

Mixed-criticality job models: a comparison

Sanjoy Baruah Zhishan Guo

Department of Computer Science

The University of North Carolina at Chapel Hill.

{baruah,zsguo}@cs.unc.edu

Abstract—The Vestal model [6] in widely used in the real-
time scheduling community for representing mixed-criticality
real-time workloads. This model requires that multiple WCET
estimates – one for each criticality level in a system – be obtained
for each task. Burns suggests [3] that being required to obtain too
many WCET estimates may place an undue burden on system
developers, and proposes a simplification to the Vestal model that
makes do with just two WCET estimates per task. Burns makes
a convincing case in favor of adopting this simplified model;
here, we report on our attempts at comparing the two models –
Vestal’s original model, and Burns’ simplification – with regards
to expressiveness, as well as schedulability and the tractability of
determining schedulability.

I. INTRODUCTION

In the model for real-time mixed-criticality (MC) workloads

that was proposed by Vestal [6] and forms the basis of a

significant fraction of the research being conducted within

the mixed-criticality real-time scheduling community, each job

in an MC system with L distinct criticality levels is charac-

terized by L worst-case execution time (WCET) estimates,

one corresponding to each criticality level in the system under

analysis. Burns recently proposed (in, e.g., the addendum [3]

to his keynote presentation at the Dagstuhl Seminar Mixed
Criticality on Multicore/Manycore Platforms) a simplification

to this model, in which each job Ji is characterized by just

two WCET estimates regardless of the number of distinct

criticality levels in the system. One, denoted Ci(SELF) or

Ci(SF), is determined at a level of assurance that is consistent

with its own criticality level (denoted χi); a second, denoted

Ci(NORMAL) or Ci(NL), is determined at a level of assurance

that is consistent with the lowest (i.e., least critical) criticality

level in the entire system. (For jobs of criticality equal to the

lowest criticality level in the system, these two estimates are

the same.) The run-time behavior desired of the system is as

follows:

• If each job Ji executes for no more than its Ci(NL) value

then all jobs’ deadlines are met; intuitively, this represents

the “normal” behavior of the system.

• Each job Ji is prevented, by run-time monitoring, from

executing for a duration greater than Ci(SF).
• If any job Ji of criticality level χi executes for more than

Ci(NL), then

– jobs that are less critical than Ji are no longer

guaranteed.

– the remaining jobs all complete by their deadlines,

provided each such job Jj executes for no more than

Cj(SF) if χj = χi, and for no more than Cj(NL) if

χj denotes a greater criticality level than χi (i.e., Jj
is more critical than Ji.)

In other words, the only jobs that are guaranteed to com-

plete execution by their deadlines are those of criticality

greater than, or equal to, the criticality of the greatest-

criticality job Ji to execute beyond its Ci(NL) value.

Burns [3] makes a strong and convincing case justifying

his simplification of the Vestal model from a pragmatic

implementation-oriented perspective. Burns’ model turns out

to bear some similarities with an earlier model proposed by

de Niz et al. [4], which, too, was inspired by the experience of

de Niz et al. in implementing mixed-criticality systems. The

evidence is thus strong that this model is a very reasonable and

potentially useful one, meriting deeper analysis. We have initi-

ated such an analysis from a scheduling-theoretic perspective;

in this paper, we report on out initial findings. We restrict

attention here to the scheduling of mixed-criticality systems

that are modeled as collections of independent jobs executing

upon a preemptive uniprocessor. Our findings thus far may be

summarized as follows.

The Burns model is strictly less expressive than the Vestal
model. Determining whether a given instance can be scheduled
correctly remains NP-hard in the strong sense. Lower bounds
on schedulability, as quantified using the speedup factor
metric, are no better for the Burns model than for the Vestal
model.

That is, although the reduced expressiveness of the Burns

model makes it easier to use in many practical contexts, it

does not reduce the inherent intractability of schedulability

analysis, nor make the scheduling problem any easier.

Organization. The remainder of this paper is organized as

follows. We formally describe the Vestal and Burns models,

and state some more-or-less obvious facts concerning the

relationship between them, in Section II. In Section III we

show that scheduling instances specified using the simpler

Burns model appears to be as difficult as scheduling instances

specified using the Vestal model. We conclude in Section IV

with some pointers to future work.

II. MODEL

In this section, we start out in Section II-A briefly reviewing

the Vestal model [6], and provide definitions of the major

concepts – behavior, criticality level of a behavior, correctness
criteria, clairvoyant schedulability, MC schedulability, etc. —

of mixed-criticality scheduling, and summarize some prior

results concerning the preemptive uniprocessor scheduling of

mixed-criticality systems that are modeled as collections of

independent jobs executing upon a preemptive uniprocessor.

Next, we briefly describe the Burns model [3] in Section II-B,

explaining how the concepts of MC scheduling are adapted

to apply to the Burns model. In Section II-C, we make

some rather straightforward observations concerning the Burns

model, and its relationship with the Vestal model, with regards

to the preemptive uniprocessor scheduling of collections of

independent jobs.

A. The Vestal model

In the Vestal model [6], a mixed-criticality (MC) job is char-

acterized by a 4-tuple of parameters: Ji = (Ai, Di, χi, Ci),
where

• Ai ∈ R+ is the release time.

• Di ∈ R+ is the deadline. We assume that Di ≥ Ai.

• χi ∈ N+ denotes the criticality of the job, with a larger

value denoting higher criticality.

• Ci : N
+ → R+ specifies the worst case execution time

(WCET) estimate of Ji for each criticality level. (It is

reasonable to assume that Ci(�) is monotonically non-

decreasing with increasing �.)

An MC instance is specified as a finite collection of such

MC jobs: I = {J1, J2, . . . , Jn}. Given such an instance,

we are concerned here with determining how to schedule it

to obtain correct behavior; in this document, we restrict our

attention to scheduling on preemptive uniprocessor platforms.

Behaviors. The MC job model has the following semantics.

Each job Ji is released at time-instant Ai, needs to execute

for some amount of time γi, and has a deadline at time-

instant Di. The values of Ai and Di are known from the

specification of the job. However, the value of γi is not known

from the specifications of Ji, but only becomes revealed by

actually executing the job until it signals that it has completed

execution. γi may take on very different values during different

execution runs: we will refer to each collection of values

(γ1, γ2, . . . , γn) as a possible behavior of instance I .

The criticality level of the behavior (γ1, γ2, . . . , γn) of I is

the smallest integer � such that γi ≤ Ci(�) for all i, 1 ≤ i ≤ n.

(If there is no such �, then we define that behavior to be

erroneous.)

Scheduling strategies. A scheduling strategy for an instance I
specifies, in a completely deterministic manner for all possible

behaviors of I , which job (if any) to execute at each instant

in time. A clairvoyant scheduling strategy knows the behavior

of I — i.e., the value of γi for each Ji ∈ I — prior to

generating a schedule for I . By contrast, an on line scheduling

strategy does not have a priori knowledge of the behavior of

I: for each Ji ∈ I , the value of γi only becomes known by

executing Ji until it signals that it has completed execution.

Since these actual execution times – the γi’s – only become

revealed during run-time, an on-line scheduling strategy does

not a priori know what the criticality level of any particular

behavior is going to be; at each instant, scheduling decisions

are made based only on the partial information revealed thus

far.

Correctness. A scheduling strategy is correct if it satisfies

the following criterion for each � ≥ 1: when scheduling any

behavior of criticality level �, it ensures that every job Ji
with χi ≥ � receives sufficient execution during the interval

[Ai, Di) to signal that it has completed execution.

MC schedulability. Let us define an instance I to be MC

schedulable if there exists a correct on-line scheduling strategy

for it. The MC schedulability problem then is to determine

whether a given MC instance is MC schedulable or not.

Some prior results. In the following, let sL denote the root

of the equation

xL = (1 + x)L−1. (1)

For L ← 2, this is root of the equation x2 = x + 1; it takes

on the value (
√
5 + 1)/2 and is commonly called the Golden

Ratio or the Divine Proportion, notated Φ.

• Determining whether a given instance is MC-schedulable

is NP-hard in the strong sense [2]. This holds even if all

the jobs in the instance have the same release date, and

there are just two distinct criticality levels in the instance.

• It was also shown [2] that there are instances with L
distinct criticality levels that are clairvoyantly schedulable

upon a unit-speed processor but not scheduled correctly

upon a speed-s processor by any fixed-priority (FP)

algorithm1, for each s < sL.

• An FP algorithm called OCBP was defined [1] for

scheduling MC instances upon a preemptive uniprocessor.

It was shown [2] that any instance with L distinct

criticality levels that is MC-schedulable upon a unit-

speed processor is scheduled correctly by OCBP upon a

speed-sL processor. This speedup bound for OCBP was

shown to be tight: there are instances with L distinct

criticality levels that are MC-schedulable upon a unit-

speed processor but not scheduled correctly upon a speed-

s processor by OCBP for each s < sL.

B. The Burns model

In the Burns model [3], a mixed-criticality (MC) job
is characterized by a 5-tuple of parameters: Ji =
(Ai, Di, χi, Ci(NL), Ci(SF)), where Ai, Di, and χi have

exactly the same interpretation as in the Vestal model, and

• Ci(NL) ∈ R+ specifies the WCET estimate of Ji at

criticality level 1 (the lowest criticality level)

• Ci(SF) ∈ R+ specifies the WCET estimate of Ji at

the criticality level χi. (It is reasonable to assume that

Ci(NL) ≤ Ci(SF).

1An FP algorithm determines, prior to run-time, a total ordering of the
jobs in a priority list and during run-time executes at each moment in time
the currently active job with the highest priority. Note that EDF is an FP
algorithm according to this definition.

The notion of instance and behavior is the same for the Burns

and the Vestal models. The criticality level of the behavior

(γ1, γ2, . . . , γn) is defined as follows:

• If γj > Cj(SF) for any j, 1 ≤ j ≤ n, then the behavior

is erroneous.

• Else, the criticality level of the behavior is defined to be

the criticality level of the greatest-criticality job Jj with

execution exceeding its Cj(NL) value:

n
max
j=1

{χj | γj > Cj(normal)}

The notions of scheduling strategy, clairvoyance, correctness,

and MC-schedulability are identical for the Vestal and Burns

models.

C. Some observations

Since correctness requirements (i.e., which jobs are required

to complete execution by their deadlines for the execution to be

considered correct) for mixed-criticality instances are specified

in a manner that depends upon the criticality level assigned to

behaviors, we first investigate, in Propositions 1 and 2 below,

whether the Vestal and Burns models assign behaviors the

same criticality level or not.

Proposition 1: Any instance represented in the Burns model

can be represented exactly in the Vestal model.

Proof: A job Ji that is specified according to the Burns model

can be completely represented in the Vestal model by setting

the WCET parameter values as follows:

Ci(�) ←
{

Ci(NL) if � < χi

Ci(SF) otherwise (i.e., if � ≥ χi)

Consider any instance I in the Burns model, and let I ′

denote the instance in the Vestal model that is obtained by

applying the above transformation t each job in I . Consider

any behavior (γ1, γ2, . . . , γn) of instance I; this can also be

considered a behavior of the Vestal instance I ′. It follows

from the definitions in Sections II-A and II-B above that this

behavior is assigned exactly the same criticality level for I
and I ′; hence, the correctness requirements for both I and I ′

are identical.

Proposition 2: Instances represented in the Vestal model

cannot always be represented exactly in the Burns model.

Proof: We illustrate this by an example. Consider the following

instance I = {J1, J2, J3} represented in the Vestal model:

Ji Ai Di χi Ci

J1 0 3 1 〈1, 1, 1〉
J2 0 3 2 〈1, 1, 1〉
J3 0 3 3 〈1, 2, 3〉

Its representation in the Burns model would be as follows:

Ji Ai Di χi Ci(NL) Ci(SF)
J1 0 3 1 1 1

J2 0 3 2 1 1

J3 0 3 3 1 3

Under the Vestal model, a behavior of the instance with

γ1 = γ2 = 1, γ3 = 2 has criticality level equal to 2

and hence requires that jobs J2 and J3 both complete by

their deadlines. Under the Burns model, however, this same

behavior has a criticality level equal to 3, and requires only

that J3 complete by its deadline: this is a weaker requirement

than was mandated in the original (i.e., in the Vestal model).

It is evident that the Vestal model requires more parameters

than the Burns model in order to specify an instance. What

Proposition 2 illustrates is that these additional parameters in

the Vestal model do indeed allow for the specification of a

more nuanced set of requirements for a given instance. Taken

together, Propositions 1 and 2 above consequently yield the

(not unexpected) conclusion that the Vestal model is strictly
more expressive than the Burns model.

Next, we explore whether this reduced expressiveness buys

us anything in terms of tractability of analysis with respect to

determining whether a given instance is MC-schedulable or

not; Proposition 3 reveals that it does not:

Proposition 3: Determining whether a given instance spec-

ified according to the Burns model is MC-schedulable is NP-

hard in the strong sense. This holds even if all the jobs in the

instance have the same release date, and there are just two

distinct criticality levels in the instance.

Proof Sketch: It may be verified that the intractability proof

for the Vestal model [2, Theorem 1] only involves instances

with just two criticality levels, in which all jobs have the same

release date. Since the Vestal and Burns models are identical

for two criticality levels, this proof hold unchanged for the

Burns model as well, and its conclusion continues to hold for

the Burns model.

III. PRIORITY-BASED SCHEDULING

As a consequence of Proposition 3, we are unlikely to

be able to design an exact schedulability test to efficiently

determine whether a given instance specified in the Burns

model is MC-schedulable or not. But what about sufficient
schedulability tests? Here, Proposition 1 means that we may

use prior results that were developed for instances represented

using the Vestal model to schedule instances that are specified

using the Burns model as well. In particular, prior algorithms

such as OCBP [1], MC-EDF [5], etc. may continue to be used

for scheduling MC instances specified using the Burns model;

their performance metrics are guaranteed to be no worse for

Burns instances than for Vestal instances. In particular, we

may conclude from prior results [2] that OCBP has a speedup

bound no worse than sL (recall that sL is defined to be the

root of Equation 1) in scheduling any instance with L distinct

criticality levels.

A natural question to ask at this point in time is, do

these algorithms offer better performance guarantees when

scheduling instances specified using the Burns model than

they do when scheduling instances specified using the more

expressive Vestal model? Somewhat surprisingly, the answer

turns out to be “no.” A close examination of the proofs of the

analogous results in [2] reveal that

1 There are instances with L distinct criticality levels that

are MC-schedulable upon a unit-speed processor but not

scheduled correctly upon a speed-s processor by OCBP for

each s < sL.

2 There are instances with L distinct criticality levels that are

clairvoyantly schedulable upon a unit-speed processor but

not scheduled correctly upon a speed-s processor by any
fixed-priority (FP) scheduling policy, for each s < sL.

Both these results may be proved using techniques essentially

identical to the ones used in proving the corresponding results

in [2] for instances specified using the Vestal model; for the

sake of completeness, we formally present the second result

as Theorem 1 below, and provide a complete proof.

Theorem 1: There are MC instances with L distinct

criticality levels specified using the Burns model that are

clairvoyantly-schedulable, but that are not Π-schedulable for

any fixed priority policy Π on a processor that is less that sL
times as fast.

Proof: Consider an instance with L criticality levels and L
jobs:

Ai Di χi Ci(NL) Ci(SF)
J1 0 D1 1 D1 D1

Ji (∀i ≥ 2) 0 Di i Di −Di−1 Di

where the values of the Di’s will be specified later and shown

to satisfy Di > Di−1 for all i, 1 < i ≤ L.

For example, this instance would look as follows for L ← 3:

Ji Ai Di χi Ci(NL) Ci(SF)
J1 0 D1 1 D1 D1

J2 0 D2 2 D2 −D1 D2

J3 0 D3 3 D3 −D2 D3

The system is clairvoyantly schedulable since, for a behav-

ior of criticality-level �, a clairvoyant scheduler could have

each job complete by its deadline by

• not executing jobs J1, . . . , J�−1 at all;

• executing job J� for a duration C�(SF) = D� over the

interval [0, D�); and

• executing each job Jj ∈ {J�+1, . . . , JL} for a duration

C�(NL) = Dj −Dj−1 over the interval [Dj−1, Dj).

In the remainder of this proof, we will derive values for

the Di parameters such that this instance cannot be scheduled

correctly by any FP scheduling algorithm. That will serve to

show that this instance is clairvoyantly schedulable but not

FP-schedulable, and hence establish the correctness of the

theorem.

In any FP algorithm, some job from amongst the L jobs

J1, . . . , JL in the instance must be assigned the lowest priority.

Suppose that that job were Ji, and consider a behavior of the

instance of criticality level i in which

• each job Jj with criticality lower than that of Ji executes

for an amount Cj(SF) = Dj ,

• each job Jj with criticality greater than that of Ji executes

for an amount Cj(NL) = Dj −Dj−1, and

• job Ji executes for an amount equal to Ci(SF) = Di.

Since Ji is the lowest-priority job, it will only complete after

an amount of execution equal to

(i−1∑
j=1

Dj

)
+Di +

(L∑
j=i+1

(Dj −Dj−1)
)

=
(i−1∑
j=1

Dj

)
+DL

has completed. For Ji to meet its deadline on a speed-s
processor, we therefore need this amount to be ≤ s×Di:

sDi ≥
(i−1∑
j=1

Dj

)
+DL

⇔ s ≥
DL +

∑i−1
j=1 Dj

Di

Since some job from amongst the L jobs {J1, J2, . . . , JL}
must be assigned lowest priority by a fixed-priority policy, it

follows that

min
1≤i≤L

{DL +
∑i−1

j=1 Dj

Di

}
(2)

is a lower bound on the speedup necessary for a fixed-priority

scheduling policy to successfully guarantee to schedule the

instance correctly. This minimum is maximized when all L
of the terms are equal to each other (and thus define the

minimum). Let x be this maximum value. Instantiating the

term in Expression 2 for i ← L− 1, we have

x =
DL +

∑L−2
j=1 Dj

DL−1

⇔ xDL−1 = DL +

L−2∑
j=1

Dj (3)

Next instantiating the term in Expression 2 for i ← L, we

have

x =
DL +

∑L−1
j=1 Dj

DL

=

(
DL +

∑L−2
j=1 Dj

)
+DL−1

DL
(Rearranging terms)

=
xDL−1 +DL−1

DL
(By Eqn 3 above)

=
(1 + x)DL−1

DL
(4)

Hence we have

DL =
(1 + x

x

)
DL−1

=
(1 + x

x

)2

×DL−2

=
(1 + x

x

)3

×DL−3

· · ·
=

(1 + x

x

)L−1

×D1 (5)

Finally instantiating the term within Expression 2 for i ← 1,

we have

x =
DL

D1
(6)

From Equations 5 and 6 above, we are able to conclude that

x =
(1 + x

x

)L−1

⇔ xL = (1 + x)L−1

which is exactly Equation 1. It’s solution is therefore equal to

sL, and the theorem is proved.

IV. CONTEXT AND CONCLUSIONS

The Burns model for mixed-criticality workloads was pro-

posed [3] as a simplification of the Vestal model [6] that

has formed the basis of a large volume of research in real-

time scheduling theory. From a pragmatic perspective and in

terms of ease of use, there are undoubted benefits in using

the Burns model in preference to the Vestal model — some of

these benefits are persuasively articulated in [3]. However, this

ease of use does come with some loss of expressiveness (as

illustrated in Proposition 2). In our research, we are seeking to

better understand whether this reduced expressiveness yields

any analytical benefits in terms of reduced complexity of

feasibility analysis, less schedulability loss, etc. Thus far, our

results have been negative – we have not identified any such

benefits.

In this paper, we have restricted attention to MC instances

that are characterized as collections of independent jobs. In

the future, we plan to study systems that are modeled as

collections of recurrent tasks, as well as more general (e.g.,

multiprocessor) platforms.

ACKNOWLEDGEMENTS

We are grateful to Alan Burns and to the anonymous

reviewers for detecting several typos in an earlier version of

this paper.

This research was supported in part by NSF grants CNS

1115284, CNS 1218693, CNS 1409175, and CPS 1446631,

AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-1-

0499, and a grant from General Motors Corp.

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-
criticality systems. In Proceedings of the IEEE Real-Time Technology and
Applications Symposium (RTAS). IEEE, April 2010.

[2] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Transactions on Computers, 61(8):1140–1152, 2012.

[3] A. Burns. An augmented model for mixed criticality. In S. K. Baruah,
L. Cucu-Grosjean, R. I. Davis, and C. Maiza, editors, Mixed Criticality
on Multicore/Manycore Platforms (Dagstuhl Seminar 15121), volume 5.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2015.

[4] D. de Niz, K. Lakshmanan, and R. R. Rajkumar. On the scheduling
of mixed-criticality real-time task sets. In Proceedings of the Real-
Time Systems Symposium, pages 291–300, Washington, DC, 2009. IEEE
Computer Society Press.

[5] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest
deadline first. In Proceedings of the 2013 25th Euromicro Conference on
Real-Time Systems, ECRTS ’13, Paris (France), 2013. IEEE Computer
Society Press.

[6] S. Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Proceedings of the Real-Time
Systems Symposium, pages 239–243, Tucson, AZ, December 2007. IEEE
Computer Society Press.

