
1

PRELIMINARY

Identifying Opportunities for Worst-Case Execution
Time Reduction in an Avionics System
Guillem Bernat, Robert Davis, Nick Merriam, John Tuffen
Rapita Systems Ltd. IT Centre, York Science Park. YO10 5DG UK.
Tel: +44 1904 567747; Email: bernat@rapitasystems.com
Andrew Gardner, Michael Bennett, Dean Armstrong
Hawk Mission Systems, BAE Systems. Brough. HU15 1EQ.

Abstract
This paper describes the results of a study that
identified opportunities for worst-case execution time
reduction in the Operational Flight Program (OFP)
software of BAE Systems’ Hawk Mission Computer.
The RapiTime toolset was used to provide the
execution time analysis information required to target
optimizations where they would be most effective.
Potential optimizations were identified for worst-case
hotspots at three levels: design level, sub-program
level and low-level. These hotspots accounted for only
1.2% of the lines of code but contributed 29% of the
overall execution time. Focused optimizations on
these hotspots resulted in a 23% reduction of the
overall execution time for the analysed code.
Keywords: Worst-case execution time analysis,
WCET, real-time, Ada, Avionics, performance
measurement.

1 Introduction
In a real-time system, it is important to guarantee both
functional and non-functional requirements, in particular
timing correctness. Functional verification is a well
understood process that includes requirements capture,
design, implementation, review and testing. However, the
process for timing verification is less well understood.
Current trends towards more complex software and more
advanced hardware have resulted in the need to spend
significant time and effort in understanding, verifying and
improving the timing behaviour of systems.

One such complex system is the Operational Flight
Program for the BAE Systems’ Hawk Mission Computer1.
The Operational Flight Program software is written in Ada
and consists of hundreds of thousands of lines of code
divided into 25 partitions, themselves divided into tasks,
executed in a cyclic schedule. In 2006, the current system
was running close to capacity, in terms of available
execution time. In order to provide capacity for new
functionality, an internal activity was commenced to

1 Hawk is a fast jet trainer, famously flown by the Red Arrows display
team [1]

identify optimization opportunities that would reduce the
worst-case execution time of the system by at least 10%;
thus avoiding the need for an expensive hardware upgrade.

Figure 1 Hawk fast jet trainer

Manual identification of optimization opportunities in such
a large system is a daunting task. In this case, the system
was developed over a number of years by a large team of
engineers. Its sheer size and complexity makes it difficult if
not impossible for a single engineer to gain an in depth
understanding of the entire system. Further, there was no
clear information on which components actually
contributed to the overall worst-case execution time.

Initial efforts at understanding the timing behaviour of the
system were based on determining the execution time of
each partition via high water marks measured on the target
microprocessor.

A typical situation was that painstaking optimization of a
sub-program would result in unit tests showing a significant
reduction in execution time whilst making little or no
impact on the overall high water mark. In contrast, simpler
more minor optimizations could sometimes have a
significant impact, reducing the high water mark readings.
This occurred when, in the first case, the code was not
actually on the worst-case path, and in the second case,
when the sub-program was both on the worst-case path and
called a large number of times on that path.

Initially, there were no mechanisms in place to identify
which sections of code were on the worst-case path, thus

2 PRELIMINARY

the selection of which sub-programs to optimize was
effectively an educated guess.

Note that conventional profiling mechanisms are not
particularly useful in the solution of this problem as they
identify code that contributes most to the average execution
time, which may be completely different from the code that
is on the worst-case path and contributes most to the worst-
case execution time.

Rapita Systems, together with the Hawk Integration Team,
investigated how the problem of identifying the correct
targets for optimization could be solved using the
RapiTime worst-case execution time and performance
analysis toolset. The study also aimed at evaluating the
capabilities of the RapiTime toolset to cope with very large
Ada programs, and its ability to summarise execution time
data so that optimization opportunities could be easily
identified and prioritised.

