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Abstract 
This short paper discusses the criteria and methods that 
can be used to evaluate the performance of schedulability 
tests for real-time scheduling algorithms. We summarize 
the different theoretical and empirical methods that can be 
used and outline their advantages and disadvantages. The 
main focus of the paper is on empirical techniques. Here 
we set out some of the potential pitfalls, and describe a de-
facto standard approach based on visualizing results using 
success ratio and weighted schedulability plots. We 
discuss how these can be augmented using other graphs 
such as difference plots and frequency distributions for 
breakdown utilization. For more complex task models, we 
note that a consistent set of parameters can be obtained 
from benchmarks, and we show how a moderate number of 
benchmarks can be used to produce a large number of 
related task sets with a variety of utilization levels suitable 
for use in empirical evaluation. Finally, we remark on the 
dearth of real-time benchmarks, and call for more 
benchmarks or benchmark generators to be developed in 
conjunction with industry. 

This paper accompanies an invited talk given at the 
WATERS workshop in 2016. 

1. Introduction 
The performance of schedulability tests for real-time 
scheduling algorithms can be compared in a number of 
different ways. These can be broadly classified into two 
categories: 
• Theoretical methods such as deriving dominance 

relationships, utilisation bounds [21], or resource 
augmentation and speedup factors results [18]. These 
approaches typically give a worst-case comparison 
against a specific competitor, i.e. an alternative 
schedulability test for the same or a different 
scheduling algorithm.

• Empirical methods involve evaluating schedulability 
tests on a large number of task sets of different 
utilisation levels. These approaches typically facilitate 
an average-case comparison against a number of 
different competitors.

The main focus of this paper is on empirical methods for 
comparing the performance of different schedulability 
tests. In the following, we sometimes discuss comparisons 
between scheduling algorithms, by this we mean between 
exact schedulability tests for those algorithms. Before 
covering the various empirical methods in detail, we first 
summarise the main theoretical and empirical methods and 
discuss their advantages and disadvantages. 

1.1. Theoretical methods 
Dominance Relationships: show that one 

schedulability test always outperforms another. For 
example, schedulability test A is said to dominate
schedulability test B if every task set that is schedulable 
according to test B is also schedulable according to test A, 
and there are some task sets that are schedulable according 
to test A but not according to B. If two schedulability tests 
deem precisely the same sets of tasks as schedulable, then 
the tests are said to be equivalent. If there are some task 
sets that are schedulable according to test A and not 
according to test B, and vice versa, then the tests are said 
to be incomparable. 

Proving dominance relationships has the following 
obvious advantage: the dominant method is shown to 
always be better, examples include exact versus sufficient 
schedulability tests, and EDF v. fixed priority scheduling 
on a single processor [21]. Disadvantages are that the 
dominance relationship typically only holds for a 
simplified model, for example EDF dominates fixed 
priority scheduling only for simple models where we 
neglect to include scheduling overheads or cache related 
pre-emption delays [22]. Further, dominance relationships 
give no indication how good the schedulability tests (or 
algorithms) actually are; a dominant test may still have 
poor performance, just not quite as poor as that of the one 
it dominates! 

Utilisation Bounds [21] provide a simple way of 
comparing different scheduling algorithms. The bound for 
a given scheduling algorithm is the largest utilisation value 
such that all task sets with utilisation no greater than that 
value are guaranteed to be schedulable (according to an 
exact test). Examples include the famous Liu and Layland 
bounds for EDF (1.0) and fixed priority ( 69.0)2ln( ≈ ) 
scheduling on a single processor. The main advantage of a 
utilisation bound is that it illustrates the worst-case 
behaviour for any implicit-deadline1 task set, and so can 
be used as a simple, linear-time schedulability test. The 
disadvantages are that the bound only applies to a simple 
system model (i.e. implicit-deadlines, no overheads etc.), 
and the worst-case behaviour may only exist for specific 
corner cases that are of little interest in practice. (The 
average case breakdown utilisation for implicit deadline 
task sets is approx. 0.88 [20] or higher when biases in task 
set generation are avoided [6]. This is substantially above 

1 In an implicit-deadline task set all tasks have deadlines equal to their 
periods.



the worst-case value of 0.69. Thus most task sets seen in 
practice are schedulable with utilisation much higher than 
the bound).  

