‘g_g :@\}RT SV
AN~ ‘

Analysis of Probabilistic Cache
!'_ Related Pre-emption Delays

Rob Davis, Luca Santinelli, Sebastian Altmeyer,
Claire Maiza, and Liliana Cucu-Grosjean

ONERA \ 4
THE UNIVERSITYOf%?k ! \ ”
*m UNIVERSITY OF AMSTERDHM °renests 2!" i L el
INVENTEURS DLl MONDE NUMERIQUE

AZRTS /6

Outline

Probabilistic real-time systems
System model
= Random cache replacement policies (Evict-on-Access, Evict-on-Miss)
Static Probabilistic Timing Analysis (SPTA)
= Single path programs
« Complexity
Cache Related Pre-emption Delays
= At a specific point
= Upper bounding the effect at any point
= Multiple pre-emptions
Extension to Multi-path programs
Evaluation
= Case study and simulation
Conclusions and future work

Probabilistic Real-Time Systems

= What do we mean by a probabilistic real-time system?

= One or more parameters are described by random variables

=« Example: instead of a single WCET value, we have a probabilistic
Worst-Case Execution Time (pWCET)

= Characterised by a probability distribution
—

1.E+00
1.E-01
1E-02
> LE-03
E 1.E-04
& 1.E-05
1.E-06
1.E-07

1.E-08

=1-CDF

0

2

4 6

Execution time

8

Common question: What does this mean?
Isn't WCET defined as the single worst-case execution time value?

10

DA™

DA

Analogy: dice and instructions

= Rolling 10 dice (only interested in how many sixes)
= WCET equates to 10 sixes
= pWCET upper bound probability distribution on number of sixes rolled

1.E+00

1.E-01

1.E-02

1.E-03

1.E-04

Probability

1.E-05

1.E-06

1.E-07

1.E-08

/7~ Exceedance

—
— >
e
F
1e-06
0 2 4 6 g

Number of Sixes

10

function

° o
L e &>

What should the budget for ‘sixes’ be such that we get an expected
failure rate no higher than 1 per 1 million rolls of the set of dice? i.e.
runs of the program. (Failure = more sixes than budgeted) 4

| E’?‘ RTS /i

Common misunderstanding:
Difference between pET and pWCET

= Analogy: two options
= 10x ordinary dice
= 3X big dice that show pairs of values e.g. 2 sixes at once
= Like a program with two paths

1LEH00 e = Different pETs for
1.E-01 T the two options

T (typically dependent)

1.E-02

1.E-03

= pWCET is a tight
upper bound on all
possible pETs
(independent)

= pWCETSs can be
composed to get
0 2 4 6 8 10 pWCRTs

Number of Sixes 5

1.E-04

Probability

1.E-05

1.E-06

1.E-07

1.E-08

Static Probabilistic Timing AnaIYS|s

(SPTA)

= Aim is to show that the probability of timing failure falls below
some threshold e.g. 10~ failures per hour: pWCET v. budget

Inputs -

Random
replacement

policy

CPU

H

Instruction

Cache

Memory

Probabilistic
WCET (pWCET)
distribution

111111

111111

Execution time

Cache model

= Fully associative instruction cache of NV blocks
= Memory blocks can be loaded into any block in cache
= Each instruction resides in a memory block
= Memory blocks may contain multiple instructions

= Instruction modelling

= When an instruction is requested its memory block may be in
cache (a hit) or not (a miss)

« If itis not in cache, then it has to be fetched from main memory
and loaded into the cache.

= On a miss, a random location is chosen in the cache to
accommodate the new memory block (Evict-on-Miss random
replacement policy)

= Each cache block has the same probability of being evicted 1/ N

* Evict-on-miss random replacement

Cache with memory blocks a,b,c,d,e loaded next instruction is in
memory block f

=

Q| T |=h| D

Instruction modelling

= Instructions are either:
= Cache hit or cache miss (when executed)