Using RapiTime, the joint project team made up of Hawk
Integration Team and Rapita Systems engineers was able to
successfully analyse the selected subset of the system.
RapiTime was used to identify the small number of sub-
programs that contributed heavily to the worst-case
execution time. This code was inspected and, using the
worst-case hotspot information provided by RapiTime, key
code constructs targeted for optimization. These
optimizations were classified as: low-level, sub-program
level and design level. The best candidates for optimization
were prototyped and the new system analysed to verify the
effectiveness of the changes. The results of these
optimizations are reported in Section 5.

The remainder of the paper is organised as follows: Section
2 describes in more detail the system under study; the
Operational Flight Program of the Hawk Mission
Computer. Section 3 provides a brief overview of the
RapiTime toolset. Section 4 gives a classification of
optimization opportunities, with examples of constructs
found at each level. Section 5 reports the main results of the
study and finally, Section 6 provides a summary and
conclusions.

2 Hawk Operational Flight Program
The system under analysis is a subset of the Mission
Computer of the HAWK aircraft. The Mission Computer
provides the graphics for all six cockpit display panels and
head-up displays amongst other functionality.

2.1 Architecture
The software for the Operational Flight Program (OFP) is
written in Spark Ada and comprises several hundred
thousand lines of source code. The OFP is divided up into
25 partitions executed as part of a cyclic schedule.

The system runs on a microprocessor board based on the
PowerPC MPC7410 running at 500 MHz. This processor
has a significant number of complex hardware features. It
includes a two level cache: separate data and instruction
level-1 caches of 32 Kbytes each, with pseudo random
replacement policy, and a 2 Mbytes integrated level-2

cache. It also has a branch prediction unit, a 9-stage
pipeline, multiple instruction fetches per cycle, a floating-
point unit, two integer units and a performance counter
unit. The board has 512 Mbytes of RAM.

2.2 Previous approach to timing analysis
Prior to the study, the method used to obtain timing
information about the Hawk OFP software involved taking
average and ‘high water mark’ measurements of the time
each partition or task took to execute during testing or
normal operation. High water marking was implemented by
simply recording the time at the start and end of the
partition (or any arbitrary section of code) at each
execution and subtracting these two values to determine the
execution time. This value was then compared to the largest
value found so far and if greater, the new value was kept.
At the end of execution these high water mark values could
be examined.

With this process, no on-target code coverage information
was available, so it was not possible to determine how
much of the code was actually exercised by the tests. One
potential risk was that the real worst-case execution time
could be much longer than the high water mark value due
to code that had not been exercised.

The high water mark approach had the further disadvantage
that the large number of software components involved
were unlikely to take their worst-case execution times
together. Hence the high water mark times ran a significant
risk of being optimistic i.e. less than the real worst-case
time, even for the set of sub-programs that were fully
exercised by the tests.

Unfortunately, often the first indication of a problem with
the timing behaviour of the system was when it overran its
timing budget during the latter stages of testing. At this
point, manual intervention to discover which components
were the main contributors to the overrun required
additional effort and resources, resulting in potentially
expensive and time-consuming delays.

The RapiTime toolset enabled a systematic, efficient and
effective approach to be taken in investigating the timing
behaviour of the system and identifying the worst-case hot-
spots that were the major contributors to the overall
execution time. The processor of analysing the system
using RapiTime is described in the next section, follow a
brief overview of the RapiTime toolset.

3 RapiTime
Obtaining accurate information about the longest time a
piece of software can take to run, termed the worst-case
execution time, is key to ensuring that time constraints are
met and that a real-time system operates correctly.

RapiTime [3] is an analysis toolset that provides a unique
solution to the problem of determining worst-case
execution times for complex software running on advanced
microprocessors.

