
On the Evaluation of Schedulability Tests
for Real-Time Scheduling Algorithms

Robert I. Davis1,2,
1Real-Time Systems Research Group, University of York, UK

2INRIA, Paris, France

Outline
 Introduction

 Different ways of comparing schedulability tests
 Advantages and disadvantages of different

approaches
 Key aspects in Empirical Evaluation
 Task set generation

 Methods and pitfalls
 Taking a systematic approach

 Some suggestions
 Task set generation from case studies
 Questions and Open Discussion

Comparison of schedulability tests for
real-time scheduling algorithms
 Exact tests

 All task sets are correctly classified by the test as either
schedulable or unschedulable

 Comparison of exact tests is in effect a comparison of
the algorithms

 Sufficient tests
 May classify some task sets that are in fact schedulable

as unschedulable, but not vice-versa
 Often trade effectiveness for efficiency

 Evaluation
 Interested in guaranteed real-time performance – i.e.

from whatever tests are available

Comparison of schedulability tests for
real-time scheduling algorithms
 Theoretical methods

 Dominance relationships
 Utilisation bounds
 Resource augmentation bounds or

speedup factors
Typically give a worst-case comparison

 Empirical methods
 Comparisons using (many) task sets
Typically give an average-case
comparison

1/Ω

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Sc
he

du
la

bl
e

Ta
sk

se
ts

Utilisation

Theoretical methods
 Dominance relationships

 Show that one test / algorithm always
outperforms another

Advantages
 Dominant method always better
 Examples: Exact v. sufficient tests, EDF v. FP
Disadvantages
 Typically only applies to a simplified model e.g. no

scheduling overheads, no CRPD etc.
 Gives no indication how good the methods actually are

(dominant method may still have poor performance)

Theoretical methods
 Utilisation Bounds

 All task sets with utilisation no greater than the bound
are guaranteed to be schedulable

Advantages
 Illustrates worst-case behaviour for any implicit deadline

task set (D = T)
 Examples: EDF v. FP (U = 1 versus U = 0.69)
Disadvantages
 Worst-case behaviour may exist only for corner-cases

that are of little interest in practice
 Only applies to simple model, implicit deadlines, no

overheads etc.

Theoretical methods
 Speedup Factors

 Factor by which the speed of the system needs to be
increased, so that any task set that was schedulable
under algorithm B is guaranteed to become schedulable
under algorithm A

Advantages
 Illustrates worst-case performance relative to a different

algorithm (or test)
 Used to explore sub-optimality w.r.t an optimal algorithm
 Examples: FP v. EDF, constrained deadlines S = 1/Ω

Theoretical methods
 Speedup Factors

Disadvantages
 Worst-case behaviour may exist only for corner-cases

that are of little interest in practice
 May not discriminate well between tests
 Recent (as yet unpublished) work shows that speedup

factors for FP-P v EDF-P and FP-NP v. EDF-NP appear to
be the same when simple linear tests are used for FP as
they are when exact tests are used

Empirical methods
 Empirical evaluations

 Using synthetically generated task sets to evaluate schedulability
tests

 Simulations
 Using synthetically generated task sets to evaluate scheduling

algorithms via simulated execution
 Experiments

 Running real or synthetic task sets on real hardware
 Case studies

 Empirical evaluations or simulations, using tasks / task
parameters derived from real applications

Main Focus of this talk is Empirical evaluations

Empirical methods: pros and cons
 Simulations

 Simulate the execution of a task set over a long time
period, repeat for multiple task sets

Advantages
 Useful to explore average case behaviour
 Useful as a form of necessary schedulability test:

deadline misses prove that the task set is not schedulable
(but no misses don’t prove schedulability)

