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Abstract—The selection of task attributes for empirical eval-
uations of multiprocessor scheduling algorithms and associated
schedulability analyses can greatly affect the results of experi-
ments. Taskset generation algorithms should meet three require-
ments: efficiency, parameter independence, and lack of bias.
Satisfying these requirements enables tasksets to be generated in
a moderate amount of time, allows effects of specific parameters
to be explored without the problem of confounding variables, and
ensures fairness in comparisons between different schedulability
analysis techniques. For the uniprocessor case, they are met by
the UUniFast algorithm but for multiprocessor systems, where the
total desired utilisation is greater than one, UUniFast can produce
invalid tasksets. This paper outlines an algorithm, Randfixedsum,
for the underlying mathematical problem of efficiently generating
uniformly distributed random points whose components have
constant sum. This algorithm has been available via a MatLab
forum for a number of years; however, this is the first time it has
been formally published. This algorithm has direct application
to multiprocessor taskset generation. The importance of period
generation to experimental evaluation of schedulability tests is
also covered.

I. INTRODUCTION

To address demands for increasing processor performance,
silicon vendors no longer concentrate on increasing processor
clock speeds, as this approach is leading to problems with high
power consumption and excessive heat dissipation. Instead,
there is now an increasing trend towards using multiprocessor
platforms for high-end real-time applications. As a result,
multiprocessor task allocation and scheduling has become an
important and popular area of research.

While optimal algorithms and exact schedulability tests are
known for uniprocessor scheduling, multiprocessor scheduling
is intrinsically a much more difficult problem due to the
simple fact that a task can only use one processor at a
time, even when several are free. As a result, no efficient
algorithms are known that can optimally schedule general
sporadic tasksets (without restrictions on deadlines). Much
of the research into multiprocessor scheduling has therefore
involved the analysis of heuristic scheduling policies, and the
development of sufficient schedulability tests.

A number of different performance metrics can be used
to assess the effectiveness of multiprocessor scheduling al-
gorithms and their analyses. These include: optimality, com-
parability (or dominance) [1], utilisation bounds [2], resource

augmentation or speedup factors [3], and empirical measures
such as the number of tasksets that are deemed schedulable.

The research in this paper is motivated by empirical ap-
proaches to evaluating scheduling algorithm and schedula-
bility test performance. A systematic and scientific study
of the effectiveness of different scheduling algorithms and
analyses requires a method of synthesising tasksets to which
the scheduling algorithms and tests can be applied. We can
identify three key requirements of this taskset generation
problem: efficiency, independence, and bias.

1) Efficient — in order to achieve statistically significant
sample sizes, large numbers of tasksets need to be
generated for each taskset parameter setting (or data
point) examined in experiments.

2) Independent — it should be possible to vary each
property of the taskset independently. For example,
experiments might examine the dependency of schedu-
lability test effectiveness on the number of tasks, on
taskset utilisation or on the range of task periods. The
parameter of interest must be varied independent of other
parameters which are held constant.

3) Unbiased — the distribution of tasksets generated should
be equivalent to selecting tasksets at random from the
set of all possible tasksets, and then discarding those
that do not match the desired parameter setting.

We assume the sporadic task model commonly used in
real-time systems research. A sporadic taskset comprises n
tasks with the following attributes: period or minimum inter-
arrival time Ti, worst-case execution time Ci and deadline
Di. The utilisation of a task is defined as Ui = Ci/Ti.
Two important taskset parameters used for understanding the
behaviour of scheduling algorithms and their analyses are the
taskset cardinality n and the total taskset utilisation u. Hence
we are interested in taskset generation algorithms that select
utilisation values Ui so that:

n∑

i=1

Ui = u (1)

for n tasks where the target total utilisation is u. Once periods
have also been generated, worst-case execution times can then
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Fig. 1. 2 · 104 tasksets generated by UUniFast with total utilisation 0.98

be set with the formula:

Ci = UiTi (2)

Task deadlines must also be selected. These can be set equal
to Ti or randomly generated based on a proportion of the
task’s period or execution time. This paper focuses mainly
on selecting utilisation values though a method of task period
generation is given in section III.