Speedup Factors [18]: indicate the factor by which the 
speed of a system would need to increase so that any task 
set that was schedulable under algorithm A is guaranteed 
to become schedulable under algorithm B. The advantage 
of deriving speedup factors is that they illustrate the worst-
case performance that one scheduling algorithm can have 
relative to another. For example, the speedup factor for 
fixed priority pre-emptive scheduling versus EDF is 

76.1/1 ≈Ω  for constrained-deadline task sets on a single 
processor [11]. Speedup factors can also be used to 
explore sub-optimality with respect to an optimal 
algorithm, for example comparing non-pre-emptive 
algorithms against pre-emptive EDF [13]. The 
disadvantages of using speedup factors as a metric are that 
the worst-case behaviour may exist only for corner cases 
that are of little interest in practice. For example the corner 
cases that result in a speedup factor of 2 for fixed priority 
pre-emptive v. EDF scheduling of arbitrary-deadline task 
sets require that some tasks have an infinitesimally small 
period, while others have an infinite period [12]. For most 
task sets, the speedup factor is less than 1.1. Finally, care 
is needed in interpreting speedup factor results used to 
discriminate between different schedulability tests. For 
example, surprisingly the speedup factors comparing fixed 
priority versus EDF scheduling remain unchanged when 
moving from an exact test for fixed priority scheduling to 
a simple linear time test [25]. This does not, however, 
imply that the speedup factor comparing a linear-time test 
for fixed priority scheduling to an exact test for the same is 
1. Trivially we know this is not the case, since there are 
task sets that are schedulable according to an exact test 
that are not schedulable according to the linear test. 

1.2. Empirical methods 
Simulations or scenario based assessments simulate 

the execution of a task set over a long time period, and are 
typically repeated for multiple task sets. Such simulations 
are useful as a way of exploring average-case behaviour. 
They also form a necessary schedulability test, in the sense 
that if a task misses a deadline during the simulation, then 
the task set can be declared unschedulable. The absence of 
any deadline misses does not in general prove 
schedulability; however, in some circumstances it can, for 
example with periodic task sets if the simulated interval is 
sufficient to ensure that the schedule repeats [15] and the 
scheduling algorithm is sustainable with respect to task 
execution times [3]. The disadvantages of simulation are 
that there is typically no guarantee that worst-case 
behaviours will be observed unless the worst-case scenario 
(pattern of arrivals) is known. Further, the worst-case 
scenario may be very different for different scheduling 
algorithms. Thus comparisons based on one type of 
scenario e.g. synchronous release may bias the results in 

favour of one algorithm over another [24]. 
Real experiments: involve running real-code, or in 

some cases synthetically generated task code, on real
hardware. Such experiments have similar advantages to 
simulation (exploring average-case behaviour, and acting 
as a necessary schedulability test). However, they also 
have the advantage that they include all of the actual 
overheads incurred, and can also be used to collect 
overhead measurements that can later be used in 
simulation or schedulability tests that have been extended 
to account for such overheads [7]. The disadvantages of 
such an experimental approach are that there are no 
guarantees that the worst-case behaviour has been 
observed, unless the worst-case scenario is known. 
(Determining the worst-case scenario may be complicated 
by the presence of overheads). Also, setting up an 
experiment on real hardware is typically more time 
consuming than using simulation, and may be difficult to 
reproduce precisely if the initial hardware state cannot be 
completely controlled.

Case studies: one or more example task sets are taken 
from industrial applications. Typically, the case study 
provides specific parameter values (e.g. periods, execution 
times, for tasks), and in some cases may provide code 
from which other parameter values can be derived. For 
example, code from the Mälardalen benchmark suite [16]
can be used to obtain not only Worst-Case Execution 
Times (WCETs), but also traces of address accesses and 
hence a characterisation of memory demand and cache 
usage [1]. These parameters can then be used in 
schedulability analysis which accounts for memory bus 
load and cache related pre-emption delays, as well as 
processor usage. The advantages of using information 
from case studies include, certainty that the parameter 
values used are realistic (at least for one application area), 
and the ability to obtain consistent parameter values for 
each task. Disadvantages include potentially very limited 
coverage of the parameter space e.g. using just one 
example may hide issues elsewhere. More generally, there 
can be questions as to whether the case study is really 
representative; i.e. is it similar to applications from other 
industries? We note that limited coverage of the parameter 
space can in some cases be mitigated by distilling 
information from representative case studies and using it 
to creating multiple similar systems or configurations. This 
is done by NETCARBENCH to create sets of messages for 
research into Controller Area Network (CAN) [8], and has 
been suggested in the context of the AMALTHEA project, 
as a way of providing automotive benchmarks for free 
[19]. 

