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Abstract—This paper integrates analysis of probabilistic cache
related pre-emption delays (pCRPD) and static probabilistic
timing analysis (SPTA) for multipath programs running on a
hardware platform that uses an evict-on-miss random cache
replacement policy. The SPTA computes an upper bound on the
probabilistic worst-case execution time (pWCET) of the program,
which is an exceedance function giving the probability that the
execution time of the program will exceed any given value on any
particular run. The pCRPD analysis determines the maximum
effect of a pre-emption on the pWCET. The integration between
SPTA and pCRPD updates the pWCET to account for the effects
of one or more pre-emptions at any arbitrary points in the
program. This integration is a necessary step enabling effective
schedulability analysis for probabilistic hard real-time systems
that use pre-emptive or co-operative scheduling. The analysis is
illustrated via a number of benchmark programs.

I. INTRODUCTION

Critical real-time systems such as those deployed in space,

aerospace, transport, and medical applications require guar-

antees that the probability of the system failing to meet its

timing constraints is below an acceptable threshold (e.g. 10−9

per hour). Advances in hardware technology and the large gap

between processor and memory speeds, bridged by the use of

cache, make it difficult to provide such guarantees without

significant over-provision of hardware resources. The use of

deterministic cache replacement policies means that patho-

logical worst-case behaviours need to be accounted for, even

when in practice they may have a vanishingly small probability

of actually occurring. Further, the quality of deterministic

WCET estimates for such systems can be highly sensitive to

missing information, making them overly pessimistic. Random

cache replacement policies negate the effects of pathological

worst-case behaviours while still achieving efficient average-

case performance, hence they provide a means of increasing

guaranteed performance in hard real-time systems [15]. De-

termining the timing behaviour of applications running on a

processor with a random cache replacement policy requires

probabilistic analysis of worst-case execution times and cache

related pre-emption delays.

In this paper, we describe a Static Probabilistic Timing

Analysis (SPTA) that can be used to compute an upper bound

on the exceedance function (1 - CDF) for the probabilistic

Worst-Case Execution Time (pWCET) of a program. An

example exceedance function is given in Figure 1(b). From the

exceedance function, it is possible to read off for a specified

probability, an execution time that has that probability of being

exceeded on any single run. SPTA computes the upper bound

pWCET distribution for a program or task1 assuming that it

is executed non-pre-emptably. Pre-emption by another task re-

sults in execution of instructions belonging to the pre-empting

task which have an impact on the probabilities of cache hits

and misses for subsequent instructions executed by the pre-

empted task. We refer to this effect as probabilistic Cache
Related Pre-emption Delay (pCRPD). Analysis of pCRPD is

essential in providing schedulability analysis for probabilistic

hard real-time systems that use pre-emptive scheduling.

A. Related Work

Temporal analysis of probabilistic real-time systems where

at least one parameter, e.g. execution time, is described by a

random variable, was first investigated by Lehoczky in 1990

[12] who extended queuing theory under real-time hypotheses.

This work was improved upon in 2002 by Zhu et al. [18];

however, the main limitation remained the use of the same

probability law for the execution times of all tasks, which is

not always realistic. Gardner et al. in 1999 [9] and Tia et al. in

1995 [16] also considered execution times as random variables

with special assumptions made about the critical instant.

Schedulability analysis for real-time systems with probabilistic

execution times was given by Diaz et al. in 2002 [8] and

refined by Lopez et al. in 2008 [13]; however, the analysis

was difficult to use in practice for computational reasons.

Improvements based on re-sampling of random variables were

proposed by Maxim et al. in 2012 [14].

In 2009, Quinones et al. [15] investigated the use of random

cache replacement policies as a means of obtaining real-time

performance less dependent on execution history. In 2012,

Cucu-Grosjean et al. [6] and Cazorla et al. [5] introduced

SPTA for single-path programs, assuming an evict-on-access

random cache replacement policy.

For deterministic systems, the integration of cache re-

lated pre-emption delays into schedulability analysis for fixed

priority pre-emptive scheduling has been considered by (i)

analysing the effect of the pre-empting task (Busquets-Mataix

et al. in 1996 [4]), (ii) analysing the effect on the pre-empted

task (Lee et al. in 1998 [11]), or (iii) a combination of both

(Altmeyer et al. in 2011 [2] and 2012 [3]).

1In this paper, we use ’program’ and ’task’ interchangeably.



In this paper, we build on the idea of using random cache

replacement policies in hard real-time systems proposed in

[15], and the SPTA for the evict-on-access random cache

replacement policy introduced in [6] and [5]; however, we

assume an evict-on-miss policy because as we show, its

performance dominates that of evict-on-access in terms of

the pWCET distributions (exceedance functions) obtained. We

extend previous work on SPTA for single path programs

given in [6] and [5], both integrating analysis of pCRPD, and

providing a method of analysing multipath programs.

Section II presents our system model, terminology and

notation. In Section III we provide SPTA for single-path pro-

grams assuming an evict-on-miss random cache replacement

policy. In Section IV we derive analysis of pCRPD, based

on the effect on the pre-empted program. In section V we

extend our SPTA and pCRPD analysis to multi-path programs.

Section VI applies our analysis to a number of benchmarks,

while Section VII concludes with a summary and discussion

of future work.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION

The system we consider is based on a processor with an

instruction cache and no data cache. Programs running on this

processor are composed of machine code instructions. Each

instruction is associated with a memory block m in which

it is stored. Each memory block may contain a number of

instructions (typically 4 or 8) hence multiple instructions may

be associated with the same memory block.

A. Random Cache Replacement Policy

We consider a fully associative cache with an evict-on-

miss random replacement policy [15]. Here, if the requested

instruction is not in the cache, then a cache line is randomly

selected for eviction, and the memory block containing the

instruction is fetched from main memory and loaded into the

evicted location. Thus each cache line has the same probability

of being evicted on a miss i.e. for an N -way associative cache,

the probability of each cache line being evicted is 1
N .

B. Instruction Modelling

We assume that the processor executes each instruction in a

fixed number of clock cycles, and hence that the only source

of instruction timing variation comes from the cache. Each

instruction is characterised by two discrete latencies. For a

cache hit, H is the time to load the instruction from cache and

execute it, and for a cache miss, M is the time to check the

cache, fetch the instruction from memory, load the instruction

from cache and execute it. For convenience, we assume that

the processor takes the same time to execute each instruction

once it has been loaded, and hence H and M are the same

for every instruction. In practice, a processor may take a

different number of cycles to execute different instructions, in

which case the analysis we present can be applied with simple

modifications provided that the cache miss penalty (M−H) is

consistent for all instructions. In the remainder of the paper, we

overload the term execution time to mean the overall latency.

We are interested in single-path and multi-path programs. A

program path is a sequence of instructions which we represent

by a sequence of symbols, one for each instruction, identifying

the memory block in which the instruction is stored; for

example a, b, a, c, . . ..
Definition 1 (Re-use Distance): Given an arbitrary se-

quence of instructions, then the re-use distance k of a particu-

lar instruction is defined by the maximum possible number of

evictions2 since the last access to the memory block containing

that instruction.

The re-use distance of an instruction dictates its overall

probability of being a hit, with larger re-use distances indica-

tive of a higher probability of a cache miss. We return to the

calculation of these probabilities in Section III.

Example 1: For a single-path program described by the

following sequence of symbols giving the memory block

for each instruction a, b, a, c, d, b, c, d, a, e, b, f, e, g, a, b, h,

its possible representation including re-use distances is

a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h.

