
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Global and Partitioned Multiprocessor Fixed Priority Scheduling with
Deferred Pre-emption

ROBERT I. DAVIS, University of York
ALAN BURNS, University of York
JOSE MARINHO, CISTER/INESC-TEC, ISEP
VINCENT NELIS, CISTER/INESC-TEC, ISEP
STEFAN M. PETTERS, CISTER/INESC-TEC, ISEP
MARKO BERTOGNA, University of Modena

This paper introduces schedulability analysis for global fixed priority scheduling with deferred pre-
emption (gFPDS) for homogeneous multiprocessor systems. gFPDS is a superset of global fixed priority
pre-emptive scheduling (gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS). We show
how schedulability can be improved using gFPDS via appropriate choice of priority assignment and final
non-pre-emptive region lengths, and provide algorithms which optimize schedulability in this way. Via an
experimental evaluation we compare the performance of multiprocessor scheduling using global
approaches: gFPDS, gFPPS, and gFPNS, and also partitioned approaches employing FPDS, FPPS, and
FPNS on each processor.
Categories and Subject Descriptors: CC..33 [[SSPPEECCIIAALL PPUURRPPOOSSEE AANNDD AAPPPPLLIICCAATTIIOONN--BBAASSEEDD SSYYSSTTEEMMSS]]
RReeaall--ttiimmee aanndd eemmbbeeddddeedd ssyysstteemmss

General Terms: Algorithms, Performance, Theory, Verification

Additional Key Words and Phrases: Deferred Pre-emption, Limited Pre-emption, Global Scheduling,
Partitioned Scheduling, Fixed Priority , Real-Time; Multiprocessor; Multicore;

AACCMM RReeffeerreennccee FFoorrmmaatt:
Robert Davis, Alan Burns, Jose Marinho, Vincent Nelis, Stefan Petters, Marko Bertogna, 2014 Global and
Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption ACM Trans.
Embedd. Comput. Syst. X, X, Article XX (XXXX 2014), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

EXTENSIONS
This paper both extends and revises the research presented in �Global Fixed Priority
Scheduling with Deferred Pre-emption� [Davis et al. 2013]. The simple deadline and
response time based schedulability tests for global fixed priority scheduling with
deferred pre-emption (gFPDS) given in that paper factored in the effects of push-
through blocking due to the final non-pre-emptive region of the previous job of the
same task; however, the more sophisticated versions of those tests that limit �carry-
in� interference omitted to do so. As a result, the limited carry-in tests could give

This work was partially funded by the UK EPSRC Tempo project (EP/G055548/1), the UK EPSRC MCC
project (EP/K011626/1), and by Portuguese National Funds through FCT (Portuguese Foundation for
Science and Technology), and by ERDF (European Regional Development Fund) through COMPETE
(Operational Programme 'Thematic Factors of Competitiveness'), within the RePoMuC project, (FCOMP-
01-0124-FEDER-015050).
Author�s addresses: R.I.Davis and A. Burns, University of York, UK;. J. Marinho, V. Nelis, S.M. Petters
CISTER/INESC-TEC, ISEP, Porto, Portugal; M. Bertogna, University of Modena, Italy.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1539-9087/2010/03-ART39 $15.00 DOI:http://dx.doi.org/10.1145/0000000.0000000

39

39:2 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

optimistic results. In this paper, we address this issue, correcting the formulation of
those tests by including an extra term accounting for push-through blocking. (We
prove limits on the number of �carry-in� jobs in Lemma 1 and Lemma 2 and hence
bound the interference from them). The repercussions of this revision on the
sustainability of the tests are also addressed (Theorems 2, 3 and 4). Further, we
investigate partitioned scheduling using deferred pre-emption, (pFPDS) with an
experimental evaluation of the performance of pFPDS with respect to partitioned
fully-pre-emptive (pFPPS) and non-pre-emptive scheduling (pFPNS).

 INTRODUCTION 1.
A common misconception with regard to fixed priority scheduling of sporadic tasks is
that fully pre-emptive scheduling is more effective in terms of schedulability than
non-pre-emptive scheduling. The two are however incomparable; there are tasksets
that are schedulable under fixed priority non-pre-emptive scheduling that are not
schedulable under fixed priority pre-emptive scheduling and vice-versa. This is the
case for uniprocessor scheduling [Davis and Bertogna 2012] and also the case for
global multiprocessor scheduling [Guan et al. 2011], which is the main focus of this
paper.

While the blocking effect, due to long non-pre-emptive regions of low priority
tasks, degrades schedulability for single processor systems that have a wide range of
task execution times and periods (as illustrated by Figure 7 in [Davis and Bertogna
2012]), [Guan et al. 2011] showed that the same is not necessarily true for
multiprocessor systems. With m processors rather than one, long non-pre-emptive
regions can be accommodated without necessarily compromising the schedulability of
higher priority tasks. However, this advantage only extends so far; with m processors
then m long non-pre-emptive regions are enough to significantly compromise
schedulability. In this context, limited non-pre-emptive execution has the advantage
of reducing the number of pre-emptions, and potentially improving the worst-case
response time of tasks, while also keeping blocking effects on higher priority tasks
within tolerable limits.

With partitioned multiprocessor scheduling, this effect is also apparent, as our
evaluations show. In this case, task allocation can place tasks with broadly similar
parameters (e.g. execution times and deadlines) on the same processor, thus enabling
the use of relatively long non-pre-emptive regions, while other tasks with much
shorter deadlines are allocated to a different processor.

In the literature, the term fixed priority scheduling with deferred pre-emption has
been used to refer to a variety of different techniques by which pre-emptions may be
deferred for some interval of time after a higher priority task becomes ready. These
are described in a survey by [Buttazzo et al. 2013] and briefly discussed in Section 2.
In this paper, we assume a simple form of fixed priority scheduling with deferred pre-
emption where each task has a single non-pre-emptive region at the end of its
execution. If this region is of the minimum possible length for all tasks, then we have
fully pre-emptive scheduling, whereas if it constitutes all of the task�s execution time
then we have non-pre-emptive scheduling.

In this paper, we introduce sufficient schedulability tests for global fixed priority
scheduling with deferred pre-emption (gFPDS). gFPDS can be viewed as a superset
of both global fixed priority pre-emptive scheduling (gFPPS) and global fixed priority
non-pre-emptive scheduling (gFPNS) and strictly dominates both. With gFPDS, there
are two key parameters that affect schedulability: the priority assigned to each task,
and the length of each task�s final non-pre-emptive region (FNR). The FNR length
affects both the schedulability of the task itself, and the schedulability of tasks with
higher priorities. This is a trade-off as increasing the FNR length can improve

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:3

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

schedulability for the task itself by reducing the number of times it can be pre-
empted, but potentially increases the blocking effect on higher priority tasks which
may reduce their schedulability.

[Davis and Bertogna 2012] introduced an optimal algorithm for fixed priority
scheduling with deferred pre-emption on a single processor. This algorithm finds a
schedulable priority assignment and set of FNR lengths whenever such a schedulable
combination exists. In this paper we also build upon this work, extending it to the
multiprocessor case. For a given priority ordering, we show how to find an
assignment of FNR lengths that results in a system that is deemed schedulable
under gFPDS according to our sufficient schedulability tests, whenever such an
assignment of FNR lengths exists. We also show that the Final Non-pre-emptive
Region and Priority Assignment (FNR-PA) algorithm from [Davis and Bertogna
2012] is not optimal in the multiprocessor case, but nevertheless can be used as a
heuristic for determining both priority ordering and final non-pre-emptive region
lengths.

Finally, we also apply the optimal single processor FPDS techniques of [Davis and
Bertogna 2012] directly to the multiprocessor case via partitioned fixed priority
scheduling with deferred pre-emption (pFPDS). This enables us to make an
experimental evaluation of the performance of both global and partitioned fixed
priority scheduling with deferred pre-emption, with respect to their fully pre-emptive
and non-pre-emptive counterparts.

 BACKGROUND RESEARCH 2.

 Deferred pre-emption 2.1
Two different models of fixed priority scheduling with deferred pre-emption have
been developed in the literature.

In the fixed model, introduced by [Burns 1994], the location of each non-pre-
emptive region is statically determined prior to execution. Pre-emption is only
permitted at pre-defined locations in the code of each task, referred to as pre-emption
points. This method is also referred to as co-operative scheduling, as tasks co-operate,
providing re-scheduling / pre-emption points to improve schedulability.

In the floating model [Baruah 2005; Yao et al. 2009; Marinho et al. 2013] an upper
bound is given on the length of the longest non-pre-emptive region of each task.
However, the location of each non-pre-emptive region is not known a priori and may
vary at run-time, for example under the control of the operating system.

For uniprocessor systems, exact schedulability analysis for the fixed model was
derived by [Bril et al. 2009]. Subsequently, pre-emption costs and cache related pre-
emption delays (CRPD) were integrated into analysis of the fixed model, considering
both fixed [Bertogna et al. 2010] and variable [Bertogna et al. 2011a] pre-emption
costs. [Bertogna et al. 2011b] derived a method for computing the optimal FNR
length of each task in order to maximize schedulability assuming a given priority
assignment. [Davis and Bertogna 2012] introduced an optimal algorithm that is able
to find a schedulable combination of priority assignment and FNR lengths whenever
such a schedulable combination exists.

 Global fixed priority scheduling 2.2
[Baker 2003] developed a strategy that underpins an extensive thread of subsequent
research into schedulability tests for gFPPS [Baruah and Fisher 2008; Bertogna et
al. 2005; Bertogna and Cirenei 2007; Bertogna et al. 2009; Fisher and Baruah 2006;
Guan et al. 2009], and gFPNS [Guan et al. 2011]. (For a comprehensive survey of
multiprocessor real-time scheduling, the reader is referred to [Davis and Burns

39:4 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

2011c]). Baker�s work was subsequently built upon by [Bertogna et al. 2005; 2009].
They developed sufficient schedulability tests for gFPPS based on bounding the
maximum workload in a given interval. [Bertogna and Cirinei 2007] adapted this
approach to iteratively compute an upper bound on the response time of each task,
using the upper bound response times of other tasks to limit the amount of
interference considered. [Guan et al. 2009] extended this approach using ideas from
[Baruah 2007] to limit the amount of carry-in interference.

[Davis and Burns 2009; 2011a] showed that priority assignment is fundamental to
the effectiveness of gFPPS. They proved that Audsley�s Optimal Priority Assignment
(OPA) algorithm [Audsley 1991; 2011] is applicable to some of the sufficient tests
developed for gFPPS, including the deadline-based test of [Bertogna et al. 2009], but
not to others such as the later response time tests [Bertogna and Cirinei 2007; Guan
et al. 2009].

[Guan et al. 2011] provided schedulability analysis for gFPNS based on the
approach of [Baker 2003], and the techniques introduced by [Bertogna et al. 2005].

gFPDS is broadly similar to the dynamic algorithm FPZL [Davis and Burns
2011b; Davis and Kato 2012]. FPZL resembles gFPPS until a job reaches a state of
zero laxity i.e. when its remaining execution time is equal to the elapsed time to its
deadline. FPZL gives such a job the highest priority, and hence makes it non-pre-
emptable. The length of time each job spends executing in this zero-laxity state is
determined dynamically by FPZL. With FPZL, RTOS support for this dynamic
behaviour is required, whereas with gFPDS the transition to non-pre-emptive
execution may be controlled either by the RTOS, or via API calls suitably located
within the code of each task.

[Block et al. 2007] introduced the idea of link-based scheduling0, which uses a
lazy pre-emption mechanism with the aim of avoiding issues of repeated blocking
which can occur when tasks execute non-pre-emptive regions under global
multiprocessor scheduling. While the original context for this work was resource
locking protocols, the approach also applies to general non-pre-emptive regions as
discussed by [Brandenburg 2011] in section 3.3.3 of his thesis. Depending on the task
parameters and non-pre-emptive region lengths, the lazy pre-emption mechanism of
link-based scheduling may improve or diminish schedulability compared to global
fixed priority scheduling with eager pre-emption. Further discussion of link-based
scheduling, and an example of such incomparability are given in the appendix.