= Program path
= Is a sequence of instructions

= Represented by the sequence of memory blocks for those
instructionse.g. a, b, a,c,d, b,c,d, a,e b, fe g, a b, h

s Re-use distance k

= Defined as the maximum possible number of evictions since the
last access to the memory block containing the required instruction

ac2, d?, @> e, b4 f, e, g, a% b% h
= Can have re-use distance of zero (instructions in the same block &
EoM)

a, a% b, b?, bo, bo, al,

an

A
{
X

T RTS»

\ & / /\’
S o7

.=A\ %

oy ,‘é

Probability of cache hits and misses

= Each instructions has a probability of being a cache hit or a
cache miss:
= Described by a discrete random variable (PMF)

g—f = M
— \ P{hit} P{miss} =1— P{hit}
Note #and M are times for a cache Hit and cache Miss
= Example:

= Probability of a cache hit = 0.75 with an execution time of 1
= Probability of a cache miss = 0.25 with an execution time of 10

110
L=
£0.75 0.25)

For each instruction we aim to lower bound the probability of
a cache hit independent of whether previous instructions

were hits or misses
10

Probabilistic real-time analysis

= Requires independence:

= Two random variables X and Y are independent if they describe
two events such that the outcome of one event does not have any
impact on the outcome of the other

= In our context an instruction having a particular execution time is
an event

= There is a dependency between these events via the cache

—

N </ Key idea is to conservatively model the execution times of
’@

=

v

—~ Instructions as independent random variables (which have
no dependency on whether previous instructions were
cache hits or cache misses)

= Actual probability of a cache hit P{#xit} is dependent on the
outcome of previous events (hits or misses) but we lower bound it
with P which is independent then we can use convolution to get
pWCET distribution for a sequence of instructions 11

Probabilistic real-time analysis

= Summation of independent random variables is via

convolution
P{ZE =z} = A_ o P{Xy = E}P{&s =2—k}

1 10 % 1 10) (2 11 20
0.8 0.2 0.7 0.3) (056 0.38 0.06

12

=
B o/

Static Probabilistic Timing Analysis
(SPTA)

= Sequence of instructions represented by their memory blocks
and re-use distances

a, b,al, ¢, d, b} c? d% e, e bt f e g, @, b% h
= Evict-on-miss random replacement policy

= (Recall: Fully associative cache , NV cache blocks, on a cache miss
we randomly choose a cache block to be evicted)

= Initial analysis by Zhou [17] 2010
k
: N -1
P/’llt k —
(k) (—N j

= Depends only on re-use distance & (not on actual cache hit / miss
behaviour)

Formulation is not strictly correct due to a dependency via
the finite size of the cache

13

Problem of Independence

= Counter example:
= Consider a cache of size N =2
a, b, c, bl, a3,
= If the 2" access to b is a hit, then b and ¢ must be in cache at
that point and so the 2" access to a is certain to be a miss

Probability that the 2" access to block a is a hit is not
independent of whether previous instructions were hits or misses

Joint probability that 2" accesses to both a and b are hits is zero,
not 1/16 (as obtained from Zhou formula and convolution)

= Solution:

= Need to model instruction PMFs as independent (so can we can
compose using convolution)

HOW? Upper bound the maximum amount of known information (/
blocks that could be known to be in cache) and consider how this
may reduce the effective cache size and number of possible
evictions
14

D |
AN

Static Probabilistic Timing Analysis

= Evict-on-Miss
= With % intervening hits assumed (if 2 > N then P,,, = 0)

k—h
Phlt(k,h)z(N_h_lj
N-—h

= Lower bound (for all values of %) so crucially independent of

previous hits / misses k :
i N-1 k<N Proof in
Proy (K) =3 N
the paper

0 k>N
= Similarly for Evict-on-Access (Cucu-Grosjean et al. [6])

-

k
| N—-(k-1)-1
Pgéﬁ(k)=<(N—(k-1) J k<N
\ 0 k>N
Easy to see that Evict-on-Miss dominates Evict-on-Access {5

Static Probabilistic Timing Analysis

= Upper bound pWCET for each instruction based on re-use
distance & using formula modelling independent (lower bound)
probability of a cache hit
= pWCET for a single path by convolution C; =7, ® o ®
= Convolution is commutative and associative
= Can represent a sequence of accesses
a, b,al, ¢, d, b3 c? d? a, e b4 f, e g, a, b4 h
by their re-use distances:
Q={-,-,1,—,-,3,2,2,5,—,4,—,2,—,5,4, —}