Empirical evaluation: involves using large numbers of 
synthetically generated task sets to evaluate the 
performance of schedulability tests. The advantages of this 
approach are that, if properly designed, it can give good 
coverage of the parameter space, and thus provide a fair 
and unbiased comparison. Care is however needed to 



achieve this. The disadvantages include uncertainty as to 
whether the values covered are representative of real 
systems, and the consideration of overheads, which is 
often neglected.  

The remainder of this paper focuses on systematic 
methods for the empirical evaluation of schedulability 
tests. In the next section, we discuss key aspects of 
empirical evaluation. In Section 3, we briefly recall the 
sporadic task model, before describing a framework 
(Section 4) for empirical evaluation. In Section 5 we 
discuss the different types of experiments that can be used 
to evaluate performance and the corresponding graphs that 
can be used to visualise the results. 

2. Key Aspects of Empirical Evaluation 
The empirical evaluation of schedulability tests relies 

on generating a large number of task sets with parameters 
chosen from some appropriate distributions. The 
performance of different schedulability tests is then 
compared by determining task set schedulability according 
to each test and providing graphs that enable these results 
to be interpreted. This may be done in a simple way by 
plotting a graph of the success ratio (i.e. the proportion of 
task sets that are deemed schedulable by each test) at 
different utilisation levels, or by using more sophisticated 
approaches such as weighted schedulability metrics [4]. 

In the empirical evaluation of schedulability tests, the 
following aspects are important: 
1. Systematic approach: It is important to ensure 

adequate coverage of the full range of realistic 
parameter settings, with appropriate default values 
used, typically in the middle of the realistic range. The 
opposite of this is so called cherry picking where 
specific parameter values are chosen to highlight the 
benefit of a particular method, for obvious reasons 
this should be avoided. 

2. Avoiding bias and confounding variables: Other 
aspects that can degrade evaluation quality are 
unintentional bias in the distributions used for certain 
parameters such as task execution times or periods, 
and the use of methods which confound two or more 
variables; for example, task set utilisation and 
cardinality (number of tasks). Examples of both are 
given in Section 4. 

3. Statistical confidence: How many times have we as 
reviewers looked at graphs of success ratios for 
different algorithms and seen two lines very close 
together and wondered if the results really are 
significant, or how much they might change by simply 
using a different random seed in the task set parameter 
generation? By giving information about variation, 
such questions can be answered. 

4. Standardisation: If everyone used the same framework 
and parameter settings for the evaluation of 
schedulability tests, then the real-time research 
community would benefit from having many papers 

containing results that were directly comparable to 
each other (transitivity). This would be a great 
advantage in terms of making comparisons and seeing 
which methods were the most effective. 
Standardisation would also greatly aid reproducibility. 

3. System model, terminology and notation 
In this section, we briefly recall the sporadic task 

model which introduces key task parameters that need to 
be considered in the evaluation of schedulability tests. 

Sporadic task model: We assume the system comprises 
a static set of n tasks that are scheduled to execute on m
processors (m = 1 for a single processor system). We 
assume that each task gives rise to a potentially infinite 
sequence of jobs. Each job may arrive at any time once a 
minimum inter-arrival time has elapsed since the arrival of 
the previous job of the same task. Each task iτ  is 
characterised by: its relative deadline iD , worst-case 
execution time iC , and minimum inter-arrival time or 
period iT . A task’s worst-case response time iR  is 
defined as the longest time from a job of the task arriving 
to it completing execution. The processor utilisation iU  of 
task iτ  is given by ii TC / . The utilisation of the task set is 
the sum of the utilisations of all of its tasks. 

4. A Framework for Empirical Evaluation 
In this section, we propose a framework for empirical 

evaluation which could potentially be used to provide a de 
facto standard set of evaluation experiments used in the 
majority of research into schedulability tests. This baseline 
could then be extended to consider additional parameters 
appropriate to the specific problem. 

The empirical evaluation of schedulability tests is 
underpinned by methods for task set generation. We now 
consider this topic in more detail. 