 SYSTEM MODEL, TERMINOLOGY AND NOTATION 3.
In this paper, we are mainly interested in global fixed priority scheduling of an
application on a homogeneous multiprocessor system with m identical processors.
The application or taskset is assumed to consist of a static set of n tasks (n ...1), with
each task i assigned a unique priority i, from 1 to n (where n is the lowest priority).
We assume a discrete time model, where all task parameters are positive integers
(e.g. processor clock cycles). We use the notation)(ihp (and)(ilp) to mean the set of
tasks with priorities higher than (lower than) i.

Tasks are assumed to comply with the sporadic task model. In this model, each
task gives rise to a potentially unbounded sequence of jobs. Each job may arrive at
any time once a minimum inter-arrival time has elapsed since the arrival of the
previous job of the same task.

Each task i is characterised by its relative deadline iD , worst-case execution
time iC (ii DC ), and minimum inter-arrival time or period iT . It is assumed that all
tasks have constrained deadlines (ii TD ). The utilisation iU of each task is given by

ii TC / . Under gFPDS, each task is assumed to have a final non-pre-emptive region of
length iF in the range],1[iC (here, the minimum value is 1 rather than 0 as a task

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:5

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

can only be pre-empted at discrete times corresponding to processor clock cycles).
Finding an appropriate FNR length for each task is assumed to be part of the
scheduling problem.

The worst-case response time iR of a task is the longest possible time from the
release of the task until it completes execution. Thus task i is schedulable if and
only if ii DR  and a taskset is schedulable if and only if ii DRi  . We use UB

iR to
indicate an upper bound on the worst-case response time of task i .

Under gFPDS, at any given time, the m ready tasks with the highest priorities are
selected for execution. Final non-pre-emptive regions are assumed to be implemented
by manipulating task priorities, thus a task executing its FNR has the highest
priority and will not be pre-empted.

The tasks are assumed to be independent and so cannot be blocked from executing
by another task, other than due to contention for the processors. Further, it is
assumed that once a job starts to execute it will not voluntarily suspend itself.

Job parallelism is not permitted; hence, at any given time, each job may execute
on at most one processor. As a result of pre-emption and subsequent resumption, a
job may migrate from one processor to another. The costs of pre-emption, migration,
and the run-time operation of the scheduler are assumed to be either negligible, or
subsumed within the worst-case execution time of each task. (Pre-emption costs are
an issue we aim to address in future work).

A taskset is said to be schedulable with respect to some scheduling algorithm, if
all valid sequences of jobs that may be generated by the taskset can be scheduled by
the algorithm without any missed deadlines.

A priority assignment policy P is said to be optimal with respect to a
schedulability test for some type of fixed priority scheduling algorithm (e.g. gFPPS,
gFPNS, or gFPDS) if there are no tasksets that are deemed schedulable, according to
the test, under the scheduling algorithm using any other priority ordering policy,
that are not also deemed schedulable with the priority assignment determined by
policy P.

 SCHEDULABILITY ANALYSIS FOR gFPDS 4.
In this section, we introduce sufficient schedulability tests for global fixed priority

scheduling with deferred pre-emption (gFPDS).
On a uniprocessor, under fixed priority scheduling with deferred pre-emption, a

higher priority task can only be blocked by a single job of a lower priority task that
starts executing non-pre-emptively prior to the release of a job of the higher priority
task. With global scheduling, the multiprocessor case is however significantly
different. This is illustrated by Figure 1 below, for the case of 4 processors. Here, a
job of the task of interest k (priority 2) is released at time t = 1, along with a job of
the higher priority task 1 . k is unable to execute initially due to blocking from
three jobs of lower priority tasks (3 , 4 , and 5) that have entered their FNRs
(shown in dark grey in Figure 1). At time t = 4, k begins executing. At t = 7, three
further jobs of lower priority tasks (6 , 7 , and 5 again) enter their FNRs. At t = 8,

k is pre-empted by a second job of 1 and misses its deadline at t = 12.

39:6 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Figure 1: Blocking effect due to FNRs of lower priority jobs.

This example serves to illustrate the following:
o Multiple lower priority tasks may contribute interference in the problem window

[Baker 2003] of the job of interest. (The problem window is some interval of time
at the end of which a deadline is missed, for example from the release time to the
deadline of some job of task k). Further, the number of lower priority tasks that
may contribute is not limited to m as it is in the non-pre-emptive case [Guan et
al. 2011].

o Multiple jobs of the same lower priority task may contribute interference, due to
the fact that the task of interest does not occupy all of the processors when it
executes; unlike in the uniprocessor case.

o If there were multiple non-pre-emptive regions within each lower priority task,
then each of these regions could potentially contribute interference. (This is easy
to see by assuming that all of the execution of task 5 on processor 1 belongs to
one job rather than two).

We note that, in the example in Figure 1 the lazy pre-emption mechanism of link-
based scheduling [Block et al. 2007; Brandenburg 2011] would prevent the second job
of task 1 from pre-empting task k enabling the latter to meet its deadline. In
general; however, schedulability with lazy and eager pre-emption mechanisms is
incomparable due to trade-offs between blocking effects as shown in the appendix. In
the remainder of this paper, we consider only scheduling with the eager pre-emption
mechanism.

While no worst-case scenario is currently known, we can obtain an upper bound
on the interference from the non-pre-emptive execution of lower priority tasks, by
modelling this non-pre-emptive execution as a set of virtual tasks executing at the
highest priority. Thus for each lower priority task)(klpi  , we assume a virtual task

iv with the following parameters: 1 iiv FC , iiv TT  , iiv DD  , UB
i

UB
iv RR  and the

highest priority. (We note that 1 iiv FC as the task must have actually entered its
FNR in order to be non-pre-emptable).

We note the following points regarding schedulability of task k under gFPDS:
1. Once task k enters its FNR it will execute to completion. Hence with gFPDS if

we can show that the task is guaranteed to execute for)1(*  kkk FCC within
an effective deadline of)1(*  kkk FDD , then it is guaranteed to execute for kC
by its deadline kD .

2. Virtual tasks representing the FNRs of lower priority tasks can effectively be
released at any point during the interval in which the corresponding lower
priority task may execute. Thus limitations on the number of tasks with carry-in
jobs1 [Davis and Burns 2011a] do not apply to virtual tasks.

1A carry-in job is defined as a job that is released strictly prior to the start of the interval of interest, and causes interference
within that interval.

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:7

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

3. The FNR of the previous job of the task k may cause push-through blocking2

[Davis et al. 2007]. Push-through blocking can delay execution of one or more
higher priority tasks beyond the release of the job of task k that we are
interested in, potentially increasing its response time.

In the following sub-sections we give schedulability tests for tasks executing under
gFPDS.

 Deadline Analysis for gFPDS 4.1
We now extend and adapt the deadline-based, schedulability test of Bertogna et al.
(Theorem 8 in [Bertogna et al. 2009]) to gFPDS. Under gFPPS, if task k is
schedulable in an interval of length L, with an execution time of C , then an upper
bound on the interference over the interval due to a higher priority task i with a
carry-in job is given by the following equation Bertogna et al. 2009]. (Note the D
superscript denotes Deadline Analysis).

)1),(min(),( CLLWCLI D
i

D
i (1)

where)(LW D
i is an upper bound on the workload of task i in an interval of length L

(see Figure 2), given by:
))(,min()()(i

D
iiiii

D
i

D
i TLNCDLCCLNLW  (2)

and)(LN D
i is the maximum number of jobs of task i that contribute all of their

execution time in the interval:








 


i

iiD
i T

CDL
LN)((3)

Making use of *
kD and *

kC to account for the fact that task k is schedulable under
gFPDS if it is able to start its FNR by *

kD results in the following schedulability test:
DDeeaaddlliinnee AAnnaallyyssiiss ((DDAA)) tteesstt ffoorr ggFFPPDDSS:: A sporadic taskset is schedulable, if for

every task k , inequality (4) holds.























  

 )()(

******),(),(1

khpi klpvi
kk

D
ikk

D
ikk CDICDI

m
CD (4)

where)(klpv is the set of virtual tasks used to model the non-pre-emptive execution
of tasks in)(klp . (Note the floor function comes from the use of integer values for all
task parameters, and the fact that all m processor must be busy for at least

1**  kk CD if they are to prevent task k from executing for time *
kC).

L

Ci

Ti
Di

Figure 2: DA analysis: Interference within an interval.

With the DA test for gFPDS, the effect of push-through blocking from the FNR of the
previous job of task k is factored into the interference term for higher priority tasks.
This is the case because the first (carry-in) job of each higher priority task i within
the interval of interest is assumed to execute as late as possible, i.e. just before its
deadline, and then subsequent jobs of i are assumed to execute as early as possible,

2 Push-through blocking is the term used to describe the situation where the non-pre-emptive behaviour of one job of a task
delays some higher priority job that subsequently interferes with the execution of the next job of the task.

39:8 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

see Figure 2. Provided that each higher priority task i is itself schedulable then this
accounts for any push-through blocking effect from the FNR of the previous job of
task k . This is because task k has a constrained deadline, and thus the effect of
push-through blocking can only be via a delay in the execution of one or more higher
priority jobs, and such jobs are already assumed to be able to incur the maximum
possible delay.

We now extend the DA test using the approach of [Guan et al. 2009]. They showed
that for gFPPS, an upper bound on the interference over an interval L due to a
higher priority task i without a carry in job is given by:

)1),(min(),( CLLWCLI NC
i

NC
i (5)

where:
))(,min()()(i

NC
iii

NC
i

NC
i TLNLCCLNLW  (6)

and
 i

NC
i TLLN /) ( (7)

The difference between the interference terms (1) and (5) is:
),(),(),(CLICLICLI NC

i
D
i

DDIFF
i  (8)

[Davis and Burns 2011a] showed that the worst-case scenario for gFPPS occurs when
there are at most m-1 carry-in jobs. We now prove that for gFPDS, we similarly only
need to consider interference from at most m-1 higher priority tasks with carry-in
jobs. The proof follows closely the approach of [Guan et al. 2011] for non-pre-emptive
fixed priority scheduling, with suitable adaptations for pre-emptive tasks with a
FNR.

The proof uses the concept of a problem window, which relates to a job of task k
missing its deadline. Let kJ be the first job of k that misses its deadline, with kr
being the release time of that job and kd its absolute deadline. Further, let

)1( kkk Fdl be the latest time by which the job must have started its FNR in order
to complete execution by its deadline (see Figure 3).

We use),(kt to denote the set of tasks with higher priority than k (i.e.)(khp)
that have active jobs (i.e. jobs that have been released but not yet completed) at time
t. Let 0t be the earliest time before the release of the problem job kJ at kr such that

),[0 krtt at least one of the following holds:
(i) mkt ),(and all of the tasks in),(kt execute in the interval)1,[tt .

(ii) There are some tasks in),(kt that do not execute in the interval)1,[tt .
If there is no such 0t , then krt 0 . The start, length, and end of the problem

window are defined as follows: start at 0t , length)1( kk FDL , end at Ltt f  0 .
Note the length of the problem window is fixed, but its start and end points are not.

We make the pessimistic assumption that the final non-pre-emptive regions of
tasks of priority lower than k, are represented by virtual tasks)(klpv with the
highest priority. This and non-pre-emptive execution of the FNR of previous jobs of
task k is why case (ii) can occur. From the definition of 0t , we note that no job of a
task with priority k or lower can start to execute during the interval),[0 krt .

Figure 3: Problem window.

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:9

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

LEMMA 1: At most m-1 tasks in)(khp have carry-in jobs i.e., jobs that were
released strictly prior to the start of the problem window, but have outstanding
execution at the start of it.

PROOF.: At time 10 t then given how 0t is defined, it follows that the number of
higher priority tasks with active jobs cannot be m (mkt ),1(0) and all of those
jobs must be executing in the interval),1[00 tt  . As no more than m tasks can have
jobs that are executing at the same time then it follows that mkt ),1(0 . The
number of higher priority tasks in)(khp with carry-in jobs is therefore limited to a
maximum of m-1 

LEMMA 2: The maximum interference from all previous jobs (prior to kJ) of task
k in the problem window is)1(kF .

