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Abstract 
This paper describes the results of a study that 
identified opportunities for worst-case execution time 
reduction in the Operational Flight Program (OFP) 
software of BAE Systems’ Hawk Mission Computer. 
The RapiTime toolset was used to provide the 
execution time analysis information required to target 
optimizations where they would be most effective. 
Potential optimizations were identified for worst-case 
hotspots at three levels: design level, sub-program 
level and low-level. These hotspots accounted for only 
1.2% of the lines of code but contributed 29% of the 
overall execution time. Focused optimizations on 
these hotspots resulted in a 23% reduction of the 
overall execution time for the analysed code.  
Keywords: Worst-case execution time analysis, 
WCET, real-time, Ada, Avionics, performance 
measurement. 

1   Introduction 
In a real-time system, it is important to guarantee both 
functional and non-functional requirements, in particular 
timing correctness. Functional verification is a well 
understood process that includes requirements capture, 
design, implementation, review and testing. However, the 
process for timing verification is less well understood. 
Current trends towards more complex software and more 
advanced hardware have resulted in the need to spend 
significant time and effort in understanding, verifying and 
improving the timing behaviour of systems. 

One such complex system is the Operational Flight 
Program for the BAE Systems’ Hawk Mission Computer1. 
The Operational Flight Program software is written in Ada 
and consists of hundreds of thousands of lines of code 
divided into 25 partitions, themselves divided into tasks, 
executed in a cyclic schedule. In 2006, the current system 
was running close to capacity, in terms of available 
execution time. In order to provide capacity for new 
functionality, an internal activity was commenced to 

1 Hawk is a fast jet trainer, famously flown by the Red Arrows display 
team [1] 

identify optimization opportunities that would reduce the 
worst-case execution time of the system by at least 10%; 
thus avoiding the need for an expensive hardware upgrade. 

Figure 1   Hawk fast jet trainer 

Manual identification of optimization opportunities in such 
a large system is a daunting task. In this case, the system 
was developed over a number of years by a large team of 
engineers. Its sheer size and complexity makes it difficult if 
not impossible for a single engineer to gain an in depth 
understanding of the entire system. Further, there was no 
clear information on which components actually 
contributed to the overall worst-case execution time. 

Initial efforts at understanding the timing behaviour of the 
system were based on determining the execution time of 
each partition via high water marks measured on the target 
microprocessor. 

A typical situation was that painstaking optimization of a 
sub-program would result in unit tests showing a significant 
reduction in execution time whilst making little or no 
impact on the overall high water mark. In contrast, simpler 
more minor optimizations could sometimes have a 
significant impact, reducing the high water mark readings. 
This occurred when, in the first case, the code was not 
actually on the worst-case path, and in the second case, 
when the sub-program was both on the worst-case path and 
called a large number of times on that path. 

Initially, there were no mechanisms in place to identify 
which sections of code were on the worst-case path, thus 
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the selection of which sub-programs to optimize was 
effectively an educated guess. 

Note that conventional profiling mechanisms are not 
particularly useful in the solution of this problem as they 
identify code that contributes most to the average execution 
time, which may be completely different from the code that 
is on the worst-case path and contributes most to the worst-
case execution time. 

Rapita Systems, together with the Hawk Integration Team, 
investigated how the problem of identifying the correct 
targets for optimization could be solved using the 
RapiTime worst-case execution time and performance 
analysis toolset. The study also aimed at evaluating the 
capabilities of the RapiTime toolset to cope with very large 
Ada programs, and its ability to summarise execution time 
data so that optimization opportunities could be easily 
identified and prioritised. 

Using RapiTime, the joint project team made up of Hawk 
Integration Team and Rapita Systems engineers was able to 
successfully analyse the selected subset of the system. 
RapiTime was used to identify the small number of sub-
programs that contributed heavily to the worst-case 
execution time. This code was inspected and, using the 
worst-case hotspot information provided by RapiTime, key 
code constructs targeted for optimization. These 
optimizations were classified as: low-level, sub-program 
level and design level. The best candidates for optimization 
were prototyped and the new system analysed to verify the 
effectiveness of the changes. The results of these 
optimizations are reported in Section 5. 