QFHOC ={1,2,2,2,3,4,4,5,5,—, —, —, —, —, —, —, —}

16

@RTS ok

ipWCET distribution (1-CDF)

Probability

% e P T T p— pWCET without
o e — - pre-emption
| o = __
| !
: o —
S |
s 1 1e-09 iy
- —_—_— > |
=1 |
— 1-CDFPROG| :
2 | --- 1-CDFP* é 4143 —
,F_I*’ E T T I | | |v |]
60 80 100 120 140 160

Execution time

17

Complexity of SPTA

= Convolving pWCETs for » instructions
= Might seem to have exponential complexity O(2")
(The case if each distribution had two arbitrary values)

= Max value is a small constant M so after n convolutions, max value
is nM and 2nM operations are required for the (n+1)th convolution

= Complexity is pseudo-polynomial O(Mn?) where M is a small
constant

» Problem is tractable in practice

Can also use re-sampling to reduce the size of the distributions

18

‘L;'/”l RTS /s«
NS>

Probabilistic Cache Related
Pre-emption Delays (pCRPD)

= Effects of pre-emption at a single specific program point

= Pre-emption assumed to flush the cache making some re-use
distances infinite

= Pre-emption after 1st access
a, b(a) ¢, d, b3, 2 d2 a5, e, b4, f, €2, g, a5, b%, h

= 14}

= Pre-emption after 5" access

a, b,al, cd @@@@ e, b f, €2, g, a>, b4 h
Qs =

12,2, 3, b}
= Accounting for effects of pre-emption
= Remove values from representation of program (path)

@PROG: {1 2.2.2.8.4.4.5 = —-—-.—-—,—,—,—}
@0 = 1,2 44,5, —,—._,___,_,_,_,_,____‘.__._}

A
/ T
v Sy -
Y |) -
. 4
e —ad¥W 4

PCRPD: Pre-emption at any point

Effects of a single pre-emption at any program point
= Concept of a dominant virtual pre-emption point with an

impact that upper bounds the impact of pre-emption at any actual

program point

Method to create virtual pre-emption point P*

a, b, al,cd b’ da, e b f, e g @, b% h
Pad representations of pre-emption effects so they are all the
same lengthe.g Q, = {1,—. —, -} Q5 = {2.2,3.5}
Apply min™(Q;, Q;) = {k, = min(k; . k) ¥V r < |Q;|}

S0 mint(Q,Q5) = {1,2,3,)}
Do this for all possible pre-emption points:

F = mere{l 16}{@7"} = 1.2 3.5

.....

Remove values from representation of program (path)

PROG : PROG
BROG _ pre(QPROC, Q%)

@PROC = {22445 I R L R N B R R B R

PWCET distribution (1-CDF)

pWCET without _
o pre-emption IiWCET Wlih
= —————— _— pre-emptio
é ' —[_.//L__I /\
Py 5 P
= » ,
8 3 |
o & 1 1le-09 -—-
E‘ -) >;
: |
[|
& | = 1-CDF PROG i
@ | =« 4.cOFP* | L
‘q_.) o [7 |] | I\7143 |—¢,170
60 80 100 120 140 160

Execution time

21

pCRPD: Multiple pre-emptions

= Effects of multiple pre-emptions
= Remove values multiple times
Q.5 = pre(Q27)p-, Q%)
« If a specific value is no longer present (this is due to pessimism in
the analysis) remove next larger value (don't remove smaller ones)

« Example: a, b, ¢, d, a3, b3-c3, d3, d°, d°, d9 d9 do d°
Q* = {0,3,3,3}
i =400 ==, === =y =)

= 4 pre-emptions are not enough to force this program to all misses

22

(EZRTS/x

Multi-path Programs

= Static Probabilistic Timing Analysis (SPTA) and pCRPD extended
to multi-path programs

= SPTA intuition
= Upper bound re-use distances using program analysis (fixed point
iteration)

= Combine & collapse sub-paths to get a synthetic path representation
that upper bounds the pWCET of any path through the program