PROOF. Let 
kJ (released at time 

kr) be the previous job of task k to kJ . We
consider two cases:

Case 1:  krt0 : Since by the definition of 0t no job of priority k or lower is able to
start executing in the interval),[0 krt it follows that 

kJ is unable to start execution
until time kkk Trr   which as kk TD  means that 

kJ misses its deadline. However,
this contradicts the fact that kJ is the first job of task k to miss a deadline, hence it
cannot be the case that  krt0 .

Case 2:  krt0 : By the definition of 0t , job 
kJ can only execute from 0t onwards if

it has already entered its final non-pre-emptive region. Hence the maximum
interference from 

kJ in the problem window is)1(kF 

We now form the DA-LC sufficient schedulability test for task k by determining
if job kJ can be guaranteed to start its final non-pre-emptive region by the end of the
problem window. To simplify the analysis, we first prove the following lemma.

LEMMA 3: Consider an alternative scenario which is identical to the original
(depicted in Figure 3) except that the problem job kJ is assumed to be released at
time 0t (rather than at time kr) and have a deadline at kDt 0 , without implication
on the release times or deadlines of the previous jobs of task k . If job kJ is
schedulable in this alternative scenario, then it is also schedulable in the original
scenario.

PROOF: By the definition of 0t , no work of priority k or lower can start in the
interval),[0 krt . It follows that in the alternative scenario, job kJ cannot begin
executing until at least time kr , hence the job executes in exactly the same time
intervals in the alternative scenario as it does when released at kr in the original
scenario. As the deadline of kJ is no later in the alternative scenario (i.e. kk dDt 0
), schedulability of job kJ in the alternative scenario implies schedulability of kJ in
the original scenario 

We construct the DA-LC test based on the alternative scenario. We assume a
problem window starting at 0t and having a fixed length of)1(*  kkk FDDL , since
we are interested in whether job kJ can start its FNR by completing execution

)1(*  kkk FCCC within this time interval, and hence meet its deadline. The
worst-case interference in the problem window (of length)1(*  kkk FDDL) due to
a higher priority task k with a carry-in job is given by (1) and without a carry-in job
it is given by (5), assuming that)1(*  kkk FCCC . Due to Lemma 1 we include
interference from at most m-1 higher priority tasks with carry-in jobs. Further, by
Lemma 2 we include only)1(kF as push-through blocking from previous jobs of
task k . Finally, as the FNR�s of lower priority tasks can be entered either prior to
the problem window or at any time during it when job kJ is executing, we include
these FNRs as virtual tasks of higher priority, with carry-in jobs. Together this gives
the formulation of the DA-LC test presented in (9). Since this test is valid for the
alternative scenario described in Lemma 3, it is also valid for the original scenario.

39:10 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Effectively, the test builds directly upon the DA-LC analysis for gFPPS [Davis and
Burns 2011a] by adding terms that upper bound the additional interference that
could potentially occur during the worst-case problem window of task k due to the
non-pre-emptive execution of the FNRs of tasks of lower priority than k as well as
due to push-through blocking from previous jobs of task k itself, thus modelling this
execution as if it were due to higher priority tasks.

DDeeaaddlliinnee AAnnaallyyssiiss �� LLiimmiitteedd CCaarrrryy--iinn ((DDAA--LLCC tteesstt)) ffoorr ggFFPPDDSS: A sporadic taskset
is schedulable, if for every task k , inequality (9) holds:























  

 



)1,()(

)(

**** 1),(),(),(1

mkMDi
k

klpvj
kk

D
jkk

DDIFF
i

khpi
kk

NC
ikk FCDICDICDI

m
CD

 (9)
where MD(k, m-1) is the subset of at most m-1 tasks with the largest values of

),(**
kk

DDIFF
i CDI  from hp(k),)(klpv is the set of virtual tasks used to model the non-

pre-emptive execution of tasks in)(klp , and the final 1kF term accounts for the
effects of push-through blocking from the FNR of the previous job of task k .

With the DA-LC schedulability test, as we limit the number of higher priority
tasks with carry-in jobs to at most m � 1, the effect of push-through blocking from the
previous job of task k is not necessarily accounted for within the interference terms
for higher priority tasks. This can be seen by considering the degenerate case of a
single processor (m = 1). Here, m � 1 = 0, which implies that no higher priority tasks
have carry-in jobs, and hence the interference terms for these tasks do not account
for push-through blocking. This point was not recognised in the preliminary version
of this paper published in RTCSA [Davis et al. 2013]. Here, we correct this omission
by including the separate term 1kF in (9) to account for the push-through blocking
effect of the FNR of the previous job of task k . Note Lemma 2 shows that only a
single value is needed here. (The counterexample given in Table 2 of [Davis et al.
2007], assuming m = 1, is sufficient to show that this term is necessary and without
it, the DA-LC test can potentially give optimistic results).

 Response Time Analysis for gFPDS 4.2
We now extend and adapt the response time test of [Bertogna and Cirinei 2007] to

gFPDS. They showed that under gFPPS, if task k is schedulable in an interval of
length L, completing an execution time of C time units, then an upper bound on the
interference in that interval due to a higher priority task i with a carry-in job is
given by the following equation. (Note the R superscript denotes Response Time
Analysis).

)1),(min(),( CLLWCLI R
i

R
i (10)

where,)(LW R
i is an upper bound on the workload of task i in an interval of length

L, taking into account the upper bound response time UB
iR of task i (see Figure 4):

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW  (11)

where)(LN R
i is given by:











 


i

i
UB

R
i T

CRL
LN i)((12)

Making use of *
kD and *

kC to account for the fact that task k is schedulable under
gFPDS if it is able to start its FNR by *

kD results in the following schedulability test.
(Note, we return later to the order in which upper bound response times are
computed, which is resolved by Algorithm 1).

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:11

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

RReessppoonnssee TTiimmee AAnnaallyyssiiss ((RRTTAA)) tteesstt ffoorr ggFFPPDDSS:: A sporadic taskset is schedulable,
if for every task k , the upper bound response time S

kR for the start (first unit of
execution) of the task�s FNR, computed via the fixed point iteration given by (13)
within Algorithm 1, is less than or equal to the task�s effective deadline *

kD :























 

)(

*

)(

**),(),(1

klpvi
k

S
k

R
i

khpi
k

S
k

R
ik

S
k CRICRI

m
CR (13)

In (13), the second summation term models the blocking effect from lower priority
tasks via the set of virtual tasks. If task k is schedulable, then)1( k

S
k

UB
k FRR .

Figure 4: RTA analysis: Interference within an interval.

With the RTA test for gFPDS, the effect of push-through blocking from the FNR of
the previous job of task k is factored into the interference term for higher priority
tasks. This is the case because the first (carry-in) job of each higher priority task i
within the interval of interest is assumed to execute as late as possible, in this case
just before its worst-case response time, and then subsequent jobs of i are assumed
to execute as early as possible, see Figure 4. Provided that each higher priority task

i is itself schedulable then this is sufficient to account for any push-through
blocking effect from the FNR of the previous job of task k . This is because task k
has a constrained deadline, and thus the effect of push-through blocking can only be
via a delay in the execution of one or more jobs of higher priority tasks, and the
worst-case response times of these tasks are computed (highest priority first)
assuming the effects of interference from the virtual tasks representing the FNRs of
all lower priority tasks, including task k .

We now extend the RTA test using the approach of [Guan et al. 2009]. They
showed that under gFPPS, if a higher priority task i does not have a carry-in job,
then the interference term is given by (5) rather than (10). The difference between
the two interference terms is:

),(),(),(CLICLICLI NC
i

R
i

RDIFF
i  (14)

In the RTA test formulation, the length of the problem window is variable;
however, this does not affect the validity of Lemmas 1-3. Hence, to form a more
sophisticated test, we limit the interference considered from higher priority tasks
with carry-in jobs to at most m-1 such tasks, with)1(kF as push-through blocking
from previous jobs of task k . Thus an improved test for gFPDS is as follows:

RReessppoonnssee TTiimmee AAnnaallyyssiiss �� LLiimmiitteedd CCaarrrryy--iinn ((RRTTAA--LLCC)) tteesstt ffoorr ggFFPPDDSS:: A sporadic
taskset is schedulable, if for every task k , the upper bound response time S

kR for the
start (first unit of execution) of the task�s FNR, computed via the fixed point iteration
given by (15) within Algorithm 1, is less than or equal to the task�s effective deadline

*
kD :























  

 



)1,()(

**

)(

** 1),(),(),(1

mkMRi
k

klpvj
k

S
k

R
jk

S
k

RDIFF
i

khpi
k

S
k

NC
ik

S
k FCRICRICRI

m
CR

 (15)

39:12 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

where MR(k, m-1) is the subset of at most m-1 tasks with the largest values of
),(k

UB
k

RDIFF
i CRI  , given by (14), from the set of tasks hp(k),)(klpv is the set of virtual

tasks used to model the non-pre-emptive execution of tasks in)(klp , and the final
1kF term accounts for the effects of push-through blocking from the FNR of the

previous job of task k .
If task k is schedulable, then)1( k

S
k

UB
k FRR .

Similar to the case with the DA-LC test, with the RTA-LC test, because we limit
the number of higher priority tasks with carry-in jobs to at most m � 1, the effect of
push-through blocking from the previous job of task k is not necessarily accounted
for within the interference terms for higher priority tasks. We therefore include the
final 1kF term to account for this, correcting the formulation of the RTA-LC test
given in the preliminary version of this paper published in RTCSA [Davis et al.
2013].

AALLGGOORRIITTHHMM 11.. Response Time Iteration
1 Initialize all UB

iR = iC
2 repeat = true
3 while (repeat) {
4 repeat = false
5 for (each priority level k, highest first) {
6 Calc. UB

kR via RTA or RTA-LC test for gFPDS
7 if (UB

kR > kD) {
8 Return unschedulable
9 }
10 if (UB

kR differs from its previous value) {
11 repeat = true
12 }
13 }
14 }
15 return schedulable

We note that in adapting the methods of [Bertogna and Cirinei 2007] and [Guan
et al. 2009] to gFPDS there is a difficulty in accounting for the interference from
virtual tasks. When computing the upper bound response time for task k the upper
bound response times of each higher priority task are required. This can easily be
achieved for the set of tasks)(khp simply by computing response times in order,
highest priority first, which is all that is needed for gFPPS. However, when
considering gFPDS we also include interference from virtual tasks corresponding to
tasks in)(klp . Here, the upper bound response time UB

ivR for each virtual task
equates to that of its corresponding (lower priority) task UB

i
UB
iv RR  , which itself

depends on the upper bound response time of task k , leading to an apparent
circularity. This would seem to imply that we cannot compute response times in
either lowest priority first or highest priority first order. However, we note that this
issue can be solved by adding an outer loop that forms a fixed point iteration. The
pseudo code in Algorithm 1 implements this approach. First, all of the upper bound
response times are initialised to a guaranteed lower bound on their values: i

UB
i CR 

(line 1). Then new upper bound response times are computed for each task k in
order, highest priority first, (line 6). As UB

iR)(klpi have not yet been computed on
the current iteration, this calculation uses the upper bound response times for virtual
tasks (associated with tasks in)(klp) from the previous iteration of the while loop
(lines 3-14), with i

UB
i

UB
iv CRR  used on the first iteration. Since the values of UB

iR
for some lower priority tasks may get larger when they are re-calculated, the
algorithm iterates until there are no further changes in the response times (line 10)
or a task is found that is unschedulable (line 7). Convergence (or exceeding a

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:13

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

deadline) is guaranteed due to the monotonic dependencies between response times:
The upper bound response time UB

ivR of each virtual task is monotonically non-
decreasing with respect to increases in the upper bound response times of all tasks in

)(ihp , and the upper bound response time UB
kR of each task k is monotonically non-

decreasing with respect to increases in the upper bound response times of all virtual
tasks associated with tasks in)(klp .

 Complexity and comparability 4.3
As part of the DA and DA-LC tests for gFPDS, the complexity of computing (4) or

(9) is)(nO , as the (m-1) largest DIFF
iI terms may be obtained by linear-time selection

[Blum et al. 1973]. The DA and DA-LC tests are therefore polynomial in complexity:
)(2nO for a taskset of cardinality n.