The remainder of the paper is organised as follows: Section 
2 describes in more detail the system under study; the 
Operational Flight Program of the Hawk Mission 
Computer. Section 3 provides a brief overview of the 
RapiTime toolset. Section 4 gives a classification of 
optimization opportunities, with examples of constructs 
found at each level. Section 5 reports the main results of the 
study and finally, Section 6 provides a summary and 
conclusions. 

2   Hawk Operational Flight Program 
The system under analysis is a subset of the Mission 
Computer of the HAWK aircraft. The Mission Computer 
provides the graphics for all six cockpit display panels and 
head-up displays amongst other functionality. 

2.1   Architecture 
The software for the Operational Flight Program (OFP) is 
written in Spark Ada and comprises several hundred 
thousand lines of source code. The OFP is divided up into 
25 partitions executed as part of a cyclic schedule. 

The system runs on a microprocessor board based on the 
PowerPC MPC7410 running at 500 MHz. This processor 
has a significant number of complex hardware features. It 
includes a two level cache: separate data and instruction 
level-1 caches of 32 Kbytes each, with pseudo random 
replacement policy, and a 2 Mbytes integrated level-2 

cache. It also has a branch prediction unit, a 9-stage 
pipeline, multiple instruction fetches per cycle, a floating-
point unit, two integer units and a performance counter 
unit. The board has 512 Mbytes of RAM.  

2.2   Previous approach to timing analysis 
Prior to the study, the method used to obtain timing 
information about the Hawk OFP software involved taking 
average and ‘high water mark’ measurements of the time 
each partition or task took to execute during testing or 
normal operation. High water marking was implemented by 
simply recording the time at the start and end of the 
partition (or any arbitrary section of code) at each 
execution and subtracting these two values to determine the 
execution time. This value was then compared to the largest 
value found so far and if greater, the new value was kept. 
At the end of execution these high water mark values could 
be examined. 

With this process, no on-target code coverage information 
was available, so it was not possible to determine how 
much of the code was actually exercised by the tests. One 
potential risk was that the real worst-case execution time 
could be much longer than the high water mark value due 
to code that had not been exercised. 

The high water mark approach had the further disadvantage 
that the large number of software components involved 
were unlikely to take their worst-case execution times 
together. Hence the high water mark times ran a significant 
risk of being optimistic i.e. less than the real worst-case 
time, even for the set of sub-programs that were fully 
exercised by the tests. 

Unfortunately, often the first indication of a problem with 
the timing behaviour of the system was when it overran its 
timing budget during the latter stages of testing. At this 
point, manual intervention to discover which components 
were the main contributors to the overrun required 
additional effort and resources, resulting in potentially 
expensive and time-consuming delays. 

The RapiTime toolset enabled a systematic, efficient and 
effective approach to be taken in investigating the timing 
behaviour of the system and identifying the worst-case hot-
spots that were the major contributors to the overall 
execution time. The processor of analysing the system 
using RapiTime is described in the next section, follow a 
brief overview of the RapiTime toolset. 

3   RapiTime  
Obtaining accurate information about the longest time a 
piece of software can take to run, termed the worst-case 
execution time, is key to ensuring that time constraints are 
met and that a real-time system operates correctly.  

RapiTime [3] is an analysis toolset that provides a unique
solution to the problem of determining worst-case 
execution times for complex software running on advanced 
microprocessors. 

PRELIMINARY 
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RapiTime uses an innovative combination of three 
techniques: 

1. The best possible model of an advanced 
microprocessor is the microprocessor itself. 
RapiTime therefore uses online testing to measure 
the execution time of sub-paths between decision 
points in the code. 