In the above example, the superscripts give the finite re-

use distances. As we consider the cache to be initially empty,

the re-use distance for the first access to any instruction is

∞. When consecutive instructions are in the same memory

block, then the second instruction has a re-use distance of

zero. This is because its memory block is definitely in the

cache after the previous instruction. A re-use distance of zero

corresponds to always hit and so with an evict-on-miss policy,

such instructions do not contribute to the re-use distance of

subsequent instructions as they do not result in evictions3. For

example, with 4 instructions per memory block we may obtain

the following sequence of memory block accesses and re-use

distances: a, a0, b, b0, b0, b0, a1.

Each instruction has a probability of being a cache hit

P{hit}, and of being a cache miss P{miss} = 1− P{hit}.

Thus each instruction I is described by a discrete random

variable4 I representing the execution time of the instruction

based on the history of previous accesses. Formally, the

Probability Mass Function (PMF) of instruction I is

I =

(
H M

P{hit} P{miss} = 1− P{hit}
)

(1)

C. Program Modelling

Probabilistic real-time analysis focusses on random vari-
ables, the notion of independence , and the “summation” of

random variables via the convolution operator.

For two random variables X1 and X2 defined on the same

probability space, the joint distribution defines the proba-

bility of events5 defined in terms of the random variables,

2Actually, the number of evictions in the same cache set; however, as we
assume a fully associative cache, there is only one cache set.

3Technically, such an access could result in a cache miss and an eviction,
but only if it were immediately preceded by a pre-emption; however, in that
case we consider the extra eviction as due to the pre-emption.

4We make use of calligraphic symbols to denote random variables.
5Here an event is defined by the fact that one or more instructions have a

given value for the execution time.



F (x1, x2) = P{X1 ≤ x1,X2 ≤ x2}. The joint probability is

different for dependent and independent events.

Definition 2 (Independence): Two random variables X and

Y are independent if they describe two events such that the

outcome of one event does not have any impact on the outcome

of the other.

The sum Z of two independent random variables X1 and X2

is obtained via convolution: Z = X1⊗X2. For discrete random

variables P{Z = z} =
∑+∞

k=−∞ P{X1 = k}P{X2 = z − k}.

Convolution is commutative, i.e., X1 ⊗X2 = X2 ⊗X1 .

Definition 3 (Greater than or equal to - Diaz et al. [13]):
Let X and Y be two random variables. Y is greater than

or equal to X (alternatively, X is less than or equal to Y)

denoted by Y � X (Y � X ) if P{Y ≤ v} ≤ P{X ≤ v} for

any v (P{Y ≤ v} ≥ P{X ≤ v} for any v).

Since the execution time of a program can only take discrete

values that are multiples of the processor clock cycle, the

execution time of a program path i, assuming the worst-

case (empty) initial cache state is given by a discrete random

variable Ci. Thus the execution time of path i has a PMF

fCi(·), with fCi(c) = P{Ci = c} giving the probability that

the path has an execution time equal to c. Ci can be represented

as follows:

Ci =
(

C0
i = Cmin

i C1
i · · · Cni

i = Cmax
i

fCi
(Cmin

i ) fCi
(C1

i ) · · · fCi
(Cmax

i )

)
(2)

where
∑ni

j=0 fCi(C
j
i ) = 1.

As an example, a path i might have an execution time

Ci =
(

2 3 4 5
0.1 0.3 0.4 0.2

)
(3)

meaning that for any given run, there is probability of 0.1

that its execution time will be 2, a probability of 0.3 that its

execution time will be 3, and so on.

The execution time of a path can also be described us-

ing its Cumulative Distribution Function (CDF) FCi
(x) =∑x

c=0 fCi
(c), or by the 1-CDF F ′

Ci
(x) = 1−∑x

c=0 fCi
(c) ≡

P{Ci ≥ x}.

Definition 4 (probabilistic Worst-Case Execution Time):
The probabilistic Worst-Case Execution Time (pWCET)

distribution Z of a program is a tight upper bound on the

execution time Ci of all possible paths. Hence, ∀i, Z � Ci.
III. STATIC PROBABILISTIC TIMING ANALYSIS

In this section, we derive a lower bound on the probability

of a cache hit for each instruction in a single-path program.

This lower bound is crucially independent of the previous

sequences of cache hits and misses, and instead depends only

upon the re-use distance of the instruction. Hence we show

how SPTA can be used to determine the pWCET distribution

for single-path programs assuming an evict-on-miss random

cache replacement policy. Extensions to SPTA for the multi-

path case are given in Section V.

With an evict-on-miss random cache replacement policy, the

probability of evicting a given cache line is 1/N on each miss,

where N is the number of cache lines in a set. (As we assume

a fully associative cache, N equates to the total number of

cache lines). In 2010, Zhou [17] gave the following formula

for the overall probability of a hit on a particular access to

such a cache

Phit =

(
N − 1

N

)k

(4)

where k is the re-use distance of the instruction.

Unfortunately, with an evict-on-miss policy, the probabil-

ity that an instruction in memory block b is a hit is not

independent of whether previous instructions since the last

access to b were hits or misses, neither does a sequence of all

misses necessarily provide the worst-case scenario. This lack

of independence is reflected in the conditional probability. If

we know that memory block a was not evicted because we

observe a hit, then the probability that b was evicted instead

may be higher than if we observed a miss for a; effectively

there is a dependence via the finite size of the cache. We

illustrate this via a simple example.

Consider the sequence of instructions represented by their

memory blocks a, b, c, b, a, assuming a cache of size N = 2.

If the second access to b is a hit, then both b and c must be in

the cache at that point, and hence the conditional probability

that the second access to a is also a hit is zero. Thus the joint

probability that the second accesses to both a and b are hits is

zero. This differs from the probability of 1/16 that would be

obtained by assuming that all accesses were independent and

could potentially be misses causing evictions.

Computing conditional probabilities is exponential in the

re-use distance and so quickly becomes intractable. Instead,

we derive a lower bound on the probability of a hit that is a

function of the re-use distance but independent of the pattern

of hits and misses for previous instructions. We achieve this by

considering the maximum amount of information that could be

known due to the behaviour of intervening instructions (e.g.

by them being hits). An upper bound on this information

is obtained by assuming that the intermediate instruction

addresses are all unique and in different memory blocks, which

remain in the cache for all of the re-use distance. This reduces

the effective size of the cache available to the instruction of

interest.

For an instruction with a re-use distance of k, then the

probability of a hit can be lower bounded for each value of

h = 0 · · · k, where h is the number of potentially evicting

accesses that are actually hits. Each such access reduces the

effective cache size by 1, but also reduces the number of

evictions by 1, hence a lower bound on the probability of

a hit Phit(h) given h hits out of the k potentially evicting

accesses is given by:

Phit(h) =

(
N − h− 1

N − h

)k−h

(5)

provided that h < N , otherwise the effective cache size is

zero, as is the lower bound on the probability of a hit.

The function Phit(h) is a monotonically increasing func-

tion for 0 ≤ h ≤ k < N , and hence Phit(0) =



min0≤h≤k<N Phit(h). (Proof is given in the appendix of the

technical report [7] on which this paper is based). Thus a lower

bound on the probability of a hit for arbitrary h is given by:

Phit =

{ (
N−1
N

)k
if k < N

0 if k ≥ N,
(6)

Phit provides a lower bound on the probability of a hit

P{hit} that is independent of the previous pattern of hits or

misses. Hence substituting P{hit} = Phit in (1) delivers an

upper bound on the 1-CDF of the instruction, and a PMF that

can be convolved. Phit is monotonically non-increasing with

respect to k.

It is interesting to compare the formula for Phit given by (6)

for the evict-on-miss policy, with the equivalent formula given

in [5] and [6] for evict-on-access6. This formula is reproduced

below.