As part of the RTA and RTA-LC tests for gFPDS, the complexity of computing one
iteration of (13) or (15) is)(nO . The response time calculation can take at most

kk CD  iterations for task k since iteration starts with k
UB
k CR  , and the task is

deemed unschedulable if k
UB
k DR  . Hence the complexity of computing (13) or (15)

once for task k is)(knDO . The complexity of the inner loop (lines 5-13) in Algorithm
1 is therefore)(max

2 DnO , where maxD is the longest task deadline. Further, the outer
loop (lines 3-14) of Algorithm 1 iterates at most sumD times, where sumD is the sum of
task deadlines, since on each iteration some response time must increase by at least
one for the loop to continue iterating. Hence the overall complexity of Algorithm 1
and the RTA and RTA-LC tests is)(max

2
sumDDnO .

The following comparability relationships hold between the various schedulability
tests for gFPDS. The RTA test dominates the DA test, and the RTA-LC test
dominates the DA-LC test. However, in contrast to the equivalent tests for gFPPS
the RTA-LC and RTA tests for gFPDS are incomparable, as are the DA-LC and DA
tests. This is due to the different ways in which push-through blocking is accounted
for by these tests. We note that each test for gFPDS reduces to the corresponding test
for gFPPS if all FNR lengths are set to 1; thus each schedulability test for gFPDS
dominates its counterpart for gFPPS. This is the case because all tasksets deemed
schedulable by a test for gFPPS are also schedulable according to the corresponding
gFPDS test with FNR lengths set to 1, and there are also tasksets that are deemed
schedulable by a gFPDS test (with some FNR lengths not equal to 1) that are not
schedulable according to the corresponding gFPPS test, assuming fully pre-emptive
behaviour.

 Optimal priority assignment 4.4
[Davis and Burns 2009; 2011a] showed that Audsley�s OPA algorithm [Audsely 1991;
2001] can be used to obtain an optimal priority assignment with respect to any
schedulability test that fulfils the following three conditions:

Condition 1: The schedulability of a task k may, according to test S, depend on
the set of tasks with priorities higher than k, but not on their relative priority
ordering.

Condition 2: The schedulability of a task k may, according to test S, depend on
the set of tasks with priorities lower than k, but not on their relative priority
ordering.

Condition 3: When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become unschedulable
according to test S, if it was previously schedulable at the lower priority. (As a
corollary, the task being assigned the lower priority cannot become schedulable
according to test S, if it was previously unschedulable at the higher priority).

39:14 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Inspection of the DA and DA-LC tests for gFPDS shows that these conditions hold
(assuming fixed values of iF) and so these tests are OPA-compatible. Whereas the
dependency on the upper bound response time UB

iR of higher priority tasks in (11)
means that the RTA and RTA-LC tests are not OPA-compatible, since they violate
Condition 1.

 Example of gFPDS 4.5
We now provide an example comparing gFPDS with gFPPS and gFPNS. The

example is based on the taskset in TABLE I. This taskset is trivially unschedulable on
two processors with any form of fixed priority scheduling unless task C has the
lowest priority. Since task A and task B are equivalent, placing either of them at
the lowest priority would make that task have a response time of 6 and so be
unschedulable. Thus, there is only one viable priority ordering: A , B , C .

Table I: Task parameters
Task Execution time Period Deadline

A 3 10 5
B 3 10 5
C 8 25 12

With pre-emptive scheduling (gFPPS), if tasks A and B are released
simultaneously, then task C misses its deadline, as shown in Figure 5(a).
 Similarly, with non-pre-emptive scheduling (gFPNS), if task C is released just
before tasks A and B , then task B misses its deadline.

τCτA

Proc. 2
Proc. 1 τA

τBτB

τA, τB, τC τA, τB

0 4 8 12

τC

τAProc. 2

Proc. 1 τA

τBτB

τA, τB τA, τB

0 4 8 12

τC

(a) (b)

τCτA

Proc. 2
Proc. 1 FNR

τA

τB

τB

τA, τB, τC τA, τB

0 4 8 12

(c)

Figure 5: Schedule with (a) gFPPS (b) gFPNS and (c) gFPDS.

However, if we use deferred pre-emption and let 1AF , 1BF , and 3CF , then
using the RTA test, we obtain 31 UBR , 52 UBR , and 113 UBR ; proving that the
taskset is schedulable. Here, the FNR of task C is enough to ensure that there can
be no second pre-emption by task A , yet task C only blocks tasks A and B for a
maximum of 2 time units enabling their deadlines to be met. This example illustrates
the strict dominance, rather than equivalence, of gFPDS over gFPPS and gFPNS.

Note, this example has been deliberately constructed with Deadline Monotonic
Priority Ordering (DMPO) as the only feasible priority ordering; however, it is well

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:15

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

known that DMPO is not optimal for global fixed priority scheduling, and is not even
a good heuristic [Davis and Burns 2009; 2011a].

 OPTIMAL GFPDS 5.
In this section, we build upon the ideas and techniques developed in [Davis and

Bertogna 2012] which provide optimal algorithms for fixed priority scheduling with
deferred pre-emption for uniprocessor systems. We pose the same two problems
relating to the assignment of FNR lengths and priorities for the multiprocessor case,
i.e. under gFPDS. We show that the first of these problems can be solved in a similar
way to the uniprocessor case, and via a counterexample, that the second problem
cannot.

Problem 1: Final Non-pre-emptive Region length Problem (FNR Problem). For a
given taskset complying with the task model described in Section 3, and a given
priority ordering X, find a length for the FNR of each task such that the taskset is
deemed schedulable under gFPDS by schedulability test S.

Definition 1: An algorithm A is said to be optimal for the FNR Problem with
respect to a schedulability test S, if there are no taskset / priority assignment
combinations that are deemed schedulable under gFPDS by test S with some set of
FNR lengths, that are not also deemed schedulable by the test using the set of FNR
lengths determined by algorithm A.

Problem 2: Final Non-pre-emptive Region Length and Priority Assignment
Problem (FNR-PA Problem). For a given taskset complying with the task model
described in Section 3, find both (i) a priority assignment, and (ii) a set of FNR
lengths that makes the taskset schedulable under gFPDS according to schedulability
test S.

Definition 2: An algorithm B is said to be optimal for the FNR-PA Problem with
respect to a schedulability test S, if there are no tasksets compliant with the task
model that are deemed schedulable under gFPDS by test S with some priority
assignment X and some set of FNR lengths, that are not also deemed schedulable
using the priority assignment and set of FNR lengths determined by algorithm B.

 Sustainability with respect to FNR lengths 5.1
In order to be able to solve Problems 1 and 2 efficiently, we would prefer to use

schedulability tests that are sustainable [Baruah and Burns 2006; Burns and Baruah
2008] with respect to changes in the length of a task�s FNR. With a sustainable test,
we can use binary search to help solve the problems. In contrast with an
unsustainable test, we would potentially need to check every possible value for the
FNR length of each task which is typically not practical without some form of
approximation.

THEOREM 1:: The DA schedulability test for task k under gFPDS is sustainable
with respect to increases in the length kF of the task�s FNR.

PROOF: To prove the theorem, it suffices to show that if (4) holds for some pair of
values (*

kC , *
kD), then it continues to hold for the pair of values (zCk 

* , zDk 
*) where

z is a positive integer (*
kCz ). Substituting zCk 

* for *
kC and zDk 

* for *
kD in (4),

we need to show that the summation terms do not increase. By inspecting the
component equations (1) � (3), we observe that the interference within a window of
length L is monotonically non-decreasing with respect to the length of the window
(i.e. it is no larger for an interval of length zDk 

* than it is for an interval of length
*
kD). Further, we must also consider the dependence of component equation (1) on C .

C appears in the expression 1CL . which is unchanged by subtracting z from both

39:16 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

L and C. The summation terms in (4) are therefore monotonically non-increasing
with respect to increasing values of z 

COROLLARY 1: The schedulability of a task is, according to the DA test, a
monotonically non-decreasing function of the length of its FNR.

THEOREM 2: (Negative result) The RTA schedulability test for task k under
gFPDS is not sustainable [Baruah and Burns 2006; Burns and Baruah 2008] with
respect to increases in the length kF of the task�s FNR.

PROOF: Increasing the FNR length kF of task k increases the execution time of
its associated virtual task kv (as 1 kkv FC). With the RTA test this can result in a
large increase in the upper bound response time UB

iR of some higher priority task i
due to the inclusion of interference from an extra job of a yet higher priority task, as
well as the extra interference from kv (i.e. blocking). The increase in UB

iR can cause
an extra job of task i to interfere in the problem window of task k making it
unschedulable according to the test.

This scenario occurs with the taskset described in Table II below, assuming two
processors. In this case, if task D is fully pre-emptive, then the computed upper
bound response times are 10, 5, 10 and 23 for tasks A , B , C , and D respectively;
however, increasing the FNR length of task D so that 2DF results in upper bound
response times of 10, 6, 15, and 27, which would make task D unschedulable if it
had a deadline of 25. This increase in the upper bound response time of task D is
due to the large increase in the upper bound response time of task C from 10 to 15,
and the subsequent inclusion of an extra job of task C in the problem window of
task D . It is easy to construct examples where decreasing the FNR length of a task

k can result in the task becoming unschedulable due to additional pre-emptions
from higher priority tasks 

TABLE II: EXAMPLE TASK PARAMETERS

Task Execution time Period Deadline
A 10 100 10
B 5 10 10
C 5 15 15
D 7 100 100

THEOREM 3: (Negative result) The DA-LC and RTA-LC schedulability tests for
task k under gFPDS are not sustainable [Baruah and Burns 2006; Burns and
Baruah 2008] with respect to increases in the length kF of the task�s FNR.

PROOF: Increasing the FNR length kF of task k increases the 1kF term in (9)
and (15), while reducing both *

kD and *
kC by the same amount. As it is possible for

the summation terms in (9) and (15) to be unaffected by this change (for example if
all of the tasks have long periods), then the increase in kF can result in task k
being deemed unschedulable by the test when it was previously deemed schedulable
with a shorter FNR length. This can be trivially seen by considering the degenerate
case of a single processor, and a single task k with kk DC  . Any increase in kF
above 1 (i.e. the fully pre-emptive case) would make the task unschedulable
according to the DA-LC and RTA-LC schedulability tests. This happens because the
FNR is (pessimistically in this case) included in the response time twice, once as the
final execution of task k , in)1( k

S
k

UB
k FRR , and once to account for push-through

blocking, in (9) and (15). Hence we obtain kkk
UB
k DFCR )1(for 1kF and

kk
UB
k DCR  for 1kF 

 Solving the FNR and FNR-PA Problems 5.2
To aid in solving the FNR and FNR-PA problems, we introduce the concept of a
blocking vector. For a given taskset and priority ordering X, we use)(kB to represent

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:17

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

the blocking vector at priority k, where the blocking vector relates to the set of FNR
lengths of the ordered set of lower priority tasks)(klp . Hence:

))1)...(1(),1(()(11   knn FFFkB (16)
We define a �greater than or equal to� () and similarly a �less than or equal to� ()

relationship between blocking vectors with the meaning 21 BB  if every element in
2B is no larger than the corresponding element in 1B .
THEOREM 4: Task schedulability under gFPDS according to the DA, DA-LC,

RTA, or RTA-LC test is sustainable with respect to decreases in the blocking vector.
Stated otherwise, according to the DA, DA-LC, RTA, or RTA-LC test, a task that is
schedulable at priority k with a blocking vector)(kB remains schedulable when the
blocking vector is reduced (e.g. by reducing the FNR length of one or more lower
priority tasks) and the sets)(klp and)(khp of lower and higher priority tasks remain
unchanged.

PROOF: Follows directly from inspection of (4), (9), (13), and (15). In each case,
reductions in the summation term over the set of virtual tasks can only improve
schedulability □

COROLLARY 3: Using the DA, DA-LC, RTA, or RTA-LC schedulability test for
gFPDS, the minimum schedulable FNR length kF for a task k is monotonically non-
increasing with respect to decreases in the blocking vector. Stated otherwise, a
smaller blocking vector at priority k cannot result in a larger minimum length for the
FNR of the task at that priority level.