II. RELATED WORK

A. Uniprocessor Taskset Generation

In 2005, Bini and Buttazzo [4] created an algorithm called
UUniFast that efficiently generates task utilisation values for
tasksets with a chosen number of tasks and total utilisation.
The distribution of utilisation values in tasksets generated
by UUniFast are equivalent to uniformly sampling each task
utilisation value and then only keeping those tasksets with the
correct total utilisation. A taskset containing n tasks can be
plotted in an n dimensional space where the utilisation of each
task gives the distance from the origin in each dimension. If
this is done for a set of tasksets all having the same total
utilisation, then the tasksets will lie in an n − 1 dimensional
plane. Tasksets generated by the UUniFast algorithm will be
evenly separated in this plane. Figure 1 shows 20000 tasksets
containing 3 tasks generated by UUniFast all having a total
utilisation of 0.98.

Bini and Buttazzo considered experiments which evaluated
how many tasksets could be scheduled using rate monotonic
fixed priority scheduling versus other scheduling policies.
They noted that, if periods are uniformly sampled, tasksets
are more often schedulable when the difference between the
greatest and least task utilisation is large. This phenomenon is
shown by figure 2. The plot shows the subset of 105 tasksets,
again generated by UUniFast with a utilisation of 0.98, deemed
schedulable using rate monotonic fixed priority scheduling

Fig. 2. Subset of 105 tasksets which can be scheduled by rate monotonic
fixed priority scheduling (approx 1.8 · 104 tasksets)

with periods uniformly sampled between 10 and 104. 17953
tasksets are contained within this subset, i.e. a similar number
of tasksets as shown in figure 1. The points in figure 2 appear
more densely packed towards the edges of the plane whereas
those in figure 1 are evenly distributed.

The motivation for Bini and Buttazzo’s work was that pre-
vious evaluations of scheduling policies, such as by Lehoczky
et al. [5], had biased results by concentrating on the area in
the centre of the plane shown in figure 2 where fewer tasksets
can be scheduled by rate monotonic fixed priority scheduling.

The UUniFast algorithm is efficient, allows variable inde-
pendence, and generates unbiased utilisation values. UUniFast
has been widely used by researchers interested in investigating
the performance of scheduling algorithms and schedulability
tests for single processors [6], [7].

B. Multiprocessor Taskset Generation

In the multiprocessor domain, the UUniFast algorithm has
not been widely used. Researchers recognised that the algo-
rithm cannot generate tasksets with total utilisation u > 1
without the possibility that some tasks will have individ-
ual utilisations that are invalid (i.e. > 1). Instead, many
researchers [8], [9], [10], [11] have used an approach to
taskset generation based on randomly generating an initial
taskset of cardinality |P|+ 1 for the set of processors P and
then repeatedly adding tasks to it until the total utilisation
exceeds the available processing resource. This approach has
the disadvantage that it confounds two variables, utilisation
and taskset cardinality, and does not necessarily result in an
unbiased distribution of utilisation values.

Recently, Davis and Burns [12] observed that UUniFast can
be used in the multiprocessor domain, at least for some values
of n and u, provided that tasksets containing invalid tasks
are simply discarded. We give more details of this modified
UUniFast algorithm, referred to as UUniFast-Discard in sec-
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tion IV-B. While UUniFast-Discard addresses a proportion of
the parameter space of n and u, there are values of n and u
where this approach becomes infeasible, due to the very high
ratio of invalid to valid tasksets produced.

This paper addresses the problem of generating tasksets
for multiprocessor systems. Stafford’s Randfixedsum algo-
rithm [13] is used to generate unbiased sets of utilisation
values for any values of n and u.

The remainder of the paper is broken into two main
sections. Section III discusses the associated issue of task
period selection. Section IV explains why existing algorithms
for generating tasksets with total utilisation greater than 1
are inadequate and suggests the use of the Randfixedsum
algorithm. Section V concludes with a summary of the main
contributions of the paper.

III. TASK PERIOD SELECTION

In this section, we discuss task period selection. In commer-
cial real-time systems, it is common for systems to have tasks
operating in different time bands [14] (e.g. 1ms – 10ms, 10ms
– 100ms, 100ms – 1s). For example, a temperature sensor will
likely sample at a lower rate than a rotation speed sensor [15].

