
On the Evaluation of Schedulability Tests for Real-Time Scheduling Algorithms

Robert I. Davis1,2

1Real-Time Systems Research Group, Department of Computer Science, University of York, UK.
2INRIA, Paris, France.

Abstract
This short paper discusses the criteria and methods that
can be used to evaluate the performance of schedulability
tests for real-time scheduling algorithms. We summarize
the different theoretical and empirical methods that can be
used and outline their advantages and disadvantages. The
main focus of the paper is on empirical techniques. Here
we set out some of the potential pitfalls, and describe a de-
facto standard approach based on visualizing results using
success ratio and weighted schedulability plots. We
discuss how these can be augmented using other graphs
such as difference plots and frequency distributions for
breakdown utilization. For more complex task models, we
note that a consistent set of parameters can be obtained
from benchmarks, and we show how a moderate number of
benchmarks can be used to produce a large number of
related task sets with a variety of utilization levels suitable
for use in empirical evaluation. Finally, we remark on the
dearth of real-time benchmarks, and call for more
benchmarks or benchmark generators to be developed in
conjunction with industry.

This paper accompanies an invited talk given at the
WATERS workshop in 2016.

1. Introduction
The performance of schedulability tests for real-time
scheduling algorithms can be compared in a number of
different ways. These can be broadly classified into two
categories:
• Theoretical methods such as deriving dominance

relationships, utilisation bounds [21], or resource
augmentation and speedup factors results [18]. These
approaches typically give a worst-case comparison
against a specific competitor, i.e. an alternative
schedulability test for the same or a different
scheduling algorithm.

• Empirical methods involve evaluating schedulability
tests on a large number of task sets of different
utilisation levels. These approaches typically facilitate
an average-case comparison against a number of
different competitors.

The main focus of this paper is on empirical methods for
comparing the performance of different schedulability
tests. In the following, we sometimes discuss comparisons
between scheduling algorithms, by this we mean between
exact schedulability tests for those algorithms. Before
covering the various empirical methods in detail, we first
summarise the main theoretical and empirical methods and
discuss their advantages and disadvantages.

1.1. Theoretical methods
Dominance Relationships: show that one

schedulability test always outperforms another. For
example, schedulability test A is said to dominate
schedulability test B if every task set that is schedulable
according to test B is also schedulable according to test A,
and there are some task sets that are schedulable according
to test A but not according to B. If two schedulability tests
deem precisely the same sets of tasks as schedulable, then
the tests are said to be equivalent. If there are some task
sets that are schedulable according to test A and not
according to test B, and vice versa, then the tests are said
to be incomparable.

Proving dominance relationships has the following
obvious advantage: the dominant method is shown to
always be better, examples include exact versus sufficient
schedulability tests, and EDF v. fixed priority scheduling
on a single processor [21]. Disadvantages are that the
dominance relationship typically only holds for a
simplified model, for example EDF dominates fixed
priority scheduling only for simple models where we
neglect to include scheduling overheads or cache related
pre-emption delays [22]. Further, dominance relationships
give no indication how good the schedulability tests (or
algorithms) actually are; a dominant test may still have
poor performance, just not quite as poor as that of the one
it dominates!

Utilisation Bounds [21] provide a simple way of
comparing different scheduling algorithms. The bound for
a given scheduling algorithm is the largest utilisation value
such that all task sets with utilisation no greater than that
value are guaranteed to be schedulable (according to an
exact test). Examples include the famous Liu and Layland
bounds for EDF (1.0) and fixed priority (69.0)2ln(≈)
scheduling on a single processor. The main advantage of a
utilisation bound is that it illustrates the worst-case
behaviour for any implicit-deadline1 task set, and so can
be used as a simple, linear-time schedulability test. The
disadvantages are that the bound only applies to a simple
system model (i.e. implicit-deadlines, no overheads etc.),
and the worst-case behaviour may only exist for specific
corner cases that are of little interest in practice. (The
average case breakdown utilisation for implicit deadline
task sets is approx. 0.88 [20] or higher when biases in task
set generation are avoided [6]. This is substantially above

1 In an implicit-deadline task set all tasks have deadlines equal to their
periods.

the worst-case value of 0.69. Thus most task sets seen in
practice are schedulable with utilisation much higher than
the bound).