We now investigate using the FNR and FNR-PA algorithms presented by [Davis
and Bertogna 2012] to solve Problems 1 and 2 for multiprocessor systems. The two
algorithms are the same as those used in the uniprocessor case with the exception
that the schedulability tests used are the DA or DA-LC tests for gFPDS. (The RTA
and RTA-LC tests cannot be used here as the FNR and FNR-PA algorithms require
that task schedulability is determined lowest priority first). Theorem 1 shows that in
the case of the DA test, a binary search can be employed to determine the smallest
FNR length commensurate with task schedulability. By contrast, Theorem 3 shows
that in the case of the DA-LC test, a binary search cannot be used. Instead, the
smallest schedulable FNR length for each task must be searched for by checking each
possible value, smallest first. We return to this point in Section 7.

The proof of Theorem 5 uses the techniques from the uniprocessor case with minor
adjustments for the way in which lower priority tasks now impinge on the
schedulability of higher priority tasks.

AALLGGOORRIITTHHMM 22.. FNR Algorithm
for each priority level k, lowest first {

determine the smallest value for the final non-pre-emptive region length F(k) such that
the task at priority k is schedulable according to test S. Set the length of the final non-pre-
emptive region of the task to this value.

}
THEOREM 5: The FNR algorithm (Algorithm 2) is optimal for the FNR problem

(see Problem 1 and Definition 1).
PROOF: We assume (for contradiction) that there exists a taskset  and priority

ordering X that is schedulable according to schedulability test S (either the DA or
the DA-LC test for gFPDS), with some set of FNR lengths kF ' for k = 1 to n, and that
the FNR algorithm fails to determine a set of FNR lengths kF for k = 1 to n, that
results in the taskset being schedulable according to the test.

Let)(' kB be the blocking vector at priority k with the schedulable set of FNR
lengths, and)(kB be the blocking vector at priority k with the set of FNR lengths

39:18 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

computed by the FNR Algorithm. At each priority level, we will show that kk FF '
and hence that)(')(kBkB  thus proving via Corollary 2 sustainability of task
schedulability with respect to blocking vectors that the taskset is schedulable
according to test S, with priority ordering X and the FNR lengths determined by the
FNR Algorithm, thus contradicting the original assumption. The proof is by induction
over each priority level k from n to 1.

Initial step: At the lowest priority level n, trivially we have )(')(nBnB . At
priority n, the FNR Algorithm (Algorithm 2) computes, according to test S, the
minimum schedulable FNR length nF for task n hence nn FF ' .

Inductive step: We assume that at priority k,)(')(kBkB  and kk FF ' , hence
)1(')1( kBkB and thus via Corollary 3, 11 '   kk FF

Iterating over all of the priority levels shows that for all k from n to 1,)(')(kBkB 
and so by Corollary 2, the taskset is schedulable, according to test S, with the set of
FNR lengths kF obtained by Algorithm 2 

COROLLARY 4: (Follows from the proof of Theorem 5). For a given taskset and
fixed priority ordering X, that is schedulable according to the DA or DA-LC
schedulability test under gFPDS with some set of FNR lengths, Algorithm 2
minimises the FNR length of every task, and hence minimises the blocking vector at
every priority level.

In contrast to the FNR problem, the FNR-PA problem requires a schedulable
priority ordering to be established as part of the solution to the problem. Algorithm 3
which provides a solution to the FNR-PA problem in the uniprocessor case is based
on Audsley�s Optimal Priority Assignment (OPA) algorithm and uses a greedy bottom
up approach.

THEOREM 6: (Negative result) The Final Non-pre-emptive Region Priority
Assignment (FNR-PA) algorithm (Algorithm 3) is not optimal for the FNR-PA
problem (see Problem 2 and Definition 2) in the multiprocessor case i.e. gFPDS using
the DA or DA-LC schedulability tests.

PROOF: Proof is via a counterexample where the FNR-PA algorithm fails to find a
schedulable combination of priority assignment and FNR lengths, when such a
combination exists. The example is for the DA test, similar tasksets can be
constructed for the DA-LC test. We assume a system with two processors and the
taskset given in Table III. With four tasks, there are 24 distinct priority orderings (n!
= 24); however, in this case only two are schedulable, according to the DA test, given
appropriate choices of FNR lengths.

Table III: Counterexample task parameters

Task Execution time Period Deadline
A 36 207 110
B 86 178 141
C 93 525 195
D 62 767 195

First, we consider the behaviour of the FNR-PA algorithm. Starting at the lowest
priority level, the FNR-PA algorithm checks each task in turn and finds the
following: tasks A and B are not schedulable at priority 4 irrespective of FNR
lengths; task C is schedulable with a minimum FNR length of 58CF ; and task D
is schedulable with a minimum FNR length of 42DF . Hence the FNR-PA algorithm
chooses task D and assigns it priority 4. Next schedulability of the remaining
unassigned tasks is considered at priority 3. Tasks A and B are again not
schedulable irrespective of FNR lengths; however, task C is schedulable with a
minimum FNR length of 38CF , hence it is assigned priority 3. Priority level 2 is
then considered. Here, due to the large combined blocking effect modelled as the

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:19

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

virtual tasks Dv and Cv (i.e. 41 + 37 = 78) neither task A nor B is schedulable
with any valid FNR length. The FNR-PA algorithm therefore declares the taskset
unschedulable.

To prove the theorem, it now suffices to show that there is a priority and FNR
length assignment where this taskset is schedulable according to the DA test. If we
assign task C the lowest priority, then it requires a minimum FNR length of

58CF to be schedulable. Again we find that tasks A and B are not schedulable at
priority 3; however, assigning task D to priority 3, we find that it is schedulable
with 1DF (i.e. fully pre-emptive). Now, the blocking effect on whichever task, A or

B , we choose for priority 2 is only 57, and hence either task is schedulable at that
priority with the other task at priority 1. In both cases we have 1AF and 1BF .
Hence (A , B , D , C) and (B , A , D , C) are both schedulable priority orderings
with FNR lengths of (1, 1, 1, 58).

Since the FNR-PA algorithm fails to find a schedulable combination of priority
ordering and FNR lengths even though such a schedulable combination exists, this
taskset provides a counterexample to the optimality of the algorithm 

AALLGGOORRIITTHHMM 33 FNR-PA Algorithm
for each priority level k, lowest first {
 for each unassigned task  {

determine the smallest value for the final non-pre-emptive region length F(k) such
that task  is schedulable at priority k, according to test S assuming all other
unassigned tasks have higher priorities. Record as task Z the unassigned task with
the minimum value for the length of its final non-pre-emptive region F(k).

}
if no tasks are schedulable at priority k {

 return unschedulable
}
else {

assign priority k to task Z and use the value of F(k) as the length of its final non�pre-
emptive region.

}
}
return schedulable

We note that the optimality of the FNR-PA algorithm breaks down in the
multiprocessor case, because the blocking effect depends on a summation over the
FNR lengths of lower priority tasks rather than a maximum, as in the single
processor case. Minimising the FNR length at a given priority level does not
necessarily minimise this summation, as shown in the above counterexample.

 PARTITIONED FPDS (PFPDS) 6.
In this short section, we briefly discuss partitioned, as opposed to global

multiprocessor scheduling using final non-pre-emptive regions to improve
schedulability.

[Davis and Bertogna 2012] introduced an optimal algorithm for fixed priority
scheduling with deferred pre-emption on a single processor. This algorithm employs
an exact schedulability test for FPDS and the FNR-PA algorithm (Algorithm 3) to
find a schedulable priority assignment and set of FNR lengths whenever such a
schedulable combination exists. Hence, for a multiprocessor system using partitioned
scheduling, this technique yields the optimal assignment of priorities and FNR
lengths for each single processor sub-problem, assuming that an allocation of tasks to
processors has already been defined. Unfortunately, the allocation problem is

39:20 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

analogous to the bin packing problem and is known to be NP-Hard [Garey and
Johnson 1979], thus heuristic task allocation schemes need to be employed.

Allocations schemes can be classified in terms of the bin packing approach used,
which determines the order in which processors are chosen, e.g. First-Fit (FF), Next-
Fit (NF) Best-Fit (BF), and Worst-Fit (WF). They can also be further categorised in
terms of the order in which tasks are examined, e.g. decreasing density3, decreasing
deadline etc. For partitioned FPPS, allocation schemes based on First-Fit and either
decreasing utilisation (or density) [Oh and Baker 1998] and decreasing deadline
[Fisher et al. 2006] have proven effective.

By using FPDS and final non-pre-emptive regions, rather than fixed priority fully
pre-emptive scheduling, then in the single processor case, we cannot improve upon
the theoretical limits on performance obtained for FPPS [Davis et al. 2009] in terms
of processor speedup factors [Kalyanasundaram and Pruhs 1995] (This is easily seen
by considering the addition of a task with an infinitesimally small execution time, a
very short deadline and long period to any system, which negates the possibility of
effective FNRs). However, for more typical values for taskset parameters, partitioned
FPDS may offer significant advantages over partitioned FPPS. We evaluate this
possibility in the next section.

 EXPERIMENTAL EVALUATION 7.
In this section, we compare the performance of multiprocessor scheduling using
global approaches: gFPDS, gFPPS, and gFPNS, and also partitioned approaches
employing FPDS, FPPS, and FPNS on each processor.

For the global approaches, we compared the scheduling algorithms under the
following priority assignment policies: (i) Deadline Monotonic (DMPO), (ii) DkC
[Davis and Burns 2009; 2011a], and (iii) Audsley�s Optimal Priority Assignment
(OPA) algorithm for gFPPS and gFPNS. In the case of gFPDS, we used the FNR
algorithm to obtain optimum final non-pre-emptive region lengths in conjunction
with the heuristic priority assignment policies, and the FNR-PA Algorithm to provide
both priority and FNR length assignment. For reference, we also made comparisons
with FPZL [Davis and Burns 2011b; Davis and Kato 2012] which has some
similarities in its behaviour to gFPDS, but belongs to the dynamic class of scheduling
algorithms [Davis and Burns 2011c], which require substantially different RTOS
support. The lines on the graphs are labelled according to the scheduling algorithm
and priority assignment policy used, e.g. gFPDS (DkC). In all cases, we used the
appropriate DA-LC test. Recall that in conjunction with this test for gFPDS, it is not
possible to employ a binary search to find the smallest schedulable FNR of each task.
Instead, we approximated checking all possible FNR lengths, smallest first, by
examining 100 different FNR lengths for each task, with a granularity of 100/kC .
We found that this approach, although approximate, provided significantly better
performance than using the simpler DA test.

For the partitioned approaches, we employed optimal priority and FNR length
assignment using the FNR-PA algorithm in the case of pFPDS, Audsley�s Optimal
Priority Assignment (OPA) algorithm for pFPNS, and Deadline Monotonic priority
assignment for pFPPS. In each case we used First-Fit Decreasing Density (FFDD),
First-Fit Decreasing Deadline (FFMaxD) , First-Fit Decreasing Execution Time
(FFMaxC) as task allocation heuristics.

 Parameter generation 7.1
The task parameters used in our experiments were randomly generated as follows:

3 Where Density is defined as the WCET of a task divided by its deadline.

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:21

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

o First, an unbiased set of n utilisation values 1iU , were generated with a total
utilisation of U , (see [Emberson et al. 2010] and [Davis and Burns 2011a] for
how to generate an unbiased set of such values).

o Task periods were generated according to a log-uniform distribution (i.e. such
that)ln(T has a uniform distribution). Here the ratio between the maximum and
the minimum permissible task period was given by r10 . By default, this range
was 10, i.e. r = 1.

o Task execution times were set based on the task utilisation and period selected:
iii TUC  .

o Task deadlines were constrained and chosen at random according to a uniform
distribution in the range]),([iiii TCTC  , with  = 0.5 as the default.

o Taskset cardinality was z times the number of processors. By default, z = 5.
We examined systems with m = 2, 4, and 8 processors. In each experiment, the
taskset utilisation was varied from 0.025m to 0.975m in steps of 0.025m. For each
utilisation value, 1000 tasksets were generated and their schedulability determined
according to the various scheduling algorithms. Note due to the large number of lines
on the graphs, the figures are best viewed online in colour.