MC-Fluid: rate assignment strategies

Saravanan Ramanathan, Arvind Easwaran
Nanyang Technological University, Singapore

Email: {saravana016, arvinde}@ntu.edu.sg

Abstract—In this paper, we consider fluid scheduling of mixed-
criticality implicit-deadline sporadic task systems. Fluid schedul-
ing allows tasks to be allocated fractional processing capacity,
which, although hard to implement, significantly improves the
schedulability performance. For dual-criticality systems, dual-
rate fluid scheduling in which each task is assigned two execution
rates depending on the system criticality level has been proposed
in the past. An optimal rate assignment algorithm for such
systems called MC-Fluid that assigns rates with polynomial
complexity has also been proposed. Another rate assignment
strategy called MCF has recently been proposed with linear run-
time complexity. Although MCF results in a lower schedulability
ratio when compared to MC-Fluid, it is shown that both the
strategies result in a speed-up optimal scheduling algorithm
for dual-criticality systems. We propose two new algorithms
to assign execution rates called MC-Sort and MC-Slope, both
with linearithmic (i.e., nlogn) complexity in the number of tasks
n. The proposed algorithms have a schedulability ratio that is
significantly better than MCF and almost as good as MC-Fluid,
but with a reduced run-time complexity when compared to MC-
Fluid.

I. INTRODUCTION

Increasing trend in the embedded industry towards platform

integration has motivated Mixed-Criticality (MC) systems in

the research community. These systems integrate multiple

components with varying criticality onto a common hardware.

Safety-critical cyber-physical systems such as automotive and

avionics fall under this category. Recently, the complexity of

such systems has increased owing to increased functionality.

Multi-cores have therefore become a natural choice to meet

the growing demand of such systems.

In this paper, we consider the problem of multi-core MC

scheduling of implicit-deadline sporadic task systems. We

consider a type of global scheduling called fluid scheduling

in which each task is assigned a fraction of a processing core

at each time instant. Assignment criteria are subjected to two

constraints: 1. No task is allowed to have an assignment greater

than 1 and 2. Sum of assignments of all the tasks should not

exceed the total processing capacity of the system. Though

fluid scheduling provides better schedulability, it is practically

infeasible to implement as heavy overhead is incurred due to

frequent context switching. Levin et al. [1] proposed a method

to convert fluid schedules into non-fluid schedules without

any loss in performance and thereby, making fluid scheduling

practically feasible.

Lee et al. [2] proposed a dual-rate fluid algorithm MC-Fluid

for scheduling dual-criticality (LO and HI) implicit-deadline

sporadic task systems on a multi-core platform. In a dual-

rate fluid scheduling, tasks are assigned two execution rates,

one in each of LO and HI modes, based on their execution

requirements in the two modes. These rates are criticality-

dependent as tasks have different execution requirement for

different criticality levels, and the criticality level of system

changes at run-time. MC-Fluid determines the values of these

execution rates by solving a convex optimization problem in

polynomial time, and is shown to have an optimal rate assign-

ment strategy [2]. Baruah et al. [3] derived a simplified fluid

scheduling algorithm called MCF with an optimal speed-up

factor of 4/3 and linear time rate assignment strategy. Although

MCF compromises on the schedulability when compared to

MC-Fluid, it has lower time complexity for determining the

rates and is speed-up optimal.

Extending MC-Fluid to multi-rate model or to multi-

criticality systems without compromising on the complexity is

quite hard. Formulating and solving an optimization problem

for such system can be challenging. In case of MCF, extension

to such systems is rather simple, but it will significantly affect

the schedulability.

Contributions: We propose two fluid algorithms: MC-

Sort and MC-Slope for computing the execution rate of each

task at different criticality levels. MC-Sort algorithm sorts all

the high-critical tasks based on their high-critical execution

requirement, and assigns a larger rate for a task with larger

execution requirement. The challenge with the MC-Sort algo-

rithm is that it does not consider the difference in execution

requirement of tasks between different criticality levels. It is

necessary to allocate higher rate to such tasks since they need

to execute more in high-criticality. MC-Slope algorithm, on

the other hand, assigns a larger rate to a task with a larger

rate of change in the execution requirement between different

criticality levels.

To evaluate the performance of our algorithms, experiments

are conducted with randomly generated tasks sets. Experiment

results in Section IV show that our algorithm performs better

than MCF [3] in terms of schedulability ratio and closely

follows the optimal fluid algorithm MC-Fluid [2]. It is also

shown that both MC-Sort and MC-Slope algorithm have a

linearithmic (i.e., nlogn) complexity in the number of tasks

n. Thus, both the proposed algorithms significantly improve

schedulability when compared to MCF, with a marginal loss

in time complexity.

Dual-rate fluid scheduling of MC task systems on a multi-

core is not optimal; i.e., there are tasksets that are schedulable

by some algorithm but are deemed to be not schedulable by

the dual-rate MC-Fluid algorithm. In Section V we present a

simple example that is not schedulable by any dual-rate fluid

scheduler whereas, a multi-rate (> 2 execution rates for each

task) fluid scheduler successfully schedules it. Thus, explor-

ing multi-rate fluid scheduling algorithms to further improve

schedulability is a worthy research direction to consider, even

though speed-up optimality has already been achieved.

Related Work: The concept of mixed-criticality systems

was introduced by Vestal [4]. Several studies have been done

on single-core MC scheduling in recent years; see [5] for

review. As the recent trend in the chip industry is towards

multi-cores, there have been some studies on multi-core MC

scheduling as well. Initial work on multi-core MC scheduling

is by Anderson et al. [6] is based on hierarchical scheduling

in which they proposed a mix of partitioned and global

approaches. A global fixed-priority scheduling algorithm based

on response time analysis was proposed by Pathan et al. [7].

Li and Baruah [8] proposed a global scheduling algorithm

by combining a multi-core fixed priority algorithm fpEDF

and single-core virtual deadline based MC algorithm EDF-

VD. Baruah et al. [9] also presented a partitioned scheduling

algorithm based on EDF-VD and showed that partitioned

scheduling performs better than global scheduling with respect

to schedulability ratio. Rodriguez et al. [10] compared the

performance of different partitioning heuristics for the par-

titioned EDF-VD algorithm. Guan et al. [11] extended the

work on single-core demand bound function to multi-core and

presented two enhancements to improve the overall system

schedulability and heavy low-critical task schedulability. Ren

et al. [12] proposed a partitioned scheduling algorithm based

on compositional scheduling and task grouping that offers

strong isolation for high-critical tasks and improved real-

time performance for low-critical tasks. In contrast to the

above studies, we focus on global fluid scheduling algorithms

because they have been shown to have good, theoretically

bounded, performance.

II. BACKGROUND

A. System Model

MC scheduling problem is considered for an implicit-

deadline sporadic task system scheduled on m identical cores.

In this paper, we restrict ourselves to a dual-criticality system

(namely LO and HI) as in [2] [3].

Tasks: We consider a sporadic taskset τ , in which each MC

task τi is characterized by a tuple (Ti,C
L
i ,CH

i ,Xi), where Ti

∈ R
+ is the minimum release separation time, CL

i ∈ R
+ is

the LO-criticality Worst-Case Execution Time (WCET), CH
i

∈ R
+ is the HI-criticality WCET (HI-WCET); we assume CL

i

≤ CH
i and Xi ∈ {LO,HI} is the criticality level. We assume

an implicit-deadline task model in which each task τi has a

relative deadline equal to Ti.

Notation: We consider a dual-criticality sporadic taskset τ
with n tasks. LO-criticality taskset τL and HI-criticality taskset

τH are defined as τL
def
= {τi ∈ τ | Xi = LO} and

τH
def
= {τi ∈ τ | Xi = HI}. LO-criticality and HI-criticality

utilization of a task τi is defined as uL
i

def
= CL

i /Ti and uH
i

def
=

CH
i /Ti respectively. System-level utilizations of a taskset τ

are defined as: UL
L

def
=

∑
τi∈τL

CL
i /Ti, U

L
H

def
=

∑
τi∈τH

CL
i /Ti

and UH
H

def
=

∑
τi∈τH

CH
i /Ti.

MC Behaviour: If each task τi ∈ τ signals completion before

exceeding its LO-WCET, then the system is said to be in

LO-criticality behaviour or LO-mode. If any HI-task τi ∈ τH
signals completion after executing beyond its LO-WCET and

before exceeding its HI-WCET, then the system is said to be in

HI-criticality behaviour or HI-mode. Mode change represents

the change in criticality level of the system from LO to HI.

System initially starts in LO-mode, and switches to HI-mode at

the earliest time instant when any HI-task executes beyond its

LO-WCET without signalling completion. After mode switch

all LO-tasks are discarded by the system. If at any point a LO-

task executes beyond its LO-WCET in LO-mode or a HI-task

executes beyond its HI-WCET in HI-mode, then the system

behaviour is said to be erroneous.

MC Schedulability: A taskset τ is said to be MC schedulable

by a scheduling algorithm if,

• In LO-mode, each instance of each task in τ is able to

complete LO-WCET execution within its deadline, and

• In HI-mode, each instance of each HI-task in τ is able

to complete HI-WCET execution within its deadline.

B. Dual-Rate Fluid Scheduling

Dual-rate fluid scheduling algorithm was designed to sched-

ule dual-criticality implicit-deadline sporadic task systems on

an identical multi-core platform. Dual-rate fluid scheduling can

be summarized as follows:

• In LO-mode, each task τi ∈ τ executes at a constant rate

θLi (where θLi ∈ (0, 1]).
• After mode switch, all tasks in τL are discarded immedi-

ately and each HI-task starts executing at a constant rate

θHi (where θHi ∈ [θLi , 1]).

MC-Fluid uses the criticality-dependent execution rates θLi
and θHi to schedule each task τi [2]. MC-Fluid formulates an

optimization problem to determine the execution rates where,

θHi is the solution to the optimization problem,

minimize
∑

τi∈τH

uL
i (u

H
i − uL

i)

θHi − uH
i + uL

i

≤ m

subject to
∑

τi∈τH

θHi −m ≤ 0

∀τi ∈ τH , −θHi + uH
i ≤ 0

∀τi ∈ τH , θHi − 1 ≤ 0

The θHi values are determined by solving the convex optimiza-

tion problem. The speed-up factor of MC-Fluid is shown to

be 4/3, which is optimal among all multi-core MC scheduling

algorithms [3].

MCF is a simplified variant of MC-Fluid that has linear

run-time complexity in the number of tasks n [3]. MCF, like

MC-Fluid, tries to compute the execution rates θLi and θHi to

meet the MC schedulability condition. It can be summarized

as follows:

• Compute ρ where,

ρ ← max

{
(
UL
L + UL

H

m
), (

UH
H

m
), max

τi∈τH
{uH

i }
}

• If ρ ≤ 1 compute θHi and θLi else declare failure;

θHi ← uH
i

ρ
, for all τi ∈ τH

θLi ←
{

uL
i .θH

i

θH
i −uH

i +uL
i
, if τi ∈ τH ,

uL
i , otherwise

• If
∑
τi∈τ

θLi ≤ m declare success else declare failure

The key difference between MCF and MC-Fluid is that MCF

uses a simple rate assignment strategy with linear run-time

complexity as opposed to the convex optimization framework

of MC-Fluid. Although MCF has lower schedulability perfor-

mance when compared to MC-Fluid in experiments, it is also

shown to have an optimal speed-up bound of 4/3.

A taskset τ is said to be MC schedulable under dual-rate

fluid scheduling iff

∀τi ∈ τ, θLi ≥ uL
i ,

∀τi ∈ τH ,
uL
i

θLi
+

uH
i − uL

i

θHi
≤ 1,∑

τi∈τ

θLi ≤ m,

∑
τi∈τH

θHi ≤ m.

III. PROPOSED RATE ASSIGNMENT STRATEGIES

In this section, we present two new algorithms, namely MC-

Sort and MC-Slope, for computing the execution rates θLi and

θHi for each task τi. MC-Sort and MC-Slope algorithm can be

summarized as follows:

• Compute θHi for all τi ∈ τH using MC-Sort/MC-Slope

HI-rate assignment,

• If
∑

τi∈τH

θHi ≤ m compute θLi else declare failure;

θLi ←
{

uL
i .θH

i

θH
i −uH

i +uL
i
, if τi ∈ τH ,

uL
i , otherwise

• If
∑
τi∈τ

θLi ≤ m declare success else declare failure.

A. MC-Sort Algorithm

MC-Sort rate assignment algorithm sorts all the HI-tasks

based on their HI-WCET values, and assigns the maximum

possible rate in HI-mode (ΘH
i) for each HI-task in that order.

The detailed steps of this strategy for assigning the HI-rates

are given in Algorithm 1.

The run-time complexity of the MC-Sort algorithm is

linearithmic in the number of tasks in τ . Initial assignment

of θHi can be done in a single pass through all the HI-tasks in

the system. Sorting θHi can be done in O(nlogn) time, where

n is the total number of tasks in the system. Final assignment

Algorithm 1 MC-Sort HI-rate assignment

Input: τH , m and for each θHi assign an initial value of
uH
i

max

{
(
UH
H
m),uH

i

}

Output: θHi for each τi ∈ τH
1: Sort τH in decreasing order of uH

i

2: for j := 1 to length(τH) do
3: if (m− ∑

τi∈τH

θHi) > 0 and uH
i �= uL

i then

4: if (m− ∑
τi∈τH

θHi) ≥ (1− θHi) then

5: Update θHi to 1.0
6: else if (m− ∑

τi∈τH

θHi) < (1− θHi) then

7: Update θHi to θHi + (m− ∑
τi∈τH

θHi)

8: else
9: Break

10: end if
11: end if
12: end for

of θHi and θLi can be done in linear time, and therefore the

overall run-time complexity of MC-Sort is O(nlogn).
If algorithm MC-Sort successfully determines the rates, then

the schedule resulting from using these rates will result in a

correct MC-scheduling strategy. From Line 5, it is evident

that the individual tasks’ execution rate never exceeds 1. The

condition in Line 3 ensures that the total execution rate of all

tasks do not exceed the system capacity. The initial assignment

for θHi , and θLi computation are the same as in MCF. For

correctness proof please refer to theorem 1 in [3].

B. MC-Slope Algorithm

Another rate assignment algorithm with linearithmic run-

time complexity called MC-Slope is presented in this section.

MC-Slope assigns execution rates based on the rate of change

of task τis component (O(θHi)) in the objective function of the

optimization problem in [2]. The rate of change of objective

function O(θHi), R(θHi), is defined as follows.

O(θHi) =
uL
i (u

H
i − uL

i)

θHi − uH
i + uL

i

R(θHi) =
d2O(θHi)

dθH2
i

=
2.uL

i (u
H
i − uL

i)

(θHi − uH
i + uL

i)
3

(1)

Algorithm 2 below then gives the HI-rate assignment strategy

of MC-Slope. Line 1 in Algorithm 2 sorts all the HI-criticality

tasks in increasing order of R(uH
i). It considers one HI-task

(τj) at a time from this sorted list (Line 2). For each HI-

task (τi) such that i > j, it assigns rate θHi such that R(θHi)
is decreased to match R(θHj). This can be computed using

Equation (1) by considering θHi as the unknown quantity with

a fixed value for θHi . If the assigned θHi rate is greater than 1,

θHi will be updated to 1. Line 5 checks if the assigned rates

are feasible, and if not, then the above process is repeated

Algorithm 2 MC-Slope HI-rate assignment

Input: τH , m and for each θHi assign an initial value of uH
i

Output: θHi for each τi ∈ τH
1: Sort τH in increasing order of R(θHi) at θHi = uH

i

2: for j := 1 to length(τH) do
3: Compute θHi for each τi ∈ τH s.t. i > j R(θHi) =

R(θHj)
4: Update θHi to 1.0 if θHi > 1 for each τi ∈ τH
5: if

∑
τi∈τH

θHi ≤ m then

6: Break

7: else
8: Continue

9: end if
10: end for
11: Slack = m -

∑
τi∈τH

θHi

12: Sum O(θHi) =
∑

τi∈τH ,θH
i �=1

O(θHi)

13: for i := length(τH) to 1 do
14: if (θHi �= 1) and (Slack > 0) then
15: Update θHi to θHi +

Slack∗O(θH
i)

Sum O(θH
i)

16: if θHi ≥ 1 then
17: Update θHi to 1.0
18: end if
19: end if
20: end for

for the next HI-task τj in the sorted list. In the worst-case,

the for loop exits without any modification to the initial

assignment of θHi , which is always feasible. Line 11 computes

the remaining slack in the system after the above assignment.

Lines 13-18 allocates this remaining slack to all the HI-tasks

proportionately, based on their updated O(θHi) values.

Objective function O(θHi) and the rate of change of objec-

tive function R(θHi) of a sample taskset is plotted against θHi
in Figure 1. Task 1 has a larger O(θHi) value compared to task

2, whereas, task 2 has larger R(θHi). MC-Slope assigns θHi
rate to task 2 first, until its R(θHi) value becomes equal to that

of task 1. If slack remains after their R(θHi) becomes equal,

it proportionately allocates the slack based on their updated

O(θHi) values. The rationale behind MC-Slope strategy is that

the algorithm tries to minimize the total objective function by

allocating a larger portion of the execution rate to tasks with

faster decreasing R(θHi).
The schedule resulting from using the execution rates com-

puted by the MC-Slope algorithm constitutes a correct MC-

scheduling strategy. Lines 4 and 17 in Algorithm 2 ensure

execution rates do not exceed 1. Lines 5 and 14 guarantees that

the total execution rate of tasks does not exceed the system

capacity. The θLi computation is the same as in other fluid

algorithms. MC-Slope algorithm declares success if the total

LO-rate of the tasks do not exceed the processing capacity.

MC-Slope algorithm has a run-time complexity of

O(nlogn) in the number of tasks in τ . Sorting R(θHi) in MC-

Slope algorithm can be done in O(nlogn) time complexity.

Selecting a task with least R(θHi) that satisfies the condition

(a) Objective Function - O(θHi)

(b) Rate of change of objective function - R(θHi)

Fig. 1: MC-Slope Algorithm

in Line 5 can be done using binary search. Thus, the outer

FOR loop of Line 2 runs at most O(logn) times. Computing

θHi in Line 3 consumes linear time in the number of tasks

n. Proportionately allocating the remaining slack to the tasks

can also be done in linear time. The overall complexity of the

MC-Slope algorithm is thus O(nlogn).

IV. EXPERIMENTS AND RESULTS

Experiments with randomly generated tasksets are con-

ducted to compare the performance of the proposed algorithms

with the existing fluid algorithms MCF [3] and MC-Fluid [2].

In this section, we first present the experiment setup and then

discuss the results.

A. Experiment Setup
Task set generation: Our experiments are carried out for

a dual-criticality implicit-deadline task systems scheduled on

an m-core platform. We use the same approach for generating

random tasksets as in earlier studies [3]. The task parameters

used in our experiments are described as follows:

1) UB ∈ [0.1, 0.15, ..., 1.0] denotes the normalized system

utilization in both LO and HI modes.

2) PH ∈ [0.1, 0.2, ..., 1.0] denotes the probability of a task

to be HI-task.

3) Minimum and maximum individual task utilization umin

(= 0.02) and umax (= 0.90).

4) m ∈{2, 4, 8} denotes the total number of cores.

5) Ti, the period of task τi is drawn uniformly at random

from [20, 300].
6) Pi is drawn uniformly at random from [0, 1]. If Pi <

PH , then Xi = HI else Xi = LO.

7) Task utilization ui is drawn from the range [umin,umax].

If Xi = HI, then uH
i = ui else uL

i = ui. If Xi = HI,

uL
i = uH

i /R, where R is an integer drawn uniformly at

random from the range [1, 4].
8) Execution requirements CL

i and CH
i are derived as
uL

i ∗
Ti� and
uH

i ∗ Ti� respectively.

The steps 5−8 are repeated to generate tasks until the system

utilization condition max{UL
L+UL

H

m ,
UH

H

m } ≤ UB is met. Once

the condition is violated, the last generated task is discarded. If

the resulting taskset has a normalized utilization between UB

- 0.05 and UB , then the taskset is accepted, else the taskset is

discarded and the procedure is repeated again. We evaluate the

performance of four algorithms MC-Fluid, MC-Slope, MC-

Sort and MCF for each successfully generated taskset.

B. Results

Figures 2a-2c show the acceptance ratios of the four

algorithms i.e., fraction of schedulable tasksets, versus

normalized average utilization UB over varying m ∈{2, 4, 8}
and fixed PH (= 0.5). Each data point in the figure

corresponds to 10, 000 tasksets. The results show that both

MC-Sort and MC-Slope outperform MCF, and the difference

in schedulability is marginal when compared to MC-Fluid.

Figure 3a shows the effect of varying PH values over

the weighted acceptance ratio. Weighted acceptance ratio is

defined as WAR(S) =

∑
UB∈S

(AR(UB)XUB)

∑
UB∈S

UB where, S is the

set of UB values and AR(UB) is the acceptance ratio for

a specific value of the normalized utilization UB . All the

algorithms perform well at the extreme probability values as

tasksets contain only either LO or HI tasks. It can be seen that

both MC-Sort and MC-Slope outperforms MCF algorithm

for all the PH values. The performance of MC-Slope is

marginally better than that of MC-Sort for PH values greater

than 0.6. This is as expected because MC-Slope uses the rate

of change in the objective function to determine HI-rates,

whereas MC-Sort simply uses the execution requirement in

HI-mode.