Speedup Factors [18]: indicate the factor by which the
speed of a system would need to increase so that any task
set that was schedulable under algorithm A is guaranteed
to become schedulable under algorithm B. The advantage
of deriving speedup factors is that they illustrate the worst-
case performance that one scheduling algorithm can have
relative to another. For example, the speedup factor for
fixed priority pre-emptive scheduling versus EDF is

76.1/1 ≈Ω for constrained-deadline task sets on a single
processor [11]. Speedup factors can also be used to
explore sub-optimality with respect to an optimal
algorithm, for example comparing non-pre-emptive
algorithms against pre-emptive EDF [13]. The
disadvantages of using speedup factors as a metric are that
the worst-case behaviour may exist only for corner cases
that are of little interest in practice. For example the corner
cases that result in a speedup factor of 2 for fixed priority
pre-emptive v. EDF scheduling of arbitrary-deadline task
sets require that some tasks have an infinitesimally small
period, while others have an infinite period [12]. For most
task sets, the speedup factor is less than 1.1. Finally, care
is needed in interpreting speedup factor results used to
discriminate between different schedulability tests. For
example, surprisingly the speedup factors comparing fixed
priority versus EDF scheduling remain unchanged when
moving from an exact test for fixed priority scheduling to
a simple linear time test [25]. This does not, however,
imply that the speedup factor comparing a linear-time test
for fixed priority scheduling to an exact test for the same is
1. Trivially we know this is not the case, since there are
task sets that are schedulable according to an exact test
that are not schedulable according to the linear test.

1.2. Empirical methods
Simulations or scenario based assessments simulate

the execution of a task set over a long time period, and are
typically repeated for multiple task sets. Such simulations
are useful as a way of exploring average-case behaviour.
They also form a necessary schedulability test, in the sense
that if a task misses a deadline during the simulation, then
the task set can be declared unschedulable. The absence of
any deadline misses does not in general prove
schedulability; however, in some circumstances it can, for
example with periodic task sets if the simulated interval is
sufficient to ensure that the schedule repeats [15] and the
scheduling algorithm is sustainable with respect to task
execution times [3]. The disadvantages of simulation are
that there is typically no guarantee that worst-case
behaviours will be observed unless the worst-case scenario
(pattern of arrivals) is known. Further, the worst-case
scenario may be very different for different scheduling
algorithms. Thus comparisons based on one type of
scenario e.g. synchronous release may bias the results in

favour of one algorithm over another [24].
Real experiments: involve running real-code, or in

some cases synthetically generated task code, on real
hardware. Such experiments have similar advantages to
simulation (exploring average-case behaviour, and acting
as a necessary schedulability test). However, they also
have the advantage that they include all of the actual
overheads incurred, and can also be used to collect
overhead measurements that can later be used in
simulation or schedulability tests that have been extended
to account for such overheads [7]. The disadvantages of
such an experimental approach are that there are no
guarantees that the worst-case behaviour has been
observed, unless the worst-case scenario is known.
(Determining the worst-case scenario may be complicated
by the presence of overheads). Also, setting up an
experiment on real hardware is typically more time
consuming than using simulation, and may be difficult to
reproduce precisely if the initial hardware state cannot be
completely controlled.

Case studies: one or more example task sets are taken
from industrial applications. Typically, the case study
provides specific parameter values (e.g. periods, execution
times, for tasks), and in some cases may provide code
from which other parameter values can be derived. For
example, code from the Mälardalen benchmark suite [16]
can be used to obtain not only Worst-Case Execution
Times (WCETs), but also traces of address accesses and
hence a characterisation of memory demand and cache
usage [1]. These parameters can then be used in
schedulability analysis which accounts for memory bus
load and cache related pre-emption delays, as well as
processor usage. The advantages of using information
from case studies include, certainty that the parameter
values used are realistic (at least for one application area),
and the ability to obtain consistent parameter values for
each task. Disadvantages include potentially very limited
coverage of the parameter space e.g. using just one
example may hide issues elsewhere. More generally, there
can be questions as to whether the case study is really
representative; i.e. is it similar to applications from other
industries? We note that limited coverage of the parameter
space can in some cases be mitigated by distilling
information from representative case studies and using it
to creating multiple similar systems or configurations. This
is done by NETCARBENCH to create sets of messages for
research into Controller Area Network (CAN) [8], and has
been suggested in the context of the AMALTHEA project,
as a way of providing automotive benchmarks for free
[19].

Empirical evaluation: involves using large numbers of
synthetically generated task sets to evaluate the
performance of schedulability tests. The advantages of this
approach are that, if properly designed, it can give good
coverage of the parameter space, and thus provide a fair
and unbiased comparison. Care is however needed to

achieve this. The disadvantages include uncertainty as to
whether the values covered are representative of real
systems, and the consideration of overheads, which is
often neglected.