2. By contrast, offline static analysis is the best way 
to determine the overall structure of the code and 
the paths through it. RapiTime therefore uses path 
analysis techniques to build up a precise model of 
the overall code structure and determine which 
combinations of sub-paths form complete and 
feasible paths through the code. 

3. Finally RapiTime combines the measurement and 
path analysis information in a way that accurately 
captures the execution time variation on individual 
paths due to hardware effects. 

The RapiTime toolset can be used to: 

• Determine worst-case execution times for each 
software component, from complex programs 
down to basic blocks of code. 

• Identify code that is on the worst-case path. 

• Provide detailed analysis of worst-case hotspots
and their contribution to the overall worst-case 
execution time. 

• Provide code-coverage metrics ensuring 
confidence in the analysis results. 

• Generate Execution Time Profiles illustrating the 
variability in execution times due to hardware 
effects. 

RapiTime not only computes maximum values of execution 
times, but also their full distribution (in a statistical sense), 
thus capturing the variability of execution times due to 
hardware effects. This analysis is based on state-of-the-art 
statistical methods for modelling statistical dependencies 
known as the theory of Copulas [2]. 

3.1   RapiTime analysis process 
The RapiTime toolset integrates into the standard software 
build process. As part of the study, makefile scripts were 
modified to include the following extra steps required for 
RapiTime to analyse the system: 

1. Build executables for analysis. A special build was 
produced that had the subsystem under analysis 
automatically instrumented as well as including a 
lightweight tracing library for the MPC7410. 

2. Structural analysis. The make process was 
modified to include an extra step, allowing the 
RapiTime tools to extract the structure of the code. 
The structure was derived from analysis of the 
disassembled executable, capturing the 
transformations that the compiler introduced into 
the code. 

3. Testing and trace generation. This stage involved 
running the application on the target 
microprocessor under a set of test scenarios, 
collecting the trace data and downloading it from 
the target. Several options exist to extract the 
timing data from the target. In this case, the 
standard debugger was used to download a 
memory dump of the area in memory where the 
trace data was stored. 

4. Trace processing. RapiTime trace manipulation 
tools were used to extract timing traces from the 
memory dump, to filter out events of no interest, 
to compress the data, to fix timer wraparounds, 
and finally, to derive a set of measured execution 
time profiles for each sub-program, loop and basic 
block. 

5. Worst-case execution time calculation and report 
generation. The final stage was the WCET 
calculation using the measured data from 
individual sub-paths and structural information 
about the code. Additional annotations were used 
at this stage to guide the calculation process. The 
results were formatted as a set of easy to navigate 
reports. 

The information in the RapiTime reports was used to 
identify those sub-programs that contributed most to the 
worst-case execution time and thus selection the most 
promising opportunities for optimization. Opportunities for 
optimization were considered at three levels: design-level, 
sub-program level and low-level. These three categories are 
described in more detail in the next section. 

4   WCET optimizations 
Optimization is a compromise of several factors, in 
particular: time, space, readability, maintainability and 
effort. For example, some optimizations may lead to code 
structures that are very hard to maintain but result in a 
significant reduction in execution time. The key to any 
optimization strategy is to prioritise those optimizations 
where the minimum effort (and the minimum amount of 
compromise in other factors) is required to gain the 
maximum benefit in execution time reduction. 

Profiling is not worst-case. Unlike conventional code 
profiling techniques, RapiTime identifies the worst-case 
hotspots in a program from the point of view of execution 
time. That is the lines of code that contribute the most to 
the worst-case execution time. Conventional profiling 
techniques identify the lines of code that execute the most 
on average, which is very different. For example, in the 
following code: 

if  rare_condition_of_error then 
  long_computation_to_fix_the_error; 
else  
  short_normal_operations; 
end if; 

PRELIMINARY  
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A profiler would indicate that most of the time is spent 
performing the short_normal_operation, missing the fact 
that in the worst-case, the path to follow is through 
long_computation_to_fix_the_error. Any optimization 
performed on the else branch would have no impact at all 
on the overall worst-case execution time. 