Figure 3b shows the results of weighted

acceptance ratio for varying range of uH
i /uL

i

(∈ [1, 1.5], [1.5, 2.0], [2.0, 2.5], [2.5, 3.0], [3.0, 3.5], [3.5, 4.0])
with fixed PH (= 0.5) and umax (= 0.90) values. Only the

upper bound of the ranges is presented in the plot. It can

be seen that as the ratio uH
i /uL

i becomes larger there is

a drop in the performance of all the algorithms. However,

unlike MCF, MC-Slope and MC-Sort continue to perform

exceedingly well in comparison to the optimal MC-Fluid.

V. DISCUSSIONS AND FUTURE WORK

MC-Fluid is shown to be an optimal rate assignment strategy

for a dual-rate dual-criticality task systems [2]. That is, if there

exists an assignment of θHi and θLi for all the tasks that satisfies

MC schedulability condition, then MC-Fluid is guaranteed to

find such an assignment. As fluid schedules are not imple-

mentable on actual computing platforms due to their fractional

allocations, MC-DP-Fair translates the fluid schedules to non-

fluid ones without any loss in performance [2]. MCF on the

(a) m = 2

(b) m=4

(c) m=8

Fig. 2: Comparison of acceptance ratio

other hand, presents a sub-optimal rate assignment strategy

with linear complexity. Both these strategies have been shown

to result in optimal speed-up bounds.

As a part of the future work, we plan to derive the speed-

up bounds for the two proposed algorithms, and also identify

a linearithmic complexity algorithm with an optimal rate

assignment strategy.

Dual-rate fluid scheduling is not optimal among all fluid

scheduling algorithms. In particular, algorithms with more than

two rate assignments per task can further improve schedula-

bility. Consider a dual-core system with the periodic taskset

τ and its execution rate as shown in Table I. Taskset in the

table is not MC-schedulable with the dual-rate assignment θLi
and θHi given by the MC-Fluid algorithm. We can check that∑
τi∈τ

θLi is greater than 2.

Each MC task is characterized by a sequence of job releases.

A job of a task τi is said to be a carry-over job, if it is released

TABLE I: Example taskset and its rate assignment

Tasks MC-Fluid Proposed multi-rate model

CL
i CH

i Ti uL
i uH

i θLi θHi δLi δH∗
i δCi δHi

τ1 1.5 4 5 0.3 0.8 0.641 0.939 0.641 0.939 - 0.8
τ2 2.8 4.9 7 0.4 0.7 0.700 0.700 0.700 0.700 0.700 0.7
τ3 3.5 10.5 35 0.1 0.3 0.224 0.360 0.209 0.360 0.499 0.3
τ4 15.75 - 35 0.45 - 0.450 - 0.450 - - -∑

2.015 1.999 2.00 1.999 1.199 1.80

(a) Varying probability of a task to be HI-Criticality

(b) Varying uH
i /uL

i ranges

Fig. 3: Comparison of weighted acceptance ratio

before the mode switch and has not completed its execution

until the mode switch.

We plan to improve the fluid scheduling framework by

considering multiple rates for each task. The jobs of a HI-task

τi released before mode switch execute with δLi in LO-mode

and the jobs released after mode switch execute with δHi in

HI-mode. Here, δHi = uH
i as no jobs require more than its

HI-utilization for completion. The carry-over jobs of HI-tasks

execute with δH∗
i from mode switch until the earliest time

instant at which a carry-over job of any HI-task complete

its execution, and then execute with δCi (≥ δH∗
i) until its

completion. Figure 4 represents the proposed multi-rate model

in which each task executes with more than two rates.

By assigning multiple rates to the HI-tasks, the taskset in

Table I is shown to be MC-schedulable. Let us assume task τ1
initiates the mode switch as shown in Figure 4. It is sufficient

for jobs of τ1 released after mode switch to execute with

uH
1 (= 0.8). The difference in δH∗

1 and uH
1 (= 0.939−0.8) can

be used for executing other HI-tasks; in this case, for task τ3.

By allowing additional execution rate for task τ3 in HI-mode,

we can bring down its LO-mode rate. Now we can check that

Fig. 4: Proposed multi-rate model∑
τi∈τ

δLi is less than or equal 2. Therefore, by assigning more

than two rates to each task it is possible to schedule tasksets

that are deemed to be not MC-schedulable by dual-rate fluid

scheduling algorithms.

REFERENCES

[1] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor scheduling,” in
Real-Time Systems (ECRTS), 22nd Euromicro Conference on, July 2010.

[2] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee,
“MC-Fluid: Fluid Model-Based Mixed-Criticality Scheduling on Mul-
tiprocessors,” in Real-Time Systems Symposium (RTSS), 35th IEEE
International, Dec 2014.

[3] S. Baruah, A. Easwaran, and Z. Guo, “MC-Fluid: simplified and
optimally quantified,” in Real-Time Systems Symposium (RTSS), 36th
IEEE International, Dec 2015.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, 28th IEEE International, Dec 2007.

[5] A. Burns and R. I. Davis. (2013) Mixed Criticality Systems - A Review.
http://www-users.cs.york.ac.uk/burns/review.pdf.

[6] J. H. Anderson, S. K. Baruah, and B. B. Brandenburg, “Multicore
operating-system support for mixed criticality,” in Workshop on Mixed
Criticality: Roadmap to Evolving UAV Certification, 2009, Apr 2009.

[7] R. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in Real-Time Systems (ECRTS), 24th Euromicro Con-
ference on, July 2012.

[8] H. Li and S. Baruah, “Outstanding paper award: Global mixed-criticality
scheduling on multiprocessors,” in Real-Time Systems (ECRTS), 24th
Euromicro Conference on, July 2012.

[9] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, vol. 50, no. 1, pp.
142–177, 2014.

[10] P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens, “Multi-
criteria evaluation of partitioned edf-vd for mixed-criticality systems
upon identical processors,” in Workshop on Mixed Criticality Systems
(WMC), 2013, December.

[11] C. Gu, N. Guan, Q. Deng, and W. Yi, “Partitioned mixed-criticality
scheduling on multiprocessor platforms,” in Design, Automation and
Test in Europe Conference and Exhibition (DATE), March 2014.

[12] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multi-
processors using task grouping,” in Real-Time Systems (ECRTS), 27th
Euromicro Conference on, July 2015.

A protocol for mixed-criticality management in

switched Ethernet networks

Olivier CROS, Laurent GEORGE

Université Paris-Est, LIGM / ESIEE, France

cros@ece.fr,lgeorge@ieee.org

Xiaoting LI

ECE Paris / LACSC, France

xiaoting.li@ece.fr

Abstract—In real-time industrial networks, providing timing
guarantees for applications of different criticalities often results
in building separate physical infrastructures for each type of
network at the price of cost, weight and energy consumption.
Mixed-Criticality (MC) is a solution first introduced in embedded
systems to execute applications of different criticality on the same
platform. In order to apply MC scheduling to off-the-shelves
Switched Ethernet networks, the key issue is to manage the
criticality change information at the network level. The objective
of this work is to propose a criticality change protocol for MC
applications communicating over Switched Ethernet networks.
The protocol relies on a global clock synchronization, as provided
by the IEEE-1588v2 protocol, and a real-time multicast based
upon it, to preserve the consistency of the criticality level
information stored in all the Ethernet switches. We characterize
the worst-case delay of a criticality change in the network.
Simulation results show how the criticality change delay evolves
as a function of the network load.

I. INTRODUCTION

Nowadays, highly-constrained industrial systems found in

defense, public transports or home automation have increasing

needs in terms of reliability and performance. It is a common

situation for such systems to integrate several independent

network architectures in order to transmit, in each network,

messages of different criticality (e.g. in bus: passenger in-

formation, mechanical control information, speed, etc.) such

that each system can be certified in isolation. This solution

is very expensive in terms of cost, weight and hence in

terms of energy consumption, as each network must have its

own infrastructures, materials and wires. For example, the

mechanical functions, trajectory control and the passenger

information are often treated in separated infrastructures inside

a public bus, with different dedicated materials.

One solution to this problem is the mixed-criticality (MC)

scheduling approach first proposed in the context of unipro-

cessor and multiprocessor systems [1]. It executes several

applications of different criticalities on the same platform by

adapting certification effort to the level of assurance needed

at a given criticality level. Since a networked system is an

interconnect system for applications of different criticalities,

the objective of this work is to study how to manage criticality

level information in networked systems.

With MC scheduling, each task is characterized by the

maximum criticality level it is allowed to execute. A task

can be non-critical, critical for the mission (mission-critical),

critical for the safety of the vehicle (mechanical-critical), or

for the safety of its occupants (safety-critical). Each criticality

level must provide guarantees on end-to-end transmission

delays, especially for high critical tasks. The more critical a

task is, the more reliable the guarantee should be.

In the real-time network context, we focus on how to

integrate criticality management in networked systems. The

first point is to bound the number of criticality levels we use.

Baruah [2] showed that the complexity of MC scheduling

problems is NP-hard in the strong sense. In order to limit

the complexity of our architectures, we focus on a two-level

criticality network, as presented in [3]. These two criticality

levels are called low-critical (LO) and high-critical (HI) levels:

only a set of predefined messages can be transmitted in HI

criticality level, whereas all messages can be transmitted in

LO criticality level.

The main goal of the criticality management in networked

systems consists in providing Quality of Service (QoS) guar-

antees (in terms of worst case end-to-end transmission delays),

specially for high critical messages. In this context, we focus

on a method to grant the consistency of the criticality level

information in a Switched Ethernet network, to ensure bounds

on end-to-end transmission delays of messages as a function

of the criticality of information sent.

In uniprocessor and multiprocessor systems, the problem

of characterizing the impact of low-criticality tasks when a

criticality change from LO to HI has been considered by

bounding the demand of carry-in jobs.

Assuring deterministic communications in networked sys-

tems implies to be able to bound the end-to-end delay of all

messages. In [4], we proposed a tool to evaluate the worst case

end-to-end delay of any message sent on a Switched Ethernet

network relying on a global clock-synchronization protocol.

In this paper, we also consider a clock synchronized network,

synchronized with the IEEE-1588v2 synchronization protocol

and its implementation in Precision Time Protocol (PTP). On

top of the clock synchronization, we build a reliable multicast

to consistently switch the criticality level on all the nodes of

the network.

In this paper, first we present in II the network model studied

in this work. In III, we illustrate a link utilization problem

based on an example, and then we present the importance

of managing MC in network context. We propose a MC

management protocol in IV. Finally, we show by simulation

the performances of this protocol in V, and conclude this paper

as well as future perspectives of this paper in VI.

II. NETWORK MODEL

A. Mixed-Criticality

In this paper, we consider a tree-based topology as those

found in application domains like avionics systems and recent

and futur public transport systems [5]. The network is com-

posed of a set of interconnected nodes, all organized according

to a tree-based structure with one final collecting node denoted

the sink node. An example of such topology is the one showed

in figure 1, with S4 as the sink node.

ESout

S2

S1

S3

S4

ES1

ES2

ES3

ES4

ES5

Fig. 1. Centralized Network architecture

Our goal is to propose a criticality level management

protocol in a tree-based Switched Ethernet network topology.

The sink node is in charge of stroring the network criticality

information. All the nodes of the network have a local copy

of the network criticality level information. The protocol we

propose should maintain the consistency of the criticality level

information in all the nodes of the network in the case of a

criticality switch.

We then have two cases:

• If the network criticality level is LO, the first node send-

ing a request to the sink-node, to change the criticality

level to HI will result in a multicast sent by the sink node

the all the nodes of the network with the new network

criticality level. All the nodes receiving this message

should update their local criticality level information so

as to keep it consistent after a criticality mode switch.

• If the network criticality is HI, a switch to LO criticality

level can happen only if the sink node has received from

all the other nodes a request to switch to LO mode.

A simple multicast is not sufficient to guarantee the con-

sistency of the network criticality level information in all the

nodes. We introduce a real-time reliable multicast protocol in

section IV-C as one solution to this consistency problem. We

caracterize the maximum time needed to switch the network

criticality level from LO to HI, from the request of the first

node willing to change the criticality level to HI, to the time

all nodes are allowed to change their criticality level (after

receiving the reliable multicast from the sink node).

B. Notations and main hypothesis

In MC systems, representing different levels of criticality

inside a system is mostly based on a choice between two

different hypotheses : either a message has a dedicated worst-

case transmission time (WCTT) for each criticality level,

which means that the flow of data sent in the entry points

are longer in the case of HI modes. For example, as a plane is

landing, it might need more precise evaluation of the altitude.

It means that the altitude sensors will send more complete,

and so longer, data values.

The second hypothese is not based on longer WCTT, but

on a more frequent messages. Each message has now two

different periods, one for LO level and one for HI level. It

corresponds to increasing the number of measures during a

critical phase : for example, during landing, the measure of

speed or altitude could have to be more frequent. We consider

this case in our analysis.

A network is a set of interconnected switches communi-

cating through full-duplex links connecting end-systems. On

each link, we can send one or several flows vi, and each flow

produces several messages. Each flow vi is represented as a

3-tuple vi = {Pi, Ci, �Ti} where:

• Pi is the path of nodes followed by any message of vi,

starting from a source node to a destination node. We

consider this path as statically defined by the designer.

• Ci defines the WCTT of any message of vi sent in LO

or HI network criticality level.

• Its period is defined as �Ti = {TLO
i , THI

i }. It is a vector

of different periods of the flow, corresponding to LO-

critical and HI-critical period (we assume two network

criticality levels in this paper).

• In the case where a flow can only be sent in LO criticality

level, that means that the flow will not be sent by a switch

when the network criticality level is HI.

Furthermore, we suppose that:

• Each message is independent from each other

• All message transmissions are non-preemptive

• All the switchs use a Fixed Priority (FP) scheduling

with FIFO scheduling in a specific FP queue, denoted

as FP/FIFO scheduling.

III. PROBLEM STATEMENT

A. An example

We consider the case of a simple network composed of one

switch S (denoted SM is it support MC), scheduling flows

with FIFO scheduling and having three entry ports ES1, ES2
and ES3 respectively receiving flows v1, v2 and v3, with the

following parameters:
Flow TLO

i (μs) THI
i (μs) Ci (μs) uLO

i uHI
i

v1 500 250 100 0.2 0.4

v2 500 250 100 0.2 0.4

v3 300 - 100 0.33 -
Imagine a scenario where all the three flows are transmitted

in the LO criticality level. The LO-utilization (uLO) of the

network at the most loaded node S4 is then uLO = uLO
1 +

uLO
2 + uLO

3 = 0.73. Then flow v1 and flow v2 increase

their workloads by reducing the periods of messages due to

certain emergencies. Then flow v1 and flow v2 are transmitted

in HI criticality level. Supposing that there is no criticality

management, now the utilization at the node S4 should be

uHI
1 + uHI

2 + uLO
3 = 1.13. It means that S4 is overloaded in

a mixed mode with both criticality levels.

We focus on the impact of such an overloaded link on

transmission delays when criticality levem is not managed by

the nodes. We suppose that, at t = 100 μs, the system becomes

high-critical : v1 and v2 start emitting messages according to

THI
i and no more to TLO

i . Basically, this results in a strong

increase in the transmission delay for the frames of v1 (see S

in figure 2).

ES3

ES2

ES1

SMC

S

1 1′ 1′′ 1′′′

2 2′ 2′′ 2′′′

3 3′ 3′′ 3′′′

2 1 2′ 1′ 2′′ 1′′ 2′′′

2 3 1 2′ 3′ 1′ 2′′ 3′′ 1′′

0 250 500 750

Fig. 2. Transmission delay with criticality management

We can observe that the transmission delay of messages

from v1 increases drastically with time. In fact, we can easily

compute that the waiting delay of each message from v1 in

the entry point of S4 increases of 50 ms at each new emission.

Thus, in classical Ethernet context, switches do not have input

buffers of infinite size, so a too high waiting delay can result

in dropping out a message, and then loss of data.

If the network supports MC management (see SMC in

figure 2), we can observe that the transmission delay of HI-

critical messages is constant and that criticality management

allowed us to fix the overload problem. We show next a

protocol to implement MC in network context.

IV. A CRITICALITY-CHANGE PROTOCOL

A. A two-phase protocol

Transmitting and managing criticality level inside network

topology implies two different conditions. First, we need to

assure that all nodes in the network have the same criticality

level. Secondly, in case of criticality level switch, we have

to be sure that all nodes change their local criticality level

information preserving the consistency the network criticality

level information.

Like we showed in II, criticality level is managed by a

central entity (the sink node). It means that, even if each

node has its own criticality level, it must be synchronized

at all times with the one of the sink node. To assure this

condition, we propose our MC managing protocol. It consists

in assuring the consistent change of criticality level in all

the nodes of a network topology. For this, we use a reliable

multicast to ensure a total order (updates are scheduled in

the same order in all nodes) for the update of criticality level

information in all nodes. This preserves the serialisability of

the criticality updates hence the consistency of the criticality

level information [6].

This MC managing protocol works in two phases for a LO

to HI criticality change. The node n in charge of initiating

this criticality level change sends a criticality change request

to the sink node. We name it the switch-criticality call (SCC)

message, the delay needed to send this message from node

n to the sink is denoted Indelay . Next, we need to send a

criticality switch message with the new criticality level to all

the nodes (except the sink node) of the network. This is the

reliable multicast phase initiated by the sink node that send a

timestamp of his local clock in the multicast message (recall

that we assume a global clock synchronization). The delay

needed to send and receive this message from the sink node

to node n is denoted Mn
delay .

The total criticality switch delay Sdelay in the network N
can be computed by :

Sdelay = max
n∈N

(Indelay +M
n
delay) (1)

Upon reception of a criticality switch message, each node

will have to localy determine when to to the criticality switch.

We now how yo characterize the criticality switch delay in the

case of a LO to HI criticality switch.

B. Switch-criticality call

Suppose that the network criticality is LO. Calling for a

criticality level change to HI consists in sending a specific

message from a node n in the network requiring this criticality

level change, and transmitting it to the central node responsible

of criticality management. This SCC message is transmitted

with the highest priority (except PTP messages), dedicated for

configuration messages. Nevertheless, it can be delayed by

other messages in the network: either by PTP synchronization

messages, or by other messages due to the non-preemptive

effect (a message even with the lowest priority cannot be

stopped once its transmission has started).

The SCC message is considered as a new message in the

network. It means that it is defined by its own path Pc from

n to the central node Sh and its WCTT Cc. We consider

that only one SCC message is sent by a switch (the first one

received). If another nodes initiate another SCC message with

the same criticality level, the switch receiving it will discard

the message.

In other words, computing the delay needed to transmit the

SCC consists in evaluating the delay needed for the message

to be tranmitted from one node n to the sink node. To do this,

we use the trajectory approach, presented in [7]. The SCC

transmission delay (noted as Indelay) can be computed by the

general trajectory approach expression. Given that the call is

done by a node n in the network, we apply the trajectory

approach computation method to the switch-criticality call

message c. This gives us the following result :

I
n
delay =

∑
j∈hpc

Pc∩Pj �=∅

(
1 +

⌊
W

lastc,j
c,t −M

firstc,j
i +Ac,j

TLO
j

⌋)+

· Cj (2)

+
∑

j∈spc
Pc∩Pj �=∅

(
1 +

⌊
t+ S

firstc,j
maxc −M

firstc,j
i +Ac,j

TLO
j

⌋)+

· Cj (3)

+
∑

h∈Pc\{n}

(max
j∈spc∪hpc

h∈Pj

(Cj)) (4)

+ (|Pc| − 1) · sl (5)

+
∑
h∈Pc

δ
h
c (6)

− Cc (7)

• (2) is the delay induced by messages with higher priorities

than the one of message c. These messages can delay c

if they arrive at one shared output port with c during the

maximized interval. For a higher-priority flow j , its max-

imized arrival jitter is Ac,j = S
firstc,j
maxc −S

firstc,j
minc

, where

Sh
maxc

(resp. Sh
minc

) is the maximum (resp. minimum)

delay of the message c from its source node firstc till

the output port h.

• (3) is the delay induced by messages with the same

priority as message c. They are scheduled by FIFO policy.

According to FIFO, messages arriving at the output

port where firstc,j (the first output port where they

meet message c) during the maximized temporal interval

[Mfirstc,j , t+ S
firstc,j
maxc] can delay message c.

• (4) indicates the transmission delay of a message se-

quence including message c. This delay is maximized

by considering the transmission time of the largest frame

in the sequence at each output port along Pc .

• (5) is the electronical latency induced by the transmission

through wires (with sl, the electronical latency induced

by the transmission between two nodes)

• (6) represents the delay induced by the non-preemptive

effect (see [8]) of flows with a lower priority

• (7) finally, we substract Cc because the global transmis-

sion delay W lastc
c,t corresponds to the delay between the

emission of c and its starting instant of emission in the

final sink node

As SCC message has a high priority (dedicated for config-

uration messages), the only higher priority messages that will

delay us are the PTP synchronization messages. We consider

that PTP messages and switch-criticality call messages are

the only one to be sent in this level of priority and higher,

so there is no other message with the same priority as SCC.