Disadvantages
 Typically no guarantee that worst-case behaviours are

seen unless the worst-case scenario is known
 Worst-case scenario may be very different for different

algorithms e.g. FP and EDF

Empirical methods: pros and cons
 Experiments

 Running real or synthetically generated tasks on real
hardware

Advantages
 As per simulation (useful to explore average case

behaviour, and acts as a necessary test)
 Includes all overheads on the actual hardware
 Can be used to collect overhead measurements to include

in a model
Disadvantages
 Typically no guarantee that worst-case behaviours are

seen unless the worst-case scenario is known

Empirical methods: pros and cons
 Case Studies

 One or more example task sets taken from industry
 Typically the case study provides specific parameter

values, or they may be obtained from the code
Advantages
 The parameter values used are realistic
 Detailed information available via analysis of code
Disadvantages
 Is the case study representative?
 Limited coverage of the parameter space (e.g. one task

set) may hide issues elsewhere

Empirical methods: pros and cons
 Empirical evaluation

 Generate large numbers of task sets with parameters
chosen in an appropriate way

 Evaluate schedulability test performance on these task
sets

Advantages
 Can provide good coverage of the parameter space
 Can provide a fair (unbiased) comparison, but care is

needed to achieve this
Disadvantages
 Are the parameter values covered representative of real

systems?
 What about overheads?

Sporadic task model: as an example
 Sporadic task model

 Static set of n tasks τi with priorities 1..n
 Bounded worst-case execution time Ci

 Sporadic/periodic arrivals: minimum inter-arrival time Ti

 Relative deadline Di

 Utilisation Ui = Ci / Ti

 Independent execution (no resource sharing)
 Independent arrivals (unknown a priori)

 Processors
 m processors (multiprocessor)
 m = 1 (uniprocessor)

Empirical evaluation
 Basic approach

 Generate large numbers of task sets with parameters
chosen in an appropriate way

 Determine the performance of different schedulability
tests on these task sets

 Plot graphs e.g. success ratio, weighted schedulability,
frequency distributions etc. to illustrating performance

There are a number of key aspects to this
Optimal

Priorities
Random
Priorities

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Fr

eq
ue

nc
y

Breakdown Utilisation

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Sc
he

du
la

bl
e

Ta
sk

se
ts

Utilisation

Empirical evaluation: key aspects
 Systematic approach

 Ensure adequate coverage of full range of realistic
parameter setting (i.e. avoid cherry-picking)

 Avoid bias and confounding variables
 Examples: unintended bias in distributions of execution

times, periods etc.
 Some methods can confound variables, correlating them

 Statistical confidence
 How might the results have changed with a different

random seed
 Standardisation of methods

 Enables direct comparison between results in different
research papers (transitivity), aids reproducibility etc.

Empirical evaluation
 Aim

 Generate a large number of task sets with different
parameter settings that cover in an unbiased way, the
range of possible task sets that could occur in practice

 Basic framework
 Baseline approach to task set generation
 Extensible as further parameters are needed

Task set generation:
a systematic approach
 Primary inputs

 Task set cardinality n, and Utilisation U
 Utilisation

 Given n and U for the task set generate a set of n
unbiased utilisation values for the tasks that add up to U

Uunifast – for single processor systems
Uunifast-discard – for multiprocessor (n > 2m)
RandFixedSum – for multiprocessor

 Avoids bias and confounding variables
Iteratively creating task sets by adding a task to a previous
task set confounds (correlates) utilisation and the number of
tasks, making it difficult to see the influence of these
individual factors on schedulability

Task set generation: Uunifast
 What does it do

 Utilisation values produced have the same distribution as
obtained by choosing sets of n values at random from a
uniform distribution [0,U] and then only taking those sets
that sum to U

 Code

Task set generation: Uunifast-discard
 Problem with Uunifast

 For U > 1 Uunifast can generate utilisation values >1
which are invalid for individual tasks

 What does Uunifast-discard do
 Simply throws away task sets with invalid tasks, proven to

produce an unbiased uniform distribution of utilisation
values

 Works well for n > 2m, but too many discards (invalid
tasks) for smaller n

 For n closer to m need to use a more general method
provided by Randfixedsum

Task set generation: Randfixedsum
 What does Randfixedsum do

 General algorithm derived by Roger Stafford for creating
vectors uniformly distributed in an n-1 dimensional space
whose components sum to a constant value

 Can be used to generate utilisation values for
multiprocessor task sets

 Efficient since no random values need to be excluded
 Open source MatLab implementation available

Task set generation: Task Periods
 Periods can be selected from some distribution

 Which distribution(s) should we use?
 Limit periods to a range between a min and max value

 Uniform?
 Using a uniform distribution has some issues
 Want to be able to vary range of task periods, since this is

an important parameter w.r.t. non-preemptive scheduling
and complexity of some schedulability tests

 With a period range of [10, 1,000,000] then roughly 99%
of periods are in [10,000, 1,000,000] i.e. 2 orders of
magnitude when we expected 5

 Uniform distribution not effective in showing differences
due to range of periods

Task set generation: Task Periods
 Log-Uniform?