PRELIMINARY

G. Bernat et al . 3

RapiTime uses an innovative combination of three
techniques:

1. The best possible model of an advanced
microprocessor is the microprocessor itself.
RapiTime therefore uses online testing to measure
the execution time of sub-paths between decision
points in the code.

2. By contrast, offline static analysis is the best way
to determine the overall structure of the code and
the paths through it. RapiTime therefore uses path
analysis techniques to build up a precise model of
the overall code structure and determine which
combinations of sub-paths form complete and
feasible paths through the code.

3. Finally RapiTime combines the measurement and
path analysis information in a way that accurately
captures the execution time variation on individual
paths due to hardware effects.

The RapiTime toolset can be used to:

• Determine worst-case execution times for each
software component, from complex programs
down to basic blocks of code.

• Identify code that is on the worst-case path.

• Provide detailed analysis of worst-case hotspots
and their contribution to the overall worst-case
execution time.

• Provide code-coverage metrics ensuring
confidence in the analysis results.

• Generate Execution Time Profiles illustrating the
variability in execution times due to hardware
effects.

RapiTime not only computes maximum values of execution
times, but also their full distribution (in a statistical sense),
thus capturing the variability of execution times due to
hardware effects. This analysis is based on state-of-the-art
statistical methods for modelling statistical dependencies
known as the theory of Copulas [2].

3.1 RapiTime analysis process
The RapiTime toolset integrates into the standard software
build process. As part of the study, makefile scripts were
modified to include the following extra steps required for
RapiTime to analyse the system:

1. Build executables for analysis. A special build was
produced that had the subsystem under analysis
automatically instrumented as well as including a
lightweight tracing library for the MPC7410.

2. Structural analysis. The make process was
modified to include an extra step, allowing the
RapiTime tools to extract the structure of the code.
The structure was derived from analysis of the
disassembled executable, capturing the
transformations that the compiler introduced into
the code.

3. Testing and trace generation. This stage involved
running the application on the target
microprocessor under a set of test scenarios,
collecting the trace data and downloading it from
the target. Several options exist to extract the
timing data from the target. In this case, the
standard debugger was used to download a
memory dump of the area in memory where the
trace data was stored.

4. Trace processing. RapiTime trace manipulation
tools were used to extract timing traces from the
memory dump, to filter out events of no interest,
to compress the data, to fix timer wraparounds,
and finally, to derive a set of measured execution
time profiles for each sub-program, loop and basic
block.

5. Worst-case execution time calculation and report
generation. The final stage was the WCET
calculation using the measured data from
individual sub-paths and structural information
about the code. Additional annotations were used
at this stage to guide the calculation process. The
results were formatted as a set of easy to navigate
reports.

The information in the RapiTime reports was used to
identify those sub-programs that contributed most to the
worst-case execution time and thus selection the most
promising opportunities for optimization. Opportunities for
optimization were considered at three levels: design-level,
sub-program level and low-level. These three categories are
described in more detail in the next section.

4 WCET optimizations
Optimization is a compromise of several factors, in
particular: time, space, readability, maintainability and
effort. For example, some optimizations may lead to code
structures that are very hard to maintain but result in a
significant reduction in execution time. The key to any
optimization strategy is to prioritise those optimizations
where the minimum effort (and the minimum amount of
compromise in other factors) is required to gain the
maximum benefit in execution time reduction.

Profiling is not worst-case. Unlike conventional code
profiling techniques, RapiTime identifies the worst-case
hotspots in a program from the point of view of execution
time. That is the lines of code that contribute the most to
the worst-case execution time. Conventional profiling
techniques identify the lines of code that execute the most
on average, which is very different. For example, in the
following code:

if rare_condition_of_error then
 long_computation_to_fix_the_error;
else
 short_normal_operations;
end if;

PRELIMINARY

4 PRELIMINARY

A profiler would indicate that most of the time is spent
performing the short_normal_operation, missing the fact
that in the worst-case, the path to follow is through
long_computation_to_fix_the_error. Any optimization
performed on the else branch would have no impact at all
on the overall worst-case execution time.