It means that we just need to compute the number of PTP

messages generated in each node encountered along the path

of the switch-criticality call.

Moreover, we suppose that PTP messages have their specific

worst case transmission time, noted as CPTP . But, for the sake

of readability, we consider that Cc and CPTP have the same

value (the highest one of the two). Even if it is a pessimistic

assumption, we can consider it true as PTP and SCC messages

are both configuration messages, defined with a small and

close number of bytes in Ethernet protocol. Considering these

hypotheses, we obtain (with FPTP , the PTP synchronization

frequency) :

I
n
delay = FPTP ∗

∑
j∈hpc

Pc∩Pj �=∅

(
S
firstc,j
maxc

−M
firstc,j
c +Ac,j

)

+
∑

h∈Pc

δ
h
c + (|Pn| − 1) ∗ (sl+ 2 ∗ Cc) (8)

C. Reliable multicast

In order to update the criticality level information from the

central node to all the nodes in the network, we must be sure

that the criticality switch order is received by all the nodes and

is executed preserving the consistency of the criticality level

information. Thus, in order to preserve the consistency of the

current criticality level in all the nodes, we need to guarantee a

total order in the criticality updates: two consecutive criticality

switches have to be executed in the same order in all the

nodes. A reliable real-time multicast is a method to send the

same information to all nodes in a network providing total

order for the update of the criticality level in all nodes. In [6],

the authors show how to build a real-time reliable multicast

provided that worst case messages end-to-end delays can be

bounded from above. In this paper, we adapt their solution to

the context of mixed criticality management with the trajectory

approach to compute worst case end-to-end message delays.

To implement this, we need a deterministic computation of

the transmission delay of the information. Since we can assure

a bounded transmission delay for information in each physical

link of the network, we will be able to provide guarantees

on transmission delays in the whole network. That builds the

determinism of the delay.

Suppose a network N , composed of a set of nodes S =
{S1, S2, ...Sn, ES1, ES2, ...ESm}. We note Mn

delay the delay

needed by node n to receive the reliable real-time multicast

information from the central node.

Now, we can compute the transmission delay of the

criticality-switch order (which is a message) from the central

node to all the nodes in the network. This multicast delay is

noted as Mdelay .

Even if we implemented PTP, we need to consider clock

accuracy εi for each node i, as it impacts the reliable multicast

protocol [6]. The multicast delay of the whole network can

then be deduced by taking the maximum value of accuracy on

any node. We have ε = max
n∈N

(εn). We obtain [6]:

Mdelay = max
n∈N

(Mn
delay) + ε (9)

Mn
delay , for a node n, is then computed by the addition

of different elements: the switching latency sl induced by

electronical transmission between two nodes, and the WCTT

of the criticality-switch message, noted as Ci
o. For clarity

purposes, we consider that the WCTT of the switch-criticality

message is the same in each node: ∀n ∈ N , Co = Cn
o = Cc.

For a node i in the network with a central node (sink node)

Sh , the delay needed to receive the order directly depends

on the distance between i and Sh. We note this distance

dh. Furthermore, we make the hypothesis that the switching

latency sl is the same for each physical link (like in IV-C),

and so that sl = 0ms : the electronical delay generated by the

distance between each node is null.

We then obtain the following expression of Mdelay:

Mn
delay = dn ∗ (Cc + sl) + εn

Mdelay = max
n∈N

(dn) ∗ (Cc + sl) + ε (10)

As we are computing the multicast delay, we are computing

the worst case delay needed for the farthest node from the sink

node to receive the switch criticality order. At the end of this

multicast delay Mdelay , we are sure that all the nodes in the

network received the criticality change information.

The criticality switch occurs on any node at its local time

tm+Mdelay , where tm (respectively Mdelay) is the timestamp

(the switching delay) sent by the sink node in the criticality

switch multicast message. Hence when all nodes have received

the criticality switch request, hence preserving the consistency

of the criticality level information in all nodes. All the nodes

switch almost at the same time, with a time difference bounded

by ε the clock synchronization accuracy.

D. Criticality-switch message

Given the expression of Indelay(8) and Mdelay(??), we obtain

the global expression of the criticality-switch delay Sdelay in

the network. Given the hypotheses that the switching latency is

constant, and that PTP, SCC and the reliable multcast message

have the same WCTT (noted as Cc), we obtain:

Sdelay = FPTP ∗
∑

j∈hpc
Pc∩Pj �=∅

(
S
firstc,j
maxc

−M
firstc,j
c +Ac,j

)

+
∑

h∈Pc

δ
h
c

+ (2 ∗ max
n∈N

(dn)− 1) ∗ (Cc + sl) + Cc(max
n∈N

(dn)− 1)

+ ε (11)

When we compute the total delay needed to operate a

criticality switch in the network, we then compute the de-

lay represented by PTP synchronization messages, the non-

preemptive effect induced by all messages in the network, the

WCTT of criticality switch messages and finally the delay

induced by electronical latency and clock jitter.

V. SIMULATION

In order to provide estimations of the transmission delay of

criticality information inside a network, we provide simulation

results using ARTEMIS [4]. To provide these results, we based

our approach on the topology described on figure 1, and on

randomly-generated tasksets to simulate traffic load in the

topology. To generate these tasksets, we used the UUnifast

generation algorithm presented in [9]. But as this method was

designed for processor-context simulation, we first adapted it

to network context.

A. UUnifast

The UUnifast method is a random tasksets generation

method, first presented in [9] and used to generated tasksets

in mono and multicore contexts. It consists in three steps :

• First, we generate random periods in a configurable time

interval [ε;T], where ε is the clock accuracy(see IV) and

T is the global simulation time. These periods can be of

any size.

• On a second point, we generate a random value in [0, 1]
according to a uniform law, called the utilisation of a

frame. It represents the individual load represented by

the frame.

• Then, based on the generated period and utilisation, we

compute the WCET of the task.

When it comes to adapt UUnifast method to a network con-

text, it results in two different problems to solve. First, when

we generate a random flowset, we have to specify a targetted

load for the whole system (to compute the utilisation). But

in the network, the load is different in each node. To solve

this, we decided to focus on the load on the sink node of the

topology : as it is the central node, we assume this is the one

with the highest load, or at least with the most important one

to focus on.

Secondly, we had to modify the UUnifast method in order

to generate LO and HI critical messages. So we introduced

a critical rate in the method which defines, randomly and

according to this rate, the average number of critical messages

inside the whole generated flowset. As we based our approach

on critical periods change, each frame was defined either with

just one LO-critical period, or with one LO and one HI critical

period.

B. Impact of the load

We did generate different flowsets, each one representing a

different scheduling scenario. We computed the utilization of

each flow with a uniform distribution based on the network

load, and finally deduce the WCTT of the flow. As we are

working with ethernet(IEEE 802.3), the size of each frame

in constrained in size between 64 and 1518 bytes. With a

100 Mb/s bandwith, all the WCTT in our network are bound

between 4.9μs and 115,8μs.

We made a scenario with a set of 50 different flows

(corresponding to a classical context of use). In our evaluation,

we fixed a global simulation time of t = 500μs, which is

enough to observe and bound the different delays we want

to focus on. We made the load represented by the flows

increasing from 0.4 to 1. The computed load was the one

in the central node (S4) which receives all the flows. With

these generated flows, we wanted to evaluate the impact of

the network load on the criticality switch transmission delay.

Assigning the highest priority for mixed criticality manage-

ment messages (dedicated for configuration messages) allows

the criticality-switch messages to not be delayed more than

once by messages with a lower priority (non-preemptive

effect). We verified this hypothese by evaluating the MC delay

switch as a function of the network load. Thus, we need to add

to this delay the one due to PTP synchronization messages,

considered with a higher priority (see IV).

We can observe in figure 3 that, basically, the delay of the

criticality-switch as a function of the network load is linear.

Fig. 3. Switch-criticality delay/load

We now analyse the impact of the non-preemptive delay for

flows sent with a smaller priority than those of MC messages.

C. Non-preemptive effect

We picked the same parameters as for the previous scenario,

but we also decided to put a limit on the highest WCTT in

the network than for MC messages. We simulated 4 different

cases with different limits in the highest WCTT.

The results obtained (see figure 4) shows that the criticality-

switch delay is strongly influenced by the highest WCTT in

the network. To evaluate this influence, we limited the highest

WCTT to small sizes: 20 μs (262B), 30 μs (393B) and 40

μs (524B). We can observe that, at the highest loads, the

transmission time is nearly constant.

The point is: in the UUnifast task generation method we pre-

sented in V-A , the task model bases the WCTT computation

on the load. It means that the highest WCTT increases with

the load. That explains why, in the first scenario without any

particular limit, we obtained an increasing transmission time

with the increasing load. On the contrary, when limiting the

highest WCTT in the network, we obtain an constant switching

delay (impacted from 1% to 6% in our examples at the highest

network load, due to error margins we tolerated in the load

computation).

As explained in IV, attributing to the switch-criticality and

reliable multicast messages the highest priority allows us to

make the criticality messages independant from the network

load (the impact is very limited). No matter the traffic in the

network, we can then compute the criticality switch delay in

the network. As this switch delay is bound, the transmission

of HI-critical messages can be assured in our topology in a

bound and known time.

Fig. 4. Switch-criticality delay/load with limited highest WCTT

VI. CONCLUSION

A. Conclusion

In this paper, we present a criticality-change protocol in a

clock synchronized Switched Ethernet network, in the case of

two criticality levels. This criticality change protocol is based

on a reliable real-time multicast used update the criticality

information in all the nodes of the network while preserving

its consistency. The real-time multicast builds a total order for

the updates of the critality information. It relies on the based

IEEE1588v2 global clock synchronization. We characterize

the worst case delay for a criticality change with the trajectory

approach. Through simulation, we generate random scenarios

to test the time needed for a criticality change. We show that

the criticality switch delay is harldy impacted by the network

load. As a further work, we will show how to characterize the

end to end response time of HI messages in the case of a LO

to HI criticality switch.

REFERENCES

[1] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed-
criticality systems,” in RTSS 2011.

[2] S. Baruah, “Mixed criticality schedulability analysis is highly intractable,”
2015.

[3] A. Burns and R. Davis, Mixed criticality systems: A review. Department
of Computer Science, University of York, 2013, vol. Tech. Rep.

[4] O. Cros, F. Fauberteau, L. George, and X. Li, “Simulating real-time
and embedded networks scheduling scenarios with artemis,” in WATERS,
2014.

[5] H.-T. Lim, L. Völker, and D. Herrscher, “Challenges in a future
ip/ethernet-based in-car network for real-time applications,” in
Proceedings of the 48th Design Automation Conference, ser. DAC
’11. New York, NY, USA: ACM, 2011, pp. 7–12. [Online]. Available:
http://doi.acm.org/10.1145/2024724.2024727

[6] L. George and P. Minet, “A fifo worst case analysis for a hard real-time
distributed problem with consistency constraints,” in Proceedings of the

17th International Conference on Distributed Computing Systems, 1997.
[7] S. Martin, P. Minet, and L. George, “End-to-end response time with

fixed priority scheduling: trajectory approach versus holistic approach,”
in International Journal of Communication Systems, vol. 18, no. 1. John
Wiley & Sons, Ltd., 2005, pp. 37–56.

[8] X. Li, O. Cros, and L. George, “The trajectory approach for afdx fifo
networks revisited and corrected,” in RTCSA’14, 2014.

[9] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability
tests,” Journal of Real-Time Systems, pp. 129–154, 2005.

Mixed Criticality Systems: Beyond Transient Faults

Abhilash Thekkilakattil1, Alan Burns2, Radu Dobrin1, and Sasikumar Punnekkat3

1Mälardalen Real-Time Research Center, Mälardalen University, Sweden
2Real-Time Systems Research Group, Department of Computer Science, University of York, UK

3Department of Computer Science and Information Systems, Birla Institute of Technology and Science, India

Abstract—Adopting mixed-criticality architectures enable
safe sharing of computational resources between tasks of
different criticalities consequently leading to reduced Size,
Weight and Power (SWaP) requirements. A majority of the
research in mixed-criticality systems focuses on scheduling tasks
whose Worst Case Execution Times (WCETs) are certified to
varying levels of assurances. If any given task overruns its
WCET, the system switches to a higher criticality and all the
lower criticality tasks are discarded to make time for the
execution of higher criticality tasks. Task execution time
overruns are transient faults that are typically tolerated by
simply executing an alternate task before the original deadline,
or, by discarding the failed task to prevent it from interfering
with higher criticality tasks. However, permanent faults such as
processor failures can render the system to be useless, many
times leading to unsafe states. In this paper we present a
taxonomy of fault tolerance techniques to tolerate permanent
faults, as well as map it to real-time mixed-criticality
requirements based on the extend of fault coverage that in turn
influences the associated assurance.

I. INTRODUCTION

The complexity of software in real-time applications is
increasing unlike ever before. This has created novel
challenges in the design and verification of such systems,
particularly with respect to timeliness guarantees. One way
of reducing the complexity involved in providing temporal
guarantees is to adopt a mixed criticality architecture, where
only some tasks that are deemed to be critical to the
operation of the system are provided strong guarantees, while
others are typically provided weaker guarantees. The two
main motivations behind adopting a mixed criticality
architecture are i) efficient use of computational resources by
integrating functionalities of varying criticalities (that are
mostly certified to varying assurance levels) on the same
platform [13] and ii) enable easy certification of systems by
different certifying authorities [4]. Note that in this paper,
”resources” refer to ”computational resources” e.g., a
processor.

Mixed criticality systems has received good reception in
the real-time systems community since Vestal described the
problem in [13] (though some works such as [9] predates
Vestal’s work). The central assumption behind the
mixed-criticality model proposed by Vestal [13] is that the
individual task Worst Case Execution Times (WCET)
monotonically increase with criticality of the components,
because, the more critical a task is with respect to the correct
functioning of the system, more conservative is its WCET
estimate thereby increasing confidence on the estimates. We
refer to all the mixed criticality scheduling models (e.g.,
[13][4]) that adheres to this assumption as Vestal’s model.

Most of the research in mixed-criticality real-time
scheduling (which is Vestal’s model) considers, what is
referred to in the dependability community as the, transient
faults. A transient fault can be a task execution time overrun
(as assumed by Vestal’s model) or single event upsets (as
assumed by more recent works on mixed-criticality systems
[10] [12]). Transient faults on real-time tasks are commonly
tolerated by a simple re-execution of the same task or by an
execution of an alternate task (or even by discarding the
failed task so as not to jeopardize timeliness guarantees of
other tasks, similar to Vestal’s model). Although the ultimate
goal of mixed-criticality systems is to provide higher
assurances (e.g., reliability) to higher criticality components,
the focus of the majority of research is limited to transient
faults, in particular to transient faults caused by different
levels of Worst Case Execution Time (WCET) assurances.
Moreover, the majority of the works assume that
lower-criticality tasks can be safely discarded as the system
switches to a higher criticality level (which is when tasks
overrun their WCETs).

On the other hand, permanent faults can render a system
to be completely useless e.g., a processor failure. Moreover,
inherent hardware faults (such as corrupted memory) can
cause failures that are hard to detect by re-executions or
executions of alternate tasks. In this case, system designers
need to adopt spatial redundancy coupled with a voting
mechanism to determine whether or not the generated
outputs are erroneous. The majority of the research in
mixed-criticality systems [7] do not consider the possibility
of permanent faults, the issues/problems arising out of this,
as well as its implications in the context of a
mixed-criticality architecture.

Adopting spatial redundancy brings forth many
challenges in conjunction with mixed-criticality architectures,
particularly with respect to satisfying the ”S” and ”W” of the
SWaP (Size, Weight and Power) constraints. One of the goals
of adopting a mixed criticality architecture is to enable safe
sharing of hardware resources between highly critical and
lesser critical software components in order to reduce SWaP.
However, spatial redundancy techniques require spare
hardware that increases SWaP. Consequently, one of the
goals of this paper is to investigate the possibilities of
implementing a mixed-criticality architecture when using
spatial redundancy.

Another essential requirement for guaranteeing
”timeliness” of real-time tasks that are replicated on a
specified number of processors is that the hardware on which
these replicas execute need to be tightly synchronized.

Traditionally, this was achieved by implementing tight
synchronization schemes that typically require hardware
modifications/support. Implementing tight synchronization
schemes for all the spatially redundant components increases
development costs, as well as make the components
dependent on a global time base. The use of loosely
synchronized systems (i.e., systems where time
synchronization is carried out by software) enables easier use
of e.g., multicore systems to implement spatial redundancy.
Adopting a mixed-criticality architecture, especially on
multicore systems, brings forth possibilities to implement the
different functionality on software and perform voting using
a ”time aware voter” (e.g., see Aysan et al. [3]).

This paper presents a taxonomy of spatial redundancy
techniques to tolerate permanent faults and identify how
mixed-criticality architectures can be implemented when
using spatial redundancy.

To summarize, the main contribution of this paper is a
taxonomy of spatial redundancy techniques in the context of
implementing mixed-criticality architectures. Particularly, we
consider two main challenges:

• Maximizing efficiency of replica allocation to reduce
cost. This can be achieved by provisioning resources
based on the criticality of the associated tasks.

• Providing different levels of assurances for spatially
redundant software components (tasks). The different
levels of assurances are based on the extent of
coverage of different faults.

The rest of the paper contains the system model in Section
II, the main contributions of this paper in Section III followed
by conclusions in Section IV.

II. SYSTEM MODEL

In the following, we describe the system model in detail
in order to make the context clearer.

A. Example System

In this paper, we use a running example of an
autonomous vehicle adapted from Burns et al. [6]. The
example services (tasks) are given in table I and consists of 2
high criticality functions, 4 medium criticality functions, 1
low criticality function and 1 non-critical function. These
criticalities can be mapped to tasks associated with
components that are assigned to specific Safety Integrity
Levels (SILs) described in IEC 61508. Collision avoidance
and braking control are high criticality tasks, while engine
and lateral control, path finding and route planning can be
considered to be of medium criticality. Display control
functions are of low criticality while music streaming can be
considered to be a non-critical task.

B. Fault Model

In this paper we consider both transient and permanent
faults. As noted before, WCET overruns (such as the one
assumed in the widely used Vestal’s model) are one type of
transient faults and is tolerated by either aborting the task or
by simply re-executing the task or executing an alternate

Function Criticality

Collision Avoidance High
Braking Control High
Engine Control Medium
Lateral Control Medium
Path Finding Medium
Route Planning Medium
Display Controls Low
Music Streaming Non-Critical

TABLE I: Autonomous Vehicle Example

task. Avizienis et al. [1] defines a permanent fault to be fault
whose presence is assumed to be continuous in time. This
can be for example, a processor failure in a distributed
system that leads to an absence of output or a physical
memory failure that leads to incorrect outputs. Permanent
faults can be tolerated by employing spatial redundancy, i.e.,
replicate the required functionality on multiple hardware.

Example II.1. Consider the autonomous vehicle example
given in table I that performs collision avoidance by
detecting obstacles in its path and choosing appropriate
actions such as either stop, slow-down or navigate around it.
Object detection is a key functionality in this system. Suppose
the processor on which the ”collision avoidance” software
runs fails, it must be possible for the system to recognize the
failure and bring the vehicle to a safe state or recover from
it. A relatively easy way out is to replicate the collision
avoidance functionality on multiple hardware, e.g., using
Triple Modular Redundancy (TMR), and perform a voting.
Adopting TMR enables tolerance to 1 fault, i.e., even if one
of the replicas fail, in principle, the vehicle can detect it and
still continue functioning.

There are different types of permanent faults that need to
be tolerated. The higher the coverage of the fault tolerance
mechanism associated with a task, the higher the assurance
one can give to the particular task. This provides for
interesting trade-offs between task criticalities, development
costs and SWaP.

Design faults: Occurs due to the deficiencies in the design
and development of the system. A design fault may be due
to the use of e.g., a particular type of hardware or adoption
of a specific implementation of a particular algorithm when
building the system.

There are two types of design faults:

1) Hardware Design faults: Faults that either
originate in the hardware or affects the hardware
due to faulty design are referred to as hardware
design faults. Examples of hardware design faults
include manufacturing defects in the computer.

2) Software Design faults: Faults that affect the
software of a computer system as a result of
incorrect design are referred to as software design
faults. Examples of software faults include faults
due to incorrect interpretation of the specification,
or a faulty implementation of an algorithm.

Random faults: A random fault is a fault whose time of
occurrence cannot be predetermined, nor the causes can be

identified offline. It may, for instance, be the result of wear
and tear due to the continuous use of the system. On the
other hand, the rate of occurrence of random faults for a
given system can be estimated, for example, it is possible to
analyze impact of wear and tear on the system.

Byzantine faults: Byzantine faults occur when some replicas
behave arbitrarily differently. Moreover, different observers
will record different behaviors of the replicas. In general,
byzantine faults are the worst kind of faults and requires
significant replication to be tolerated. Typically, to tolerate m
byzantine faults, there is a need of 3m+ 1 replicas.