Phit
EoA =

{ (
N−(k−1)−1
N−(k−1)

)k

if k < N

0 if k ≥ N,
(7)

We observe that evict-on-miss dominates evict-on-access in

the sense that it provides, for every instruction, a probability

of a hit that is larger ∀k < N . This is because evict-on-

miss results in smaller re-use distances7, and evict-on-access

reduces the effective size of the cache by the re-use distance

(see [5] and [6]). As an example, with N = 256, k = 104,

Phit
EoA = 0.5 for evict-on-access and Phit = 0.66 for evict-on-

miss.

For a single-path program, SPTA computes the pWCET dis-

tribution as the joint distribution of the composing instructions.

As the lower bound probability of a hit for each instruction,

given by (6), is valid irrespective of the previous sequence of

hits and misses, we effectively have independence and hence

the pWCET distribution Cj can be obtained via convolution:

Cj = I1 ⊗ I2 ⊗ . . . , (8)

where Ii are the instructions, and Ii their distributions.

A. Program Representation

In our model, the only information needed to characterize

a memory access is its re-use distance, hence a sequence of n
instructions can be represented by the corresponding sequence

of re-use distances

Q = {k1, k2, . . . kn}. (9)

Further, as convolution is commutative, such a sequence Q can

be reordered without changing the final result i.e. the computed

pWCET distribution. For ease of use later, we consider Q

ordered by increasing re-use distance.

6With evict-on-access, on each request for an instruction a cache line is
selected at random and evicted. The cache is then checked to see if the
instruction is present and if not its memory block is loaded into the evicted
location in cache from main memory. This has the disadvantage that a request
for an instruction may evict its own memory block.

7If the re-use distance for an instruction is k with evict-on-miss, then it is
at least k+1 with evict-on-access, as the access for the instruction causes an
additional eviction in that case.
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Fig. 1. pWCET of the program in Example 2. An exceedence probability
of 10−9 corresponds to an execution time of 142, while an execution time
of 98 has a probability of being exceeded of around 10−2.

Example 2: The sequence of accesses

a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h from

Example 1 results is the set of re-use distances

Q = {−,−, 1,−,−, 3, 2, 2, 5,−, 4,−, 2,−, 5, 4,−} where −
stands for an infinite re-use distance. It can be reordered as

QPROG = {1, 2, 2, 2, 3, 4, 4, 5, 5,−,−,−,−,−,−,−,−}.

We use QPROG to denote the set of re-use distances

for all of the instructions in a single path program. The

pWCET distribution for a program comprising the sequence

of instructions given in Example 2 is depicted in Figure 1.

Here, the maximum execution time is obtained when all of the

instructions are misses. Note, the latency of a hit and a miss

(H,M ) are 1 and 10 cycles respectively, and the cache size

N = 256. An execution time of 142 cycles has a probability

of slightly less than 10−9 of being exceeded on any given run.

B. Complexity of convolution

The complexity of convolving n instructions (8) might seem

to be O(2n) (i.e. exponential), and indeed this would be the

case if the PMF of each instruction contained two arbitrary

values. However, the maximum value in the PMF for each

instruction is a small constant (M in our model), hence after

n convolutions, the largest value in the resulting PMF is

nM , and hence a maximum of 2nM operations are required

to convolve the PMF of the (n + 1)-th instruction. Thus

the complexity is in fact pseudo-polynomial O(Mn2) where

M is a small constant. This makes the method tractable in

practice even for quite large values of n. Further, re-sampling

techniques can be used to significantly reduce the size of the

resulting distributions, with little reduction in precision [14].



IV. PROBABILISTIC CRPD

In this section we study the effect of pre-emption, referred to

as the probabilistic cache related pre-emption delay (pCRPD),

on the pWCET of single-path programs. (Extensions to the

multi-path case are given in Section V). First, we model

the effect of pre-emption on single instructions, from this

we derive analysis of the pre-emption effect on multiple

instructions due to pre-emption at a specific point in the

program. We then derive an upper bound on the pre-emption

effect at any arbitrary point in the program, and finally the

effect of multiple pre-emptions at arbitrary points.

Assuming a sequence of instructions for a program, we use

Pp to refer to a pre-emption point after the p-th instruction

in the sequence, hence P1 refers to pre-emption after the

first instruction, and so on. Pre-emption at point Pp changes

the sequence of instructions executed by effectively inserting

a sub-sequence of new instructions. These new instructions

are executed prior to the program being resumed and its

remaining instructions being executed. Instructions belonging

to the program that are contained in memory blocks that

are accessed both prior to and after point Pp have the re-

use distance of their first occurrence after point Pp increased

as a result of the pre-emption. We use the notation Qp to

represent the set of re-use distances of instructions affected

by pre-emption at point Pp. Instructions that are in memory

blocks not accessed prior to Pp or not accessed after Pp do not

suffer any change in their re-use distances. (We note that the

sets of instructions whose re-use distances are affected by pre-

emption have some similarities with the sets of Useful Cache

Blocks used in the analysis of deterministic cache replacement

policies [11]). The increase in re-use distances provides a way

of bounding the effect of pre-emption on a per instruction

basis, and hence the effect on the overall execution time of

the program.

For a single affected instruction I , pre-emption has the

effect of changing its distribution from I to I ′. We note that

the latencies do not change but the probabilities do, and they

change according to (6) such that if k is the re-use distance

without pre-emption, then the re-use distance with pre-emption

becomes k′ = k + d, where d is the maximum number

of evictions that could be caused due to the pre-emption.

Hence pre-emption decreases the probability of a cache hit

and increases the probability of a cache miss. Modelling the

increased re-use distance in this way gives a safe upper bound

on the pre-emption effect, but requires precise information

about the increase in the re-use distance caused by the pre-

emption (i.e. knowledge of the potentially nested pre-empting

tasks).

A simpler upper bound which we consider in this paper is

obtained by assuming pessimistically that pre-emption flushes

the cache, i.e. evicts all of the cache contents. This can

be modelled via the random variable BI representing the

bounding instruction with an infinite re-use distance, and hence

Phit = 0 and Pmiss = 1. At the instruction level, intuitively

the pre-emption effect is the difference between I and BI .

The bigger this difference, the larger the pre-emption effect

on instruction I .

Recall that QPROG is a representation of the program with-

out pre-emption. We can obtain a representation QPROG
Pp

of

the program including the effect of pre-emption at some point

Pp by removing the values in Qp from QPROG and replacing

them with |Qp| infinite re-use distances. We introduce the

binary operator pre which does this.

QPROG
Pp

= pre(QPROG,Qp). (10)

The instruction distributions corresponding to QPROG
Pp

can

then be convolved to obtain an upper bound pWCET distribu-

tion CPp for the program with pre-emption at point Pp.

Example 3: Returning to our running example

a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h, pre-emption

after the first a affects just a1, while pre-emption after

the first d modifies a5, b3, c2, and d2. Hence Q1 = {1}
and Q5 = {2, 2, 3, 5} represent the sets of instructions

affected by pre-emption at points P1 and P5, respectively.

Without pre-emption, the sequence can be represented by

QPROG = {1, 2, 2, 2, 3, 4, 4, 5, 5,−,−,−,−,−,−,−,−},

accounting for pre-emption at point P5, gives

QPROG
P5

= {1, 2, 4, 4, 5,−,−,−,−,−,−,−,−,−,−,−,−}.

Our pCRPD analysis makes use of the concept of domi-
nance between the effects of pre-emption at different points

in the program.

Definition 5 (Dominance among Pre-emption Points): The

pre-emption effect due to preemption at a point Px is said to

dominate that due to preemption at a point Py if CPx � CPy

where CPx (CPy ) is the upper bound pWCET distribution of

the program assuming pre-emption at point Px (Py). (See

Definition 3 and Diaz et al. [13] for the definition of �).