For example, the following code is optimized for the 
average case: 

if most_of_the_times then
  short_execution_time; 
elsif less_regularly then
  medium_execution_time; 
elsif very_infrequently then
  long_execution_time; 
end if; 

However, in the worst case the code needs to do the three 
tests, an optimization for the worst-case would instead be: 

if very_infrequently then
  long_execution_time; 
elsif most_of_the_times then 

short_execution_time;
elseif less_regularly then  

medium_execution_time;
end if;

In this case, only one test is done on the worst-case path.  

On a similar note, deciding with bit of code to lock in the 
cache may also be different for worst-case optimization 
than for average case optimization. For example in the 
previous example if long_execution_time took a very long 
time but actually used few cache lines, it would be a good 
candidate to be locked in cache. 

4.1   Level of focus 
A key focus of the optimization process is to identify the 
level at which to perform the optimization. Optimizations 
can be classified at three levels: design-level, sub-program-
level and low-level. 

Design-level optimizations 
Optimizations at the design-level, as the name suggests,  
refer to changes in the overall design of the system. These 
optimizations may involve changes in the way in which 
software components communicate, changes in APIs, and 
changes in how components are structured and subdivided. 
For example, use of Ada generics may lead to longer 
execution times as some compilers fully inline the code, 
therefore missing significant benefits of instruction cache. 
Changing the architecture of the program to use less 
generic components and re-usable APIs has other 
consequences related to ability of the compiler to do 
constraint checking. 

Analysis at this level is usually difficult and expensive as it 
may require changes to the overall system design, which 
can have significant impact on implementation and testing. 
However, very significant improvements in execution time 
can be achieved by changes at the design-level. 

Sub-program-level optimizations 
Optimizations at the sub-program level focus on changes 
within a single sub-program (or a set of tightly coupled 
sub-programs) without changing the specification of those 
components. Examples of these optimizations are changing 
the complexity of an algorithm, for example from an O(n2) 
to an O(n Log n) sort routine, changing an iterative process 
to one using lookup tables, loop unrolling, and avoiding 
making extra copies of data, therefore reducing memory 
footprint and the potential for cache misses. 

Low-level optimizations 
Low-level optimizations focus on the generated machine 
code. These optimizations aim to use the most efficient 
available machine instructions for performing particular 
tasks. For example, in some DSP processors, specific 
machine instructions exist to find the first-set bit or count 
the number of set bits in a word. These instructions are 
significantly faster than typical software implementations 
of the same functionality. Another example of machine 
dependencies is using non-native word sizes. This may 
result in significantly larger and slower code. A 
programmer who is not aware of this fact may miss an 
important opportunity for optimization.  

Another important aspect is the nature of the generated 
code, especially relevant for Ada is the fact that a few lines 
of code can result in a very long execution time. For 
example: 

type T is new integer; 
type U is array ( 0 .. 10000) of Big_Record;   
  … 

a,b : T; 
  c,d : U; 
  … 
  a:=b; -- single copy of integer 
  c:=d; -- can take a very long time to run!

The two last statements, although very similar at the source 
code level result in very different object code.  

A particular aspect of importance at this level is the 
identification of the impact that compiler optimizations 
have on the code. For example, on modern processors with 
large caches and small memories, using compiler 
optimization for size can, counter-intuitively, result in 
better execution time performance than using compiler 
optimization for speed. This occurs when the bottleneck is 
actually fetching code from main memory, rather than the 
actual processing of those instructions. 

4.2   RapiTime optimization process 
RapiTime provides information on the percentage 
contribution of each sub-program to the overall execution 
time. This information is used to identify candidate sub-
programs for optimization. The best candidates for 
optimization are then inspected. This involves studying 
both the Ada source code and in some cases the object code 
generated by the compiler.  