C. Fault Tolerance Mechanism

There are two primary types of fault tolerance mechanisms
that can be implemented:

1) Fail Stop: In this form of fault tolerance, whenever
a component fails, it stops functioning completely
in order to prevent interfering from other
(potentially dependent) components. Majority of the
research in mixed-criticality real-time systems
implement this form of fault tolerance in which, in
case of an execution time overrun, the system
switches to a higher criticality state and discards all
the lower criticality components, essentially
stopping all lower criticality tasks from executing.

2) Fail-Operational: In this form of fault tolerance,
even if a component fails, the system continues to
give an acceptable level of service by typically
employing back-ups in the form of temporal or
spatial redundancy.

D. Task Model

We consider a set of n real-time tasks/functions denoted
by Γ = {τ1, τ2, . . . , τn} where each τi has a minimum
inter-arrival time Ti and a deadline Di. The transient faults
on any task τi are tolerated either by simply re-executing τi
or executing a back-up task to τi– we refer to both as
alternates. In this context, the main execution of τi is
referred to as the primary and has an execution time denoted
by Ci. Permanent faults on any task τi are tolerated using
spatial redundancy: each τi has a specified number of
replicas that are executed in parallel, after which a voting is
performed.

Every τi ∈ Γ needs to tolerate δti ≥ 0 transient faults and/or
δpi ≥ 0 permanent faults. This means that each τi requires δti
alternates in addition to the primary execution and needs to
be replicated on (2δpi + 1) processors [11]. Alternately, the
execution time of the back-ups of any task τi can be seen as
the ”extra-time” that τi may need in case of a WCET overrun
at any given criticality level.

Example II.2. Consider a task τ1 that needs to tolerate δti = 1
transient fault and δpi = 0 permanent faults. This means that
τ1 needs to be re-executed once or an alternate task must be
executed if there is a transient fault on τ1.

This model generalizes the widely used model for mixed-
criticality systems, since e.g., by enforcing δti ≤ 1 (and δti = 0
i.e., no replication) we get a dual criticality system: when δti =

1, τi becomes a high criticality task that has two execution
times (analogously one alternate) and when δti = 0, τi becomes
a low criticality task that can be safely discarded upon overrun.
In the context of the widely used model, hereafter referred to
as Vestal’s model, the recovery task can be seen as the ”extra”
duration for which high criticality tasks can execute in case
of WCET overruns before the system switches to a higher
criticality level.

III. MIXED-CRITICALITY DESIGN CHALLENGES IN

DEPENDABLE REAL-TIME SYSTEMS

In this section, we present a how different levels of
assurances can be provided to tasks of different criticalities
when building predictable mixed-criticality systems that
employs spatial redundancy. We first explain the time
synchronization problem when using spatial redundancy, that
may lead to disasters in hard real-time systems. We then
identify how mixed-criticality architectures can be
implemented when using spatial redundancy to minimize
SWaP requirements as well as the effort required to
implement them.

Spatial redundancy, time synchronization and
mixed-criticalities: Depending on the criticality of the task,
the replicas of the task may be implemented as simple
circuits developed by independent teams to ensure diversity.
Alternately, the different replicas may be developed as
software, by independent teams, and may be scheduled
together with other tasks on processors from different
vendors; albeit with reduced assurance when compared to the
previous case. One of the key design challenge involved in
providing spatial redundancy, in this case, is to ensure
synchronization of different replicas to provide timely output
to the voter. The need for tight synchronization is illustrated
by the following simple example.

Example III.1. Consider the sensors associated with lateral
control of the example autonomous vehicle described in
Table I. In order to provide high assurance to the Lateral
Control function, spatial redundancy must be employed.
Suppose the associated sensor is triplicated, with a voter,
then there is a risk of two of the replicas giving the same
output while the third gives a late output that is different
because of the change in value over time. In this case, there
is a risk that the voter discards the correct (albeit late) value
by tagging it as ”incorrect” since it does not agree with the
outputs from the two other sensors.

These errors can be tolerated by adopting a tight time
synchronization between the different replicas. However,
providing tight synchronization is costly and requires
significant effort. Moreover, having a tight synchronization
between different replicas makes the system heavily
dependent on the global time base. Alternately, for lesser
critical tasks, loose synchronization algorithms implemented
using software may be used that requires lesser development
effort and cost. When using loose synchronization scheme,
care must be taken to ensure that the voter does not suffer
from timing errors. Loosely synchronous systems facilitate
cost reduction by enabling the use of commercially available
real-time operating systems on the individual processors
without requiring modifications to enable tight

synchronization. Each processor used to replicate the
different tasks can execute the replicas using the local
scheduling algorithm that can be, for example, EDF or FPS
(as long as the individual replicas produce timely outputs). A
time aware voter such as the one proposed by Aysan et al.
[3] can detect and tolerate timing errors, consequently
providing dependability guarantees.

A. Mixed-Criticality Architecture for Spatially Redundant
Functions

Providing reliability and safety guarantees using spatial
redundancy implies increased hardware that in turn results in
increased SWaP requirements. Adopting a mixed-criticality
architecture reduces SWaP requirements by provisioning the
computing resources such that it reflects the task criticalities
and the associated required assurance levels. Implementing
mixed-criticality architectures for systems using spatial
redundancy is still largely an unexplored area. In this section,
we investigate methods to provide different levels of
assurances to different tasks that uses spatial redundancy to
improve reliability and safety while reducing SWaP. An
overview of the mapping of the criticalities to tasks based on
the fault coverage assurances is summarized in table II.

High Criticality Tasks: The high criticality tasks are the
most important tasks in the system and require a very high
level of assurance. Consequently, the probability of failures
need to be significantly low. These tasks are associated with
components classified as e.g., SIL 4 of the IEC 61508 and
are highly critical for the safe operation of the system. The
high criticality task failures can result in disastrous
consequences for the system and hence need to be provided
with the highest level of assurance. For example, the
collision avoidance and braking control in Table I are highly
critical functionalities to ensure safe operation of an
autonomous car.

Assurance Mechanism: The highest criticality tasks may be
implemented on dedicated hardware to ensure isolation (as is
typically done in many systems [14]), and a high integrity voter
implemented as a simple electronic circuit performs voting.
The use of simple electronic circuits implies that the voter can
be verified to a very high degree of assurance [2], and the use
of dedicated hardware guarantees that the tasks are protected
from many types of faults.

• In order to provide assurances against random faults,
the high criticality tasks are typically replicated e.g.,
using Triple Modular Redundancy (TMR).

• To provide protection against design faults (both
hardware and software), there is a need to ensure
diversity. This can be done by N-version
programming, i.e., developing the different replicas
using different development teams. Moreover, the
different teams must use hardware and development
tools from different vendors.

• To protect against byzantine faults, byzantine fault
tolerance mechanisms must be adopted. Protection
against byzantine faults imply further increase in
hardware requirements. Typically, to tolerate δpi
byzantine faults, there is a need of 3δpi + 1 replicas.

Note that byzantine failures are observed more
frequently than expected [8]. If the tasks are
protected against byzantine faults, they are implicitly
protected against all other faults (and hence does not
require e.g., TMR).

• The replication and diversity ensures that the system
is tolerant to many transient faults since there is
redundancy. Typically, by having 2δpi + 1 redundant
system implies protection against 2δpi transient
faults. The Airbus A320, for example, uses both
replication and diversity to ensure fault tolerance [5].

A key challenge here is to ensure tight synchronization
between the replicas and the voter to ensure timeliness of the
generated output. As a consequence of the above design, the
development of high criticality tasks can be very costly.

Medium Criticality Tasks: The medium criticality tasks
correspond to components of the system that are to be
certified as e.g., SIL 3 of IEC 61508. A failure in these tasks
can cause serious consequences to the correct functioning of
the system. However, consequences of medium criticality
task failures are less disastrous than the high criticality
failures, and the associated reliability guarantees need not be
as high as the critical tasks (or the probability of a failure
causing a disaster is lower compared to the high criticality
tasks). Consequently, the medium criticality tasks need not
be provided with the highest assurance level similar to the
critical tasks. They can be provisioned less pessimistically,
even using commercially available high integrity processors,
than high criticality tasks to save on Size, Weight or Power.
Engine control, given in Table I, is an example of a medium
criticality task. Even though it may not be as critical as
collision avoidance, there is a need to ensure its failure free
execution.

Assurance Mechanism: The medium criticality tasks may
be implemented in software on high integrity processors
using e.g., table driven scheduling. Even though the medium
criticality tasks need not be implemented as electronic
circuits to guarantee high assurance, they need to be made
significantly fault tolerant.

• The medium criticality tasks can be replicated e.g.,
using TMR to protect it against random faults. The
replicas of the medium criticality tasks may be
scheduled using highly predictable scheduling
algorithm e.g., table driven scheduling on different
processors. These tasks need to execute in lock-step,
and on completion pass on the output to a voter that
then performs voting to mask any task failures.

• The medium criticality tasks can be made tolerant to
design faults (both hardware and software) by
ensuring diversity, e.g., choosing processors on
which the replicas execute from different vendors
and by ensuring the use of N-version programming.

• The replication and diversity guarantees protection
against many transient faults.

Such a setup requires tight synchronization schemes between
the high integrity processors, in order to guarantee timeliness
of the replica outputs and in turn guarantee timely output

Task Criticality Transient Faults Random Faults Software Faults Hardware Faults Byzantine Faults

High Fully covered Fully covered Fully covered Fully covered Fully covered
Medium Fully covered Fully covered Fully covered Fully covered
Low Fully covered Fully covered Fully covered Partially covered
Non-critical Fully covered Partially covered

TABLE II: Mapping criticalities to tasks based on fault coverage.

from the voter. The advantage here is more than one medium
criticality tasks can be scheduled on the same processor, as
opposed to implementing them on the hardware,
consequently reducing SWaP requirements. Since the tasks
are implemented as software, and are scheduled on
commercially available processors, the development cost
associated with medium criticality tasks will be less.

Low Criticality Tasks: Low criticality tasks are associated
with those components that need to be provided with e.g.,
SIL 2 guarantees under IEC 61508 standard. Failures on low
criticality tasks can cause less severe disruption of services
in the system that are not disastrous (or the probability of a
failure causing a disaster is low). However, these tasks are
still required to ensure the normal operation of the system
and needs to be provided with appropriate guarantees.
Display controls in autonomous vehicles may not be as
critical as collision avoidance or engine control and hence
need not be provided with the same level of assurance.

Assurance Mechanism: The low criticality tasks may be
implemented on commercially available multicore processors
and scheduled using any standard real-time scheduling
algorithm. However, some level of fault tolerance must be
implemented to ensure the associated failure probabilities are
low.

• The low criticality tasks may be replicated on
different processors of the multicore platform. The
different cores may be synchronized using relatively
cheap synchronization algorithms, and a ”time
aware” voter (e.g., [3]) can guarantee timeliness of
the generated output.

• Protection against software design faults can be
implemented by employing N-version programming.
Since, the replicas are scheduled on the different
cores of the same multicore platform, no protection
exists against hardware design faults and many
hardware operational faults.

• The replication ensures that the system is
automatically protected against many transient faults.
Moreover, if software diversity is ensured, it further
increases protection against many transient faults.

The use of commercially available processors, together with
the possibility of adopting loose synchronization enables the
use of relevant uniprocessor or multiprocessor scheduling
algorithms such as Earliest Deadline First or Fixed Priority
Scheduling to schedule the replicas, consequently enabling
the use of commercial real-time operating systems. The main
concern here is regarding the faults that may occur due to
the loose synchronization. In this case, a time aware voter
such as the one propsed by Aysan et al. [3] can guarantee
absence of timing faults in such loosely synchronized

systems. Adopting such an architecture enables efficient use
of the available processing power since many algorithms,
e.g., EDF, that are known to be optimal can be employed.

Non-Critical Tasks: Non-critical tasks are the least
”important” tasks in the system as they are associated with
components that can be given lowest level of assurance e.g.,
SIL 1 guarantees of IEC 61508. Non-critical tasks can be
safely discarded without affecting the normal operation of
the system. The only major concern in this case is that the
non-critical tasks must not ”interfere” with the execution of
higher criticality tasks i.e., they must be protected against
transient faults by implementing a fail silent mechanism.
Vehicular entertainment related task, such as music streaming
in Table I, are good example of non-critical tasks that are not
significant for the specified mission.

Assurance Mechanism: Non-critical tasks are scheduled
normally along with tasks of higher criticalities.
Non-criticality tasks may re-execute whenever there is slack,
and is discarded immediately upon transient faults like an
execution time overrun. The presence of extra computing
resources ensures that non-critical tasks have a higher
possibility of re-execution. A limited form of protection
against transient faults and random faults can be added by
ensuring that the non-critical tasks can re-execute whenever
spare computing capacity is available.

Needless to say, depending on the coverage of faults, more
criticalities can be defined.

IV. CONCLUSIONS

Even though the ultimate goal of mixed-criticality
systems is to enable efficient resource usage while providing
different levels of assurances to different components, the
majority of research in mixed-criticality systems focus only
on issues related to tolerating execution time overruns, which
are only one type of transient faults. Despite the fact that
more recent works considered transient faults other than
execution time overruns, the challenges with respect to
implementing mixed-criticality architectures for tolerating
permanent faults has largely remained out of focus. The
hardware redundancy required to tolerate permanent faults
implies increased SwaP requirements, while mixed-criticality
architectures enable hardware provisioning to real-time tasks
based on the associated required assurance levels. In this
paper, we present a taxonomy of spatial redundancy
techniques, as well as propose a mapping of the assurance
levels to task criticalities based on the extend of fault
coverage with respect to permanent faults. A positive side
effect of using spatial redundancy is that transient faults,
such as execution time overruns, are automatically covered,
and hence, this paper aims to initiate a discussion on the use
of spatial redundancy techniques in the context of
mixed-criticality systems.

Future work include investigation of optimal resource
allocation strategies for assurances against different types of
faults, as well as scheduling mechanisms for the tasks and
their different replicas on multiprocessor platforms to
guarantee timely outputs to the voter.

REFERENCES

[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable Secure Computing,
January 2004.

[2] Huseyin Aysan. Fault-tolerance strategies and probabilistic guarantees
for real-time systems. In PhD thesis, Malardalen University, June 2012.

[3] Hüseyin Aysan, Iain Bate, Patrick Graydon, and Sasikumar Punnekkat.
Improving reliability of real-time systems through value and time
voting. In The 19th IEEE Pacific Rim International Symposium on
Dependable Computing, December 2013.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Scheduling real-time mixed-
criticality jobs. IEEE Transactions on Computers, August 2012.

[5] D. Briere and P. Traverse. Airbus a320/a330/a340 electrical flight
controls - a family of fault-tolerant systems. In The Twenty-Third
International Symposium on Fault-Tolerant Computing, pages 616–623,
1993.

[6] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico,
K. Ramamritham, J. Stankovic, and L. Strigini. The meaning
and role of value in scheduling flexible real-time systems. J. Syst.
Archit., 2000.

[7] Alan Burns and Rob Davis. Mixed criticality systems - a review. In
Available:http://www-users.cs.york.ac.uk/ burns/review.pdf (accessed on
31 July 2015).

[8] Kevin Driscoll, Brendan Hall, Hkan Sivencrona, and Phil Zumsteg.
Byzantine fault tolerance, from theory to reality. In Computer Safety,
Reliability, and Security, Lecture Notes in Computer Science, pages
235–248. Springer Berlin Heidelberg, 2003.

[9] S. Islam, R. Lindstrom, and N. Suri. Dependability driven integration
of mixed criticality sw components. In The Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing, 2006.

[10] RisatMahmud Pathan. Fault-tolerant and real-time scheduling for
mixed-criticality systems. Real-Time Systems, 2014.

[11] Sasikumar Punnekkat. Schedulability Analysis for Fault Tolerant Real-
time Systems. PhD thesis, University of York, UK, June 1997.

[12] Abhilash Thekkilakattil, Radu Dobrin, and Sasikumar Punnekkat.
Fault tolerant scheduling of mixed criticality real-time tasks under
error bursts. In The International Conference on Information and
Communication Technologies. Elsevier Procedia Computer Science,
December 2014.

[13] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In The 28th IEEE
International Real-Time Systems Symposium, 2007, December 2007.

[14] K. Vipin, S. Shreejith, S.A. Fahmy, and A. Easwaran. Mapping time-
critical safety-critical cyber physical systems to hybrid fpgas. In The
IEEE International Conference on Cyber-Physical Systems, Networks,
and Applications, 2014.

Evaluating Mixed Criticality Scheduling Algorithms
with Realistic Workloads

David Griffin1 and Iain Bate1,2 and Benjamin Lesage1 and Frank Soboczenski1
1Department of Computer Science

University of York
York, United Kingdom

2School of Innovation, Design, and Engineering
Mälardalen University

Västerås, Sweden
Email: {david.griffin, iain.bate, benjamin.lesage, frank.soboczenski}@york.ac.uk

Abstract—Most work on mixed-criticality scheduling has
considered timing-related failures to be independent of one
another. In reality this is not true as in many systems the state
that caused the original failure will be similar to the state in
the next release (job) of the task. Therefore when arguing
about the number of jobs that do not meet their deadlines, it is
crucial tasks have an appropriate fault model incorporated into
the tool framework (i.e. task set generators and simulators)
used to evaluate scheduling policies. The second issue that
affects the tool framework is the choice of Worst-Case
Execution Times (WCET) for different criticality modes of
tasks. In the current literature it has been argued that a
WCET should be chosen which would only be exceeded
incredibly rarely, e.g. 1 in 1016 jobs. This leads to WCET
values much greater than the High WaterMark (HWM). The
needs of certification and the consideration of how safety is
argued leads to the conclusion that the probability of a job not
meeting its deadline can be much greater. This would greatly
impact the WCETs and hence the results of the evaluation. The
contributions of this paper are thus a more realistic tool
framework, and hence more realistic results than those
previously reported, which we claim gives a better insight into
how the scheduling policies would behave in practice and hence
better evidence for any safety case.

I. INTRODUCTION

Mixed-Criticality Scheduling (MCS) is basically where
tasks of different criticality levels share processing resources.
There are many motivations for MCS including the ability to
efficiently use resources whilst giving appropriate timing
guarantees and reducing the cost of certification by allowing
software sharing resources to be developed and certified by
different processes [1]. The basic model of MCS consists of
a system with Nm modes of operation.

In each mode, M , different tasks are executed and each
task (denoted i) may have a different execution time per mode
Ci,M . The task itself may not change between modes, however
level of confidence desired in the Worst-Case Execution Time
(WCET) may differ between modes. To date most of the work
has been giving definitive knowledge of the schedulability of
tasks in each mode of operation. This knowledge is very useful
for the safety case that is produced as part of the certification of
systems [2], [3], [4], however the safety case is also interested
in the loss of service when a failure occurs. More specifically,
if a High-Criticality Task (HCT) exceeds the expected WCET
in a particular mode then a mode change will occur which
means some Lower-Criticality Tasks (LCT) are not executed
for a period of time. It is important to know how often this
happens and for how long the LCTs are not executed.

In [5] a simulator framework and scenario-based
evaluation was used to provide information about how many
LCTs would miss their deadlines in “situations of interest”.
The results of the evaluation gave some interesting insights
including showing that a newly proposed scheduling policy,
the Bailout Model (BM), caused LCTs missing their
deadlines less frequently than previous state of the art
algorithms. The insight gained though is only useful if the
situations of interest reflect reality. The simulator framework
had two main components: a Task Set Generator (TSG) that
used UUnifast [6] to generate task set profiles according to
specified characteristics (e.g. target utilisation) and the
simulator itself. However, two issues make the presented
framework unrealistic:

1) Phasing of Failures – Most work, including in [5],
assumes that failures are independent. In reality this is
not true. For example in a feedback-based control
system, each job execution reuses much of the state
from the previous one and the inputs to successive jobs
are likely to be similar. Hence if a job exceeds the
WCET in the current mode the next few jobs are also
likely to exceed this value.

2) Probability Distribution for Execution Times – Real
software doesn’t conform to the “standard” distributions
of execution times used in UUnifast and are more likely
to be some form of extreme-value distribution [7].

In [8], Griffin used observations from real software on
actual platforms to learn a model of timing-related failures.
Specifically the model contained information about the likely
number of successive failures and the magnitudes of these
successive failures. Using this model, the DepET algorithm
was proposed which was able to generate task sets with
appropriate failure characteristics.

The first contribution of this paper is to use the models
created as part of DepET to create DepET-RND that can
generate and simulate individual jobs with dependent
failures. The second contribution of this paper is to assess
how generating jobs with dependent failures may affect our
previously presented simulation results, in [5],where different
Mixed-Criticality Scheduling (MCS) policies were evaluated
with jobs that only had independent failures. Given
appropriate execution time profiles, realistic results still
depends on an appropriate choice of the initial probability of
failure. The initial probability of failure Fi is defined as the
likelihood the execution of a job exceeds its WCET for the

current mode when previous jobs have not exceeded this
WCET, or in other words the likelihood a sequence of
dependent failures will commence. Many works, e.g. [9], on
probabilistic WCET (pWCET) have claimed that values of
Fi could typically be 10−16. The stated reason is that some
certification standards require the likelihood of hazardous
events to be once in every 109 operating hours and that a
typical task may execute over 106 times an hour. The final
contribution of this paper is to explain why this type of
value is completely inappropriate and to propose more
realistic values that can be used to guide pWCET analysis,
configure DepET and evaluate MCS.