A. Pre-emption Effects on Single Instructions

We now consider dominance among pre-emption effects on

single instructions.

Theorem 1 (Instruction Dominance): For a program con-

taining instructions Ix and Iy where the re-use distance of

Ix is less than or equal to the re-use distance of Iy and

hence Ix � Iy (see (6)), then the effect of pre-emption at

point Pv affecting only instruction Ix dominates the effect

of pre-emption at point Pw affecting only instruction Iy , i.e.

CPv � CPw .

Proof: The pWCET distribution of the program without

any pre-emption may be expressed as C = Ix⊗Iy⊗Z , where

Z represents the convolution of the distributions for other

instructions. Assuming a pre-emption at point Pv affecting

only instruction Ix, then the pWCET distribution of the

program is upper bounded by CPv = BI ⊗Iy ⊗Z . (Obtained

by replacing the distribution for instruction Ix with that given

by BI ). Similarly, for a pre-emption at point Pw affecting only

instruction Iy , the pWCET distribution of the program is upper

bounded by CPw = Ix ⊗ BI ⊗ Z . By Lemma 1 given below,

the fact that Iy � Ix, and the commutativity of convolution,

it follows that CPv � CPw

Lemma 1 (Convolution Monotonicity): Considering three



discrete random variables X , Y and Z with Z � Y , then

X ⊗ Z � X ⊗ Y .

Proof: Given Z � Y (i.e. P{Z ≤ v} ≤ P{Y ≤ v} for

any v), we have

P{X ⊗ Z ≤ v} =
∑
x

∑
v′≤v

P{X = x}P{Z = v′ − x}

=
∑
x

P{X = x}
⎛
⎝∑

v′≤v

P{Z = v′ − x}
⎞
⎠

=
∑
x

P{X = x}
⎛
⎝∑

l′≤l

P{Z = l′}
⎞
⎠

with l = v − x and l′ = v′ − x.

=
∑
x

P{X = x}P{Z ≤ l}

≤
∑
x

P{X = x}P{Y ≤ l}

since Z � Y;

=
∑
x

P{X = x}
⎛
⎝∑

l′≤l

P{Y = l′}
⎞
⎠

=
∑
x

P{X = x}
⎛
⎝∑

v′≤v

P{Y = v′ − x}
⎞
⎠

=
∑
x

∑
v′≤v

P{X = x}P{Y = v′ − x} = P{X ⊗ Y ≤ v}

Then P{X⊗Z ≤ v} ≤ P{X⊗Y ≤ v}, hence X⊗Z � X⊗Y

B. Pre-emption Effects on Multiple Instructions

We now consider the effect of pre-emption on multiple

instructions. Our aim is to determine an upper bound on the

effect of pre-emption at any arbitrary point in the program. For

mathematical convenience and without loss of generality, we

assume that the sets of re-use distances for the instructions

affected by each pre-emption point are padded with infinite

re-use distance values so that they are all of the same length.

For example, Q1 = {1,−,−,−} is equivalent to Q1 = {1}.

We note that this does not change the pre-emption effect

represented, as replacing the distribution for an infinite re-use

distance instruction by BI results in no change. In any case,

such padded values will not appear in the final analysis.

We now introduce a binary operator min+ which applies

to our extended (padded) sets of re-use distances. Let Qi =
{ki,1, ki,2, . . . , ki,n} where ki,r are the re-use distances in

order smallest first, and similarly for Qj . Note |Qi| = |Qj |.
min+(Qi,Qj) = {kr = min(ki,r, kj,r) ∀ r ≤ |Qi|} (11)

Hence for the sets Q1 = {1}, Q5 = {2, 2, 3, 5} referred to

earlier, we have min+(Qi,Qj) = {1, 2, 3, 5}. We note that

min+() is associative; for brevity in the remainder of the

paper, we assume that it may take multiple parameters.

Theorem 2 (Pre-emption Point Dominance): The effect of

pre-emption at point Px dominates the effect of pre-emption at

point Py (i.e. CPv � CPw ) if Qx = min+(Qx,Qy), where Qx

and Qy are the extended representations of the re-use distances

of the instructions affected by pre-emptions at points Px and

Py respectively.

Proof: Follows by applying Theorem 1 to the pairs of

instructions and re-use distances represented by corresponding

elements of Qx and Qy (i.e. kx,r and ky,r ∀r), and the fact

that convolution is commutative

Corollary 1 (Pre-emption Point Distributions): It follows

from the proof of Theorem 2, that the effect of pre-emption

at point Px dominates that for pre-emption at point Py if

X � Y where X (Y) is the convolution of the distributions

of the extended (padded) set of instructions affected by

pre-emption at point Px (Py).

Theorem 2 and the min+ operator allow us to construct

the pre-emption effect of a virtual pre-emption point P ∗ that

dominates the effect of pre-emption at any point, and hence

upper bounds the effect of pre-emption at any arbitrary point

in the program.

Q∗ = min+(Q1,Q2, . . . ,Qn) (12)

We note that Q∗ does not include any infinite re-use distances,

but may include re-use distances obtained from a number of

real pre-emption points. Hence the pre-emption effect captured

by this virtual pre-emption point is a safe upper bound, but

may be pessimistic.

Theorem 3 (Dominant Pre-emption Point): The upper

bound CP∗
on the pWCET distribution of the program

assuming the pre-emption effect represented by the virtual

pre-emption point P ∗, is greater than or equal to the upper

bound on the pWCET CPx assuming pre-emption at any

single arbitrary point Px (i.e. CP∗ � CPx ).

Proof: Follows from the fact that each instruction affected

by pre-emption at point Px gives rise to a re-use distance that

may be paired with a re-use distance in Q∗ that is no larger.

Application of the proof of Theorem 1 to each instruction

affected by pre-emption at point Px then suffices to prove the

theorem

An upper bound on the pWCET of a program assuming

a single pre-emption at any arbitrary point can therefore be

obtained by applying the effect Q∗ of the virtual pre-emption

point to the sequence of instructions of the program and their

re-use distances, as represented by QPROG, via:

QPROG
P∗ = pre(QPROG,Q∗). (13)

The set of instruction distributions represented by QPROG
P∗

may then be convolved to produce an upper bound pWCET

CP∗
for the program which is valid for a single pre-emption

at any arbitrary point.

Example 4: Returning to our running example,

a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h, there are 16
pre-emption points with Q1 = {1}, Q2 = {1, 3}, Q3 = {3, 5},

Q4 = {2, 3, 5}, Q5 = {2, 2, 3, 5}, Q6 = {2, 2, 4, 5},



Q7 = {2, 4, 5}, Q8 = Q9 = {4, 5}, Q10 = Q11 =

Q12 = {2, 4, 5}, Q13 = Q14 = {4, 5}, Q15 = {4},

Q16 = {}. Hence, the virtual pre-emption point P ∗ results in

Q∗ = min+
r∈{1,...,16}{Qr} = {1, 2, 3, 5}.

Figure 1 illustrates the PMF and (1-CDF) of this program

with no pre-emption (PROG) and accounting for one arbitrary

pre-emption (P ∗). In the non-pre-emptive case, an execution

time of 142 cycles has a probability of 10−9 of being exceeded

on any given run, whereas with a single arbitrary pre-emption

modelled by P ∗ this increases to 161 cycles.

C. Modelling Multiple Pre-emptions

In the previous sub-section we characterized the effect of

single pre-emptions. We now extend our approach to cater for

multiple preemptions.