To thoroughly examine the effectiveness of a 
schedulability test, it is necessary to generate a large 
number of task sets with different parameter settings that 
cover in an unbiased way, the range of possible task sets 
that could occur in practice. Further, this needs to be done 
in a way that does not confound variables. For example, 
generating task sets by a process of repeatedly adding 
tasks to get higher utilisation values confounds task set 
cardinality and utilisation. It results in a strong correlation 
between the two, making it impossible to determine if 
some aspect of the performance of a schedulability test is 
affected by the number of tasks or by the task set 
utilisation. 

The two primary inputs typically used for task set 
generation are the task set cardinality n and the required 
utilisation U. (These parameters are controlled for in a 
systematic way, since they have such an impact on 
schedulability test performance). 

4.1. Generating task utilisation values 
Given requested values for n and U, we need to first 



generate a set of n task utilisation values that add up to U. 
Further this need to be done in a way that results in an 
unbiased and uniform distribution. In simple terms this is 
equivalent to repeatedly choosing n task utilisation values 
at random from a uniform distribution in the range 0 to 1 
and then only keeping those task sets where the total 
utilisation adds up to U. 

There are a number of published methods which are 
capable of achieving this. For uniprocessor systems, the 
Uunifast method [6] is the most effective and can typically 
be implemented in less than 10 lines of code. For 
multiprocessor systems (m > 1) then the Uunifast-discard 
technique [10] provides a simple to implement extension 
that builds on Uunifast (just a few lines of code more). 
Uunifast-discard is effective down to about 2 tasks per 
processor. Below this level, for example 9 tasks on an 8 
processor system, it will not be effective in generating task 
sets (too many trials without finding task sets that match 
the criteria). Further, the more complex RandFixedSum 
method [14] can be used for any valid combination of task 
set cardinality and utilisation (an open source Matlab 
implementation of RandFixedSum is available, see [14]). 

All three methods take as inputs n and U and output a 
set of n utilisation values iU  that sum to U.

4.2. Distribution of task periods 
The next stage in task set parameter generation is to select 
a set of task periods or minimum inter-arrival times. The 
execution time values can then be derived as iii TUC = . 

Task periods can be selected from a distribution; 
however, which distribution should be used? Many 
scheduling papers use a uniform distribution between two 
values (min and max periods). These values can then be 
modified to give different ranges of task periods. 
However, we contend that this is not a good method to use 
[9]. The reason being that if the range is say 10 to 
1,000,000 then on average 99% of all of the periods 
generated will be in the range 10,000 to 1,000,000. In 
effect the range of task periods is limited to just two orders 
of magnitude rather than the intended 5. Put another way, 
there is virtually no appreciable difference between the 
average case behaviour for experiments conducted with a 
range of periods of 10 to 1,000,000 and those conducted 
with a range of task periods of 10,000 to 1,000,000. 

To avoid this problem, we recommend the use of a 
log-uniform distribution of task periods, again between 
some min and max values that can be varied. 
Implementation of random selection from a log-uniform 
distribution is simple, since it equates to making a random 
pick from a uniform distribution between the log of the 
min and max periods and then raising the base of the 
logarithm to the power of the value obtained to give the 
period. Again this is typically less than 10 lines of code. 
We note that fixed priority pre-emptive scheduling is more 
effective when there is a large spread of task periods; 
hence it appears to be more effective when a log-uniform 

rather than a uniform distribution is used (assuming the 
same range of periods). 

While randomly chosen task periods are needed to 
explore the full range of schedulability test performance, 
many real systems effectively constrain task periods to a 
set (or sets) of harmonic values. For evaluation purposes, 
such harmonic or semi-harmonic sets can be produced via 
the bag of primes method [23] where a set of prime 
numbers (with duplicates) are placed in the bag and then 
some number of them are selected at random (without 
replacement). The selected values are then multiplied 
together to obtain the task period. This method has the 
advantage that it constrains the Least Common Multiple 
(or hyperperiod) of every task set generated to be no larger 
than the product of the values in the bag of primes. 

An alternative approach is simply to specify a set of 
permitted task periods with harmonic relationships and 
then pick from that set at random. For example, the task 
periods used in automotive systems are typically from the 
set of values (1, 2, 5, 10, 20, 50, 100, 200, and 1000ms) 
[19]. 