The remainder of this paper focuses on systematic
methods for the empirical evaluation of schedulability
tests. In the next section, we discuss key aspects of
empirical evaluation. In Section 3, we briefly recall the
sporadic task model, before describing a framework
(Section 4) for empirical evaluation. In Section 5 we
discuss the different types of experiments that can be used
to evaluate performance and the corresponding graphs that
can be used to visualise the results.

2. Key Aspects of Empirical Evaluation
The empirical evaluation of schedulability tests relies

on generating a large number of task sets with parameters
chosen from some appropriate distributions. The
performance of different schedulability tests is then
compared by determining task set schedulability according
to each test and providing graphs that enable these results
to be interpreted. This may be done in a simple way by
plotting a graph of the success ratio (i.e. the proportion of
task sets that are deemed schedulable by each test) at
different utilisation levels, or by using more sophisticated
approaches such as weighted schedulability metrics [4].

In the empirical evaluation of schedulability tests, the
following aspects are important:
1. Systematic approach: It is important to ensure

adequate coverage of the full range of realistic
parameter settings, with appropriate default values
used, typically in the middle of the realistic range. The
opposite of this is so called cherry picking where
specific parameter values are chosen to highlight the
benefit of a particular method, for obvious reasons
this should be avoided.

2. Avoiding bias and confounding variables: Other
aspects that can degrade evaluation quality are
unintentional bias in the distributions used for certain
parameters such as task execution times or periods,
and the use of methods which confound two or more
variables; for example, task set utilisation and
cardinality (number of tasks). Examples of both are
given in Section 4.

3. Statistical confidence: How many times have we as
reviewers looked at graphs of success ratios for
different algorithms and seen two lines very close
together and wondered if the results really are
significant, or how much they might change by simply
using a different random seed in the task set parameter
generation? By giving information about variation,
such questions can be answered.

4. Standardisation: If everyone used the same framework
and parameter settings for the evaluation of
schedulability tests, then the real-time research
community would benefit from having many papers

containing results that were directly comparable to
each other (transitivity). This would be a great
advantage in terms of making comparisons and seeing
which methods were the most effective.
Standardisation would also greatly aid reproducibility.

3. System model, terminology and notation
In this section, we briefly recall the sporadic task

model which introduces key task parameters that need to
be considered in the evaluation of schedulability tests.

Sporadic task model: We assume the system comprises
a static set of n tasks that are scheduled to execute on m
processors (m = 1 for a single processor system). We
assume that each task gives rise to a potentially infinite
sequence of jobs. Each job may arrive at any time once a
minimum inter-arrival time has elapsed since the arrival of
the previous job of the same task. Each task iτ is
characterised by: its relative deadline iD , worst-case
execution time iC , and minimum inter-arrival time or
period iT . A task’s worst-case response time iR is
defined as the longest time from a job of the task arriving
to it completing execution. The processor utilisation iU of
task iτ is given by ii TC / . The utilisation of the task set is
the sum of the utilisations of all of its tasks.

4. A Framework for Empirical Evaluation
In this section, we propose a framework for empirical

evaluation which could potentially be used to provide a de
facto standard set of evaluation experiments used in the
majority of research into schedulability tests. This baseline
could then be extended to consider additional parameters
appropriate to the specific problem.

The empirical evaluation of schedulability tests is
underpinned by methods for task set generation. We now
consider this topic in more detail.

To thoroughly examine the effectiveness of a
schedulability test, it is necessary to generate a large
number of task sets with different parameter settings that
cover in an unbiased way, the range of possible task sets
that could occur in practice. Further, this needs to be done
in a way that does not confound variables. For example,
generating task sets by a process of repeatedly adding
tasks to get higher utilisation values confounds task set
cardinality and utilisation. It results in a strong correlation
between the two, making it impossible to determine if
some aspect of the performance of a schedulability test is
affected by the number of tasks or by the task set
utilisation.

The two primary inputs typically used for task set
generation are the task set cardinality n and the required
utilisation U. (These parameters are controlled for in a
systematic way, since they have such an impact on
schedulability test performance).

4.1. Generating task utilisation values
Given requested values for n and U, we need to first

generate a set of n task utilisation values that add up to U.
Further this need to be done in a way that results in an
unbiased and uniform distribution. In simple terms this is
equivalent to repeatedly choosing n task utilisation values
at random from a uniform distribution in the range 0 to 1
and then only keeping those task sets where the total
utilisation adds up to U.