The effect of m pre-emptions can be obtained via a compo-

sition of the maximum effect of m single preemptions, and

hence the processing of the values in Q∗ m times. Given

Q∗ = {k1, k2, . . . , kr}
m×Q∗ = {k1, . . . , k1︸ ︷︷ ︸

m

, k2, . . . , k2︸ ︷︷ ︸
m

, . . . kr, . . . , kr︸ ︷︷ ︸
m

} (14)

We note that values in m×Q∗ may not all appear in QPROG,

indeed, |m × Q∗| may be larger than |QPROG|. To correctly

account for m preemptions, we must use the following rules

when processing m×Q∗ and QPROG.

We process the values in m × Q∗ in order, smallest first.

If the value is present in QPROG, then we replace it with

’−’ meaning infinite re-use distance (i.e. the bounding in-

struction). If the value is not present in QPROG, then we

take the next larger value remaining in QPROG and replace

it with the bounding instruction. We note that this is safe, as

such a mismatch is a result of pessimism in the analysis of

multiple pre-emptions. It indicates that m pre-emptions cannot

affect instructions with this value of re-use distance m times;

however, instructions with larger re-use distances could still

be affected, and so these re-use distances must be replaced

instead.

Example 5: Given a program described by

a, b, c, d, a3, b3, c3, d3, d0, d0, d0, d0, d0, d0 then

Q∗ = {0, 3, 3, 3}. Assuming that we are interested

in the effect of four pre-emptions, 4 × Q∗ =
{0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}. The resultant value

of QPROG
P∗ is then {0, 0,−,−,−,−,−,−,−,−,−,−,−,−}

once the pre-emptions are accounted for. We note that in this

case, 4×Q∗ has 16 elements whereas QPROG is only of size

14, nevertheless, 4 pre-emptions are insufficient to make all

of the re-use distances infinite.

D. Complexity of pCRPD

The complexity of pCRPD analysis can be described in

terms of the number of instructions n, the total number of

memory blocks S, and the number of pre-emptions Z (where

S < n and Z < n). The time complexity of the steps in

pCRPD analysis are as follows: (i) finding the re-use distance

at each program point (or instruction) - O(n) using an array of

S values, (ii) computing the representation of the pre-emption

cost at every pre-emption point - O(nS), (iii) sorting the

values in each of those pre-emption cost representations and

combining them to build a representation of the virtual pre-

emption point P ∗ - O(nSlog(S)), (iv) sorting the program

representation QPROG - O(nlog(n)), and (v) combining it

with the representation of the virtual pre-emption point Z
times to bound the effect of Z pre-emptions - O(Z(n + S).
The overall complexity of pCRPD analysis is therefore upper

bounded by O(n2log(n). Convolution of the resultant program

representation (which accounts for Z pre-emptions) is then

required, and has a complexity of O(Mn2), where M is a

small constant, equating to the cost of a cache miss.

V. MULTI-PATH ANALYSIS

In practice, programs may have multiple execution paths

rather than the simple sequential execution considered so far.

In this case, the static probabilistic timing analysis required to

derive the pWCET distribution without pre-emption is more

complex because it has to take into account all of the possible

paths that the program may execute. Further, analysis of the

pCRPD is also more complex as pre-emption may take place at

any point on any path. In this section, we present an approach

to SPTA applicable to multi-path programs. This approach

collapses a multi-path program into a synthetic, single path

representation and hence provides an upper bound pWCET

distribution for non-pre-emptive execution. We also present

a method of deriving an upper bound on the pre-emption

effect at any point in a multipath program, compatible with

our analysis of the upper bound pWCET distribution for the

non-pre-emptive case. The set of pre-emption effects for all

pre-emption points can then be reduced to a single dominant

pre-emption effect Q∗ as in the single path case, and applied to

the synthetic single path representation to compute an upper

bound on the pWCET distribution for a multipath program

subject to one or more pre-emptions. We use Lambda Calculus

to express our multipath analysis.

A. Synthetic Path

We derive one single synthetic path for each program which

over-approximates all concrete paths. We first upper-bound

at each program point (instruction) and for each memory

block the re-use distance using a simple program analysis. We

then combine all sub-paths into the single synthetic path. We

require the following two assumptions to hold: (i) each loop

in the program is bounded and (ii) the code is well-structured.

Both assumption hold for most hard-real time systems, which

were designed with timing analysability in mind.

1) Program Analysis: We assign each program point a

function rd that maps a memory block m to an upper bound

on its re-use distance. This means rd(m) at program point

P gives the maximal number of evictions since a previous

access to m up to program point P . Hence, the domain of the

analysis is defined as rd : M → N∞, with an initial valuation

that assigns ∞ to each memory block (since we cannot assume



any prior use of any memory block):

∀m ∈ M : rdinit(m) = ∞ (15)

The transfer function updates the domain of the analysis at

each access to a memory block m. If the re-use distance of

memory block m was previously zero, then the block is in the

cache and the subsequent access is always a hit, and so does

not increase the re-use distances of other instructions. Hence,

in this case, the transfer function copies the previous values.

Otherwise, memory block m is assigned a re-use distance of

0, and the re-use distances of all other blocks are increased

by one.

tf : (M → N∞)×M → (M → N∞)

tf(rd,m) = rd′ (16)

with

rd′(m′) =

⎧⎨
⎩

0 m = m′

rd(m′) rd(m) = 0
rd(m′) + 1 otherwise

(17)

As we are interested in upper bounds on the re-use distances,

we compute the maximum of the re-use distances at program

joins.⊔
: (M → N∞)× (M → N∞) → (M → N∞) (18)(
rd1

⊔
rd2

)
(m) = max(rd1(m), rd2(m)) (19)

Using these definitions, we can compute a fixed-point of rd on

the control-flow graph, which delivers valid upper bounds on

the re-use distances for each memory block at each program

point. We then replace the nodes within the control-flow graph

with the corresponding re-use distance of the memory access.

For a given program point (instruction) accessing m, the

re-use distance is given by the maximum value of rd(m) for

any immediately preceding program point (instruction).

2) Path Combination: We are interested in a synthetic path

representing all concrete paths of a program. Explicit enumer-

ation of all paths within a program is however computationally

infeasible. The number of paths grows exponentially with the

number of loop-iterations and control-flow splits. For instance,

the control-flow graph depicted in Figure 2 has up to 2l

different paths, where l is the loop bound. So, we aim for

a recursive computation of the synthetic path. To this end, we

split the control-flow graph into single-entry, single-exit (sese)

regions and compute a synthetic path for each region. Later

on, we combine these regions into a single synthetic path for

the whole program.

We start with an inner-most sese region R, which does

not contain any loop (see Figure 2(a)). We derive all sub-

paths QR1 , . . . ,QRn from the entry to the exit of the region

and replace the complete region with a synthetic path (see

Figure 2(b)):

QR = max+(QR1 ,QR2 , . . . ,QRn) (20)

Region R

. .
.

QR1

QR2

.

.

.
. .

(a) Basic Control Flow Graph with an Inner Region R

. . . .
QR = max+(QR1 ,QR2 )

(b) Region Collapse, Inner Synthetic Path

. . . .
QL = QB ∪ . . . ∪ QB

(c) Loop replacement

Fig. 2. Steps of the Path Combination.

where max+ is defined in a similar way to min+, i.e.

max+(QRi ,QRj ) = {kr = max(ki,r, kj,r) ∀ r ≤ |QRi |} (21)

however, in this case the sets QRi representing the sub-paths

are padded with zeros until they are all of the same length,

before being sorted, smallest value first. This ensures that the

pWCET distribution for QR upper bounds those for QRi with

a minimum amount of pessimism.