Davis et al. [6] showed that schedulability test efficiency
can be heavily dependent on the number of order of magnitude
ranges of task periods (effectively the ratio between the small-
est and largest task period), and that bias can result if studies
do not fully explore appropriate distributions of task periods.
For example, choosing task periods at random according to
a uniform distribution in the range [1, 106] results in 99% of
tasks having periods greater than 104, thus the effective ratio
of maximum to minimum task period is far less than might
be expected (closer to 102 than 106 for small tasksets).

To avoid these problems, a log-uniform distribution of task
periods can be used, with tasksets generated for different ratios
of the minimum (Tmin) to the maximum (Tmax) task period.
The parameter Tg defines the granularity of the periods chosen
(which are all multiples of Tg).

ri ∼ U(log Tmin, log(Tmax + Tg)) (3)

Ti =

⌊
exp(ri)

Tg

⌋
Tg (4)

The uniform random values ri produced are assumed to lie in
the range [log Tmin, log(Tmax+Tg)). Tmin and Tmax should
be chosen as multiples of Tg .

Note that when applying equation (2) the worst-case execu-
tion time is usually rounded to the nearest integer which will
affect the distribution of actual utilisations in the generated
taskset. Changing the unit of time to use larger numeric values
will decrease this loss of accuracy.

The effects of different period sampling algorithms were
examined with some simple experiments. In each case 1000
tasksets were generated and tested using exact schedulability
analysis for fixed priority pre-emptive scheduling on a unipro-
cessor [16]. Periods were sampled from either a uniform or
log-uniform distribution within a certain range. The correct
total utilisation for a chosen number of tasks was achieved
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Fig. 3. Comparison of taskset schedulability for different size uniprocessor
tasksets generated with uniform and log-uniform period distributions
in the range [10, 10000].
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Fig. 4. The effect of changing the range of periods on taskset schedulability
for tasksets of size 20 generated with uniform and log-uniform period
distributions.

with the UUniFast algorithm. Taskset deadlines were set equal
to their periods and priorities assigned according to rate
monotonic priority ordering.

Figure 3 shows the proportion of schedulable tasksets for
varying taskset cardinality and total utilisation. The period
range was set to [10, 1000] for all experiments. The plot shows
that many more tasksets are schedulable when taskset periods
are sampled from a log-uniform distribution for all utilisation
levels up to 0.98. The difference in the number of schedulable
tasksets is also much smaller at lower utilisation values over
the different taskset sizes when using log-uniform sampling.

Lehoczky [5] calculated that tasksets with a greater range of
periods would be easier to schedule using exact rate monotonic
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analysis. Lehoczky assumed periods were sampled from a
uniform distribution. This is supported by the results shown
in figure 4. The graph shows the proportion of schedulable
tasksets for different period ranges and total utilisations. All
tasksets were of size 20. These results show the phenomenon
described by Davis [6] that, when a uniform distribution of
periods is used, the number of schedulable tasksets does not
continue to increase for large period ranges because nearly all
period values will be of the same magnitude. The period range
has a much larger effect on schedulability of periods sampled
from a log-uniform distribution. In fact, for uniform period
sampling, there is no significant increase in schedulability as
the range widens to more than a factor of 100 and many results
overlap on the graph. Even a range whose maximum is only
10 times greater than its minimum produces more schedulable
tasksets with a log-uniform period distribution than ranges
over 4 orders of magnitude when uniform sampling is used.

IV. TASK WORST CASE EXECUTION TIME GENERATION

Rather than generate worst case execution time (WCET)
values directly, it is more common to generate task utilisation
values then calculate WCET values from equation (2). This
is done since the total taskset utilisation is an often used
covariate in experiments with schedulability tests. This total
taskset utilisation value is written as u in this paper. The other
common covariate is taskset cardinality and this should be
possible to control independently from taskset utilisation.

A. UUniFast

Motivated by the need for an unbiased distribution of
tasksets, Bini and Buttazzo [4] decided that task utilisation
values should be sampled from a uniform distribution but with
the constraint that they summed to a constant desired total
taskset utilisation. An algorithm for doing this is to randomly
select utilisation values x1, . . . , xn−1 ∼ U(0, 1) and then set
xn = 1−

∑n−1
i=1 xi. However, if the sum term is greater than

1, the set must be discarded and the operation repeated. If
successful, utilisation values are set according to Ui = uxi.
Bini and Buttazzo call this algorithm UUniform and explain
that it is infeasible in practice since the probability that the
sum of the first n− 1 values is less than u is 1/(n− 1)! [4].