We note that neither of the methods that generate sets 
of harmonic periods can provide the same coverage as 
random generation; however, it can be argued that the 
results from studies of such task sets may be more 
representative of task sets found in real systems. Best 
practice would therefore be to generate both types of task 
periods and conduct evaluations using both to explore 
whether the different distributions have a significant effect 
on schedulability test performance. We note that it is 
highly likely that they will do, particularly for fixed 
priority scheduling algorithms; (the utilisation bound for 
implicit deadline task sets with harmonic periods is 1.0, 
compared to approx. 0.69 for arbitrary non-harmonic 
values). 

4.3. Distribution of task deadlines 
The simplest approach here is to set task deadlines 

equal to their periods (implicit deadlines); however, in 
some cases schedulability tests are sensitive to the gap 
between a job’s deadline and its next release. (This can be 
the case for multiprocessor schedulability tests with carry-
in interference [10]). 

Two alternative methods of setting task deadlines are 
prevalent in the literature. The first is to choose the 
deadline at random (uniform distribution) between the 
task’s worst-case execution time and its period. The 
second is to vary deadlines in lock-step with periods 
i.e. ii xTD =  where x is a variable that is used to control 
the deadlines generated. This enables graphs to be drawn 
showing how the weighted schedulability metric (see 
section 5.2) varies with the deadline to period ratio x. 

To generate arbitrary deadlines, one might choose 
deadlines in some range, such as ],[ ii kTC  where k takes a 
value of 2, or 4, or 10. Note in this case it may be more 
appropriate to use a log-uniform distribution of values. We 



note; however, that in practice, most arbitrary deadlines 
are multiples of the task period, since they originate from 
requirements on the size of the buffers needed for inputs 
and outputs to the tasks. 

5. Experiments and graphs 
A number of different types of graphs can be used to 

illustrate the performance of schedulability tests. These 
include success ratio, weighted schedulability metrics, 
frequency distributions of breakdown utilisation, and box 
and whisker plots of metrics such as response times. 

Figure 1: Success ratios v. utilisation 

5.1. Success ratio 
The simplest type of experiment is to plot the success 

ratio (i.e. the proportion of task sets that are deemed 
schedulable by each test against utilisation). An example 
of such a graph is given in Figure 1. 

Since utilisation has such a strong impact on 
schedulability, then fixing utilisation at a single value and 
plotting how the proportion of schedulable task sets 
changes with some other parameter can potentially 
produce misleading results, or at least results which may 
change radically if a different value of utilisation were 
chosen. Instead, we recommend using the weighted 
schedulability measure [4] discussed below. 

5.2. Weighted schedulability metrics 
Success ratio graphs have the disadvantage that if we 

want to vary another parameter as well as utilisation, then 
we need a whole sequence of graphs for each value of the 
other parameter or a 3-D plot, which is typically hard to 
interpret and soon becomes cluttered if there is more than 
one surface displayed. It is important to vary parameter 
values to adequately cover the parameter space, since 
some schedulability tests / scheduling algorithms may be 
sensitive to a particular parameter, for example the range 
of task periods and deadlines (as is the case with non-pre-
emptive algorithms), or the number of tasks. 

Typically, it is not possible to cover the entire 
parameter space via simple success ratio plots as this 
would result in too many combinations (1000s of graphs). 

One useful approach is to vary one parameter at a time 
while holding the others constant at some appropriate 
default values. The weighted schedulability measure [4]
can then be used to illustrate how schedulability varies 
with each parameter. 

Figure 2: Weighted schedulability versus period range 

Figure 3: Weighted schedulability versus task set size. 

The weighted schedulability measure )( pZ y  for 
schedulability test y is determined as a function of 
parameter p. For each value of parameter p, this measure 
combines results for all of the task sets generated for all of 
a set of equally spaced utilisation levels. Let ),( pS y τ  be 
the binary result (1 or 0) of schedulability test y for a task 
set τ  with parameter value p. 
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where )(τU  is the utilisation of task set τ . The weighted 
schedulability measure thus reduces what would otherwise 
be a 3-dimensional plot to 2 dimensions [4]. Weighting the 
individual schedulability results by task set utilisation 
reflects the higher value placed on being able to schedule 
higher utilisation task sets. Examples of weighted 
schedulability graphs are shown in Figure 2 and Figure 3. 