There are a number of published methods which are
capable of achieving this. For uniprocessor systems, the
Uunifast method [6] is the most effective and can typically
be implemented in less than 10 lines of code. For
multiprocessor systems (m > 1) then the Uunifast-discard
technique [10] provides a simple to implement extension
that builds on Uunifast (just a few lines of code more).
Uunifast-discard is effective down to about 2 tasks per
processor. Below this level, for example 9 tasks on an 8
processor system, it will not be effective in generating task
sets (too many trials without finding task sets that match
the criteria). Further, the more complex RandFixedSum
method [14] can be used for any valid combination of task
set cardinality and utilisation (an open source Matlab
implementation of RandFixedSum is available, see [14]).

All three methods take as inputs n and U and output a
set of n utilisation values iU that sum to U.

4.2. Distribution of task periods
The next stage in task set parameter generation is to select
a set of task periods or minimum inter-arrival times. The
execution time values can then be derived as iii TUC = .

Task periods can be selected from a distribution;
however, which distribution should be used? Many
scheduling papers use a uniform distribution between two
values (min and max periods). These values can then be
modified to give different ranges of task periods.
However, we contend that this is not a good method to use
[9]. The reason being that if the range is say 10 to
1,000,000 then on average 99% of all of the periods
generated will be in the range 10,000 to 1,000,000. In
effect the range of task periods is limited to just two orders
of magnitude rather than the intended 5. Put another way,
there is virtually no appreciable difference between the
average case behaviour for experiments conducted with a
range of periods of 10 to 1,000,000 and those conducted
with a range of task periods of 10,000 to 1,000,000.

To avoid this problem, we recommend the use of a
log-uniform distribution of task periods, again between
some min and max values that can be varied.
Implementation of random selection from a log-uniform
distribution is simple, since it equates to making a random
pick from a uniform distribution between the log of the
min and max periods and then raising the base of the
logarithm to the power of the value obtained to give the
period. Again this is typically less than 10 lines of code.
We note that fixed priority pre-emptive scheduling is more
effective when there is a large spread of task periods;
hence it appears to be more effective when a log-uniform

rather than a uniform distribution is used (assuming the
same range of periods).

While randomly chosen task periods are needed to
explore the full range of schedulability test performance,
many real systems effectively constrain task periods to a
set (or sets) of harmonic values. For evaluation purposes,
such harmonic or semi-harmonic sets can be produced via
the bag of primes method [23] where a set of prime
numbers (with duplicates) are placed in the bag and then
some number of them are selected at random (without
replacement). The selected values are then multiplied
together to obtain the task period. This method has the
advantage that it constrains the Least Common Multiple
(or hyperperiod) of every task set generated to be no larger
than the product of the values in the bag of primes.

An alternative approach is simply to specify a set of
permitted task periods with harmonic relationships and
then pick from that set at random. For example, the task
periods used in automotive systems are typically from the
set of values (1, 2, 5, 10, 20, 50, 100, 200, and 1000ms)
[19].

We note that neither of the methods that generate sets
of harmonic periods can provide the same coverage as
random generation; however, it can be argued that the
results from studies of such task sets may be more
representative of task sets found in real systems. Best
practice would therefore be to generate both types of task
periods and conduct evaluations using both to explore
whether the different distributions have a significant effect
on schedulability test performance. We note that it is
highly likely that they will do, particularly for fixed
priority scheduling algorithms; (the utilisation bound for
implicit deadline task sets with harmonic periods is 1.0,
compared to approx. 0.69 for arbitrary non-harmonic
values).

4.3. Distribution of task deadlines
The simplest approach here is to set task deadlines

equal to their periods (implicit deadlines); however, in
some cases schedulability tests are sensitive to the gap
between a job’s deadline and its next release. (This can be
the case for multiprocessor schedulability tests with carry-
in interference [10]).

Two alternative methods of setting task deadlines are
prevalent in the literature. The first is to choose the
deadline at random (uniform distribution) between the
task’s worst-case execution time and its period. The
second is to vary deadlines in lock-step with periods
i.e. ii xTD = where x is a variable that is used to control
the deadlines generated. This enables graphs to be drawn
showing how the weighted schedulability metric (see
section 5.2) varies with the deadline to period ratio x.