The UUniFast algorithm [4] is an efficient equivalent of
the above algorithm. The principle of the algorithm is to
first sample a value which represents the sum of n − 1 task
utilisation values and then set a task utilisation value to the
difference between the required total and this sampled value.
This is then repeated for each task with the sampled value in
the previous iteration acting as the required total.

The probability density function for the sum of m indepen-
dent random variables uniformly selected from [0, 1] is

UniSumPdf(x;m) = 1
(m−1)!

�x�∑

k=0

(−1)k
(
m

k

)
(x− k)m−1

(5)
We refer to this distribution as the UniSum distribution. It is
adapted from Hall’s derivation for the density of the mean of m



























    

Fig. 5. UniSum probability density function which could be used to sample
the sum of n− 1 values.

independent uniform random variables [17]. It is a piecewise
function where each region [a, a+ 1] for a = 0, . . . ,m− 1 is
defined by a different polynomial of degree m−1. Therefore,
if we wish to sample a value which represents the sum of
n − 1 utilisation values as required for UUniFast, m is set
to n − 1. The graph of this probability density function is
shown in figure 5. The domain which must be sampled from
for UUniFast is [max(u− 1, 0), u]. For uniprocessor tasksets,
u ≤ 1. The relevant area of the graph is highlighted in
figure 5. The cumulative distribution function in this region is
proportional to xm = xn−1 and is easily invertible. UUniFast
makes use of this fact to perform inverse transform sampling
in order to obtain values for the sum of n − 1 values. The
UUniFast algorithm is given below.

Let r1, . . . , rn−1 ∼ U(0, 1)
sn = u
si−1 = si ∗ ri−1

1/(i−1) for i = n, . . . , 2 and s0 = 0.
ui = si − si−1

There are a few points of note regarding extending UUniFast
for total taskset utilisation values u > 1. The distribution given
by equation (5) is symmetrical about (n−1)/2. If an algorithm
can sample values for 0 ≤ u ≤ n/2 then sampling values for a
total utilisation u′ > n/2 can be obtained by sampling values
with u = n − u′ and then using u′

i = 1 − ui for each task
utilisation value.

The complex piecewise nature of the UniSum distribution
makes it difficult to sample from in the general case. The sum
of n independent random variables will approach a normal
distribution but the accuracy of the approximation is heavily
dependent on the number of tasks and region of the distribution
being sampled from. Saddlepoint approximations [18], [19]
are more accurate. However, in either case, sampling from a
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Fig. 6. Tasksets generated with UUniFast-Discard for n = 3, u = 1.5

truncated section of the distribution is difficult to do efficiently
since it usually requires rejecting a number of samples as well
as calculating the distribution itself.

B. UUniFast-Discard

UUniFast-Discard is a simple extension to UUniFast sug-
gested by Davis and Burns [12]. This algorithm applies
UUniFast unchanged for values of u > 1 and then discards
any tasksets which contain an individual task utilisation greater
than 1. The issue with this algorithm is that it becomes
increasingly inefficient as the value of u approaches n/2.
Figure 6 shows this effect for n = 3 and u = 1.5. The valid
tasksets lie inside the marked hexagon but the area of the
plane within which tasksets are generated is 50% larger than
this meaning 1/3 of tasksets will be discarded in this case.
The algorithm becomes extremely inefficient for large values
of n with values of u close to n/2.

Davis and Burns [12] used a pragmatic discard limit of 1000
to avoid UUnifast-Discard making intractable attempts to find
valid tasksets. This limit restricts the maximum number of
attempts at taskset generation to 1000 times the number of
tasksets required.

C. Randfixedsum Algorithm

Stafford’s Randfixedsum [13] was designed to efficiently
generate a set of vectors which are evenly distributed in
n − 1 dimensional space and whose components sum to a
constant value. The key to its efficiency is that it does not
require any random samples to be rejected. It can be applied
directly to the problem of task utilisation generation with a
chosen constant total taskset utilisation. This algorithm was
made public with an open source Matlab implementation
accompanied by a document explaining the theory behind the
algorithm. However, it has not been formally published before.