For each loop, we first compute the synthetic path of the

loop body region QR and create a new path for the loop, in

which we duplicate QB (representing the loop body) l-times,

where l denotes the upper loop bound (see Figure 2(c)):

QL = QB ∪ . . . ∪QB︸ ︷︷ ︸
l

(22)

We recursively repeat these steps until we end up with one

single synthetic path.

B. Pre-emption Effects

We now derive a representation of the pre-emption effect

at each point in a multi-path program. As enumerating all

possible paths is typically intractable, we instead consider

program points on the control flow graph. We assume that

each node (program point) on the control flow graph has an

associated upper bound re-use distance for its memory access

that has been computed as described previously.

1) Program Analysis: We assume that at each program

point P , we have computed (via the fixed point of rd),

the maximum re-use distance rdk for the memory access m
at that point. We assign each program point a function pe
(pre-emption effect) that maps each memory block m to the

minimum re-use distance for that block that could be affected

by pre-emption immediately prior to the program point. (Note

these minimum values are computed with respect to the

maximum re-use distances rdk assumed in the computation

of the pWCET distribution for the non-pre-emptive case. This



ensures that the treatment of pre-emption effects provides a

safe upper bound when applied to the pWCET of the non-pre-

emptive case. Larger pre-emption effects could be observed

in practice, but only on an instruction where the actual re-

use distance is smaller than that assumed by the pWCET

analysis. In this case part of the pre-emption effect is already

captured as pessimism in the pWCET analysis. This is similar

to the deterministic case where CRPD analysis only needs

to consider accesses that are not already considered as cache

misses by the timing analysis [1]).

The function pe(m) is computed by backwards analysis,

starting at the end of the program and working towards the

start. The initial valuation assigns ∞ to each memory block,

since there is no further use of any memory block after the

end of the program.

∀m ∈ M : peinit(m) = ∞ (23)

The transfer function updates the domain of the analysis at

each access to a memory block:

tf(pe,m) = pe′ (24)

with

pe′(m′) =
{

rdk m = m′

pe(m′) otherwise
(25)

As we are interested in the largest pre-emption effects, then

on program joins the minimum values for re-use distances are

taken: (
pe1

⊔
pe2

)
(m) = min(pe1(m), pe2(m)) (26)

Using this definition of pe(m), we can compute a fixed

point of pe on the control flow graph. The fixed point of

pe at each program point gives the set of re-use distances

describing the maximum effect of pre-emption immediately

prior to that program point. These values may be described

in the Q notation. The Q values for all possible pre-emption

points can then be combined to form a representation Q∗ of

the maximum effect of pre-emption at any arbitrary point in

the program, via (12) as per the single path case. The upper

bound pWCET distribution for the program, assuming one or

more pre-emptions at arbitrary points, may then be obtained by

applying Q∗ to the synthetic, single path representation using

the techniques derived for the single path case. (We note that

due to pessimism in the analysis for the multi-path case, not

all of the values in Q∗ may appear in QPROG. This is similar

to the multiple pre-emption case for single path programs and

the same rules for processing Q∗ apply).

VI. EXPERIMENTAL EVALUATION

We applied our integrated probabilistic analysis approach

to the FAC, FIBCALL, FDCT, JFDCTINT (single-path with

loops) and BS, INSERTSORT, FIR (multi-path) benchmarks

from the Mälardalen benchmark suite [10]. We investigated the

effect of multiple pre-emptions on the pWCET distribution

(1-CDF) of each program, for both the evict-on-miss and

the evict-on-access [6] random cache replacement policies

for memory block sizes of 1 instruction (4 bytes), and 4

instructions (16 bytes) and a cache of size N = 128 blocks

(i.e. 512 bytes and 2048 bytes respectively). We also examined

the effect on the pWCET of each program obtained by increas-

ing the memory block size from 1, 2, 4, to 8 instructions.

Our experiments assumed cache hit and miss latencies of 1

and 10 respectively. The results of all of these experiments

can be found in the technical report [7]. There, we provide

comparisons against the evict-on-access policy and its basic

analysis given in [6] which we have extended to account for

the effect of pre-emptions and multiple paths; for reasons of

space and clarity, here we only present results for the simple

FAC benchmark, assuming the superior evict-on-miss policy.

Figure 3 compares the pre-emption effect for every pre-

emption point in the FAC benchmark, together with the

resulting dominant virtual pre-emption point P ∗, shown by the

bold lower line (downwards staircase). This graph shows the

1-CDF of the (padded) set of instructions affected by the pre-

emption that are replaced by a set containing an equal number

of bounding instructions. Thus an intuitive interpretation is that

the pre-emption effect corresponds to the area between the

line running horizontally across the top of the graph and then

vertically down (the bounding instructions) and the staircase

corresponding to each pre-emption point. Thus the largest

effect is for the virtual pre-emption point P ∗. In this case, at

most 8 instructions can be affected by a single pre-emption.

ct is for the virtual pre-emption point P ∗. In this cas

t 8 instructions can be affected by a single pre-empt
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Px pre-emption
P* pre-emption

Fig. 3. FAC: 1-CDF representation of the pre-emption effect at every pre-
emption point Px, and also for the virtual pre-emption point P ∗, assuming a
memory block size of 1, cache size of N = 128.

Figures 4 and 5 give the pWCET distribution (1-CDF) for

the FAC benchmark, assuming an evict-on-miss policy, and

memory blocks sizes of 1 and 4 instructions respectively. Also

shown on these graphs are the upper bound pWCET distribu-

tions accounting for 1, 2, 3, · · · pre-emptions. The horizontal

dotted line on each of the graphs represents a probability

of 10−9, thus the effect of pre-emption can be interpreted

as increasing the execution time that has a probability of

10−9 of being exceeded on each run. Observe that with a

memory block size of 1 instruction, after 5 pre-emptions, all

instructions are reduced to being misses, whereas with a larger

memory block size of 4 instructions, over 25 pre-emptions are

required. Note that the final few lines on the graph are vertical,

representing a single additional instruction that is altered from

always hit to always miss. (Note FAC is a very small program

that nevertheless includes loops and conditional statements).

For larger programs, a very large number of pre-emptions are

required before the pWCET is reduced to the equivalent of all



misses, for example, in the case of INSERTSORT, over 500

pre-emptions are required to do this.

sses, for example, in the case of INSERTSORT, over 5

e-emptions are required to do this.
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Fig. 4. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 5. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.

VII. CONCLUSIONS AND FUTURE WORK

Random cache replacement policies have the potential to

provide an increase in the level of performance of hard

real-time systems that can be guaranteed with respect to an

acceptable threshold for the timing failure rate [5]. This is

achieved by making the probability of any pathological cases

vanishingly small.

The main contribution of this paper is the introduction

of integrated probabilistic cache related pre-emption delay

(pCRPD) analysis and static probabilistic timing analysis

(SPTA) for multi-path programs running on hardware that uses

an evict-on-miss random cache replacement policy. The SPTA

provides an upper bound on the exceedance function (1-CDF)

for the probabilistic worst-case execution time (pWCET) of

a program, using only information about the structure of the

program, the re-use distances of its instructions, and the size

of the cache. The pCRPD analysis determines the maximum

effect that pre-emption of the program has on its pWCET. The

integration between SPTA and pCRPD updates the pWCET

to account for the effects of one or more pre-emptions at

arbitrary points. Our analysis is based on a lower bound

on the probability of a cache hit for each instruction that

is crucially independent of the previous history of hits and

misses, depending instead only upon the re-use distance. We

showed that this lower bound for the evict-on-miss policy

dominates that for evict-on-access given in [5] and [6]. We

demonstrated the viability of our approach on a number of

programs from the Mälardalen benchmark suite [10].