To generate arbitrary deadlines, one might choose
deadlines in some range, such as],[ii kTC where k takes a
value of 2, or 4, or 10. Note in this case it may be more
appropriate to use a log-uniform distribution of values. We

note; however, that in practice, most arbitrary deadlines
are multiples of the task period, since they originate from
requirements on the size of the buffers needed for inputs
and outputs to the tasks.

5. Experiments and graphs
A number of different types of graphs can be used to

illustrate the performance of schedulability tests. These
include success ratio, weighted schedulability metrics,
frequency distributions of breakdown utilisation, and box
and whisker plots of metrics such as response times.

Figure 1: Success ratios v. utilisation

5.1. Success ratio
The simplest type of experiment is to plot the success

ratio (i.e. the proportion of task sets that are deemed
schedulable by each test against utilisation). An example
of such a graph is given in Figure 1.

Since utilisation has such a strong impact on
schedulability, then fixing utilisation at a single value and
plotting how the proportion of schedulable task sets
changes with some other parameter can potentially
produce misleading results, or at least results which may
change radically if a different value of utilisation were
chosen. Instead, we recommend using the weighted
schedulability measure [4] discussed below.

5.2. Weighted schedulability metrics
Success ratio graphs have the disadvantage that if we

want to vary another parameter as well as utilisation, then
we need a whole sequence of graphs for each value of the
other parameter or a 3-D plot, which is typically hard to
interpret and soon becomes cluttered if there is more than
one surface displayed. It is important to vary parameter
values to adequately cover the parameter space, since
some schedulability tests / scheduling algorithms may be
sensitive to a particular parameter, for example the range
of task periods and deadlines (as is the case with non-pre-
emptive algorithms), or the number of tasks.

Typically, it is not possible to cover the entire
parameter space via simple success ratio plots as this
would result in too many combinations (1000s of graphs).

One useful approach is to vary one parameter at a time
while holding the others constant at some appropriate
default values. The weighted schedulability measure [4]
can then be used to illustrate how schedulability varies
with each parameter.

Figure 2: Weighted schedulability versus period range

Figure 3: Weighted schedulability versus task set size.

The weighted schedulability measure)(pZ y for
schedulability test y is determined as a function of
parameter p. For each value of parameter p, this measure
combines results for all of the task sets generated for all of
a set of equally spaced utilisation levels. Let),(pS y τ be
the binary result (1 or 0) of schedulability test y for a task
set τ with parameter value p.

∑
∀

=
τ τ

ττ
)(

)().(
)(

U
US

pZ y
y

where)(τU is the utilisation of task set τ . The weighted
schedulability measure thus reduces what would otherwise
be a 3-dimensional plot to 2 dimensions [4]. Weighting the
individual schedulability results by task set utilisation
reflects the higher value placed on being able to schedule
higher utilisation task sets. Examples of weighted
schedulability graphs are shown in Figure 2 and Figure 3.

5.3. Breakdown utilisation frequency distribution
When comparing different scheduling algorithms or

different priority assignment policies it is sometimes
interesting to show the frequency distribution of the
breakdown utilisation [20]. The breakdown utilisation is
the maximum utilisation which can be achieved by scaling
the execution times of all of the tasks in the task set by the
same factor, without the task set becoming unschedulable.
The frequency distribution shows the variability across
different task sets and can highlight clear differences
between scheduling algorithms or priority assignment
policies – see Figure 4.

Figure 4: Breakdown Utilisation

5.4. Variation and confidence in the results
When examining schedulability via success ratio or

weighted schedulability plots, then the values plotted
relate to the number of task sets that are deemed
schedulable by the test at each utilisation level; however,
no information is given about the variation which might
occur in these results if the experiment were repeated
multiple times using different random seeds, or indeed the
confidence that we can have that the results show a
significant difference between two algorithms.

Figure 5: Variation shown on success ratio graph

In order to determine this variation, it is necessary to
repeat the experiment multiple times (e.g. 100 times) and
examine the distribution of the values returned. This
variation can be plotted see Figure 5 as an example,
showing a vertical bar between the 25 and 75 percentiles.

5.5. Difference measures
As a final note on success ratio and weighted

schedulability plots, one might naively assume that if the
line for algorithm A is completely above that for algorithm
B, this implies some form of dominance. However it may
not even be indicative of a (very) weak form of dominance
with respect to the task sets studied. The line for algorithm
A may be above that for B, simply because there are many
task sets that are schedulable under algorithm A, but not
under B. This does not, however, rule out there also being
quite a few task sets that are schedulable under algorithm
B, but not under algorithm A. Such differences can be
illustrated by plotting the number of task sets schedulable
with A and NOT with B and vice-versa. Non-zero values
for both lines implies incomparability of the two
algorithms – see Figure 6.