 Success ratio 7.2
In our first set of experiments, we compared the performance of the scheduling
algorithms via the success ratio; the proportion of randomly generated tasksets that
are deemed schedulable in each case.

Figure 6 shows the results of this experiment for the global scheduling algorithms
and Figure 7 the corresponding results for the partitioned scheduling algorithms.
The configuration used in each case, was a 4 processor system with a constrained
deadline taskset of cardinality 20, and a range of task periods of 10.

For the global scheduling algorithms (Figure 6), we observe that the performance
of gFPNS (dotted lines) was relatively poor for all priority assignment policies, due to
the difficulty in accommodating tasks with long execution times and long deadlines.
(With non-pre-emptive scheduling, such tasks cause significant blocking of higher
priority tasks with short deadlines, leading to unschedulable systems at relatively
modest utilisation levels). As expected, the results for gFPPS (dashed lines), show
that optimal priority assignment outperformed the various heuristic priority
assignment policies. Using gFPDS (solid lines with markers) substantially better
results were obtained for the various heuristic priority assignment policies as
compared to gFPPS, with the best performance obtained using the FNR-PA
algorithm. In all cases, gFPDS significantly outperformed gFPPS and gFPNS
assuming a like-for-like priority assignment policy. gFPDS using the FNR-PA
algorithm resulted in performance part-way between that of gFPPS and the dynamic
FPZL algorithm (solid line, no markers) assuming optimal priority assignment.

39:22 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Figure 6: Success ratio: global scheduling algorithms m = 4, n = 20, r=1, constrained deadlines

Figure 7: Success ratio: partitioned scheduling algorithms m = 4, n = 20, r=1, constrained deadlines

Figure 7 shows the results for the partitioned scheduling algorithms. Here, we
observe that pFPDS (solid lines) provides significantly improved performance over
pFPPS (dashed lines), with pFPNS providing the worst performance irrespective of
the task allocation policy. Comparing the task allocation policies, First-Fit
Decreasing Density (FFDD) has a clear advantage over First-Fit Decreasing Deadline
(FFMaxD) in the case of pFPDS and pFPPS; and a small advantage over First-Fit
Decreasing Execution Time (FFMaxC); however, this is reversed in the case of
pFPNS. This reversal is due to the fact that allocating tasks according to their
execution times has an advantage for non-pre-emptive scheduling, in that it tends to
group tasks with large executions times (and long deadlines) together. This improves
schedulability given that pre-emption is not permitted.

 Weighted schedulability 7.3
In our second set of experiments we compared how the overall performance of each of
the scheduling algorithms varies with respect to changes in a specific parameter via
the weighted schedulability measure [Bastoni et al. 2010]. In the following figures we

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

Utilisation

FPZL (OPA)
gFPDS (FNR-PA)
gFPDS (DkC)
gFPDS (DMPO)
gFPPS (OPA)
gFPPS (DkC)
gFPPS (DMPO)
gFPNS (OPA)
gFPNS (DkC)
gFPNS (DMPO)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

Utilisation

pFPDS (FFDD)
pFPDS (FFMaxC)
pFPDS (FFMaxD)
pFPPS (FFDD)
pFPPS (FFMaxC)
pFPPS (FFMaxD)
pFPNS (FFDD)
pFPNS (FFMaxC)
pFPNS (FFMaxD)

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:23

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

show the weighted schedulability measure)(pWS for schedulability test S as a
function of parameter p. For each value of p, this measure combines results for all of
the tasksets generated for all of a set of equally spaced utilisation levels (e.g. 0.1 to
0.39 in steps of 0.1 for a 4 processor system). The schedulability test returns a binary
result of 1 or 0 for each taskset  and parameter p. Assuming that this result is
given by),(pS  and)(u is the utilisation of taskset  , then:



























)(

),()(
)(

u

pSu
pWS (17)

The benefit of using the weighted schedulability measure is that it reduces a 3-
dimensional plot to 2 dimensions, with individual results weighted by taskset
utilisation to reflect the higher value placed on being able to schedule higher
utilisation tasksets.

The first parameter examined was taskset cardinality. Figure 8 and Figure 9
show how the weighted schedulability varies with increasing taskset size (from 2 to
20 times the number of processors, i.e. from 4 to 80 tasks on an 4 processor system)
for global and partitioned scheduling algorithms respectively.

Figure 8: Weighted schedulability: global scheduling algorithms as a function of taskset size

0

0.1

0.2

0.3

0.4

0.5

0.6

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Tasks per processor

FPZL(OPT)
gFPDS(OPT)
gFPDS(DkC)
gFPDS(DMPO)
gFPPS(OPT)
gFPPS(DkC)
gFPPS(DMPO)
gFPNS(OPT)
gFPNS(DkC)
gFPNS(DMPO)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Tasks per processor

pFPDS (FFDD)
pFPDS (FFMaxC)
pFPDS (FFMaxD)
pFPPS (FFDD)
pFPPS (FFMaxC)
pFPPS (FFMaxD)
pFPNS (FFDD)
pFPNS (FFMaxC)
pFPNS (FFMaxD)

39:24 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Figure 9: Weighted schedulability: partitioned scheduling algorithms as a function of taskset size

In Figure 8, we observe that increasing taskset cardinality results in tasks that
have smaller utilisation on average and are therefore generally easier for global
scheduling algorithms to schedule, as noted by [Davis and Burns 2009; 2011a]. For
very low taskset cardinality, (e.g. twice as many tasks as processors), more tasksets
are deemed schedulable by gFPPS and gFPDS. This happens because the pessimism
in the tests for these global scheduling algorithms reduces with fewer tasks. This can
be understood by considering Figure 2. Over any given interval, the interference
assumed from two tasks with parameters),,2/(TDC can be more than, but is never
less than that for a single task with parameters),,(TDC .

As the ratio of tasks to processors increases, the advantage conferred by deferred
pre-emption gradually decreases. This is because the individual utilisation of each
task is becoming quite small reducing the benefits that can be obtained over fully
pre-emptive scheduling. The small size of the tasks also accounts for the improving
performance of non-pre-emptive scheduling with an increased number of tasks.

Figure 9 shows how the weighted schedulability measure varies with taskset
cardinality for the partitioned scheduling algorithms. Here it is clear that the
deferred pre-emption approach (pFPDS) provides a significant advantage over both
pFPPS and pFPNS. Further, this advantage is maintained as the number of tasks
increases. We note that in this case, when the total number of tasks is very small
(e.g. only twice as many tasks as processors), they become difficult to allocate to
processors (bin-packing problem) due to their high utilisation, hence schedulability
reduces. This is in direct contrast to global scheduling which improves in this case as
discussed above.

The second parameter we examined was the range of task periods. Figure 10 and
Figure 11 show how the weighted schedulability measure varies with the log-range r
of task periods given by the ratio r10 between the maximum and the minimum
permissible task period, for the global and partitioned scheduling algorithms
respectively. Here, the value of r was varied from r = 0.5 (16.310 5.0 ) to r = 4 (

000,10104 ).

Figure 10: Weighted schedulability: global scheduling algorithms as a function of period range, D  T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Range of task periods 10r

FPZL(OPT)
gFPDS(OPT)
gFPDS(DkC)
gFPDS(DMPO)DA-LC
gFPPS(OPT)
gFPPS(DkC)
gFPPS(DMPO)DA-LC
gFPNS(OPT)
gFPNS(DkC)
gFPNS(DMPO)

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:25

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Figure 11: Weighted schedulability: partitioned scheduling algorithms as a function of period range, D  T

For the global scheduling algorithms (Figure 10), we observe that gFPDS shows
an improvement over gFPPS, which increases slightly when the range of task periods
is relatively small. This is because with all task periods and deadlines of a similar
duration, all of the tasks can typically tolerate significant blocking and so there is
scope to choose FNR lengths that improve schedulability. As expected, both gFPPS
and gFPDS show improved performance as the range of task periods increases, while
gFPNS shows rapidly declining performance. This is because tasks with relatively
long periods tend to have large execution times which may be longer than the
deadlines of other tasks. Once there are more of these tasks than processors, global
non-pre-emptive scheduling becomes infeasible.

For the partitioned scheduling algorithms (Figure 11), the weighted schedulability
measure is significantly higher than it is for the equivalent global scheduling
methods. Here, we again observe that deferred pre-emption (pFPDS) shows the
largest improvement over fully pre-emptive scheduling (pFPPS) when the range of
task periods is relatively small. This is due to the ability of tasks to tolerate
significant blocking in comparison to the execution time of other tasks. With
partitioned scheduling, this effect is more pronounced as FNRs can only cause
blocking to tasks allocated to the same processor. Hence allocation of tasks with
similar execution times (FFMaxC) to the same processor can improve schedulability.
As the range of task periods increases, then Decreasing Density becomes by some
margin the most effective task allocation heuristic, and the performance of pFPPS
using that heuristic tends towards that of pFPDS.

Finally, we observe that with partitioned non-pre-emptive scheduling (pFPNS),
the degradation in performance with an increasing range of task periods is less
severe than with the equivalent global approach (gFPNS). This is because if there are
more than m tasks whose execution time exceeds the smallest deadline, then the
entire system is unschedulable with gFPNS, whereas with pFPNS if these tasks are
on different processors to those with short deadlines, then the system may still be
schedulable.

 SUMMARY AND CONCLUSIONS 8.
Global fixed priority scheduling with deferred pre-emption (gFPDS), dominates both
global fixed priority fully pre-emptive (gFPPS) and global fixed priority non-pre-
emptive scheduling (gFPNS). In this paper we provided analysis for a simple model
of gFPDS on homogeneous multiprocessors, where each task has a single non-pre-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Range of task periods 10r

pFPDS (FFDD)
pFPDS (FFMaxC)
pFPDS (FFMaxD)
pFPPS (FFDD)
pFPPS (FFMaxC)
pFPPS (FFMaxD)
pFPNS (FFDD)
pFPNS (FFMaxC)
pFPNS (FFMaxD)

39:26 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

emptive region at the end of its execution. We showed that an appropriate choice of
the length of this region can enhance schedulability.

The main contributions of this paper are as follows:
o Introduction of sufficient schedulability tests for gFPDS.
o Proof that the FNR algorithm [Davis and Bertogna 2012] is compatible with the

DA and DA-LC tests for gFPDS, and can be used to obtain the optimal final non-
preemptive region lengths for a given priority ordering.

o Proof via a counterexample, that the joint problem of priority and FNR length
assignment cannot be solved optimally via a greedy, bottom-up approach using
the FNR-PA Algorithm from [Davis and Bertogna 2012].

o An experimental evaluation of the performance benefits of the deferred pre-
emption approach for both global and partitioned scheduling. In both cases,
(gFPDS v. gFPPS, and pFPDS v. pFPPS) our experiments showed that the use of
Final Non-pre-emptive Regions (FNRs) can significantly improve schedulability,
particularly when the range of task periods is relatively small.

o While the partitioned approaches were shown to be significantly more effective in
our experiments, much of this advantage may be due to pessimism in the
underlying schedulability tests for global fixed priority scheduling. Global
scheduling should not be discounted as it has significant advantages for open
systems.

o We made additional comparisons with the dynamic scheduling algorithm FPZL,
these showed that much of the improvement FPZL obtains over gFPPS can be
achieved by the simple adoption of FNRs (i.e. gFPDS).

Building on our work on global scheduling with deferred pre-emption, there are two
key areas which we aim to explore further.