The structure of the paper is as follows. Section II presents
a more realistic model of exceedance probability. Section III
introduces DepET in more detail. An evaluation is presented in
section IV before finally the conclusions are given in section
V.

II. CHOICE OF EXCEEDANCE PROBABILITY

As stated earlier, an important decision is to choose an
exceedance probability that when combined with other
sources of uncertainty1 is suitable for the integrity level of
the task such that the task’s deadline is missed with an
acceptable pattern. More specifically for each task and for
each mode, an exceedance probability and associated WCET
is needed. For example, consider a system that has the
following two modes.

1) normal mode – All tasks are executed and the
schedulability analysis is performed with a WCET
referred to as CLO.

2) high-criticality mode – This mode is triggered when any
HCT exceeds its CLO and where just the HCTs are
executed and the schedulability analysis is performed
with a WCET referred to as CHI .

Given a distribution of execution times, obtaining CLO

and CHI corresponding to a given PLO and PHI is
straightforward, but choosing those target probabilities is not.
As an example in Figure 1, assuming values PHI and PLO

of 10−4 and 10−6, CLO and CHI amount respectively to
2300 and 2800 cycles. However, knowing the effect of the
choice of PHI and PLO on the system is not trivial; The
value PLO should be chosen such that the Low Criticality
Tasks (LCTs) receive sufficient service, which must take into
account how often these tasks are stopped from executing as
well as how long the system can cope with them not being
available. Schedulability analysis to date does not provide
useful information for either of these. The scenario-based
assessment in [5] provides a partial answer but more work is
needed. Specifically statistical analysis of the results in [5] is
needed to provide the information at the necessary level of
confidence. It is noted the smaller the value of PHI , the
more CHI will exceed the true WCET. The degree of this
pessimism is defined as how much greater the WCET is than
the actual WCET. The level of pessimism affects how much
functionality can be put onto the resources whilst

1It is noted the other sources of uncertainty mean the exceedance probability
used in pWCET analysis does not directly relate to the probability the
WCET is exceeded. Other sources of uncertainty include having incomplete
observations of execution time that feed into the pWCET analysis.

guaranteeing the timing requirements are met. To date most
work on MCS has assumed PHI is zero, however in [3] it is
explained how safety-critical systems are designed to tolerate
this. The rest of this section concentrates on how based on
standard safety analysis the values of PLO and PHI could be
chosen and what appropriate values for these might be.

Fig. 1: Example illustrating how to choose PLO and PHI from
an EVT execution time distribution corresponding to a task

For the purposes of this paper’s discussion, we are
interested in the likelihood of the conditions needed for a
hazardous event (i.e. an event that might lead to death or
injury) occurring and not how long these conditions are
maintained. The classical approach for understanding how a
hazardous event could occur is fault tree analysis [10] and
the resulting fault tree can be used to give an understanding
of the associated probabilities. It is also noted in [10] that
these probabilities should only ever be used as a guidance in
the safety case and cases are highlighted where over reliance
on these figures have lead to serious incidents. A simplified
example of a fault tree is given in Figure 2. Fault tree
analysis considers how a hazardous event occurs (e.g. Engine
stops working at the top of the tree through the logical
combination of basic events (e.g. Task exceeds WCET at the
bottom of the tree).

The fault tree presented is a simplified one as in fact there
would be many more events involved between the basic
events and the hazardous events. For example, the fault tree
does not show how for many examples a single deadline
miss would not be a problem, i.e. it may be we would have
to stop control signals to the engine and fuel system for a
period of time before it would have to stop not least due to
inertia. Despite the simplifications, it is considered sufficient
to illustrate the following. Its worth noting that removing the
simplifications would likely mean that the points below are
even more influential.

1) No single point of failure leads to the hazardous event.
Wherever feasible this should be avoided and where it
cannot regulatory authorities demand extra levels of
rigour.

2) If the target probability for a hazardous event E is X
(such as Function Late, then there is little benefit to a
contributing event, (such as Tasks WCRT is exceeded)
being lower than X . This can be seen due to the
following facts. The behaviour of the AND operator is

SYMBOLSEngine
stops

working

Driver
command

OR

Control
System
Failure

OR

Calculation
delivers

wrong value
Function

late

AND

Timing watchdog
doesn't provide

tolerance

Tasks WCRT is
exceeded

AND

Task exceeds
WCET

Interfering tasks
execute for a time
near their WCET

ORbasic
event

EventAND

Fig. 2: Fault Tree for Car Engine Hazard - Engine Stops

such, then X provides a lower bound for the probability
of events in the subtree [11]. Next, observe that when
limX→0X � 1, OR gates tend to sum the probabilities
of their input events [11]. As the probability of any
failure due to WCET/WCRT in the fault tree is
expected to be close to 0 (i.e. ≤ 10−4), then nX , where
n is the number of input events to E, provides a lower
bound to the probability of events in the subtree. As the
number of input events n is expected to be relatively
low (due to the hierarchical nature of a fault tree), and
X is small, nX ≈ X . Therefore it can be concluded
that there is little or no benefit in the lower events in
the tree having a smaller probability than the target
probability of the hazardous event E. This leads to the
corollary that as the highest target for the likelihood of
a hazard in any certification standard is 10−9, the
likelihood of the hazardour event Function Late is upper
bounded by 10−9. Therefore, 10−9 provides a lower
bound on the two causes of Task exceeds WCET,
Timing Watchdog does not provide tolerance and Tasks
WCRT is exceeded. Assuming that the failure rate of the
timing watchdog is known, then due to the nature of
AND, the probability of Tasks WCRT is exceeded can be
significantly higher than 10−9.

3) The probability of Tasks WCRT is exceeded would be
low as it requires interfering tasks to execute for a time

close or equal to their WCET as well as one task
exceeding its WCET. This suggests Task exceeds WCET
can be significantly greater than 10−9.

4) There is little benefit in the probability of Tasks WCRT
is exceeded being much less likely than Calculation
delivers wrong value as the parent event Function late
is combined with Calculation delivers wrong value by
an OR gate, and hence the event Control System Failure
has a probability at least as great as Calculation
delivers wrong value. Therefore, Calculation delivers
wrong value provides an effective lower bound to the
values for Function late which significantly impact the
probability of Control System Failure. Assuming that
the software program is correct, then hardware failure is
the only cause of Calculation delivers wrong value. In
most safety-critical systems, the rate of hardware failure
tends to be limited to a of 10−6 per hour of operation
[12], and therefore for any hour of operation hardware
has a probability of no greater than 10−6 of failure.
Hence, this probability provides an effective lower
bound on the Calculation delivers wrong value. Other
factors that could increase this value include confidence
on the functional testing of the task, but as the level of
testing required is domain specific this is not considered
in this paper. Hence there is little benefit to reducing
the fault rate of Function late below that of Calculation
delivers wrong value, 10−6.

The second of these observations provides an upper limit
to any failure probability in the fault tree. The third
observation suggests that a new form of probabilistic
analysis is necessary to determine the exceedance probability
for the WCET given a desired exceedance probability for the
WCRT. However, the final observation suggests that there is
little benefit for PHI being lower than 10−6 per hour, as any
lower values would be negated by the 10−6 per hour rate of
Calculation delivers wrong value, as this is an effective
upper bound. To convert this failure rate to the failures per
instance required when setting an exceedance probability for
WCRT is difficult due to point 1; a single WCRT
exceedance is not sufficient cause to failure of the system. In
order to calculate the exact probability of failure it would be
necessary to model the dependencies in execution times and
find the probability of a sufficient number of faults (at both
the execution and response time levels) occurring. It is clear
that the value of PHI should be quite a bit less than 10−16.
Using such a figure would be overly pessimistic and bring
more uncertainty into the analysis as its harder to fit a curve
at that type of probability level especially as it entails a
significant extrapolation from the observations fed into the
analysis [13]. Given an appropriate value of PHI , then PLO

for each HCT should be chosen such that the LCT get
sufficient service to support their associated hazardous events
in the safety case.

In summary, this discussion shows that techniques are
needed that help System Safety Engineers to convert the
system-level reliability and availability targets into
requirements on the computer system. The real-time systems
engineers would then need a translation method to take these

lower-level reliability and availability requirements for tasks
meeting their deadline and convert these into requirements
for the pWCET community. We would suggest the real-time
requirements for both deadlines and WCETs are split into
the likelihood of the initial failure and the maximal duration
of the failures once they have first occurred. The following
section summarises a method for modelling dependent
failures and then using these models when simulating task
sets executing. This work could form the basis for any
translation method.

III. MODEL OF DEPENDENT FAILURES

As illustrated in previous sections, limited research has
been carried out as to how MCS algorithms behave when
presented with realistic workloads. In particular, the
dependencies between deadline overruns can create
transitionary periods of high load which would not be
present in randomised experiments. Recent work by Griffin
et al. [8] defined the DepET algorithm, which is capable of
modelling the dependencies of job execution times by
utilising exceedance models; after operation, DepET returns
a set of dependent execution times for the tasks it is asked to
generate. In order to accomplish this, DepET defines each
task as having a number of execution time bands with the
following properties that the user can configure in addition
to the DepET algorithm internal properties duration, prev,
next and cET :

• mn,mx: The minimum and maximum values within this
band

• d: The maximum value that an execution time may be
displaced from its previous instance

• p: The probability of leaving the band
• EM : An exceedance model, used to determine the

duration of the higher band

However, as previously employed, DepET is only capable
of utilising an existing failure model and therefore is not
usable for randomised testing. For reference, a pseudo-code
implementation of DepET is given in Algorithm 1. Full
details can be found in [8].

Therefore an extension to DepET is proposed,
DepET-RND. DepET-RND utilises simple randomised
exceedance models to control exceedance duration. The
random exceedance models proposed simply selects, at
random, the duration of a fault from a pre-specified
randomly selected list. As DepET exposes a large number of
variables, which may make targeting specific failure rates
difficult, DepET-RND, produces a randomised configuration
and then samples the values from that configuration. If the
values are not sufficiently close to the target failure rate, the
configuration is rejected and the process repeated. To hasten
the search, user knowledge can provide a range of values for
each parameter which are likely to produce configurations
close to the desired failure rate. A pseudo-code
implementation of the algorithm is given in Algorithm 2.

IV. EVALUATION

In order to evaluate the effects of dependent failures with
regard to the effectiveness of mixed criticality scheduling
algorithms, experiments were carried out using the

Function DepET(tasks)
ETs ← []
for task ∈ tasks do

band ← task.current
add randomnormal() ∗ band.d to band.cET
ETs.append(band.cET)
clamp band.cET within band.mn and band.mx
if band.duration = 0 then

task.current ← band.prev
end
else if random() < band.p then

task.current ← band.next
band.next.duration ← band.EM.sample()

end
while band is not None do

decrement band.duration
band ← band.prev

end
end
return ETs

end
Algorithm 1: The DepET algorithm

Function DepET-RND(number of tasks,
number of bands, target failure rate)

tasks ← []
for n ∈ range(number of tasks) do

repeat
random ems ← a list of number of bands
randomised exceedance models
task ← a DepET task with random
parameters and exceedance models
random ems

until Failure rate of DepET([tasks])
≈ target failure rate;
append task to tasks

end
return DepET(tasks)

end
Algorithm 2: The DepET-RND algorithm

simulation framework used by Bate et al. [5]. This simulator
was extended to implement the DepET-RND algorithm. The
algorithm was set up in a similar manner to Bate et al., with
a simulation duration of 1011 time units of 0.1ms. Tasks
were defined using UUniFast [6] targeting 90% maximum
utilisation in low criticality mode, with tasks having
harmonic periods chosen randomly from the base frequencies
of 20, 40, 80, 200, 400, 800ms, as commonly found in
automotive systems [14]. Deadlines were implicit. Given the
number of time units simulated, the duration of the
simulation was sufficient to simulate 105 instances of the
longest task. Tasks were chosen at random to be either low
or high criticality, with 50% of tasks being high criticality.
As low criticality mode targeted 90% worst case utilisation,
once high criticality mode is taken into account, many of the
task sets exceeded 100% maximum utilisation. However, a
benefit of mixed criticality algorithms is that these systems
are still acceptable. With regard to generating the utilisations
of each job, three configurations were tested:

1) A control simulation with an independent failure rate of
0.1%, without DepET-RND.

2) A simulation using DepET-RND with dependent
failures with overall (average) failure rate of 0.1% and a

maximum number of consecutive failures 200.
3) A simulation using DepET-RND with dependent failures

with initial failure rate of 0.1% and a maximum number
of consecutive failures 200.

Three different state of the art mixed criticality scheduling
algorithms are compared under each configuration:

1) FPPS: Fixed Priority Pre-emptive Scheduling
2) AMC+: An extended version of Adaptive Mixed

Criticality scheme [15] proposed in [5] where the
execution of LCTs resumes following an idle instant.

3) BM: The Bailout Mode algorithm [5] which uses the
slack associated with individual high-criticality jobs to
determine when it is okay to return to normal mode
whilst preserving the schedulability of all necessary
tasks.

We also consider enhancements to both the AMC+ and
BM approaches. AMC+S and BMS respectively make use of
offline computed slack to increase the budgeted CLO values
for individual tasks. AMC+SG and BMSG extend AMC+S
and BMS by also using gain time (on-line computed slack)
to increase the budgeted CLO values for individual jobs.
These protocols are defined in more detail in [5].

Figures 3, 4 and 5 each present, under a given
configuration, the percentage of tasks not scheduled by the
MCS algorithms evaluated. To capture the variance of this
percentage across all the performed simulations, the plots
presents for each algorithm the median, quartiles, 9th and
91st percentiles of the dataset.

The differences between Figures 3 and 4, assuming
independent then dependent failures with the same overall
failure rate, clearly shows that all the algorithms considered
perform substantially better on dependent failures than
independent failures. Assuming independent failures, a fair
portion of simulations resulted in at least 1% to 4% of tasks
not being executed (denoted by the red median in the boxes).
The worst performing algorithm under dependent failures
(AMC+ in Figure 4) still resulted in less than 0.3% of
not-executed tasks in the majority of simulations (90% as
captured by the top whisker of the plot). This is to be
expected as the overheads of entering high criticality mode
due to a deadline failure in all the considered algorithms are
high, and by introducing dependencies the deadline failures
are clustered, resulting in fewer criticality mode transitions.
In addition, the relative performance of the scheduling
algorithms remains the same as was observed in the
independent case.

Figure 5 illustrates the performance of the algorithms
when the initial failure rate is 0.1%. Under that
configuration, the different algorithms still perform better
than with independent failures at the same rate (as shown in
Figure 3). As an example when 3% to 4% of the tasks fail to
execute for most simulations (denoted by the blue quartile
box) using BM and independent failures, this figure falls
around 0.5% to 1% under dependent failure. This is despite
the fact that due to the initial failures being 0.1%, the total
number of failures observed in Figure 5 is greater than in
Figure 3. However, this can be explained as follows: due to
the clustering effect of DepET, the chances of observing two

AMC+ AMC+S AMC+SG BM BMS BMSG FPPS
0

1

2

3

4

5

6

7

8

9

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

Fig. 3: Percentage of tasks not scheduled, independent failure
rate 0.1%

AMC+ AMC+S AMC+SG BM BMS BMSG FPPS
0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

Fig. 4: Percentage of tasks not scheduled, dependent overall
failure rate 0.1%

AMC+ AMC+S AMC+SG BM BMS BMSG FPPS
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

Fig. 5: Percentage of tasks not scheduled, dependent initial
failure rate 0.1%

or more faults simultaneously is increased. In turn, this
decreases the number of criticality mode transitions of the
algorithm, and therefore decreases the overheads allowing
more tasks to be scheduled.

Figures 6 and 7 examine the characteristics of two of the
algorithms considered, respectively AMC+SG and BMSG,
specifically examining how the maximum duration of a fault

observed effects the number of tasks scheduled. While both
algorithms exhibit a spike in the percentage of tasks not
executed at approximately 200 (the maximum duration of a
single fault), the spike resulting from the AMC+SG
approach (in Figure 6) is more defined than that seen in the
BMSG approach (in Figure 7). Preliminary analysis of this
effect suggests that it is caused by the harmonic periods
meaning the frequency of idle periods have a regular pattern.
For systems of a high utilisation these can be quite small
and when CLO is exceeded some of these idle periods can
disappear. For the AMC-based algorithms, this could lead to
longer times before a return to normal mode whereas with
the BM-based policies the normal mode can be returned to
any time.

150 200 250 300 350 400 450

Max Duration of Faults

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

Fig. 6: Percentage of tasks not scheduled vs Max Duration of
Faults, using AMC+SG

150 200 250 300 350 400 450

Max Duration of Faults

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
ta

ge
Ta

sk
s

N
ot

E
xe

cu
te

d

Fig. 7: Percentage of tasks not scheduled vs Max Duration of
Faults, using BMSG

V. CONCLUSIONS

In this paper, three contributions outlined in the
introduction have been made. Firstly an explanation has been
provided as to why currently proposed exceedance
probabilities for pWCET may be excessively small and
different values have been proposed. Secondly, a simulation
framework for MCS has been adapted to use the results of a
more realistic fault model that has been previously learned
using observations from “real” systems. Finally, a
scenario-based evaluation of different scheduling policies
have been performed. The evaluation has shown that having

a dependent fault model does not affect the trends previously
seen between different scheduling policies, i.e. the
improvement one policy gives over another is approximately
the same, however it does affect the sizes of the loss of
service to LCTS.

Further, this paper has presented an argument that WCET
exceedance probabilities seen in literature on probabilistic real-
time systems are unrealistically low, given other components
in the system and their interactions in the causes of failures. As
minimising the amount of extrapolation required in pWCET
from the observed data reduces the inaccuracies, and hence
the uncertainty, resulting in tighter and more useful results.

ACKNOWLEDGMENTS

This work was funded by the EPSRC grant, MCC
(EP/K011626/1), the EU FP7 IP PROXIMA (611085), and
the Swedish Foundation for Strategic Research (SSF)
SYNOPSIS Project. EPSRC Research Data Management: No
new primary data was created during this study.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proceedings of the
28th Real-Time Systems Symposium, 2007, pp. 239–243.

[2] I. Bate, P. Conmy, T. Kelly, and J. McDermid, “Use of modern
processors in safety-critical applications,” The Computer Journal,
vol. 44, no. 6, pp. 531–543, 2001.

[3] P. Graydon and I. Bate, “Realistic safety cases for the timing of systems,”
The Computer Journal, vol. 57, no. 5, pp. 759–774, 2014.

[4] ——, “Safety assurance driven problem formulation for mixed-criticality
scheduling,” in Proceedings of the 1st International Workshop on Mixed
Criticality Systems, 2013, pp. 19–24.

[5] I. Bate, A. Burns, and R. Davis, “A bailout protocol for mixed criticality
systems,” in Proceedings of the 27th Euromicro Conference on Real-
Time Systems, 2015, pp. 259–268.

[6] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems Journal, vol. 30, pp. 129–154, 2005.

[7] A. Burns and S. Edgar, “Predicting computation time for advanced
processor architectures,” in Proceedings of the 12th EUROMICRO
Conference on Real-Time Systems, 2000, pp. 89–96.

[8] D. Griffin, B. Lesage, I. Bate, F. Soboczenski, and R. Davis, “Modelling
fault dependencies when execution time budgets are exceeded,” in
Proceedings of the 23rd International Conference on Real-Time
Networks and Systems, 2015.

[9] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path
programs,” in Proceedings of the Euromicro Conference on Real-Time
Systems, 2012, pp. 91–101.

[10] N. Leveson, Safeware: System Safety and Computers. Addison Wesley,
1995.

[11] N. Roberts, W. Vesely, D. Haasl, and F. Goldberg, “Fault tree handbook
nureg-0492,” US Nuclear Regulatory Commission, 1981.

[12] AMSC, “Military handbook, mil-hdbk-338b,” US Department of
Defense, vol. 1, 1998.

[13] D. Maxim, F. Soboczenski, I. Bate, and E. Tovar, “Study of the reliability
of statistical timing analysis for real-time systems,” in Proceedings of
the 23rd International Conference on Real-Time Networks and Systems,
2015.

[14] I. Bate and A. Burns, “An integrated approach to scheduling in safety-
critical embedded control systems,” Real-Time Systems Journal, vol. 25,
no. 1, pp. 5–37, Jul 2003.

[15] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Proceedings of the 32nd Real-Time Systems
Symposium, 2011, pp. 34–43.