Next, RapiTime is used to answer what-if questions about 
the effects of potential reductions in the execution time of 
these sub-programs. This shows that optimizing some 

PRELIMINARY 
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candidate sub-programs would result in a commensurate 
reduction in the overall worst-case execution time; whilst 
for other sub-programs, optimization would bring little 
benefit as the worst-case path shifted to other code.  

Of particular importance is the fact that even though a sub-
program can be a worst-case hot-spot, its optimization may 
not necessarily lead to a significant reduction in the overall 
worst-case execution time if by optimizing that code, the 
worst case path switches to another path. For example 
   If some_condition  then  

A; -- in worst-case path. Takes 10 ms 
   else 

 B; -- not in worst-case path. Takes 9ms    
   end if; 

In this example, reducing A by more than 1 ms, switches 
the worst-case path to the branch B, therefore both A and B 
need to be optimized together to reduce the worst-case 
execution time. 

Quantification of the improvement 
An important aspect of the optimization process is a final 
review examining the impact and consequences of the 
optimization process. This review quantifies the reduction 
in execution time, and also assesses the impact of code 
changes on portability, maintainability, code size, etc. 
Some optimizations may be rejected at this stage if they do 
not bring sufficient benefits to warrant for example non-
portable or difficult to maintain code. 

5   Main results of the study 
This section describes the main results of the study. The 
target for phase 1 of the study (reported here) was to 
deliver a saving in the overall schedule, corresponding to 
100 execution time units (ETUs)2. Achieving this reduction 
would put the project well on track to achieve the overall 
reduction required to accommodate additional 
functionality. 

In all, 5 out of 25 software partitions were analysed. These 
5 partitions are referred to below as Partitions A to E. The 
software for these partitions amounted to over 100,000 
lines of Ada code. Three of the partitions, A, B and C were 
comprehensively analysed, with improvements and targets 
for optimization selected on the basis of the information 
provided by RapiTime. Optimizations were prototyped for 
these partitions and the RapiTime performance analysis re-
run to quantify the improvements obtained. For the final 
two partitions, D and E, several optimizations were 
identified, however prototyping and further analysis awaits 
the next phase of the study. 

The analysis process sought to achieve savings in the 
overall execution time schedule, in the following 
categories: 

1. Budget reductions: reductions in execution time 
budgets and hence schedule slots made possible 

2 ETUs are an arbitrary execution time unit used in this paper. The actual 
values are ‘commercial in confidence’ and are therefore not reported here.  

by more accurate analysis of partition worst-case 
execution times. 

2. Optimizations at design level, sub-program level 
and low-level. 

Major savings in each of these categories are discussed in 
the following sections. 

5.1   Budget reductions 
During initial investigation of Partition A, it was found that 
the schedule slot (execution time budget) was significantly 
greater than actually required in the context of its use in the 
Operational Flight Program. The schedule slot had 
previously been increased to accommodate use of the 
partition in different context where it had a much longer 
execution time. Accurate context dependent analysis of the 
execution time allowed the budget to be safely reduced by 
58 ETUs. 

5.2   Design level optimization 
Detailed analysis of Partition A revealed that over 80% of 
its execution time was spent copying data to a large 
intermediate buffer. Further investigation showed that in 
the context of how the software was used in the Operational 
Flight Program, only one response at a time was possible 
from any given client and thus the intermediate buffer copy 
was unnecessary. Removing this copy reduced the 
execution time of Partition A by over 62%, an overall 
saving of 17 ETUs. 

This optimization opportunity is representative of the value 
of prioritising optimization opportunities. Determining that 
the usage of this component did not need an intermediate 
buffer was not obvious and required detailed discussion 
with various engineers responsible for the overall design of 
the system. This investigation would have not been 
performed if there had not been strong evidence of 
potentially large savings in execution time. 