For example, the following code is optimized for the
average case:

if most_of_the_times then
 short_execution_time;
elsif less_regularly then
 medium_execution_time;
elsif very_infrequently then
 long_execution_time;
end if;

However, in the worst case the code needs to do the three
tests, an optimization for the worst-case would instead be:

if very_infrequently then
 long_execution_time;
elsif most_of_the_times then

short_execution_time;
elseif less_regularly then

medium_execution_time;
end if;

In this case, only one test is done on the worst-case path.

On a similar note, deciding with bit of code to lock in the
cache may also be different for worst-case optimization
than for average case optimization. For example in the
previous example if long_execution_time took a very long
time but actually used few cache lines, it would be a good
candidate to be locked in cache.

4.1 Level of focus
A key focus of the optimization process is to identify the
level at which to perform the optimization. Optimizations
can be classified at three levels: design-level, sub-program-
level and low-level.

Design-level optimizations
Optimizations at the design-level, as the name suggests,
refer to changes in the overall design of the system. These
optimizations may involve changes in the way in which
software components communicate, changes in APIs, and
changes in how components are structured and subdivided.
For example, use of Ada generics may lead to longer
execution times as some compilers fully inline the code,
therefore missing significant benefits of instruction cache.
Changing the architecture of the program to use less
generic components and re-usable APIs has other
consequences related to ability of the compiler to do
constraint checking.

Analysis at this level is usually difficult and expensive as it
may require changes to the overall system design, which
can have significant impact on implementation and testing.
However, very significant improvements in execution time
can be achieved by changes at the design-level.

Sub-program-level optimizations
Optimizations at the sub-program level focus on changes
within a single sub-program (or a set of tightly coupled
sub-programs) without changing the specification of those
components. Examples of these optimizations are changing
the complexity of an algorithm, for example from an O(n2)
to an O(n Log n) sort routine, changing an iterative process
to one using lookup tables, loop unrolling, and avoiding
making extra copies of data, therefore reducing memory
footprint and the potential for cache misses.

Low-level optimizations
Low-level optimizations focus on the generated machine
code. These optimizations aim to use the most efficient
available machine instructions for performing particular
tasks. For example, in some DSP processors, specific
machine instructions exist to find the first-set bit or count
the number of set bits in a word. These instructions are
significantly faster than typical software implementations
of the same functionality. Another example of machine
dependencies is using non-native word sizes. This may
result in significantly larger and slower code. A
programmer who is not aware of this fact may miss an
important opportunity for optimization.

Another important aspect is the nature of the generated
code, especially relevant for Ada is the fact that a few lines
of code can result in a very long execution time. For
example:

type T is new integer;
type U is array (0 .. 10000) of Big_Record;
 …

a,b : T;
 c,d : U;
 …
 a:=b; -- single copy of integer
 c:=d; -- can take a very long time to run!

The two last statements, although very similar at the source
code level result in very different object code.

A particular aspect of importance at this level is the
identification of the impact that compiler optimizations
have on the code. For example, on modern processors with
large caches and small memories, using compiler
optimization for size can, counter-intuitively, result in
better execution time performance than using compiler
optimization for speed. This occurs when the bottleneck is
actually fetching code from main memory, rather than the
actual processing of those instructions.

4.2 RapiTime optimization process
RapiTime provides information on the percentage
contribution of each sub-program to the overall execution
time. This information is used to identify candidate sub-
programs for optimization. The best candidates for
optimization are then inspected. This involves studying
both the Ada source code and in some cases the object code
generated by the compiler.

Next, RapiTime is used to answer what-if questions about
the effects of potential reductions in the execution time of
these sub-programs. This shows that optimizing some

PRELIMINARY

G. Bernat et al . 5

PRELIMINARY

candidate sub-programs would result in a commensurate
reduction in the overall worst-case execution time; whilst
for other sub-programs, optimization would bring little
benefit as the worst-case path shifted to other code.

