniques might improve the results for
the non-reserved case.

The Save and Restore operations require task execution to be strictly nested,
i.e. tasks must preempt each other in a strict last-in first-out (LIFO) order. This is
a requirement for stack-based scheduling, which is widely accepted for hard real-time
systems [Baker 1991].

The save/restore stack (SRS) stores the tag values used by cache blocks that have
been Saved: we assume that the stack is large enough to accommodate all the tasks
apart from the highest-priority task. This is an additional local memory requirement
on top of the usual memory required for a direct-mapped cache. This paper has not
considered mechanisms for storing the stack in external memory, which might be im-
portant for very large task sets.
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9. CONCLUSION

This paper has presented explicit reservation of cache memory as a means to reduce
the cache-related preemption delay (CRPD) which is observed when multiple tasks
share a cache. A reduction in CRPD is achieved by pipelining cache fills when return-
ing to lower-priority tasks, and restricting the cache footprint of each task if possible.

Our experiments use benchmark tasks and timings captured from a hardware im-
plementation to evaluate explicit reservation of cache memory. We have shown that
explicit reservation is not worthwhile for all task sets. Sometimes the CRPD is in-
creased by the technique. However, an arbitrarily-chosen task set is more likely to be
schedulable with explicit reservation if the number of tasks or the total utilization are
large. Explicit reservation is likely to be most useful in heavily-loaded systems, where
it can permit larger task sets to be scheduled.
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AND STENSTRÖM, P. 2008. The worst-case execution-time problem—overview of methods and survey of
tools. Trans. on Embedded Computing Sys. 7, 3, 1–53.

WILHELM, R., GRUND, D., REINEKE, J., SCHLICKLING, M., PISTER, M., AND FERDINAND, C. 2009. Mem-
ory hierarchies, pipelines, and buses for future architectures in time-critical embedded systems. IEEE
Trans. on CAD of Integrated Circuits and Systems 28, 7, 966–978.

XILINX. 2008. MicroBlaze Processor Reference Guide. Manual UG081.

XILINX. 2012. Spartan-6 FPGA Memory Interface Solutions User Guide (AXI). Manual UG416.