5.3. Breakdown utilisation frequency distribution 
When comparing different scheduling algorithms or 



different priority assignment policies it is sometimes 
interesting to show the frequency distribution of the 
breakdown utilisation [20]. The breakdown utilisation is 
the maximum utilisation which can be achieved by scaling 
the execution times of all of the tasks in the task set by the 
same factor, without the task set becoming unschedulable. 
The frequency distribution shows the variability across 
different task sets and can highlight clear differences 
between scheduling algorithms or priority assignment 
policies – see Figure 4. 

Figure 4: Breakdown Utilisation 

5.4. Variation and confidence in the results 
When examining schedulability via success ratio or 

weighted schedulability plots, then the values plotted 
relate to the number of task sets that are deemed 
schedulable by the test at each utilisation level; however, 
no information is given about the variation which might 
occur in these results if the experiment were repeated 
multiple times using different random seeds, or indeed the 
confidence that we can have that the results show a 
significant difference between two algorithms. 

Figure 5: Variation shown on success ratio graph 

In order to determine this variation, it is necessary to 
repeat the experiment multiple times (e.g. 100 times) and 
examine the distribution of the values returned. This 
variation can be plotted see Figure 5 as an example, 
showing a vertical bar between the 25 and 75 percentiles. 

5.5. Difference measures 
As a final note on success ratio and weighted 

schedulability plots, one might naively assume that if the 
line for algorithm A is completely above that for algorithm 
B, this implies some form of dominance. However it may 
not even be indicative of a (very) weak form of dominance 
with respect to the task sets studied. The line for algorithm 
A may be above that for B, simply because there are many 
task sets that are schedulable under algorithm A, but not 
under B. This does not, however, rule out there also being 
quite a few task sets that are schedulable under algorithm 
B, but not under algorithm A. Such differences can be 
illustrated by plotting the number of task sets schedulable 
with A and NOT with B and vice-versa. Non-zero values 
for both lines implies incomparability of the two 
algorithms – see Figure 6. 

Figure 6: Difference graph showing incomparability 

5.6. Box and whisker plots 
While schedulability tests give yes/no answers to 

whether or not a particular task set is schedulable, it is 
sometimes useful to look at other results such as response 
times or the number of times a job misses its deadline in 
some long simulation run. Here substantial variation in 
values can be expected between different task sets or 
groups of task sets. Thus it is important that the results are 
presented along with measures indicating their variability. 
Box and whisker plots are useful in this respect; they show 
not only the median (50 percentile) values but also the 5, 
25, 75, and 95 percentiles as well as outliers – see Figure 
7. 

Figure 7: Box and whisker plot showing variance via 
percentiles and outliers 

5.7. Computational complexity and run-time 
When evaluating the performance of schedulability 



tests, it is also important to consider the computational 
complexity of the test, be it linear, quadratic, polynomial, 
pseudo-polynomial, or exponential, and also the run-time 
of the test on task sets of a practical size. Detailed 
investigation is often warranted into how the run-time of a 
test changes as different task set parameters are varied. As 
an example, Figure 8 shows the average run-time of two 
exact tests for fixed priority pre-emptive scheduling on a 
single processor. Response Time Analysis (RTA) [17] [2]
is pseudo-polynomial in complexity, whereas the 
Hyperplanes Exact Test (HET) [5] is exponential in the 
number of tasks [9]. When the range of task periods is 
limited, the HET test typically requires fewer operations; 
whereas a large range of task periods can result in very 
long run-times for that test. More detailed information can 
be obtained from frequency distributions, see Figure 9. 

Figure 8: Run-time for exact tests in terms of the 
number of ceiling operations 

Figure 9: Frequency distribution of the run-time for 
exact tests in terms of the number of ceiling operations 

6. Making task sets from benchmarks 
The main disadvantage of entirely synthetic task set 

generation, as described in Section 4, is that it is difficult 
to generate appropriate additional parameter values, for 
example in addition to WCETs, other information may be 
needed such as the number of memory accesses, as well as 
Evicting Cache Blocks (ECBs), Useful Cache Blocks 
(UCBs) etc. In contrast, the main disadvantage of 
benchmark or case study tasks or task sets is that there are 
so few of them that it is very difficult to get a systematic 
view of algorithm or schedulability test performance. 

Ideally 1000s of task sets are needed. 
One solution to these problems is to combine 

benchmark information with synthetic generation of some 
parameters. We now describe a simple method for doing 
just that. We assume that task WCETs, memory accesses, 
cache usage etc. for each benchmark program are fixed 
according to the system configuration studied (they may 
still depend on processor speed, cache size etc.) and have 
been derived from the benchmark code. 