Figure 6: Difference graph showing incomparability

5.6. Box and whisker plots
While schedulability tests give yes/no answers to

whether or not a particular task set is schedulable, it is
sometimes useful to look at other results such as response
times or the number of times a job misses its deadline in
some long simulation run. Here substantial variation in
values can be expected between different task sets or
groups of task sets. Thus it is important that the results are
presented along with measures indicating their variability.
Box and whisker plots are useful in this respect; they show
not only the median (50 percentile) values but also the 5,
25, 75, and 95 percentiles as well as outliers – see Figure
7.

Figure 7: Box and whisker plot showing variance via
percentiles and outliers

5.7. Computational complexity and run-time
When evaluating the performance of schedulability

tests, it is also important to consider the computational
complexity of the test, be it linear, quadratic, polynomial,
pseudo-polynomial, or exponential, and also the run-time
of the test on task sets of a practical size. Detailed
investigation is often warranted into how the run-time of a
test changes as different task set parameters are varied. As
an example, Figure 8 shows the average run-time of two
exact tests for fixed priority pre-emptive scheduling on a
single processor. Response Time Analysis (RTA) [17] [2]
is pseudo-polynomial in complexity, whereas the
Hyperplanes Exact Test (HET) [5] is exponential in the
number of tasks [9]. When the range of task periods is
limited, the HET test typically requires fewer operations;
whereas a large range of task periods can result in very
long run-times for that test. More detailed information can
be obtained from frequency distributions, see Figure 9.

Figure 8: Run-time for exact tests in terms of the
number of ceiling operations

Figure 9: Frequency distribution of the run-time for
exact tests in terms of the number of ceiling operations

6. Making task sets from benchmarks
The main disadvantage of entirely synthetic task set

generation, as described in Section 4, is that it is difficult
to generate appropriate additional parameter values, for
example in addition to WCETs, other information may be
needed such as the number of memory accesses, as well as
Evicting Cache Blocks (ECBs), Useful Cache Blocks
(UCBs) etc. In contrast, the main disadvantage of
benchmark or case study tasks or task sets is that there are
so few of them that it is very difficult to get a systematic
view of algorithm or schedulability test performance.

Ideally 1000s of task sets are needed.
One solution to these problems is to combine

benchmark information with synthetic generation of some
parameters. We now describe a simple method for doing
just that. We assume that task WCETs, memory accesses,
cache usage etc. for each benchmark program are fixed
according to the system configuration studied (they may
still depend on processor speed, cache size etc.) and have
been derived from the benchmark code.

The method of task set generation proceeds as follows,
assuming as inputs the task set cardinality and desired task
set utilisation. For each task required in a task set, we pick
a benchmark program at random2 from the available set
(ideally the number of benchmarks should be substantially
larger than the task set cardinality). Next, we generate the
task utilisation values using Uunifast, Uunifast-discard, or
RandFixedSum as appropriate. The period of each task is
then a free variable which is synthesized from the
utilisation value chosen for the task and the task’s WCET.
All of the other task parameters remain as inherited from
the benchmark. This process enables a large number of
task sets of different utilisation values to be generated
from a limited number of benchmarks. These task sets can
then be used in the same way as synthetic task sets in
empirical evaluations, i.e. as the basis for success ratio –
see Figure 10, and weighted schedulability experiments.

Figure 10: Success ratio plot for task sets generated
from benchmarks

The advantages of this approach are that it allows for
more detailed and realistic information to be input into
task set generation. The set of parameters used are
completely consistent with the benchmark code (e.g.
WCET, UCBs, ECBs, memory accesses etc. are all
consistent). The disadvantages of this approach are that the
task sets generated are all grounded in, and hence share
similarities with the benchmarks used. They are
representative of those benchmarks, but may not be
representative of other programs. Further, the distribution
of task periods becomes correlated with the benchmark
WCETs. This means that if there is a very wide range of
benchmark WCETs, the resulting tasks will have a wide

2 Typically, this selection is made with replacement.

range of periods. This may be problematic when
investigating non-pre-emptive scheduling algorithms. An
example of this method is given in [1].