Probabilities and Mixed-Criticalities: the
Probabilistic C-Space

Luca Santinelli1 and Laurent George2

1ONERA - Toulouse, luca.santinelli@onera.fr
2 University of Paris Est / LIGM - ESIEE Paris, Laurent.George@univ-mlv.fr

Abstract—Probability distributions bring flexibility as well as
accuracy in modeling and analyzing real-time systems. On the
other end, the adding of probabilities increases the complexity of
the scheduling problem, especially in case of mixed-criticalities
where tasks of different criticalities have to be taken into account
on the same computing platform. In this work we explore the
flexibility of probabilistic distributions applied to mixed-critical
task sets for defining the probabilistic space of Worst Case
Execution Time and evaluating the effects of changes on the task
execution conditions. Finally, we start formalizing and making use
of probabilistic sensitivity analysis for evaluating mixed-critical
scheduling performance.

I. INTRODUCTION

During the last decade, real-time systems designers are
facing the arrival of new COTS architectures and new func-
tionalities which may result into important variability of the
execution time of programs. Worst-case reasoning may have
reached its limits since it considers worst-case values without
taking into account that the probability of occurrence of such
values may be vanishingly small [1].

In [2], the authors characterize the space of feasible Worst-
Case Execution Times (WCETs) for the Earliest Deadline First
(EDF) scheduling paradigm, denoted C-space. The C-space is
a convex polytop of n dimensions (the number of tasks), such
that for any vector of execution times inside the polytop, the
task set is always feasible with EDF scheduling (deterministic
approach). The deterministic approach supposes that all the jobs
of the tasks can experience their WCETs at run time which is
very unlikely.

Approaches that take into account tasks probabilistic worst
case execution time (distributions of values instead of single
values) may lead to important reduction of computing capabil-
ity over-provisioning.

First papers on probabilistic approaches describe execution
times of tasks by random variables, according to discrete [3],
[4] or continuous [5] models. Since Edgar and Burns [6],
several papers have worked on obtaining safe and reliable prob-
abilistic Worst-Case Execution Time (pWCET) estimates [7],
[8], [9].

The probabilistic worst-case reasoning leads to schedulability
analysis with probabilities. Diaz et al. [10] developed the first
analysis for systems with execution times described by random
variables. Recent works have extended schedulability to proba-
bilistic arrival times, using an average arrival model as in [11],
or to probabilistic minimal inter-arrival times model as in [12].
Other approaches lately have revised the notion of bounding
curves with probabilities, i.e. arrival curves, demand bound
function and workload bound function, [13], for probabilistic
guarantees of the timing constraints.

The Mixed-Criticality (MC) problem comes from the need
for using the platform resources efficiently. This is facilitated by
noting that the task parameters depend on their criticality level,
in particular the WCET estimate will be derived by a process
dictated by the criticality level. The higher the criticality level,
the more conservative the verification process and hence the
greater will be the WCET, [14]. In [15], the confidence on the
WCET estimations has been leveraged to develop MC schedul-
ing algorithms. In this work we intend to continue researching
in that direction formalizing the relationship between pWCETs
and mixed-criticalities.
Contribution: This paper formalizes the scheduling problem
with tasks of different criticalities through probabilistic models.
The pWCETs are applied to construct the probabilistic version
of the C-space. Such fine grained probabilistic representations
(pWCETs and probabilistic C-Space) are applied to leverage
probabilistic information for the MC scheduling problem. This
work intends to provide an initial evaluation to the flexibil-
ity brought by the probabilistic models and the probabilistic
scheduling to the mixed-criticality problem. In it, the sensitivity
analysis is enhanced with probabilities for the first time and it
is applied to the probabilistic C-space for some initial thoughts
and possible strategies for resource allocation with mixed-
critical tasks.

II. MODELING WITH PROBABILITIES

Jobs of tasks can exhibit multiple durations at run time due to
interferences from the system elements and the environment. It
is then reasonable to describe task execution time with random
processes1.

The probabilistic worst-case execution time random variable
Ci of a task τi generalizes the deterministic WCET. It is
defined as the worst-case distribution that upper-bounds any
possible task execution time the task can exhibit, [16]. Hence,
worst-case execution time distributions represents a way to
account for the system variabilities as the worst-case model
to all of them. In its abstract interpretation, Ci would includes
multiple WCET values, each with the probability of being
the worst-case2. For example, given a trace of task execution
time which would be an empirical distribution due to the
task execution time variability, the worst-case execution time
distribution could be the distribution made out of the maximum
of blocks of execution times, each block representing a specific
task execution condition.

1A random process is a sequence of random variables describing a process
whose outcomes do not follow a deterministic pattern, but follow probability
distributions.

2Calligraphic letters are used to represent distributions while non calligraphic
letters are for scalars.

The pdfCi
is the probability distribution function (pdf) repre-

sentation of the random variable Ci. Without loss of generality,
we could consider discrete pWCET distributions, that is:

pdfCi
=

(
ci,1 . . . ci,ki

P (Ci = ci,1) . . . P (Ci = ci,ki
)

)
, (1)

with pdfCi
(ci,r) = P (Ci = ci,r),

∑ki

r=1 pdfCi
(ci,r) = 1, and

ki is the number of worst-case execution time values in the
pWCET distribution of τi. It is P (Ci ≤ Ci) = 1, and the other
values ci,k, 1 ≤ k ≤ ki are such that Ci,k ≤ Ci.

cdfCi denotes the cumulative distribution function (cdf)
representation of Ci such that cdfCi(c) = P (Ci ≤ c) =∑c

x=1 pdfCi
(x), with discrete distributions. The inverse cumu-

lative distribution function (icdf) icdfCi(c) outlines the excee-
dence thresholds, icdfCi(c) = P (Ci ≥ c) as the probability of
having worst-case execution time larger than c. With discrete
random variable, it is icdfCi(c) = 1−∑c

x=1 pdfCi
(x).

We also assume that the pWCET are finite distributions, with
finite support, such that the safe3 worst-case (the worst-case
such that its cumulative probability is 1) is finite and is the
deterministic WCET Ci; Ci ∈ C and cdfCi

(Ci) = 1. The finite
support assumption allows to have the deterministic WCET
belonging to the pWCET distribution, thus it is possible to do
hard real-time analysis. Recent works have investigated how
to derive continuous pWCETs estimates from execution time
measurements in different system conditions, [17]. Discrete
and finite pWCETs can always be derived as approximations
at relatively low probabilities of such continuous pWCET
estimates, [15].

A task τi is also characterized by a period Ti and a relative
deadline Di ≤ Ti; thus the task model τi = (Ci, Ti, Di). In this
paper we consider a set of n periodic tasks Γ = {τ1, . . . , τn},
with the hyperperiod H being the least common multiple of all
task periods, H = lcm(T1, . . . , Tn). Γ is scheduled with EDF.

0 20 40 60 80 100

1
2

5
10

20

Samples

E
xe

cu
tio

n
tim

e/
W

or
st
−

ca
se

 e
xe

cu
tio

n
tim

e

Execution time trace
WCET trace

(a) Execution time and
worst-case execution
time trace

Worst−case execution time

F
re

qu
en

cy

5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

(b) Worst-
case execution
time histogram
representation

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Worst−case execution time

P
ro

ba
bi

lit
y

Execution time cdf
WCET cdf

(c) Execution time and
worst-case execution
time cdfs

Fig. 1. Representation of discrete task execution time and worst-case execution
time distributions. Execution times are in time units.

Figure 1 shows an example of discrete pWCET. Figure 1(a)
depicts a possible meaning for the worst-case distribution from
a trace of execution time: a worst-case value could come
from the maximum of a block of execution times, and due
to system variabilities and different execution conditions, the
maximum could change. Thus the maximum could end up
in a probabilistic model. Figure 1(b) is for the histogram
representation of the pWCET, which in that case resembles
to a normal distribution. Figure 1(c) outlines the differences
between execution time distribution and pWCET with the cdf
representation.

3Safety comes from the overestimation of any possible measured behavior.

From Ci it is possible to define WCET thresholds 〈ci,k, pi,k〉,
1 ≤ k ≤ ki. The worst-case value ci,k is associated to the prob-

ability pi,k of being the WCET for task τi. pi,k
def
= cdfCi

(ci,k)
quantifies the accuracy of the WCET ci,k, equivalently the
confidence on ci,k of being the WCET. 1−pi,k is the probability
of passing ci,k. Depending on the granularity of the pWCET
representation it would be possible to define WCET thresholds
at 10−3, 10−6, 10−9, and beyond.

A. Tasks Relationship
Most of the algebra in probability theory relies on the

degree of dependence between random variables, the so called
statistical dependence. Therefore, the task relationship can be
evaluated with the degree of statistical dependence between
pWCET distributions.

The joint probability, which expresses the composition of
random variables, is affected by the degree of dependence
among the random variables. For a couple of worst-case ex-
ecution time distributions Ci and Cj , respectively for τi and
τj , the joint probability P (Ci = ci,r, Cj = cj,s) defines the
probability of the worst-case execution times Ci = ci,r and
Cj = cj,s; both Ci and Cj represent events at the same time,
thus concurrently executing tasks. It is P (Ci = ci,r, Cj =
cj,s) = P (Cj = cj,s|Ci = ci,r) × P (Ci = ci,r) = P (Ci =
ci,r|Cj = cj,s) × P (Cj = cj,s), with P (Ci = ci,r|Cj = ci,s) is
the conditional probability defined as the probability of having
Ci = ci,r once also τj is executing and having Cj = cj,s.
Equivalently, with the pdfs and the cdfs it is respectively:

pdfCi,Cj
= pdfCi|Cj

⊗ pdfCj
= pdfCj |Ci

⊗ pdfCi
(2)

cdfCi,Cj
= cdfCi|Cj

× cdfCj
= cdfCj |Ci

× cdfCi
; (3)

⊗ being the convolution operator between random variables and
pdfCj |Ci

is the conditional pWCET of τi concurrently executing
with τj .

Two tasks τi and τj are independent, τi�τj (equivalently
τj�τi), if the execution of one task does not have any impact
on the execution of the other task. Whenever the two tasks
worst-case execution times are random variables Ci and Cj
respectively, the independence states that the execution of one
task does not affect the distribution of the other task (statistical
independence): pdfCi|Cj

= pdfCi
and pdfCj |Ci

= pdfCj
. Two

tasks τi and τj are dependent, τi � τj (equivalently τj � τi),
if the execution of one task does have impact on the execution
of the other task. With Ci and Cj the pWCETs of respectively
τi and τj , with dependence the execution of one task does
affect the distribution of the other task (statistical dependence):
pdfCi|Cj

�= pdfCi
and pdfCj |Ci

�= pdfCj
.

1) Worst-Case Independence: Interferences to task execu-
tion from concurrently executing tasks or concurrent access
to shared resources have the effect of increasing the task
execution time. Assuming Ci to be the probabilistic worst-case
distribution of τi, it means that the distribution has already
accounted for all the possible interferences, including those
from other tasks. It implies also that every time there is an
interference (a concurrent task or an other system element
acting at the same time as τi), Ci as already embedded
its effects [18]. The distribution does not change anymore
in the presence of such effects being already the pWCET:
pdfCi|Cj

= pdfCi
. We can say that the Ci, with respect to the

empiric execution time distributions (from the measurements of

the system actual behavior), quantifies the effect of dependence
to the task executions.

III. PROBABILISTIC MIXED-CRITICALITY

In this paper, we consider the two-criticality-level case (high
and low) of the MC problem, each task is designated as
being either of high (HI) or low (LO) criticality. With the
deterministic model two WCET values are specified for each
task: a LO-WCET c(LO) determined by a less pessimistic
timing analysis tools, and a larger HI-WCET c(HI) determined
by more conservative timing analysis tools, which is sometimes
larger than the LO-WCET by several orders of magnitude in
COTS platforms. For τi, the WCET of a task is a vector
Ci = (ci(LO), ci(HI)).

Existing MC analysis usually makes the most pessimistic
assumption that every HI-criticality task may execute beyond
its LO-WCET and reach its HI-WCET simultaneously. In real
applications, the industry standards usually only require the
expected probability of missing deadlines within a specified
duration to be below some specified small value, as the deadline
miss can be seen as a faulty condition. The expected probability
of deadline miss depends on the criticality level crit, e.g. crit ∈
{LO, HI}, under which the system is running.

The pWCET distribution effectively defines different WCET
threshold estimates for the same task, for different criticality
levels depending on the different requirements confidence,
e.g. on the maximum tolerable failure rate as the pWCET
estimates embeds the effect of faults on the task executions.
That translates into a MC two-criticality task model such that
τi = ((〈ci(LO), pi(LO)〉, (〈ci(HI), pi(HI)〉), Ti, Di), where the
WCET values have a confidence of being worst-cases.

The cdf representation of the pWCET relates probability to
confidence of the criticality levels. pi(LO) = P (Ci ≤ ci(LO)) ≡
cdfCi(ci(LO)) expresses the confidence of ci(LO) of being the
upper-bound of the task worst-case execution time in its LO-
criticality. Similarly, pi(HI) = P (Ci ≤ ci(HI)) ≡ cdfCi(ci(HI))
the confidence of ci(HI) of being the upper-bound of the task
worst-case execution time in its HI-criticality We call pi(crit),
crit ∈ {LO, HI} the confidence on the criticality level crit.

A. Probability thresholding
It is possible to define a design parameter β as the probability

threshold for the pWCET defining the level of confidence for
a WCET limit imposed to a task. β comes from the quantile
q(p) as the probability threshold p, and q(Ci, β) is the WCET
threshold such that β× 100% of the worst-case execution time
experienced by τi are below that threshold.
β offers another perspective to the task execution model.

By fixing β it is possible to specify which is the limit WCET
reachable, ci(β); β imposes a bound to the task WCET such
that ci(β) = q(Ci, β).

A trace TCi
reports the sequence of WCET values that τi

has assumed from one execution instance to another. From
TCi

it is then possible to infer the timing behavior of the task
WCETs as well as identify ci(β) = q(TCi

, β). Therefore, β can
model the task (or the whole application) timing behavior and
it could be applied as design parameter: by imposing ci(β) as
the task WCET value the behavior of τi is limited to ci(β).
With respect of the actual task behavior TCi

(which follow Ci,
β is the confidence that τi respects it WCET limit ci(β).

From β it is also possible to infer the criticality level crit
that would allow respecting ci(β):

max{crit} such that ci(crit) ≤ ci(β). (4)

It is β �= p(crit), as c(β) �= c(crit), but there is a close
relationship between the two thresholds c(β) and c(crit) which
come from the probabilistic modeling of the task (the pWCET).

Example 1. Given a task set Γ = {τ1, τ2, τ3}, with τ1 =
(C1, 7, 5), τ2 = (C2, 11, 7), τ1 = (C3, 13, 10), and the discrete
worst-case execution time distributions are

pdfC1
= (

(
1 2 3 4 6
0.3 0.3 0.1 0.15 0.15

)

pdfC2
= (

(
1 2 3 5 6 7
0.1 0.2 0.4 0.2 0.07 0.03

)

pdfC3
= (

(
3 4 5 6 8
0.2 0.1 0.3 0.3 0.1

)
.

Considering criticality levels such that for τ1 it is {c(LO) =
1, c(HI) = 4}, for τ2 it is {c(LO) = 1, c(HI) = 7}, and for τ3 it is
{c(LO) = 4, c(HI) = 8}. Figure 2 represents the tasks pWCETs

0 1 2 3 4 5 6

0.
1

0.
2

0.
5

1.
0

Worst−case execution time

P
ro

ba
bi

lit
y

(a) τ1

0 1 2 3 4 5 6 7

0.
1

0.
2

0.
5

1.
0

Worst−case execution time

P
ro

ba
bi

lit
y

(b) τ2

0 2 4 6 8

0.
1

0.
2

0.
5

1.
0

Worst−case execution time

P
ro

ba
bi

lit
y

(c) τ3
Fig. 2. A portion of the pWCET cdf for the three tasks. Three probability
thresholds are outlined, respectively at p = 0.3 p = 0.7, and p = 1.

with a zoom of the cdfs on the largest cumulative probabilities.
In Figure 3(a) an example of thresholds β for C2 and their
effects on the task [worst-case] executions. It is represented
a trace of 500 worst-cases extracted from C2 by randomly
picking values from the distributions law, and associated to
the task execution. As already mention, the trace of worst-case
execution times could represent the trace of maximum among
different task execution conditions. For a β3 = 1 the WCET
limit is 7, the maximum allowed value. For β2 = 0.8 the task
WCET would be limited to 5, and for β2 = 0.5 the task WCET
would be limited to 3. For example, with c2(β2) = 5 there is a
confidence of 0.8 of remaining below that WCET values while
τ2 executes. Hence, imposing C2 = 5 as the max WCET for τ2
it will be respected 80% of the case.

0 100 200 300 400 500

1
2

3
4

5
6

7

Samples

W
or

st
−

ca
se

 e
xe

cu
tio

n
tim

e

(a) βs from traces; β1 = 0.5, β2 =
0.8, and β3 = 1

0 1 2 3 4 5 6 7

1e
−

19
1e
−

15
1e
−

11
1e
−

07
1e
−

03

Worst−case execution time

P
ro

ba
bi

lit
y

(b) cdf with criticality levels (hor-
izontal lines - WCET thresholds)
and βs (vertical lines - probability
thresholds)

Fig. 3. Trace and cdf representations of the pWCET.

Figure 3(b) outlines the relationship between β and the
criticality levels.

IV. THE PROBABILISTIC C-SPACE

Real-time systems with probabilistic models require schedu-
lability conditions which involve probabilities. Given a random
process Ci describing the evolution of τi worst-case execution
time, we can state the notion of probabilistic demand bound
function, [13], [19].

dbfi,j(t) is the demand bound function in the interval [0, t]:

dbfi,j(t)
def
= � t−Di

Ti
+ 1� × ci,j . (5)

The bound is the result of a specific WCET threshold ci,j ,
and by definition, it represents an upper-bound to any dbfi,k
obtained from ci,k ≤ ci,j . Then, there exist an associate
confidence of the bound, which is the exact confidence pi,j
of the WCET ci,j applied. ci,j and Equation (5) define a
probabilistic bound 〈dbfi,j(t), pi,j〉 to the task resource de-
mand; 〈dbfi,j(t), pi,j〉 is such that pi,j is the probability that
dbfi,j(t) is an upper-bound to the τi resource demand in [0, t].
Equivalently to dbfi,j(t) we can write dbfi(t, ci,j).

As 〈dbfi(t, ci,j), pi,j〉 represents a single demand bound
function with its associated confidence, there exist a
dbfi(t, ci,j) for each ci,j ∈ Ci. All together the
〈dbfi(t, ci,j), pi,j〉 form a distribution of demand bound func-
tions, DBF i(t) = (dbfi(t, ·), pi(·)) which is the probabilistic
demand bound function (probabilistic demand curve) of τi in
[0, t]. DBF i(t) collects the set of all demand bound functions
dbfi(t) and the set of all confidences pi. In particular, the
pis forms the the cdf of DBF i(t), cdfDBFi(t), as cumulative
probabilities. To note that the set of probabilities pi does not
change with the interval [0, t], therefore form one interval to
another is only the bounds dbfi(t) to change, but not their
confidence.

The application Γ probabilistic demand curve DBF =
(dbf(t, ·), p(·)) results from the combination of tasks demand
bound functions DBF i:

DBF(t) = ⊗iDBF i(t), (6)

with ⊗ the convolution of the distributions. dbf(t, ·) is the set
of all the demand bound functions:

dbf(t, ·) def
= +idbfi(t, ·), (7)

with + the combination (sum) of all the demand bound
function. p(·) is the set of all the confidence probabilities:

p(·) def
= ×ipi(·), (8)

with × the combination (product) of all the demand bound
function probabilities.

The demand bound function dbf(t, c) is the application
demand with c = (c1,j , c2,k, . . .) the array of WCET thresholds
used for achieving dbf(t, c); p(c) is the confidence of dbf(t, c)
such that:

p(c) = p1(c1,j)× p2(c2,k)× (9)

The probability multiplication for the joint probability p(c) is
possible due to the worst-case distribution assumption. As Ci
are pWCETs they are independent, the distributions DBF i

are independent among each other; consequently the joint
probability p(·) could result from the probability multiplication,
Equation (9).

A. Probabilistic C-space Representations
The schedulability under EDF states that

∀t ∈ D, dbf(t) ≤ t, (10)

with D the set of Γ deadlines within the hyperperiod, according
to [20], [21].

With a probabilistic framework each condition dbf(t, ·) ≤
t has a probability p(t) associated, which is the confidence
on the demand bound function dbf(t, ·). Being p = p(c) the
probability of not passing dbf(t, c), with the condition dbf(t) ≤
t the probability p could be also interpreted as the probability
of verifying the condition.

For all t ∈ D, there exist c∗ such that dbf(t, c∗) =
max{dbf(t, c) | dbf(t, c) ≤ t}. P (t) = p(c∗) from Equation (9)
is the probability for which dbf(t) ≤ t is true. The overall
schedulability probability P is given such that all the conditions
are satisfied:

P = P (t1)× P (t2)× . . . , (11)

with P (tk) the schedulability probability of the k-th condition
dbf(tk) ≤ tk, tk ∈ D. The independence between conditions
and the probability product as the joint probability, are guaran-
teed by the use of pWCET distributions. 1−P is the probability
that at least one condition is not respected, thus the probability
of deadline miss.