Firstly, in single processor systems, tasks may execute as a series of non-pre-
emptive regions with pre-emption points between them [Bertogna et al. 2011b].
However, with global fixed priority scheduling with eager pre-emption, such an
arrangement can potentially be ineffective in the multiprocessor case. This is
illustrated in Figure 1 (in Section 4), which shows that there is the potential for every
non-pre-emptive region of every lower priority task to interfere with the execution of
a higher priority task. This problem is addressed by the lazy pre-emption mechanism
of link-based scheduling [Block et al. 2007; Brandenburg 2011]. The existing
approach to schedulability analysis for link-based global scheduling [Block et al.
2007; Brandenburg 2011] relies on using a global schedulability test for fully pre-
emptive scheduling, with the additional delays due to non-pre-emptive regions
accounted for by inflating the worst-case execution time of every task before applying
the test [Brandenburg and Anderson 2014]. Further, the amount by which the
execution time of each task is inflated is given by the maximum length of any non-
pre-emptive region of a lower priority task. In the context of the work reported in this
paper, such analysis cannot improve upon the schedulability obtained with global
fixed priority pre-emptive scheduling (i.e. with no final non-pre-emptive regions). In
general; however, the schedulability of tasks with non-pre-emptable regions under
global fixed priority scheduling with eager pre-emption is incomparable to that with
lazy pre-emption, as shown by the examples in the appendix. Typically link-based
scheduling can be expected to perform better if many tasks have many non-pre-
emptive regions of a similar size, whereas eager pre-emption can be expected to
perform better if only a few low priority tasks have long final non-pre-emptive
regions. An interesting area for future work is the development of schedulability
analysis for systems using global fixed priority scheduling with lazy pre-emption,
accounting for the improvements in schedulability that can be obtained by virtue of
final non-pre-emptive regions. Such analysis would facilitate a performance

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:27

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

comparison between lazy and eager pre-emption in this context. Some preliminary
work in this area is reported in [Marinho et al. 2013].

Secondly, our simple model assumes that task execution times are independent of
pre-emption and pre-emption and migration costs are negligible; however, in many
real-time systems each pre-emption and migration incurs a significant cost,
particularly in systems using cache. For large tasksets, allowing arbitrary pre-
emption can result in lower priority tasks being pre-empted a large number of times,
significantly increasing cache-related pre-emption delays (CRPD) to the detriment of
schedulability [Altmeyer at al. 2011; 2012]. The integration of CRPD and
schedulability analysis is a key area which we aim to explore further. An indication
of the effects of CRPD on the schedulability of tasksets under partitioned FPPS,
assuming a separate cache per processor, can be obtained by considering the single
processor case [Lunniss et al. 2014]. Deferred pre-emption can typically be expected
to reduce the effect of CRPD in such systems, since it reduces the number of pre-
emptions. Until effective analysis is developed for global FPPS incorporating CRPD,
it is not possible to say whether these effects will be larger or smaller for global
scheduling than partitioned. Certainly there is scope for large pre-emption and
migration delays in globally scheduled systems; however, the extent of these effects
clearly depends on the cache configuration: shared between processors and tasks,
shared between processors but partitioned between tasks or groups of tasks, or a
separate cache per processor.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES
S. Altmeyer, R.I. Davis, C. Maiza. 2011. �Cache related Pre-emption Delay aware response time analysis

for fixed priority pre-emptive systems�. In proceedings Real-Time Systems Symposium (RTSS), pp.
261-271.

S. Altmeyer, R.I. Davis, C. Maiza. 2012. �Improved cache related pre-emption delay aware response time
analysis for fixed priority pre-emptive systems� . Real-Time Systems, 48 (5), pp. 499-526.

N.C. Audsley. 1991. "Optimal priority assignment and feasibility of static priority tasks with arbitrary
start times", Technical Report YCS 164, Dept. Computer Science, University of York, UK.

N.C. Audsley. 2001. �On priority assignment in fixed priority scheduling�, Information Processing Letters,
79(1): 39-44.

T.P. Baker. 2003. �Multiprocessor EDF and deadline monotonic schedulability analysis�. In proceedings.
Real-Time Systems Symposium (RTSS), pp. 120�129.

S.K. Baruah, A. Burns. 2006.�Sustainable Scheduling Analysis�. In proceedings Real-Time Systems
Symposium (RTSS), pp. 159-168.

S.K. Baruah. 2005. �The limited-preemption uniprocessor scheduling of sporadic task systems�. In
Proceedings Euromicro Conference on Real-Time Systems (ECRTS), pp. 137�144.

S.K. Baruah. 2007. �Techniques for Multiprocessor Global Schedulability Analysis�. In proceedings Real-
Time Systems Symposium (RTSS), pp. 119-128.

.S.K. Baruah, N. Fisher. 2008. �Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Task
Systems� In proceedings International Conference on Distributed Computing and Networking, pp.
215-226.

A. Bastoni, B. Brandenburg, and J. Anderson. 2010. "Cache-Related Preemption and Migration Delays:
Empirical Approximation and Impact on Schedulability" In Proceedings of OSPERT, pp. 33-44.

M. Bertogna, M. Cirinei, G. Lipari. 2005. �New schedulability tests for real-time task sets scheduled by
deadline monotonic on multiprocessors�. In proceedings International Conf. on Principles of
Distributed Systems, pp. 306-321.

M. Bertogna, M. Cirinei. 2007. �Response Time Analysis for global scheduled symmetric multiprocessor
platforms�. In proceedings Real-Time Systems Symposium (RTSS), pp. 149-158.

M. Bertogna, M. Cirinei, G. Lipari. 2009. �Schedulability analysis of global scheduling algorithms on
multiprocessor platforms�. IEEE Transactions on parallel and distributed systems, 20(4): 553-566..

M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, Francesco Esposito, Marco Caccamo. 2010. "Preemption
points placement for sporadic task sets", In Proceedings Euromicro Conference on Real-Time Systems
(ECRTS).

39:28 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, G. Buttazzo. 2011. "Optimal Selection of Preemption
Points to Minimize Preemption Overhead", In Proceedings Euromicro Conference on Real-Time
Systems (ECRTS).

M. Bertogna, G. Buttazzo, G. Yao. 2011. "Improving Feasibility of Fixed Priority Tasks using Non-
Preemptive Regions", In proceedings Real-Time Systems Symposium (RTSS).

A. Block, H. Leontyev, B. Brandenburg, J.H. Anderson. 2007. �A Flexible Real-Time Locking Protocol for
Multiprocessors�. In Proceedings of Real-Time Computing Systems and Applications (RTCSA) , pp 47-
56.

M. Blum, R..W. Floyd, V. Pratt, R.L. Rivest, R.E. Tarjan. 1973. �Time bounds for selection�. Journal of
Computer and System Sciences 7, 4, 448�461.

B. B. Brandenburg, J. Anderson. 2014. "A Clarification of Link-based Global Scheduling", Max Plank
Institute for Software Systems, Technical Report MPI-SWS-2014-007. Available from http://www.mpi-
sws.org/cont/tr/2014-007.pdf.

B. B. Brandenburg. 2011. "Scheduling and Locking in Multiprocessor Real-Time Operating Systems", PhD
Thesis, The University of North Carolina at Chapel Hill.

R. Bril, J. Lukkien, and W. Verhaegh. 2009. Worst-case response time analysis of real-time tasks under
fixed-priority scheduling with deferred preemption. Real-Time Systems, 42(1-3):63�119.

A. Burns. 1994. �Preemptive priority based scheduling: An appropriate engineering approach�. S. Son,
editor, Advances in Real-Time Systems, pp. 225�248.

A. Burns, S.K. Baruah. 2008. �Sustainability in real-time scheduling�. Journal of Computing Science and
Engineering 2 (1), pp 74-97.

G.C. Buttazzo, M. Bertogna, G. Yao. 2013. "Limited Preemptive Scheduling for Real-Time Systems: A
Survey". IEEE Transactions on Industrial Informatics, 9(1) pp. 3-15.

R.I. Davis, A. Burns. 2009. �Priority Assignment for Global Fixed Priority Pre-emptive Scheduling in
Multiprocessor Real-Time Systems�. In proceedings Real-Time Systems Symposium (RTSS), pp. 398-
409.

R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns. 2009. "Exact Quantification of the Sub-optimality of
Uniprocessor Fixed Priority Pre-emptive Scheduling�. Real-Time Systems, 43, 3, pp. 211-258.

R.I. Davis, A. Burns, 2011a. �Improved Priority Assignment for Global Fixed Priority Pre-emptive
Scheduling in Multiprocessor Real-Time Systems�. Real-Time Systems 47 (1) pp1-40.

R.I. Davis, A. Burns. 2011b. �FPZL Schedulability Analysis�, In proceedings Real-Time Applications and
embedded Technology Symposium (RTAS), pp. 245-256.

R.I. Davis and S. Kato. 2012. "FPSL, FPCL and FPZL schedulability analysis." Real-Time Systems, 48
(12), pp 750-788.

R.I. Davis, A. Burns. 2011c. �A Survey of Hard Real-Time Scheduling for Multiprocessor Systems�, ACM
Computing Surveys, 43, 4, Article 35 44 pages.

R.I. Davis, M. Bertogna. 2012. "Optimal Fixed Priority Scheduling with Deferred Pre-emption�. In
proceedings Real-Time Systems Symposium (RTSS).

R.I.Davis, A. Burns, R.J. Bril, and J.J. Lukkien. 2007. �Controller Area Network (CAN) Schedulability
Analysis: Refuted, Revisited and Revised�. Real-Time Systems, Volume 35, Number 3, pp. 239-272.

R.I. Davis, A. Burns, J. Marinho, V. Nelis, S.M. Petters, M. Bertogna. 2013. �Global Fixed Priority
Scheduling with Deferred Pre-emption�, In proceedings International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA).

P. Emberson, R. Stafford, R.I. Davis. 2010. �Techniques For The Synthesis Of Multiprocessor Tasksets�.
In proceedings 1st International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS) , pp. 6-11.

N. Fisher, S.K. Baruah. 2006. �Global Static-Priority Scheduling of Sporadic Task Systems on
Multiprocessor Platforms.� In procedings. IASTED International Conference on Parallel and
Distributed Computing and Systems.

N. Fisher, S.K. Baruah, T.P. Baker. 2006. �The partitioned scheduling of sporadic tasks according to
static priorities�. In proceedings of the EuroMicro Conference on Real-Time Systems (ECRTS), pp.
118�127.

M. Garey and D. Johnson. 1979. Computers and Intractability: a Guide to the Theory of NP-
Completeness. W. H. Freeman and company, NY.

N. Guan, W. Yi, Q. Deng, Z. Gu, G. Yu. 2011. �Schedulability analysis for non-preemptive fixed-priority
multiprocessor scheduling�. Journal of Systems Architecture - Embedded Systems Design 57(5), pp.
536-546.

N. Guan, M. Stigge, W.Yi, G. Yu. 2009. �New Response Time Bounds for Fixed Priority Multiprocessor
Scheduling�. In proceedings of the Real-Time Systems Symposium (RTSS), pp. 388-397.

B. Kalyanasundaram, K. Pruhs. 1995. �Speed is as powerful as clairvoyance�. In Proceedings of the 36th
Symposium on Foundations of Computer Science, pp. 214-221.

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:29

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

W. Lunniss, S. Altmeyer, R.I. Davis. 2014. "A Comparison between Fixed Priority and EDF Scheduling
accounting for Cache Related Pre-emption Delays�. Leibniz Transactions on Embedded Systems
(LITES), Volume 1, Number 1. DOI: http://dx.doi.org/10.4230/LITES-v001-i001-a001.

J. Marinho, V. Nelis, S.M. Petters, M. Bertogna, R.I.Davis. 2013. "Limited Pre-emptive Global Fixed Task
Priority�. In Proceedings Real-Time Systems Symposium (RTSS), pp. 182-191.

J. Marinho,V. Nélis,S. M. Petters, I. Puaut. 2012. �Preemption Delay Analysis for Floating Non-
Preemptive Region Scheduling�, In proceedings of DATE.

D.I. Oh, T.P. Baker. 1998. �Utilization bounds for N-processor rate monotone scheduling with stable
processor assignment�. Real Time Systems, 15(2):183�193.

G. Yao, G. Buttazzo, M. Bertogna. 2009. "Bounding the Maximum Length of Non-Preemptive Regions
Under Fixed Priority Scheduling", In proceedings RTCSA.