Of particular importance is the fact that even though a sub-
program can be a worst-case hot-spot, its optimization may
not necessarily lead to a significant reduction in the overall
worst-case execution time if by optimizing that code, the
worst case path switches to another path. For example
 If some_condition then

A; -- in worst-case path. Takes 10 ms
 else

 B; -- not in worst-case path. Takes 9ms
 end if;

In this example, reducing A by more than 1 ms, switches
the worst-case path to the branch B, therefore both A and B
need to be optimized together to reduce the worst-case
execution time.

Quantification of the improvement
An important aspect of the optimization process is a final
review examining the impact and consequences of the
optimization process. This review quantifies the reduction
in execution time, and also assesses the impact of code
changes on portability, maintainability, code size, etc.
Some optimizations may be rejected at this stage if they do
not bring sufficient benefits to warrant for example non-
portable or difficult to maintain code.

5 Main results of the study
This section describes the main results of the study. The
target for phase 1 of the study (reported here) was to
deliver a saving in the overall schedule, corresponding to
100 execution time units (ETUs)2. Achieving this reduction
would put the project well on track to achieve the overall
reduction required to accommodate additional
functionality.

In all, 5 out of 25 software partitions were analysed. These
5 partitions are referred to below as Partitions A to E. The
software for these partitions amounted to over 100,000
lines of Ada code. Three of the partitions, A, B and C were
comprehensively analysed, with improvements and targets
for optimization selected on the basis of the information
provided by RapiTime. Optimizations were prototyped for
these partitions and the RapiTime performance analysis re-
run to quantify the improvements obtained. For the final
two partitions, D and E, several optimizations were
identified, however prototyping and further analysis awaits
the next phase of the study.

The analysis process sought to achieve savings in the
overall execution time schedule, in the following
categories:

1. Budget reductions: reductions in execution time
budgets and hence schedule slots made possible

2 ETUs are an arbitrary execution time unit used in this paper. The actual
values are ‘commercial in confidence’ and are therefore not reported here.

by more accurate analysis of partition worst-case
execution times.

2. Optimizations at design level, sub-program level
and low-level.

Major savings in each of these categories are discussed in
the following sections.

5.1 Budget reductions
During initial investigation of Partition A, it was found that
the schedule slot (execution time budget) was significantly
greater than actually required in the context of its use in the
Operational Flight Program. The schedule slot had
previously been increased to accommodate use of the
partition in different context where it had a much longer
execution time. Accurate context dependent analysis of the
execution time allowed the budget to be safely reduced by
58 ETUs.

5.2 Design level optimization
Detailed analysis of Partition A revealed that over 80% of
its execution time was spent copying data to a large
intermediate buffer. Further investigation showed that in
the context of how the software was used in the Operational
Flight Program, only one response at a time was possible
from any given client and thus the intermediate buffer copy
was unnecessary. Removing this copy reduced the
execution time of Partition A by over 62%, an overall
saving of 17 ETUs.

This optimization opportunity is representative of the value
of prioritising optimization opportunities. Determining that
the usage of this component did not need an intermediate
buffer was not obvious and required detailed discussion
with various engineers responsible for the overall design of
the system. This investigation would have not been
performed if there had not been strong evidence of
potentially large savings in execution time.

5.3 Sub-program optimization
Analysis of Partition C revealed that over 25% of the
execution time of the partition was spent copying data in a
loop that iterated over 2000 times. Close inspection of the
code that performed this copy showed numerous redundant
constraint checks. This code was replaced by a call to
memcpy enabling the compiler to use more efficient code
for the copy, without the large number of constraint checks.
This reduced the execution time of the sub-program by
over 80%, resulting in an overall reduction in the execution
time of the partition of 23%, corresponding to a saving of
48 ETUs.