= PCRPD intuition

= Upper bound the pre-emption effect at each program point using
program analysis (on the re-use distances obtained by SPTA before

collapsing)

= Combine effects for all program points into a single dominant virtual
pre-emption point P*

= Apply P* to synthetic path as in the single path case

Details in the paper

23

Evaluation

Used Malardalen Bechmarks

FAC, FIBCALL, FDCT, JFDCINT (single path with loops)
BS, INSERTSORT, FIR (multi-path)
Compared Evict-on-Miss and Evict-on-Access random replacement
policies
Varied:
= Number of pre-emptions
= Cache size (N = 256, 128, 64, 32)
= Memory block sizes (1, 2, 4, 8 instructions)

AssumedH=1,M =10

Also compared SPTA and pCRPD analysis with simulation

24

L RTS

s Evict on Miss

= Memory block size = 1
FAC BenChmark Cache size N = 128

Probability

|
pWCET without
pre-emption

. T T T pre-emption
0 T PSSRSO R P L T
1e-04 +/ PWCET estimate RO L .
from simulation LT A - "4 g-emption
107 runs LA
L (N ¢ @
1@-11 4 —— PROG [y o
——— Pk tion
------ nxP~*
1e-15 =

| | | | —— |
0 100 200 300 400 200 600
Execution time 75

X RTS 6
s Evict on Miss

= Memory block size = 1
FAC BenChmark Cache size N = 128

3 i I e i ot~ I:"-'-'777':'-{::’;’-:3;';'.";:.:'"'"."'""":'_'"i‘"""""""

1€-04 —eereemeememerieieeeeeeeeeeeeeeeee e L o '.':_.;."_: e

109 s I
1e-11 { — PROG
— O

------ nxP*

Probability

1e-15 -

| | | | B |
0 100 200 300 400 500 600
Execution time 26

s Evict on Access

= Memory block size = 1
FAC Benchmark . cahesize n = 128

Probability

e -
0'1 T -l-=_-| -'.;': "-_:-"'!,:.-
Simulation much R & 4L
1e-04 < closer due to evictions_—=#""" "'.-; """"""""" sy
on every access !
!
_l-l
(o S S LS
1e-11 4 — PROG | LM Worse performance
e p* ' than: Bvict-on-Niiss
------ nxP* 3 Lo

Te-15 | | | | — |
0 100 200 300 400 500 600

Execution time 57

s Evict on Miss
Memory block size = 4
m Cachesize N = 128

FAC Benchmark

B R e e A VT G sen e

o) [R e

04 gL SO S
z o0 R TR
5 ERHHHHEHEHINHY
® 3 lllllllllll:::::::::::::
e R HHHE R
’9 19-09 B __!.:“ :||| lll:ll ::'.:::
o SO HHHHHHHTHET

1e-11 - CHEEERRE R
1e-15 - S TTIT

| | T | |
0 100 200 300 400 500 600
Execution time 78

1L RTS/«
s Evict on Access

= Memory block size = 4
FAC BenCh Ma rk Cache size N =Sllz§8

- " - M TR LR rrrrrress
-] . e TR Y " rado i tuarivEaIadieIaL
1 y "V = :"'J'i""a """ 1 ""’I’:"I'l‘ff!f—ll-.’;l;l P L I
po = s Te versresrvreuild P R
dp 000 YRR LA
e "0 . [' T N Frrdadrraaptred
L 0Ty e 3 osnsrsanaicitraa R
T e ' » om=saguerpanurie LA UL
e- — . __l“..:] 1 fa |||f|-|a_:_||l|||:|:.:::
N - BT T Pt Eaiekar Eotatch e | PR I o4 R
-— y LghRmy ' 1 oagreasrdar et Jl:'il'l‘-l‘ """""""""
i y: L=yl e . ' Fraasbunusid ro gt
—— hd | v ey "¢ 1O Feagr itk gey
_Q " (] llil:llf:ul_ll:::f:.:l
R R
A T T TR B N ITE RN 'EERAL.
|||||| IR R NN
e S N B T SR PR LY TPREE R FER]
O |4|nn|||“|1_n.:'l_:'
Crsp a1y -} v
e 7 -] s Pag o e o pgd ol
al 1e 09 --------------- e s P E-l"-'. ' 1
lllllllll R B B -
» T ' M YRR R R
= ' ' ' Y I EERE) I.ll'll
e- - =_—rnNNuvuvoa ey 1 ' . ' 1 o veriwe .Illl1l'l.'
St Tl Sl St St et saceaia e St
e "1 » T, -l_nullurl_unlfl.f """"
- (] 1 » s 0T e aa ety V!
1] v 8¢ srdvarine .I'|ll
s a)l 1.|'|
IJI:I'II-I
1ea 1 Tyl
r lltil.l_‘l
1le-15 4| Lyttt o srmrl
Fiaaaly ©l
|