Received September 2013; revised November 2014; accepted January 2015

39:30 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Online Appendix to:
Global and Partitioned Multiprocessor Fixed Priority Scheduling
with Deferred Pre-emption

ROBERT I. DAVIS, University of York
ALAN BURNS, University of York
JOSE MARINHO, CISTER/INESC-TEC, ISEP
VINCENT NELIS, CISTER/INESC-TEC, ISEP
STEFAN M. PETTERS, CISTER/INESC-TEC, ISEP
MARKO BERTOGNA, University of Modena

A. SPECIAL CASE OF A FULLY NON-PRE-EMPTIVE TASK IN A gFPDS SYSTEM
We note that while our schedulability tests for gFPDS dominate the equivalent

tests for gFPPS, they do not dominate the equivalent tests for gFPNS which include
blocking from at most m lower priority tasks [Guan et al. 2011]. We can however
apply specific schedulability tests for gFPDS for the special case of a task k which is
fully non-pre-emptive, as set out below.

In the case of gFPDS scheduling where a task k is fully non-pre-emptive, i.e.
when kk CF  ,)1(*  kkk CDD , and 1* kC , then more precise analysis is possible.
This analysis is based on the approach of [Guan et al. 2011] for gFPNS (where all
tasks are fully non-pre-emptive).

Following the approach of [Guan et al. 2011], we can limit the number of carry-in
jobs considered. We again use the concept of a problem window, which relates to a job
of task k missing its deadline. Recall that kJ is the first job of k that misses its
deadline, with kr being the release time of kJ and kd its absolute deadline. Further,
let)1( kkk Cdl be the latest time by which the job must have started its non-pre-
emptable execution in order to complete by its deadline (see Figure 12).

We again use),(kt to denote the set of tasks with higher priority than k (i.e.
)(khp) that have active jobs (i.e. jobs that have been released but not yet completed)

at time t. Further 0t is defined, as in Section 4.1, to be the earliest time before kr
such that),[0 krtt at least one of the following holds:

(i) mkt ),(and all of the tasks in),(kt execute in the interval)1,[tt .
(ii) There are some tasks in),(kt that do not execute in the interval)1,[tt .
If there is no such 0t , then krt 0 . The start of the problem window is defined as

0t . The problem window has a fixed length)1( kk CDL and so ends at Ltt f  0 .
From the definition of 0t , we note that no job of a task with priority k or lower can
start to execute during the interval),[0 krt .

Figure 12: Problem window for a fully non-pre-emptive task.

We observe that Lemma 1 and Lemma 2 (in Section 4.1) hold. Thus at most m-1
tasks with a higher priority than k can have a carry-in job, and the maximum
interference from all previous jobs (prior to kJ) of task k in the problem window is

)1()1( kk CF .
LEMMA A.1: At most m tasks in total can have a carry-in job that interferes with kJ
in the problem window.

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:31

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

PROOF: (Follows the logic of the proof of Lemma 5.2 in [Guan et al. 2011]). At time
10 t then given how 0t is defined, it follows that mkt ),1(0 and all of the tasks

in),1(0 kt  execute in the interval),1[00 tt  . A task in)(khp only has a carry-in job
if it is in),1(0 kt  , hence),1(0 kt  tasks in)(khp have carry-in jobs. A task with
priority k or lower can only have a carry-in job that interferes with kJ if it is
executing a FNR in the interval),1[00 tt  . Since at most m tasks are executing in the
interval),1[00 tt  , and),1(0 kt  of them are in)(khp , the number of tasks in)(klep
with carry-in jobs is),1(0 ktm  . Hence the maximum number of tasks with carry
in jobs that interfere with kJ is m 

We note that as task k is fully non-pre-emptive, a lower priority task j can only
interfere with the execution of kJ if it has a carry-in job that is executing a FNR at
the start of the problem window. Otherwise kJ will start executing in preference to

j , and once kJ starts executing it runs to completion. Hence the maximum
interference from a lower priority task j is zero if it does not have a carry-in job and

1jF if it has a carry-in job. So, for the virtual task jv representing j , we have
1),(),( j

R
jv

D
jv FCLICLI , and 0),(CLI NC

jv and hence
1),(),( 

j
RDIFF

jv
DDIFF

jv FCLICLI .
We now compile a set of sufficient schedulability tests for gFPNS.
In the simple DA test below, the effect of push-through blocking from the FNR of

the previous job of task k is factored into the interference term for higher priority
tasks, as was the case with gFPDS (see Section 4.1). Hence we only include the
additional interference term from the FNRs of tasks with strictly lower priority (and
we do not limit the number of them).

DDAA tteesstt:: for a fully non-pre-emptive task k under gFPDS:























 

)()(

****)1(),(1

klpj
j

khpi
kk

D
ikk FCDI

m
CD (A.1)

The more sophisticated DA-LC test makes use of Lemma 1, Lemma 2, and Lemma
A.1 to limit the amount of carry-in interference.

DDAA--LLCC tteesstt: for a fully non-pre-emptive task k under gFPDS:























 





)(

**

)(

****),(),(1

kMDBi
kk

DDIFF
i

khpi
kk

NC
ikk CDICDI

m
CD (A.2)

where MDB(k) is the subset of the m tasks with the largest values of),(**
kk

DDIFF
i CDI 

from the set of tasks)()(klepvkhp  provided at least one of those tasks is from
)(klepv , otherwise MDB(k) equates to the subset of at most m-1 tasks with the

largest values of),(**
kk

DDIFF
i CDI  given by (8), from the set of tasks hp(k), and the

single virtual task from)(klepv that has the largest value of),(**
kk

DDIFF
i CDI  . Note

)(klepv is the set of virtual tasks representing the FNRs of tasks with priority k or
lower.

RRTTAA tteesstt:: The upper bound response time S
kR for the start (first unit of execution)

of a fully non-pre-emptive task k under gFPDS, may be computed via the fixed point
iteration given by (A.3) within Algorithm 1. The task is schedulable if *

k
S
k DR  , where

*
kD is the task�s effective deadline)1(*  kkk CDD .























 

)()(

**)1(),(1

klpj
j

khpi
k

S
k

R
ik

S
k FCRI

m
CR (A.3)

If the task is schedulable, then an upper bound on its worst-case response time is
given by)1( k

S
k

UB
k CRR .

RRTTAA--LLCC tteesstt:: The upper bound response time S
kR for the start (first unit of

execution) of a fully non-pre-emptive task k under gFPDS, may be computed via the

39:32 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

fixed point iteration given by (A.4) within Algorithm 1. The task is schedulable if
*
k

S
k DR  , where *

kD is the task�s effective deadline)1(*  kkk CDD .























 





)(

*

)(

**),(),(1

kMRBi
k

S
k

RDIFF
i

khpi
k

S
k

NC
ik

S
k CRICRI

m
CR (A.4)

where MRB(k) is the subset of the m tasks with the largest values of),(*
k

S
k

RDIFF
i CRI 

from the set of tasks)()(klepvkhp  provided at least one of those tasks is from
)(klepv , otherwise MDB(k) equates to the subset of at most m-1 tasks with the

largest values of),(*
k

S
k

RDIFF
i CRI  given by (14), from the set of tasks hp(k), and the

single virtual task from)(klepv that has the largest value of),(*
k

S
k

RDIFF
i CRI  . If the

task is schedulable, then an upper bound on its worst-case response time is given by
)1( k

S
k

UB
k CRR .

We note that the RTA and RTA-LC tests given by (A.3) and (A.4) do not depend
on the upper bound response times of lower priority tasks, and so the iteration of
Algorithm 1 is unnecessary if all tasks are fully non-pre-emptive. In that case, upper
bound response times may be evaluated highest priority first.

We observe that the schedulability tests given in this section for the special case
of a fully non-pre-emptive task dominate the equivalent tests for the general case of
deferred pre-emption with kk CF  given in section 4. This means that the DA test
retains it monotonic behaviour with respect to increasing values of kF if in the
special case where kk CF  we use the specific test given by (A.1) instead of the more
general one given by (4).

B. LINK-BASED SCHEDULING
Link-based scheduling introduced by [Block et al. 2007], and further described by

[Brandenburg 2011] in section 3.3.3 of his thesis, uses a lazy pre-emption mechanism
with the aim of avoiding issues of repeated blocking which can occur when tasks
execute non-pre-emptive regions under global multiprocessor scheduling. Note in the
following description we refer to jobs since link-based scheduling can be applied to
fixed job priority scheduling algorithms, such as global EDF, as well as fixed task
priority algorithms such as global fixed priority scheduling.

Link-based scheduling uses the concept of a link between a job and a processor. At
any given time, the m highest priority ready jobs are linked to the m processors. The
idea is that a link records where a job would be scheduled if all of the jobs were pre-
emptable all of the time [Brandenburg 2011]. When a job AJ is released, then if there
is a processor that is idle, it is linked to that processor. Otherwise, if AJ has a higher
priority than the lowest priority linked job BJ , then BJ is unlinked and AJ is linked
to the processor that BJ was previously linked to. A job that is linked to a processor
(e.g. AJ) pre-empts the previous job (e.g. BJ) executing on that processor as soon as
the latter becomes pre-emptable. Further, when a job completes on a processor p then
the job (if any) linked to that processor executes, otherwise the highest priority
unlinked job is linked to processor p and executed on that processor. (Full details of
the link-based scheduling mechanism are given in [Block et al. 2007] and section
3.3.3 of [Brandenburg 2011]).

With link-based scheduling pre-emptions are lazy in the sense that if the lowest
priority running job BJ is non-pre-emptable and executing on processor p, then a
high priority job AJ will be linked to that processor and so will not pre-empt any
other medium priority job (e.g. CJ) executing on another processor even though CJ is
pre-emptable and has a lower priority than AJ .

Global and Partitioned Multiprocessor Fixed Priority Scheduling with Deferred Pre-emption 39:33

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

B.1 Incomparability between lazy and eager pre-emption
Depending on the task parameters and non-pre-emptive region lengths, the lazy

pre-emption mechanism of link-based scheduling may improve or diminish
schedulability compared to global fixed priority scheduling with eager pre-emption.
An example of such incomparability is given below.

First, consider a two processor system with three tasks with the parameters
given in Table IV. Task A has the highest priority and task C the lowest. Tasks A
and B are fully pre-emptable, whereas task C is fully non-pre-emptable.

Table IV: Task parameters
Task Execution time Period Deadline

A 5 100 10
B 8 100 100
C 10 100 100

Under link based scheduling, this system is unschedulable as shown in Figure
13(a), since if tasks B and C are released at the same time and start to execute
neither may be pre-empted by task A which is linked to processor 1 and inevitably
misses its deadline. This system is however easily scheduled with eager pre-emption,
since in that case task A can immediately pre-empt task B and so suffers no
blocking (see Figure 13(b)).

(a) (b)

Figure 13: Schedule with (a) lazy pre-emption (b) eager pre-emption.

Second, consider a two processor system with three tasks with the parameters
given in Table V below. Again, task A has the highest priority and task C the
lowest. This time, task C has three non-pre-emptable regions, each of length 2, as
shown in darker grey in Figure 14. Tasks A and B are fully pre-emptable.

Table V: Task parameters
Task Execution time Period Deadline

A 2 6 6
B 10 100 14
C 14 100 100

(a) (b)

Figure 14: Schedule with (a) lazy pre-emption (b) eager pre-emption.

With eager pre-emption (as shown in Figure 14(b)), the system is unschedulable.
This is because each time task A is released (i.e. at times 0, 6 and 12), task C is

39:34 R.I. Davis et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

executing a non-pre-emptable region, and so task A pre-empts task B which
subsequently misses its deadline. Effectively task B suffers blocking due to all three
non-pre-emptive regions of task C . In this particular example, this is avoided when
the lazy pre-emption mechanism of link-based scheduling is employed, as shown in
Figure 14(a). Here, when task A is released at time 6, it suffers blocking of 2 time
units and does not pre-empt task B . This allows task B to meet its deadline. This
example illustrates the trade-off involved in lazy pre-emption, the response time of
task A is increased, while the response time of task B is decreased. Depending on
the deadlines of the two tasks this may either be advantageous as in this example or
detrimental as in the previous example.

Together these two examples show that the schedulability of systems with non-
pre-emptive regions under global fixed priority scheduling with eager and lazy pre-
emption mechanisms are incomparable. Depending on the specific task parameters,
either lazy or eager pre-emption may lead to better schedulability.