 Random selection from a log-uniform distribution: random
pick from a uniform distribution between the logs of the
min and max periods and then raise the base of the log to
the power of the value chosen to obtain the period

 Expected number of tasks in any order of magnitude
range is the same e.g. [10,100], [100,1000] etc.

 Avoids previous issues with uniform distribution

 Note Fixed Priority scheduling is more effective when
there is a larger spread of periods, hence FP is more
effective with Log-Uniform than with Uniform distributions
with the same period range

Task set generation: Task Periods
 Harmonics

 Task periods in real systems tend to be chosen from a set
(or sets) of harmonic values

 This can be simulated using the bag of primes method
 Bag of primes method

 A set of small prime numbers (with some repeats) are
chosen as a basis (e.g. 2,2,2,2,3,3,3,5,5…) and placed in
the bag

 A number of values are then selected at random from the
bag without replacement

 The product of the values chosen gives the task period
 The LCM of task periods is limited to the LCM of all values

in the bag

Task set generation: Task Periods
 Harmonics – alternative method

 Simply specify a set of possible values, for example as
may be used in automotive systems (5,10,20,50,100, 250,
1000ms)

 Chose values at random from the list
 Again the hyperperiod is limited to the LCM of the values

specified

 Notes
 Since harmonic and non-harmonic periods can differently

impact schedulability (e.g. FP has a utilisation bound of 1
for harmonic task sets, and 0.69 for non-harmonic) best
practice would be to repeat expts with both distributions

Task set generation: Task Deadlines
 Deadlines

 Implicit deadlines equal to period
 Constrained deadlines
 Chosen at random between C and T
 Varied in lock step as a proportion of period

Evaluation Framework: Baseline
 Baseline settings

 Determine realistic settings as defaults for parameter
values and vary utilisation

 Success ratio plots

 Typically need about 1000 task sets per utilisation level

Evaluation Framework:
Weighted schedulability
 Varying parameters

 Need to vary parameters to cover a wide range of
possible parameter values

 Important to do this as some schedulability tests /
algorithms may be sensitive to a particular parameter e.g.
range of task periods, number of tasks, etc.

 Typically not possible to cover the whole parameter space
via simple success ratio plots – too many combinations
(1000s of plots)

 Can vary one parameter while holding others constant at
default values

 Use weighted schedulability plots to illustrate variation
w.r.t. each parameter

Evaluation Framework:
Weighted schedulability
 Weighted schedulability

 Combines results for all of the task sets generated for all
of a set of equally spaced utilisation levels (i.e. from a line
on a success ratio plot)

 Effectively the area under the success ratio curve but
weighted by utilisation – gives more emphasis to
scheduling high utilisation task sets

 Reduces multiple success ratio plots to a single weighted
schedulability graph

∑
∀

=
τ τ

ττ
)(
)().(

)(
U

US
pZ y

y

Evaluation Framework:
Weighted schedulability
 Examples of weighted schedulability graphs

 Typically need about 100 task sets per utilisation level,
since there are usually at least 10 utilisation levels that
make up each data point

Evaluation Framework:
Frequency distributions
 Frequency distribution of breakdown utilisation

Optimal
Priorities

Ad-hoc
Priorities

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Fr
eq

ue
nc

y

Breakdown Utilisation %

35% or less v 80% or more

Evaluation Framework:
Confidence intervals
 How confident are we the picture wouldn’t change if

we run the experiment again with a different random
seed?
 Multiple runs to show percentiles for each data point

Evaluation Framework:
Difference measures
 One line being above another does not imply

dominance
 Can plot number of task sets schedulable with test A but

not with test B and vice-versa to show incomparability

Evaluation Framework:
Variability: box and whisker plots
 Schedulability is a binary result (yes/no)