Finally, we note that a number of extensions are possible

to our research. In future, we intend to make improvements

to the pWCET and pCRPD analysis using techniques such as

loop unrolling. Further, we will make comparisons with state-

of-the-art deterministic analysis for systems with traditional

cache replacement policies. We also intend to fully integrate

our approach with schedulability analysis.
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VIII. APPENDIX

A. Monotonicity of Phit(h)

Theorem 4 (Monotonicity of Phit(h)): The formula for the

probability of a hit in the case of the evict-on-miss random

cache replacement policy given by

P (hit) =

⎧⎨
⎩ min

{(
N−h−1
N−h

)k−h
}

N > k

0 otherwise

(27)

can be simplified to

P (hit) =

{ (
N−1
N

)k
N > k

0 otherwise
(28)

Proof: We prove the correctness of the simplification by

showing that the inner function

g(h) =

(
N − h− 1

N − h

)k−h

(29)

is monotonically increasing in h ∈ {0, . . . N} if N > k and

hence, is minimal if h = 0. First, we reformulate g(h) by

replacing h = N − x:

f(x) =

(
x− 1

x

)x−(N−k)

and show that f(x) is monotonically decreasing in x ∈
{min(1, N − h), . . . , N} if N > k, i.e.,

∀x : f(x) ≥ f(x+ 1)

∀x :f(x) ≥ f(x+ 1)

⇔
(
x− 1

x

)x−(N−k)

≥
(

x

x+ 1

)x+1−(N−k)

⇔
(
x− 1

x

)x−(N−k) (
x+ 1

x

)x−(N−k)

≥ x

x+ 1
, ∀x ≥ 1

⇔
(
(x− 1)(x+ 1)

x2

)x−(N−k)

≥ x

x+ 1
, ∀x ≥ 1

⇔
(
x2 − 1

x2

)x−(N−k)

≥ x

x+ 1
, ∀x ≥ 1 and N > k

⇐
(
x2 − 1

x2

)x−1

≥ x

x+ 1
, ∀x ≥ 1

⇔
(
x2 − 1

x2

)x

≥ x(x2 − 1)

(x+ 1)x2
, ∀x ≥ 1

⇔
(
x2 − 1

x2

)x

≥ x− 1

x
, ∀x ≥ 1

⇔(x2 − 1)x ≥ x2x − x2x−1, ∀x ≥ 1

⇔
x∑

i=0

(
x

i

)
x2(x−i)(−1)i ≥ x2x − x2x−1, ∀x ≥ 1

⇔x2x − x · x2(x−1) +

x∑
i=2

(
x

i

)
x2(x−i)(−1)i

≥ x2x − x2x−1, ∀x ≥ 1

⇔
x∑

i=2

(
x

i

)
x2(x−i)(−1)i ≥ 0, ∀x ≥ 1

To prove the last inequality, we show that the sum of two

succeeding terms starting with an even i is positive ∀x ≥ 1:(
x

i

)
x2(x−i)(−1)i +

(
x

i+ 1

)
x2(x−(i+1))(−1)(i+1) ≥ 0

⇔
(
x

i

)
x2(x−i) −

(
x

i+ 1

)
x2(x−i−1) ≥ 0

⇔
(
x

i

)
x2x−2i ≥

(
x

i+ 1

)
x2x−2i−2

⇔
(
x

i

)
≥

(
x

i+ 1

)
x−2

⇔
(
x

i

)
≥ x!(i+ 1)

(i)!(x− i− 1)!x2

⇔
(
x

i

)
≥ x!i

(i)!(x− i)!x2

⇔
(
x

i

)
≥

(
x

i

)
i(x− i)

x2

⇔1 ≥ i(x− i)

x2

⇔x2 ≥ i(x− i)

which holds since x ≥ i.
Note that there is one additional positive term if x is even.

B. Additional Experimental Evaluation

In this section, we give the results of an experimental

evaluation, applying our multi-path SPTA and pCRPD analysis

to the BS, FAC, FDCT, FIBCALL, FIR, JFDCTINT, and

INSERTSORT benchmarks from the Mälardalen benchmark

suite [10]. For each benchmark, we conducted a series of

experiments determining an upper bound pWCET distribution

(1-CDF) for the program, for the evict-on-miss and the evict-

on-access random cache replacement policies. We carried out

4 experiments on each benchmark:

1) Varying the number of pre-emptions: 0, 1, 2, 3, and so

on, for a memory block size of 1 and a cache size of

N = 128 blocks (512 bytes).

2) Varying the number of pre-emptions: 0, 1, 2, 3, and so

on, for a memory block size of 4 and a cache size of

N = 128 blocks (2048 bytes).

3) Varying the memory block size, corresponding to 1, 2,

4, and 8 instructions (i.e. 4, 8, 16, 32 bytes, given that

instructions are 4 bytes), with the cache size correspond-

ing to N = 128 blocks (so 512, 1024, 2048, and 4096

bytes respectively).

4) Varying the memory block size, corresponding to 1, 2,

4, and 8 instructions (i.e. 4, 8, 16, 32 bytes, given that

instructions are 4 bytes), with the cache size fixed at

1024 bytes (so N = 256, N = 128, N = 64, and

N = 32 respectively).
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Fig. 6. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 7. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.

In our first experiment, we compared the upper bound

pWCET distribution of the program for the evict-on-miss and

evict-on-access random cache replacement policies assuming

0, 1, 2, 3, and so on arbitrary pre-emptions. Figures 6 and 7

illustrate these results for the FAC benchmark, assuming a

memory block size of 4 bytes (1 instruction) and a cache

size of 512 bytes (N = 128). Comparing the two graphs, we

observe that evict-on-miss has marginally better performance

than evict-on-access in each case. Note that after 5 pre-

emptions, the analysis indicates that all of the instructions

could become misses, hence the final vertical line at the

right hand side of both graphs. (We note that FAC is a very

small program that nevertheless contains loops and conditional

statements).

Our second experiment was effectively a repeat of the first,

but this time with a memory block size of 4 instructions (and a

commensurately larger cache of 2048 bytes (i.e again N = 128
blocks). Figures 8 and 9 illustrate these results for the FAC

benchmark for the evict-on-miss and evict-on-access policies

respectively. We observe that the pWCETs are significantly

reduced compared to the same experiments with a memory

block size of 1 instruction. In this case, both the evict-on-miss

and the evict-on-access policies benefit from the increased

memory block size, as instructions that were previously in

different memory blocks now share the same memory block
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Fig. 8. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 9. FAC: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.

which reduces the re-use distances. Further, the performance

of evict-on-miss is now significantly better than that of evict-

on-access. This is due to the large number of instructions that

have a re-use distance of zero with evict-on-miss, and so do

not increase the re-use distances of subsequent instructions.

Further, now substantially more pre-emptions are required to

reduce all of the instructions to misses. This is because an

individual pre-emption is needed to reduce each zero re-use

distance instruction to a miss. (This can be seen in the spacing

of the lines towards the right hand side of each graph which

are 9 time units apart; the difference between a cache hit and

a cache miss).).
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Fig. 10. FAC: 1-CDF of the program with memory blocks of size 1,2,4,
and 8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-MISS random cache replacement policy.
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Fig. 11. FAC: 1-CDF of the program with memory blocks of size 1,2,4,
and 8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-ACCESS random cache replacement policy.