The method of task set generation proceeds as follows, 
assuming as inputs the task set cardinality and desired task 
set utilisation. For each task required in a task set, we pick 
a benchmark program at random2 from the available set 
(ideally the number of benchmarks should be substantially 
larger than the task set cardinality). Next, we generate the 
task utilisation values using Uunifast, Uunifast-discard, or 
RandFixedSum as appropriate. The period of each task is 
then a free variable which is synthesized from the 
utilisation value chosen for the task and the task’s WCET. 
All of the other task parameters remain as inherited from 
the benchmark. This process enables a large number of 
task sets of different utilisation values to be generated 
from a limited number of benchmarks. These task sets can 
then be used in the same way as synthetic task sets in 
empirical evaluations, i.e. as the basis for success ratio – 
see Figure 10, and weighted schedulability experiments. 

Figure 10: Success ratio plot for task sets generated 
from benchmarks 

The advantages of this approach are that it allows for 
more detailed and realistic information to be input into 
task set generation. The set of parameters used are 
completely consistent with the benchmark code (e.g. 
WCET, UCBs, ECBs, memory accesses etc. are all 
consistent). The disadvantages of this approach are that the 
task sets generated are all grounded in, and hence share 
similarities with the benchmarks used. They are 
representative of those benchmarks, but may not be 
representative of other programs. Further, the distribution 
of task periods becomes correlated with the benchmark 
WCETs. This means that if there is a very wide range of 
benchmark WCETs, the resulting tasks will have a wide 

2 Typically, this selection is made with replacement.



range of periods. This may be problematic when 
investigating non-pre-emptive scheduling algorithms. An 
example of this method is given in [1]. 

7. Summary, Recommendations and Discussion 
In this short paper, we presented some of the pros and 

cons associated with using theoretical and empirical 
methods to assess the performance of scheduling 
algorithms and schedulability tests. We discussed a 
framework for empirical evaluation. This consists of 
providing baseline results using success ratio plots with 
task parameters set to realistic default values, and then 
using weighted schedulability plots to examine how the 
results change as each relevant parameter is varied over a 
broad range while keeping the other parameters constant at 
the default values. We suggested ways of showing 
statistical confidence in the results obtained, and illustrated 
a number of different metrics that can be used to examine 
performance, such as frequency distributions for the 
breakdown utilisation, and difference plots counting how 
many task sets are schedulable according to one algorithm, 
but not with another and vice-versa. We also showed that 
it is important to examine both the theoretical complexity 
of schedulability tests and their actual run-times on 
realistic task sets, since there can be substantial differences 
in run-time as task set parameters are varied. 

7.1. A de-facto standard 
Having a de-facto standard set of experiments that we 

all use to examine the performance of schedulability tests 
would: 

o Make it easier to review and assess work. 
o Make reproducing results easier. 
o Facilitate direct comparison between results in 

different papers. 
o Provide a set of experiments that we all expect to 

see. 
It would need some agreement on the set of experiments 
expected, and some standardisation of the details i.e. 
agreement on some reasonable, and representative default 
values. Perhaps this is something the WATERS 
community can progress. 

7.2. Call for more Benchmarks 
This paper and the presentation it is based on 

deliberately focused on a simple sporadic task model for 
single and multiprocessor systems. Much of today’s 
research needs more complex models, for example that 
provide parameter values for the number (and potentially 
the pattern) of memory accesses, and the dependencies / 
interaction / communication between tasks. As the task 
models get more complex, it becomes harder to be sure 
that synthetically generated task sets are really 
representative of those in today’s or tomorrow’s real 
systems.  

One way of bridging this gap is to obtain a larger 

number of more comprehensive benchmarks. These 
benchmarks can then be mined to produce meaningful 
information covering a wide range of parameters (WCETs, 
traces of memory accesses, UCBs, ECBs, communication 
with other tasks etc.). They can be used to set up 
appropriate ranges and default values for these parameters, 
which can be fed into more comprehensive task set 
generation methods. Further, following the simple 
approach suggested in Section 6, a moderate number of 
representative benchmarks is all that is needed to directly 
produce a large number of task sets of different utilisation 
levels. 

We encourage researchers to try and obtain and publish 
benchmarks that can be freely used by all in our 
community. 
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