 Interesting to look at other metrics and consider their
variability

Empirical evaluation: Task sets from
case studies / benchmarks
 Case studies / benchmarks:

 Typically provide a small number of tasks / task sets
 Can provide other detailed information e.g. WCETs,

memory accesses, UCBs, ECBs used in CRPD analysis etc.
 However, large numbers of task sets are needed for

evaluation purposes
 Making task sets from benchmarks

 Random selection of tasks from (larger) benchmark set
 Chose utilisation values using Uunifast etc.
 Compute period = C/U (can therefore use real WCETs)

Empirical evaluation: Task sets from
case studies / benchmarks
 Advantages:

 More detailed and realistic information input into task set
generation

 Task parameters take on real values e.g. WCETs of actual
code

 Disadvantages
 All task sets generated share similarities since they are

generated from the same limited set of benchmarks, so
only representative of the input benchmarks

 Period distribution correlates with WCET distribution
 May need to exclude some benchmarks to control range

of task periods (e.g. when investigating non-preemptive
algorithms)

Empirical evaluation: Task sets from
case studies / benchmarks
 Example with task set generation using data from

Malardalen benchmarks

Empirical evaluation: Recap
 Empirical evaluation

 Investigates schedulability test / scheduling algorithm
performance w.r.t. large number of synthetically
generated task sets

 Evaluation framework:
 Baseline results using success ratio plots (from realistic

default values)
 Weighted schedulability results varying each relevant

parameter over a broad range, keeping other parameters
constant at default values

 Consider statistical confidence in results
 Use other metrics to illustrate specific properties

Empirical evaluation: A suggestion
 A de-facto standard: If we all used the same

framework for evaluation this would:
 Make it easier to review / assess different work
 Make reproducing results easier
 Facilitate direct comparison between results in different

papers
 Provide a set of expts we expect to see in papers

 Would need to agree on the set of experiments expected,
and some de-facto standard details such as defaults,
parameter ranges etc.

Open discussion
 More complex task models needed

 Presentation deliberately restricted to a simple task model
 Many other attributes need to be modelled
 Interaction / communication between tasks
 Multiprocessor – cross core contention – memory demand

and processor demand

Open discussion
 Few real benchmarks available to build upon

 Use of synthetic task sets v. case studies, both have their
pros and cons

 Useful to build task sets from benchmarks - some caveats
in doing so

Open discussion
 Is some form of standard framework useful?

 Use the same task set generators?

Open discussion
 Can we improve how we evaluate schedulability tests

for real-time scheduling algorithms?

Questions?

	On the Evaluation of Schedulability Tests for Real-Time Scheduling Algorithms
	Outline
	Comparison of schedulability tests for real-time scheduling algorithms
	Comparison of schedulability tests for real-time scheduling algorithms
	Theoretical methods
	Theoretical methods
	Theoretical methods
	Theoretical methods
	Empirical methods
	Empirical methods: pros and cons
	Empirical methods: pros and cons
	Empirical methods: pros and cons
	Empirical methods: pros and cons
	Sporadic task model: as an example
	Empirical evaluation
	Empirical evaluation: key aspects
	Empirical evaluation
	Task set generation: �a systematic approach
	Task set generation: Uunifast
	Task set generation: Uunifast-discard
	Task set generation: Randfixedsum
	Task set generation: Task Periods
	Task set generation: Task Periods
	Task set generation: Task Periods
	Task set generation: Task Periods
	Task set generation: Task Deadlines
	Evaluation Framework: Baseline
	Evaluation Framework:�Weighted schedulability
	Evaluation Framework:�Weighted schedulability
	Evaluation Framework:�Weighted schedulability
	Evaluation Framework:�Frequency distributions
	Evaluation Framework:�Confidence intervals
	Evaluation Framework:�Difference measures
	Evaluation Framework:�Variability: box and whisker plots
	Empirical evaluation: Task sets from case studies / benchmarks
	Empirical evaluation: Task sets from case studies / benchmarks
	Empirical evaluation: Task sets from case studies / benchmarks
	Empirical evaluation: Recap
	Empirical evaluation: A suggestion
	Open discussion
	Open discussion
	Open discussion
	Open discussion
	Questions?