7. Summary, Recommendations and Discussion
In this short paper, we presented some of the pros and

cons associated with using theoretical and empirical
methods to assess the performance of scheduling
algorithms and schedulability tests. We discussed a
framework for empirical evaluation. This consists of
providing baseline results using success ratio plots with
task parameters set to realistic default values, and then
using weighted schedulability plots to examine how the
results change as each relevant parameter is varied over a
broad range while keeping the other parameters constant at
the default values. We suggested ways of showing
statistical confidence in the results obtained, and illustrated
a number of different metrics that can be used to examine
performance, such as frequency distributions for the
breakdown utilisation, and difference plots counting how
many task sets are schedulable according to one algorithm,
but not with another and vice-versa. We also showed that
it is important to examine both the theoretical complexity
of schedulability tests and their actual run-times on
realistic task sets, since there can be substantial differences
in run-time as task set parameters are varied.

7.1. A de-facto standard
Having a de-facto standard set of experiments that we

all use to examine the performance of schedulability tests
would:

o Make it easier to review and assess work.
o Make reproducing results easier.
o Facilitate direct comparison between results in

different papers.
o Provide a set of experiments that we all expect to

see.
It would need some agreement on the set of experiments
expected, and some standardisation of the details i.e.
agreement on some reasonable, and representative default
values. Perhaps this is something the WATERS
community can progress.

7.2. Call for more Benchmarks
This paper and the presentation it is based on

deliberately focused on a simple sporadic task model for
single and multiprocessor systems. Much of today’s
research needs more complex models, for example that
provide parameter values for the number (and potentially
the pattern) of memory accesses, and the dependencies /
interaction / communication between tasks. As the task
models get more complex, it becomes harder to be sure
that synthetically generated task sets are really
representative of those in today’s or tomorrow’s real
systems.

One way of bridging this gap is to obtain a larger

number of more comprehensive benchmarks. These
benchmarks can then be mined to produce meaningful
information covering a wide range of parameters (WCETs,
traces of memory accesses, UCBs, ECBs, communication
with other tasks etc.). They can be used to set up
appropriate ranges and default values for these parameters,
which can be fed into more comprehensive task set
generation methods. Further, following the simple
approach suggested in Section 6, a moderate number of
representative benchmarks is all that is needed to directly
produce a large number of task sets of different utilisation
levels.

We encourage researchers to try and obtain and publish
benchmarks that can be freely used by all in our
community.

Acknowledgements
This work was partially funded by the UK EPSRC

MCC project (EP/K011626/1), and the Inria International
Chair program. EPSRC research data management: No
new primary data was created in this study. The graphs in
this paper have been reproduced with permission from
various papers co-authored by researchers in the Real-
Time Systems Research Group at the University of York.
These papers are not cited where the graphs are simply
used as examples and the research in those papers is not
referred to as such.

References
[1] S. Altmeyer, R.I. Davis, L. Indrusiak, C. Maiza, V. Nelis, J.
Reineke, "A Generic and Compositional Framework for
Multicore Response Time Analysis”. In proceedings Real-Time
Networks and Systems (RTNS), pages 129-138, 4-6th Nov 2015.
[2] N.C. Audsley, A. Burns, M. Richardson , A.J. Wellings.,
“Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling”. Software Engineering Journal, 8(5), pp 284-292,
1993.
[3] S. Baruah, A. Burns “Sustainable scheduling analysis”.
Proceedings Real-Time Systems Symposium (RTSS), pp 159–
168, 2006.
[4] A. Bastoni, B. Brandenburg, and J. Anderson, "Cache-
Related Preemption and Migration Delays: Empirical
Approximation and Impact on Schedulability," In proceedings of
OSPERT, pp. 33-44, Brussels, Belgum, 2010.
[5] E. Bini and G.C. Buttazzo. “Schedulability Analysis of
Periodic Fixed Priority Systems”. IEEE Transactions on
Computers, 53(11):1462–1473, November 2004.
[6] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154, 2005.
[7] B. B. Brandenburg. 2011. "Scheduling and Locking in
Multiprocessor Real-Time Operating Systems", PhD Thesis, The
University of North Carolina at Chapel Hill.
[8] C. Braun, L. Havet, and N. Navet, “NETCARBENCH: a
benchmark for techniques and tools used in the design of
automotive communication systems,” in 7th IFAC International
Conference on Fieldbuses and Networks in Industrial and
Embedded Systems, pp. 321–328, 2007. Available at
http://www.netcarbench.org.