| | I
0 100 200 300 400 500 6(|)0
Execution time 29

;;;;

y ‘,’ \»y-y\"i"

L RTS s«
| S 07
——

QD7

s Evict on Miss

= Varying memory block size
FAC BenChmark Cache size N =128

g T —— PROG bs=1
o] [T -~ PROG bs=2
_ - L '_I ------ PROG bs=4
= . L :-: 1, -—-— PROG bs=8
P L
23S ¥
E 8 ! ,! T E
L
. |
i
< "
N |
9 | | = | | |
0) 100 200 300 400 500

Execution time 30

A
/ T
v Sy -
Y |) -
. 4
e —ad¥W 4

s Evict on Miss

= Varying memory block size
FAC Benchmark . . .4 cache sive

o R —— PROG bs=1 N=256
b - --- PROG bs=2 N=128
_ S PROG bs=4 N=64
= 7 HENT -=-- PROG bs=8 N=32
| © T
@) O _ A I
O o |
o v i_ ';
—] I =
'I LI
S | !
1 — “l
2 | [.I | | [
0 100 200 300 400 500

Execution time 31

Ve \L/
P’

y |
L RTSx
; ?5 l\ .d%‘:%;\ /(7/ }/\’
TN
QA7

y ol P

Technical Report

s YCS-2012-477
= Find it on Rob Davis publications page:
http://www-users.cs.york.ac.uk/~robdavis/publications.html

s Results for other benchmarks

= FAC is very simple code. Others require many more pre-emptions to
reduce them to all misses (e.g. > 500 pre-emptions for INSERTSORT)

1e-02

Probability
1e-08

1e-14

1 il
0 2000 4000 6000
Execution time 32

http://www-users.cs.york.ac.uk/~robdavis/publications.html

i RT& Vi

Conclusions

= Main contributions

= Revised Static Probabilistic Timing Analysis for Evict-on-Miss
random cache replacement policy

= Fixed a problem with dependency
= Extended SPTA to multipath programs

« Introduced analysis of pCRPD
= Including multiple pre-emptions of multi-path programs

= Evaluations

= Method is feasible and provides results that give a useful upper bound
on the pWCET

= Future work
= Improvements to the pWCET analysis via loop un-rolling

= Comparisons with deterministic analysis for systems with
traditional cache replacement policies

= Reduce the pessimism in SPTA

33

@RTSIM\»

34

	�Analysis of Probabilistic Cache Related Pre-emption Delays
	Outline
	Probabilistic Real-Time Systems
	Analogy: dice and instructions
	Common misunderstanding:�Difference between pET and pWCET
	Static Probabilistic Timing Analysis (SPTA)
	Cache model
	Evict-on-miss random replacement
	Instruction modelling
	Probability of cache hits and misses
	Probabilistic real-time analysis
	Probabilistic real-time analysis
	Static Probabilistic Timing Analysis (SPTA)
	Problem of Independence
	Static Probabilistic Timing Analysis
	Static Probabilistic Timing Analysis
	pWCET distribution (1-CDF)
	Complexity of SPTA
	Probabilistic Cache Related�Pre-emption Delays (pCRPD)
	pCRPD: Pre-emption at any point
	pWCET distribution (1-CDF)
	pCRPD: Multiple pre-emptions
	Multi-path Programs
	Evaluation
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	Technical Report
	Conclusions
	Questions?