In our third experiment, we compared the upper bound

pWCET distribution of the program without pre-emption,

assuming memory block sizes of 1, 2, 4, and 8 instructions,

with the cache size corresponding to N = 128 blocks (so 512,

1024, 2048, and 4096 bytes respectively, given that instruc-

tions are 4 bytes). Figures 10 and 11 illustrate these results for

the FAC benchmark, for the evict-on-miss and evict-on-access

random cache replacement policies respectively. We observe

that as expected, increasing the memory block size while

also increasing the cache size so that it is constant in terms

of the number of memory blocks significantly improves the

pWCET of the program, with the best performance obtained

for memory blocks of size 8. We note that as the memory

block size increases, so the advantage of evict-on-miss over

evict-on-access also increases.vict on access also increases.
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Fig. 12. FAC: 1-CDF of the program with memory blocks of size 1,2,4,
and 8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks
respectively (1024 bytes), with a probability threshold at 10−9. EVICT-ON-
MISS random cache replacement policy.

Our fourth experiment was similar to the third; however,

this time we examined how memory block size (1,2,4, or 8

instructions) affects performance when the size of the cache

is fixed, in this case at 1024 bytes (i.e. N = 256, N = 128,

N = 64, and N = 32 blocks respectively). Figures 12 and 13

illustrate these results for the FAC benchmark, for the evict-on-

miss and evict-on-access random cache replacement policies

respectively. We observe that for evict-on-miss, increasing the

block size still increases performance even though the total

number of blocks in the cache is reduced to just 32 in the

case of memory blocks of size 8 (this is partly because the
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Fig. 13. FAC: 1-CDF of the program with memory blocks of size 1,2,4,
and 8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks
respectively (1024 bytes), with a probability threshold at 10−9. EVICT-ON-
ACCESS random cache replacement policy.

FAC program is very small); however, in the case of evict-on-

access, a memory block size of 4 instructions and a cache size

of 64 blocks gives the best performance. Effectively a larger

cache is needed to give better performance with the larger

re-use distances of evict-on-access.

The remaining pages of this technical report show the results

of our experiments for the BS, FDCT, FIBCALL, FIR, JFD-

CTINT, and INSERTSORT benchmarks. In these graphs, we

present the results for up to a maximum of 10 pre-emptions.

We note that the results for the evict-on-access policy and

FDCT show sharp transitions for cache sizes N ≤ 128. This is

because FDCT contains loops with more than 128 instructions

and once the re-use distance of an instruction exceeds the size

of the cache, the probability of a hit is assumed to be zero.

REVISION

This is a revised and updated version of this technical report

with additional experimental data, published in February 2013.

The original version was published in October 2012.
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Fig. 14. BS: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.MISS.

0 200 400 600 800 1000 1200

1e
-1

4
1e

-0
8

1e
-0

2

Execution time

P
ro

ba
bi

lit
y

PROG
P*
nxP*

Fig. 15. BS: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.ACCESS.
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Fig. 16. BS: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.MISS.
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Fig. 17. BS: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.
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Fig. 18. BS: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-MISS.
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Fig. 19. BS: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-ACCESS.
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Fig. 20. BS: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks respectively
(1024 bytes), with a probability threshold at 10−9. EVICT-ON-MISS.
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Fig. 21. BS: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks respectively
(1024 bytes), with a probability threshold at 10−9. EVICT-ON-ACCESS.
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Fig. 22. FIBCALL: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.MISS.
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Fig. 23. FIBCALL: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.ACCESS.
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Fig. 24. FIBCALL: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.MISS.
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Fig. 25. FIBCALL: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.
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Fig. 26. FIBCALL: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 128 blocks, with a probability threshold at
10−9. EVICT-ON-MISS.
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Fig. 27. FIBCALL: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 128 blocks, with a probability threshold at
10−9. EVICT-ON-ACCESS.
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Fig. 28. FIBCALL: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks
respectively (1024 bytes), with a probability threshold at 10−9. EVICT-ON-
MISS.
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Fig. 29. FIBCALL: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks
respectively (1024 bytes), with a probability threshold at 10−9. EVICT-ON-
ACCESS.
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Fig. 30. INSERTSORT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.MISS.
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Fig. 31. INSERTSORT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.ACCESS.
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Fig. 32. INSERTSORT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.MISS.
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Fig. 33. INSERTSORT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.
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Fig. 34. INSERTSORT: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 128 blocks, with a probability threshold at
10−9. EVICT-ON-MISS.
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Fig. 35. INSERTSORT: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 128 blocks, with a probability threshold at
10−9. EVICT-ON-ACCESS.
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Fig. 36. INSERTSORT: 1-CDF of the program with memory blocks of
size 1,2,4, and 8, and a cache of N = 256, N = 128, N = 64, and N =
32 blocks respectively (1024 bytes), with a probability threshold at 10−9.
EVICT-ON-MISS.
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Fig. 37. INSERTSORT: 1-CDF of the program with memory blocks of
size 1,2,4, and 8, and a cache of N = 256, N = 128, N = 64, and N =
32 blocks respectively (1024 bytes), with a probability threshold at 10−9.
EVICT-ON-ACCESS.
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Fig. 38. FDCT: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 39. FDCT: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.
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Fig. 40. FDCT: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 41. FDCT: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.

0 5000 10000 15000

1e
−1

3
1e
−0

7
1e
−0

1

Execution time

P
ro

ba
bi

lit
y

PROG bs=1
PROG bs=2
PROG bs=4
PROG bs=8

Fig. 42. FDCT: 1-CDF of the program with memory blocks of size 1,2,4,
and 8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-MISS.
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Fig. 43. FDCT: 1-CDF of the program with memory blocks of size 1,2,4,
and 8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-ACCESS.
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Fig. 44. FDCT: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks respectively
(1024 bytes), with a probability threshold at 10−9. EVICT-ON-MISS.
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Fig. 45. FDCT: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks respectively
(1024 bytes), with a probability threshold at 10−9. EVICT-ON-ACCESS.



0 10000 20000 30000 40000

1e
-1

4
1e

-0
8

1e
-0

2

Execution time

P
ro

ba
bi

lit
y

PROG
P*
nxP*

Fig. 46. FIR: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.MISS.
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Fig. 47. FIR: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.ACCESS.
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Fig. 48. FIR: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.MISS.
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Fig. 49. FIR: 1-CDF of the program with no pre-emption (PROG), 1
pre-emption (P ∗), and multiple pre-emptions (n × P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.
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Fig. 50. FIR: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-MISS.
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Fig. 51. FIR: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 128 blocks, with a probability threshold at 10−9.
EVICT-ON-ACCESS.
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Fig. 52. FIR: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks respectively
(1024 bytes), with a probability threshold at 10−9. EVICT-ON-MISS.
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Fig. 53. FIR: 1-CDF of the program with memory blocks of size 1,2,4, and
8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks respectively
(1024 bytes), with a probability threshold at 10−9. EVICT-ON-ACCESS.
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Fig. 54. JFDCTINT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 55. JFDCTINT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 1, Cache size N = 128, EVICT-
ON-ACCESS.
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Fig. 56. JFDCTINT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-MISS.
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Fig. 57. JFDCTINT: 1-CDF of the program with no pre-emption (PROG),
1 pre-emption (P ∗), and multiple pre-emptions (n× P ∗), with a probability
threshold at 10−9. Memory block size = 4, Cache size N = 128, EVICT-
ON-ACCESS.
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Fig. 58. JFDCTINT: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 128 blocks, with a probability threshold at
10−9. EVICT-ON-MISS.
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Fig. 59. JFDCTINT: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 128 blocks, with a probability threshold at
10−9. EVICT-ON-ACCESS.
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Fig. 60. JFDCTINT: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks
respectively (1024 bytes), with a probability threshold at 10−9. EVICT-ON-
MISS.
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Fig. 61. JFDCTINT: 1-CDF of the program with memory blocks of size
1,2,4, and 8, and a cache of N = 256, N = 128, N = 64, and N = 32 blocks
respectively (1024 bytes), with a probability threshold at 10−9. EVICT-ON-
ACCESS.