5.3   Sub-program optimization 
Analysis of Partition C revealed that over 25% of the 
execution time of the partition was spent copying data in a 
loop that iterated over 2000 times. Close inspection of the 
code that performed this copy showed numerous redundant 
constraint checks. This code was replaced by a call to 
memcpy enabling the compiler to use more efficient code 
for the copy, without the large number of constraint checks. 
This reduced the execution time of the sub-program by 
over 80%, resulting in an overall reduction in the execution 
time of the partition of 23%, corresponding to a saving of 
48 ETUs. 

This optimization shows the trade-off between 
maintainability and code readability versus execution time. 
Widespread use of memcpy routines for copying data is not 
recommended as it makes the program less readable and 
less maintainable; however, in this context the change was 
more than justified by the significant gain in performance. 
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5.4   Low-level optimizations The reductions in partition execution times achieved are 
summarised in Table 1 and illustrated in Figure 2. Partition 
C appears twice as it is executed twice within the major 
cycle of the schedule. The contexts of these two executions 
are however different and consequently two different 
context dependent execution times were derived for 
Partition C. 

In Partition B, RapiTime showed that a small bit-unpacking 
sub-program was called over 700 times on the worst-case 
path. Further investigation showed that the compiler 
generated code was not particularly efficient. Writing the 
Ada code in a different way allowed the compiler to 
produce more efficient code, reducing the execution time of 
the sub-program by 57%, corresponding to an overall 
reduction in the execution time of Partition B of 7%, and a 
saving of 11 ETUs. 

In general, it is not practical to do object code investigation 
on even a medium size program. However, using 
RapiTime, it is possible to identify code fragments that 
contribute significantly to the overall worst-case execution 
time. Blocks of code that are called very frequently on the 
worst-case path (over 700 times in this case) are often a 
good target for low-level optimization, as proved to be the 
case here. 

5.4   Summary of the results 
Overall, the following savings in the schedule were 
achieved: 

Figure 2   Reduction in worst-case execution times achieved 
using RapiTime  76 ETUs due to prototyped optimizations, including: 

o 17 ETUs from design level changes. 
6   Summary and conclusions o 48 ETUs from sub-program modifications. 
During the study described in this paper, the process of 
using RapiTime for the Hawk AJT project was refined. A 
number of partitions within the Operational Flight Program 
of the Hawk Mission Computer were successfully analysed 
and significant reductions in execution time made. Overall, 
the improvements made put the project on track to provide 
the headroom necessary to incorporate additional 
functionality without recourse to an expensive hardware 
upgrade. 

o 11 ETUs from low-level optimizations. 

 58 ETUs due to identifying a reduced execution time 
budget for Partition A. 

Total reduction in execution time 134 ETUs, exceeding 
the targeted reduction of 100 ETUs. 

Using RapiTime to identify candidates for optimization, it 
was possible to achieve reductions, amounting to 23.6% of 
the execution time of the analysed partitions, whilst 
needing to manually examine just 1.2% of the total lines of 
source code in these partitions. These 1250 lines of code 
were initially responsible for 29% of the overall execution 
time of the partitions. Design-level, sub-program-level and 
low-level optimizations reduced this contribution by a 
factor of almost 5, creating headroom for new functionality 
to be added without the need for expensive hardware 
upgrades. 

Execution Time Improvement 

Partition Before After % 

Partition A 28.2 10.6 62.4% 

Partition B 140 129 7.9% 

Partition C (1) 95.5 72.9 23.7% 

Partition C (2) 58.1 33.2 42.9% 

Total 321.8 245.7 23.6% 

As part of the study, RapiTime identified that only 1.2% of 
the code contributed more than 29% of the overall worst-
case execution time. These blocks of code were obvious 
targets for optimization. A detailed study of some 1250 
lines of code identified specific targets for optimization and 
hence opportunities for execution time reduction. These 
optimizations were classified as: low-level, sub-program-
level and design-level. The best candidates were prototyped 
and implemented and the new system analysed to verify the 
effectiveness of the changes. The optimized partitions had 
an execution time that was 23% smaller than before. 
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