This optimization shows the trade-off between
maintainability and code readability versus execution time.
Widespread use of memcpy routines for copying data is not
recommended as it makes the program less readable and
less maintainable; however, in this context the change was
more than justified by the significant gain in performance.

6 PRELIMINARY

PRELIMINARY

5.4 Low-level optimizations The reductions in partition execution times achieved are
summarised in Table 1 and illustrated in Figure 2. Partition
C appears twice as it is executed twice within the major
cycle of the schedule. The contexts of these two executions
are however different and consequently two different
context dependent execution times were derived for
Partition C.

In Partition B, RapiTime showed that a small bit-unpacking
sub-program was called over 700 times on the worst-case
path. Further investigation showed that the compiler
generated code was not particularly efficient. Writing the
Ada code in a different way allowed the compiler to
produce more efficient code, reducing the execution time of
the sub-program by 57%, corresponding to an overall
reduction in the execution time of Partition B of 7%, and a
saving of 11 ETUs.

In general, it is not practical to do object code investigation
on even a medium size program. However, using
RapiTime, it is possible to identify code fragments that
contribute significantly to the overall worst-case execution
time. Blocks of code that are called very frequently on the
worst-case path (over 700 times in this case) are often a
good target for low-level optimization, as proved to be the
case here.

5.4 Summary of the results
Overall, the following savings in the schedule were
achieved:

Figure 2 Reduction in worst-case execution times achieved
using RapiTime  76 ETUs due to prototyped optimizations, including:

o 17 ETUs from design level changes.
6 Summary and conclusions o 48 ETUs from sub-program modifications.
During the study described in this paper, the process of
using RapiTime for the Hawk AJT project was refined. A
number of partitions within the Operational Flight Program
of the Hawk Mission Computer were successfully analysed
and significant reductions in execution time made. Overall,
the improvements made put the project on track to provide
the headroom necessary to incorporate additional
functionality without recourse to an expensive hardware
upgrade.

o 11 ETUs from low-level optimizations.

 58 ETUs due to identifying a reduced execution time
budget for Partition A.

Total reduction in execution time 134 ETUs, exceeding
the targeted reduction of 100 ETUs.

Using RapiTime to identify candidates for optimization, it
was possible to achieve reductions, amounting to 23.6% of
the execution time of the analysed partitions, whilst
needing to manually examine just 1.2% of the total lines of
source code in these partitions. These 1250 lines of code
were initially responsible for 29% of the overall execution
time of the partitions. Design-level, sub-program-level and
low-level optimizations reduced this contribution by a
factor of almost 5, creating headroom for new functionality
to be added without the need for expensive hardware
upgrades.

Execution Time Improvement

Partition Before After %

Partition A 28.2 10.6 62.4%

Partition B 140 129 7.9%

Partition C (1) 95.5 72.9 23.7%

Partition C (2) 58.1 33.2 42.9%

Total 321.8 245.7 23.6%

As part of the study, RapiTime identified that only 1.2% of
the code contributed more than 29% of the overall worst-
case execution time. These blocks of code were obvious
targets for optimization. A detailed study of some 1250
lines of code identified specific targets for optimization and
hence opportunities for execution time reduction. These
optimizations were classified as: low-level, sub-program-
level and design-level. The best candidates were prototyped
and implemented and the new system analysed to verify the
effectiveness of the changes. The optimized partitions had
an execution time that was 23% smaller than before.

References
[1] BAE Systems. Hawk Jet Trainer.

http://en.wikipedia.org/wiki/BAE_Hawk

[2] G. Bernat, A. Burns and M. Newby (2005),
Probabilistic Timing Analysis. An approach using
Copulas, Journal of Embedded Computing, Vol 1 no 2,
pp 179-194

Table 1 Reduction in worst-case execution times achieved
using RapiTime [3] Rapita Systems Ltd. RapiTime White Paper. (2005.)

http://www.rapitasystems.com