[9] R.I. Davis, A. Zabos, A. Burns, "Efficient Exact
Schedulability Tests for Fixed Priority Real-Time Systems”.
IEEE Transactions on Computers, September 2008 (Vol. 57, No.
9) pp. 1261-1276.
[10] R.I. Davis, A. Burns, “Improved Priority Assignment for
Global Fixed Priority Pre-emptive Scheduling in Multiprocessor
Real-Time Systems”. Real-Time Systems 47 (1) pp1-40, 2011.
[11] R.I. Davis, T. Rothvoß, S.K. Baruah, A. Burns "Exact
Quantification of the Sub-optimality of Uniprocessor Fixed
Priority Pre-emptive Scheduling”. Real-Time Systems, Vol. 43,
No. 3, pp. 211-258, November 2009.
[12] R.I. Davis, A. Burns, S. Baruah, T. Rothvoss, L. George, O.
Gettings, "Exact comparison of fixed priority and EDF
scheduling based on speedup factors for both pre-emptive and
non-pre-emptive paradigms”. Real-Time Systems, Vol. 51, No.
5, pp. 566-601, Sept 2015.
[13] R.I. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin,
S.Punnekkat, "Quantifying the Exact Sub-Optimality of Non-
Preemptive Scheduling”. In proceedings Real-Time Systems
Symposium (RTSS), 1-4th Dec 2015.
[14] P. Emberson, R. Stafford, R.I. Davis “Techniques For The
Synthesis Of Multiprocessor Tasksets”. In proceedings 1st
International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS 2010) , pp. 6-
11, July 6th, 2010.
[15] J. Goossens, E. Grolleau, L. Cucu-Grosjean, "Periodicity of
real-time schedules for dependent periodic tasks on identical
multiprocessor platforms" Real-Time Systems, pp. 1-25, 2016.
[16] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. “The
Mälardalen WCET benchmarks – past, present and future”. In
WCET, pages 137–147, July 2010.

[17] M. Joseph and P.K. Pandya. “Finding Response Times in a
Real-time System”. The Computer Journal, 29(5):390–395,
October 1986.
[18] B. Kalyanasundaram, K. Pruhs, “Speed is as powerful as
clairvoyance”. In Proceedings of the 36th Symposium on
Foundations of Computer Science, pages 214-221, 1995.
[19] S. Kramer, D. Ziegenbein and A. Haman, “Real world
automotive benchmark for free” WATERS workshop, 2015.
[20] J.P. Lehoczky, L. Sha, Y. Ding. 1989. “The rate monotonic
scheduling algorithm: Exact characterization and average case
behaviour”. In Proceedings Real-Time Systems Symposium
(RTSS), pp. 166–171.
[21] C.L. Liu, J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of
the ACM, 20(1) pages 46-61, 1973.
[22] W. Lunniss, S. Altmeyer, R.I. Davis, "A Comparison
between Fixed Priority and EDF Scheduling accounting for
Cache Related Pre-emption Delays”. Leibniz Transactions on
Embedded Systems (LITES), Vol. 1, No. 1, April 2014.
[23] C. Macq and J. Goossens, “Limitation of the hyper-period in
real-time periodic task set generation,” in Proceedings of the 9th
international conference on real-time systems, pp. 133–148,
2001.
[24] R.S. De Oliveir, A. Carminati, R.A. Starke, “On using
adversary simulators to evaluate global fixed-priority and FPZL
scheduling of multiprocessors”. Journal of Systems and
Software. 2013 Feb
[25] G. von der Bruggen, J-J. Chen, R. I. Davis, and W-H. K.
Huang, “Exact Speedup Factors for Linear-Time Schedulability
Tests for Fixed-Priority Preemptive and Non-preemptive
Scheduling”. Information Processing Letters.

	Abstract
	1. Introduction
	1.1. Theoretical methods
	1.2. Empirical methods

	2. Key Aspects of Empirical Evaluation
	3. System model, terminology and notation
	4. A Framework for Empirical Evaluation
	4.1. Generating task utilisation values
	4.2. Distribution of task periods
	4.3. Distribution of task deadlines

	5. Experiments and graphs
	5.1. Success ratio
	5.2. Weighted schedulability metrics
	5.3. Breakdown utilisation frequency distribution
	5.4. Variation and confidence in the results
	5.5. Difference measures
	5.6. Box and whisker plots
	5.7. Computational complexity and run-time

	6. Making task sets from benchmarks
	7. Summary, Recommendations and Discussion
	7.1. A de-facto standard
	7.2. Call for more Benchmarks

	Acknowledgements
	References