Fig. 7. Triangular axes for plotting triplets with sum 1

To explain how the Randfixedsum algorithm works, we will
first turn to the case of n = 3 and u = 1. All valid tasksets
with cardinality 3 and total utilisation 1 can be plotted on
triangular axes, each of length 1. Such a set of axes is shown
in figure 7. As noted by Stafford [13], if the points in the
triangle are evenly distributed then the number of points inside
any area within the triangle will be proportional to that area.
A smaller triangle can be created as shown in figure 7 by
drawing a line between (a, 0, 1 − a) and (0, a, 1 − a). The
area of the large triangle is

√
3
4 and the area of the smaller

shaded triangle is
√
3
4 a2. For the correct proportion of points

to lie inside the shaded triangle compared to the whole, the
probability of a point being inside the shaded triangle should
be a2. This is equivalent to requiring P (u3 > (1 − a)) =
P ((1 − u3) < a) = a2. This can be done by selecting a
uniform random value r2 and then setting u3 = 1 − r

1/2
2 as

is done in UUniFast. Following this, a value u2 is selected
between 0 and 1− u3 along a line. Any segment of this line
should contain a number of points proportional to its length.
This is done in UUniFast by setting u2 = (1−u3)−r1 where
r1 is another uniform random value.

Extending the concept above to several dimensions, it can
be seen that UUniFast will evenly distribute points inside an
n − 1 dimensional simplex. Stafford’s algorithm divides up
the valid region of points into multiple n − 1 dimensional
simplexes and then applies an algorithm similar to UUniFast
to select points within a randomly chosen simplex. By making
the probability of selecting each simplex proportional to its
volume, points are evenly distributed throughout the entire
valid region. The remainder of this section describes how the
simplexes are generated.

To divide the valid region into simplexes, the centre point at
(u/n, u/n, . . . , u/n) is chosen. From here, we select a point
by moving to 1 or 0 in one of the dimensions and then move to
the centre of the boundary that was hit. For example the point
(0, u/(n − 1), . . . , u/(n − 1)) or the point (1, (u − 1)/(n −
1), . . . , (u−1)/(n−1)). This is done repeatedly until we reach
a point where the sum of 0s and 1s is exactly k = �u�. At
this stage, if another 0 or 1 is selected, then the only way to
maintain the constant sum is to pick a point outside the valid
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Fig. 8. Two types of simplex generated by Stafford’s algorithm for n = 3,
u = 1.75

region. The 1s can be selected for any k of n− 1 dimensions
and the sequence of points (including the initial centre point)
used to construct the simplex can be ordered in n! ways. This
creates

(
n−1
k

)
n! different simplexes.

Figure 8 shows the
(
2
1

)
= 2 types of simplex for n = 3

and u = 1.75. 3! = 6 of each type of simplex are needed to
cover the entire valid region. Stafford’s algorithm calculates
the hypervolume of each type of simplex and uses this for
its probability of selection. Points are then evenly distributed
inside each simplex. The final stage of Stafford’s algorithm is
to randomly permute the order of dimensions within each point
to get coverage of the whole valid region. Stafford’s algorithm
is available online [13] written in the Matlab language. We
aim to implement the algorithm within a taskset generation
tool which will be made publicly available.

V. CONCLUSION

The research described in this paper was motivated by the
need for taskset generation algorithms to support the study of
scheduling algorithm and schedulability test effectiveness for
multiprocessor real-time systems.

The main contributions of the paper are as follows:
• Investigation of how sampling periods from uniform and

log-uniform distributions affects the schedulability of
tasksets running on a single processor using fixed priority
scheduling.

• The application of Stafford’s Randfixedsum algorithm to
the selection of task utilisation values for tasksets with a
total utilisation greater than 1. This algorithm generates
an unbiased distribution of task utilisation values, and
is capable of doing so for any valid values of taskset
utilisation and taskset cardinality.

If the experimental region of interest is where the total
taskset utilisation is either very small or large compared to the
taskset cardinality then UUniFast-Discard is efficient is simple

to implement. As the taskset utilisation approaches n/2 from
either above or below, the algorithm is much less efficient and
impractical for larger tasksets.

The existing Matlab implementation of Randfixedsum is
highly efficient in all regions of the parameter space. We there-
fore recommend its use in multiprocessor taskset generation.
We aim to make implementations of this algorithm in other
languages available shortly.
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