From Condition (10) and Equation (11) it is possible to
build the probabilistic version of the C-space (pC-space), [2].
The pC-space is the abstraction that applies the schedulability
condition, Condition (10), to a vector of execution times
c = {c1, c2, . . .}. Each point c = {c1, c2, . . .} in the pC-
Space is a combination of task WCET thresholds. Within
the pC-Space, given the scheduling policy, it is possible to
define the schedulability region where every point c within the
region is a schedulable WCET thresholds configuration, and the
points outside the region do not represent schedulable WCET
thresholds configurations. [2] for the details on the definition
of the deterministic C-space under EDF.

The pC-space maps also probabilities onto points. Each c
within the space has a probability associated which is the
probability of being the application set of worst-case execution
times, Equation (9). Then, depending on where the point is
with respect to the schedulability region, the probability could
translate into schedulability probability. For the points at the
feasibility region border, their ps, Equation (9), are exactly
the schedulability probability, Equation (11). With the different
probabilities P within the region and at the border it would be
possible to classify portions of the regions with respect to the
schedulability probability P .

B. pC-Space and Confidence
The probabilities within the pC-Space can be interpreted in

various ways:

• as the confidence of not passing the WCET thresholds
of c. With the criticality levels there is also the proba-
bility of remaining at a certain criticality level p(crit) =
p1(crit) × p2(crit) × Consequently it is quantifiable
the possibility of changing that level as 1− p(crit);

• as the confidence on the system schedulability P , or the
confidence per schedulability condition, Pk. The feasibil-
ity region is characterized by P and all the points inside

the region are schedulable but with a confidence of at
least P , Equation (11). It translates into a per-condition
schedulability probability of Pk;

• as the confidence β on the worst-case behavior of the
tasks. β is the probability of passing the c(β); per-task
it would be cj(β).

With different probability interpretations the pC-Space can
be used for different purposes. At one end there is the modeling
of the probabilistic applications; on the other end, it is possible
to develop analysis on top of the pC-Space with probabilities.

Example 2. Given the probabilistic task set of Example 1. The
feasibility region of Γ does not depend on the input distributions
(and their shape) but it describes the feasibility point according
to the task period and deadline configuration, (x, Ti, Di). What
is depending on the pWCETs instead, are the probabilities of
each point. In Figure 4 all the possible WCET thresholds and

1 2 3 4 5 6

3
4

5
6

7
8

1
2

3
4

5
6

7

Task 1

Ta
sk

 2

Ta
sk

 3

0.01

0.01

0.02

0.03

0.03

0.02

0.03

0.05

0.08

0.09

0.04

0.06

0.13

0.19

0.21

0.05

0.08

0.16

0.24

0.27

0.06

0.09

0.17

0.26

0.29

0.06

0.09

0.18

0.27

0.3

0.01

0.02

0.04

0.05

0.06

0.04

0.05

0.11

0.16

0.18

0.08

0.13

0.25

0.38

0.42

0.11

0.16

0.32

0.49

0.54

0.12

0.17

0.35

0.52

0.58

0.12

0.18

0.36

0.54

0.6

0.01

0.02

0.04

0.06

0.07

0.04

0.06

0.13

0.19

0.21

0.1

0.15

0.29

0.44

0.49

0.13

0.19

0.38

0.57

0.63

0.14

0.2

0.41

0.61

0.68

0.14

0.21

0.42

0.63

0.7

0.02

0.03

0.05

0.08

0.08

0.05

0.08

0.15

0.23

0.26

0.12

0.18

0.36

0.54

0.6

0.15

0.23

0.46

0.69

0.77

0.16

0.25

0.49

0.74

0.82

0.17

0.26

0.51

0.77

0.85

0.02

0.03

0.06

0.09

0.1

0.06

0.09

0.18

0.27

0.3

0.14

0.21

0.42

0.63

0.7

0.18

0.27

0.54

0.81

0.9

0.19

0.29

0.58

0.87

0.97

0.2

0.3

0.6

0.9

1

Fig. 4. Probabilistic C-space: feasibility and confidences (probabilities)
within the pC-space. Circles for feasible c, crosses for not feasible c) and
βs limitations (β1 = 0.5,β2 = 0.8, and β3 = 1) for τ3 are presented as
horizontal 2D planes.

Task 1

Ta
sk

 2

1 2 3 4 6

1
2

3
5

6
7

0.01

0.02

0.04

0.05

0.06

0.06

0.01

0.04

0.08

0.11

0.12

0.12

0.01

0.04

0.1

0.13

0.14

0.14

0.02

0.05

0.12

0.15

0.16

0.17

0.02

0.06

0.14

0.18

0.19

0.2non−schedulable
schedulable

(a) 2D plane (τ1, τ2) with C3 = 3

Task 1

Ta
sk

 3

1 2 3 4 6

3
4

5
6

8

0.01

0.01

0.02

0.03

0.03

0.01

0.02

0.04

0.05

0.06

0.01

0.02

0.04

0.06

0.07

0.02

0.03

0.05

0.08

0.08

0.02

0.03

0.06

0.09

0.1
non−schedulable
schedulable

(b) 2D plane (τ1, τ3) with C2 = 1

Fig. 5. Probabilistic C-space: 2D planes with bounding βs (β1 = 0.5,β2 =
0.8, and β3 = 1).

the WCET thresholds combinations from the input pWCETs
are plotted. To notice that the whole plane at C1 = 6 is
an unfeasible plane, being outside the feasibility region. The
confidences are presented together with the feasible points
c (points with circles and in green). Points with crosses (in
red) are WCET thresholds configurations unfeasible. Figure 5
gives a better insight with 2D representations of both the pC-
Space and the feasibility regions. In both figures the βs are
represented as constraints to the task execution behavior.

V. PROBABILISTIC SENSITIVITY ANALYSIS

The probabilistic version of the sensitivity analysis [2] in-
tends to combine the information from the probabilistic models
(the pWCETs, β, and the confidences β and ps) and the pC-
space representation.

We have seen that Cis discretize the pC-Space as they maps
the points to only the possible WCET thresholds of the tasks.
Out of that, the probabilistic sensitivity analysis can be applied
to quantify the effects of changes in terms of schedulability,
probabilities/confidences, and criticalities.

• What are the resource demand that can be accommodated?
Hence, which task combinations can be accounted for
a schedulable systems, the criticality levels that can be
considered in order to make the system schedulable, etc.

• What can be done with β? By acting on β (limiting task
WCETs to c(β)) it is possible to evaluate the effect on
the execution of tasks. What are the effect of β on the
tasks criticality levels? With the relationship β → crit is
is possible to infer the criticality levels which subdue to
the c(β) bounding.

Furthermore, with the probabilistic sensitivity analysis it is
possible to evaluate the effect of changes on Γ. For example
a change on β, from β to β′ would result into a WCET
threshold change c to c′, such that c = (c1,j , c2,k, . . .) and
c′ = (c1,r, c2,s, . . .). The change of probabilities, from p(c)
to p(c′), is an immediate consequence of the change of β. It
would also be evident the effects of changes on the allowed
criticality levels, from β → crit.

While P does not change by moving the points toward the
feasibility region (by limiting task execution behavior with β),
it is possible to increase the confidence that the feasibility
condition is respected.

Example 3. The probabilistic sensitivity analysis, with respect
to the previous example, could help replying to the following
questions:

• With a certain mixed-criticality level, is the system schedu-
lable? For example, in Figure 7(c), if τ3 is in HI-criticality
mode, then τ2 can only be scheduled with C2 = 1
(LO-criticality) for guaranteeing schedulability. Another
example from Figure 7(a), where only LO-criticality modes
are schedulable for τ1 and τ2.

• What can be done to make the system schedulable? What
are the costs of being schedulable? β and its limitation
effects on the task WCETs can give answers to those
questions. From Figure 7(b), only limiting WCETs with
β < 0.5 would guarantee Γ schedulability. This translates
into LO-criticality execution for both τ1 and τ3.

Figure 6 representing the discretized feasibility region (to
the possible WCET thresholds) and the feasible cs. Figure 7
for 2D representations. β limitation effects are evident to the
tasks WCET thresholds and the criticality level allowed.

VI. CONCLUSION

In this work we have begun combining the probabilities and
the mixed-criticality problem with the help of the probabilistic
C-space and of the probabilistic sensitivity analysis. Some of
the observations on the probabilistic task sets are just initial
ideas which could help designing and applying more effective
MC scheduling.

Task 1

1.0
1.5

2.0
2.5

3.0
3.5

4.0

Task 2

1.0

1.5
2.0

2.5
3.0

Task 3

3

4

5

6

7

8

Fig. 6. Probabilistic sensitivity analysis from the feasibility region (points
with circles) and the βs (β1 = 0.5,β2 = 0.8, and β3 = 1).

Task 1

Ta
sk

 2

1 2 3 4 6

1
2

3
5

6
7

0.01

0.03

0.06

0.08

0.09

0.09

0.02

0.05

0.13

0.16

0.17

0.18

0.02

0.06

0.15

0.19

0.2

0.21

0.03

0.08

0.18

0.23

0.25

0.26

0.03

0.09

0.21

0.27

0.29

0.3non−schedulable
schedulable

(a) 2D plane
(τ1, τ2) with C3 = 3

Task 1

Ta
sk

 3

1 2 3 4 6

3
4

5
6

8

0.02

0.03

0.05

0.08

0.09

0.04

0.05

0.11

0.16

0.18

0.04

0.06

0.13

0.19

0.21

0.05

0.08

0.15

0.23

0.26

0.06

0.09

0.18

0.27

0.3
non−schedulable
schedulable

(b) 2D plane
(τ1, τ3) with C2 = 2

Task 2

Ta
sk

 3

1 2 3 5 6 7

3
4

5
6

8

0.01

0.01

0.02

0.03

0.03

0.02

0.03

0.05

0.08

0.09

0.04

0.06

0.13

0.19

0.21

0.05

0.08

0.16

0.24

0.27

0.06

0.09

0.17

0.26

0.29

0.06

0.09

0.18

0.27

0.3
non−schedulable
schedulable

(c) 2D plane
(τ2, τ3) with C1 = 1

Task 2

Ta
sk

 3

1 2 3 5 6 7

3
4

5
6

8

0.01

0.02

0.04

0.05

0.06

0.04

0.05

0.11

0.16

0.18

0.08

0.13

0.25

0.38

0.42

0.11

0.16

0.32

0.49

0.54

0.12

0.17

0.35

0.52

0.58

0.12

0.18

0.36

0.54

0.6
non−schedulable
schedulable

(d) 2D plane
(τ2, τ3) with C1 = 2

Fig. 7. Probabilistic sensitivity analysis on the 2D planes.

In the future we intend to enhance such observations and
define the probabilistic sensitivity analysis in terms of change
strategies and effect evaluation. We aim at leveraging the in-
formation from the probabilistic models (pWCET distributions
and confidences) and provide system design feedbacks for an
optimal (at least suboptimal) system resource utilization for
different criticalities, thus different requirements.

REFERENCES

[1] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. D. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis,

C. Lo, and D. Maxim, “Proartis: Probabilistically analyzable real-time
systems,” ACM Trans. Embedded Comput. Syst., vol. 12, no. 2s, p. 94,
2013.

[2] L. George and J. Hermant, “Characterization of the space of feasible
worst-case execution times for earliest-deadline-first scheduling,” Journal
of Aerospace Computing, Information and Communication (JACIC),
vol. 6, no. 11, 2009.

[3] T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. Wu, and J. Liu,
“Probabilistic performance guarantee for real-time tasks with varying
computation times,” in IEEE Real-Time and Embedded Technology and
Applications Symposium, 1995.

[4] L. Abeni and Buttazzo, “QoS guarantee using probabilistic deadlines,” in
IEEE Euromicro Conference on Real-Time Systems (ECRTS99), 1999.

[5] J. Lehoczky, “Real-time queueing theory,” in 10th of the IEEE Real-Time
Systems Symposium (RTSS96), 1996, pp. 186–195.

[6] S. Edgar and A. Burns, “Statistical analysis of WCET for scheduling,”
in 22nd of the IEEE Real-Time Systems Symposium, 2001.

[7] J. Hansen, S. Hissam, , and G. Moreno, “Statistical- based wcet estima-
tion and validation,” in the 9th International Workshop on Worst-Case
Execution Time, 2009.

[8] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” in ECRTS, 2012, pp. 91–101.

[9] D. Hardy and I. Puaut, “Static probabilistic worst case execution time es-
timation for architectures with faulty instruction caches,” in International
Conference on Real-Time Networks and Systems (RTNS), 2013.

[10] J. Dı́az, D. Garcia, K. Kim, C. Lee, L. Bello, L. J.M., and O. Mirabella,
“Stochastic analysis of periodic real-time systems,” in 23rd of the IEEE
Real-Time Systems Symposium (RTSS02), 2002, pp. 289–300.

[11] G. Kaczynski, L. Lo Bello, and T. Nolte, “Deriving exact stochastic
response times of periodic tasks in hybrid priority-driven soft real-time
systems,” 12th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’07), Greece, 2007.

[12] D. Maxim and L. Cucu-Grosjean, “Response time analysis for fixed-
priority tasks with multiple probabilistic parameters,” in IEEE Real-Time
Systems Symposium, 2013.

[13] L. Santinelli and L. Cucu-Grosjean, “A probabilistic calculus for proba-
bilistic real-time systems,” ACM Trans. Embedded Comput. Syst., vol. 14,
no. 3, p. 52, 2015.

[14] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in Proceedings of the 28th
IEEE International Real-Time Systems Symposium, ser. RTSS ’07. IEEE
Computer Society, 2007, pp. 239–243.

[15] Z. Guo, L. Santinelli, and K. Yang, “Edf schedulability analysis on
mixed-criticality systems with permitted failure probability,” in 21th IEEE
International Conference on Embedded and Real-Time Computing System
and Applications, 2015.

[16] R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean,
“Analysis of probabilistic cache related pre-emption delays,” Proceedings
of the 25th IEEE Euromicro Conference on Real-Time Systems (ECRTS),
2013.

[17] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzeti, E. Quinones, and F. J. Cazorla,
“Measurement-Based Probabilistic Timing Analysis for Multi-path Pro-
grams,” in 23nd Euromicro Conference on Real-Time Systems (ECRTS).
IEEE, 2012.

[18] L. Cucu-Grosjean, “Independence - a misunderstood property of and for
(probabilistic) real-time systems,” in the 60th Anniversary of A. Burns,
York, 2013.

[19] L. Santinelli, P. Meumeu Yomsy, D. Maxim, and L. Cucu-Grosjean, “A
component-based framework for modeling and analysing probabilistic
real-time systems,” in 16th IEEE International Conference on Emerging
Technologies and Factory Automation, 2011.

[20] E. Bini and G. C. Buttazzo, “The space of EDF feasible deadlines,” in
19th Euromicro Conference on Real-Time Systems, ECRTS’07, 4-6 July
2007, Pisa, Italy, Proceedings, 2007, pp. 19–28.

[21] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” Real-Time Systems, vol. 2, no. 4, pp. 301–324, 1990.

Semi-partitioned Cyclic Executives for Mixed
Criticality Systems

A. Burns
University of York, UK.

Email: alan.burns@york.ac.uk

S. Baruah
University of North Carolina, US.

Email: baruah@cs.unc.edu

Abstract—In a cyclic executive, a series of frames are executed
in sequence; once the series is complete the sequence is repeated.
Within each frame, units of computation are executed, again
in sequence. In implementing cyclic executives upon multi-core
platforms, there is advantage in coordinating the execution of the
cores so that frames are released at the same time across all cores.
For mixed criticality systems, the requirement for separation
would additionally require that, at any time, code of the same
criticality should be executing on all cores. In this paper we derive
algorithms for constructing such multiprocessor cyclic executives
for mixed-criticality collections of independent jobs.

I. INTRODUCTION

Recent trends in embedded computing towards the
widespread use of multi-core platforms, and the increasing
tendency for applications to contain components of different
criticality, have thrown up major challenges to the developers
of safety-critical real-time systems. In this paper we con-
sider these two challenges in the context of highly safety-
critical application domains where cyclic executives remain
the scheduling mechanism of choice.
Cyclic executives. A cyclic executive is a simple deterministic
scheme that consists, for a single processor, of the continuous
executing of a series of frames (or minor cycles as they are
often called). Each frame consists of a sequence of jobs that
execute in the specified sequence and are required to complete
by the end of the frame. The set of frames is called the major
cycle.
Multicore CPUs. On a multi-core, or multiprocessor, platform
each core should have the same frame size and the same major
cycle time. The time source from which the run-time support
software will execute the jobs contained within each frame,
is synchronised so that all cores switch between minor cycles
concurrently. Within each frame there are a series of jobs to
be executed. If jobs are constrained to execute always within
the same minor cycle and always on the same core then the
run-time schedule is defined to be partitioned. Alternatively,
if jobs can migrate from one active frame to another active
frame on a different core then the schedule is defined to be
global. A semi-partitioned schedule has a small number of
constrained migrations.
Mixed criticality. In mixed-criticality scheduling (MCS) the-
ory, a single job may be characterized by several different
WCET parameters denoting different estimates of the true
WCET value, these different estimates being made at different
levels of assurance. (The workload model used in this paper

is formally defined in Section II.) The scheduling objective is
then to validate the correct execution of each job at a level of
assurance that is consistent with the criticality level assigned
to that job: jobs assigned greater criticality must be shown to
execute correctly when more conservative WCET estimates are
assumed, while less critical jobs need to have their correctness
demonstrated only when less conservative WCET estimates
are assumed.
Related work. A cyclic executive is a particularly restricted
form of static schedule. The issue of mapping mixed criticality
code to static schedules has been addressed by Tamas-Selicean
and Pop [10], [11]. An alternative approach to implementing
the move between criticality levels in a static schedule is by
switching between previously computed schedules; one per
criticality level - this approach is explored in [2], [9]. However,
these schemes are only applicable to single processor systems.
The notion of separation used in this paper comes from [7].

In prior work [1], [5], we introduced the concept of im-
plementing cyclic executives for mixed-criticality workloads
upon multi-core CPUs. The workshop paper [1] formalized
the problem, and proposed some initial approaches towards
solving it for systems represented as collections of independent
jobs. The scheduling test proposed was based upon a network
flow argument and used a polynomial-time reduction. In this
paper we present a much more straightforward yet still optimal
scheme. See Def 1 for a definition of optimality.

II. SYSTEM MODEL

The cyclic executive (CE) is defined by two durations, the
length of the minor cycle (or frame) TF and the duration of
the major cycle TM . These values are related by (TM = k.TF)
where k is a positive integer (usually a power of 2), denoting
the number of frames in the repeating major cycle of the CE.

The issue of how to choose TF and TM to best support a
set of tasks with given periods is beyond the scope of this
paper. Rather we follow industrial practice [3] and assume
these parameters are fixed by the system definition and that
application tasks’ periods are constrained to be multiples of
TF (up to the value of TM).

The mapping of tasks to frames implies that there is a set
of jobs allocated to each frame. All jobs within a frame must
complete by the end of the frame. However, what it means to
complete will depend on the behaviour of the system in terms
of its criticality levels – as will be explained shortly.

We assume that the hardware platform consists of m iden-
tical (unit speed) processors (or cores). Each job can execute
on any core and has identical temporal behaviour on all cores.

In general we assume there are V criticality levels, L1

to LV , with L1 being the highest criticality. Each job ji
is assigned a criticality level, denoted χi, and two WCET
parameters. One represents its estimated execution time at its
own criticality level (Ci(χi)) and the other an estimate at the
base (i.e., lowest) criticality level (Ci(LV)). It follows that if a
job is of the lowest criticality level (i.e., χi = LV) then it only
has one WCET parameter. For all other jobs, C(χi) ≥ C(LV).
The rationale for having more than one WCET parameter is
covered in a number of papers on mixed criticality systems,
including the initial work of Vestal [12].

This use of only two Ci values for V criticality levels is a
more constrained model than the one proposed by Vestal [12],
under which each criticality level may give rise to a distinct
WCET estimate. However with say five criticality levels it is
unlikely that five distinct estimates of the worst-case execution
time of the task would be available, while it can be argued
([6], [4]) that the restriction to just two estimates is sufficient
to capture the key properties of a mixed criticality system.

At run-time the system is defined to be executing in one
of V modes. In mode LV (the lowest-criticality mode) all
deadlines of all jobs must be met. It represents ‘normal’
behaviour. If every job ji executes for no more than Ci(LV)
then all deadlines must be guaranteed. If some job ji executes
for more than Ci(LV) then the mode of the system will
degrade towards L1, with jobs of criticality lower than χi no
longer guaranteed. This mode change behaviour is explained
in more detail later in the paper.

Run-time support

Mixed-criticality scheduling (MCS) theory has primarily
concerned itself with the sharing of CPU computing capacity
in order to satisfy the computational demand, as characterized
by the worst-case execution times (WCET), of pieces of code.
However, there are typically many additional resources that are
also accessed in a shared manner upon a computing platform,
and it is imperative that these resources also be considered.
An interesting approach towards such a consideration was ad-
vocated by Giannopoulou et al. [7] in the context of multicore
platforms: during any given instant in time, all the cores are
only allowed to execute code of the same criticality level.
This approach has the advantage of ensuring that accesses to
all shared resources (memory buses, cache, etc.) during any
time-instant are only from code of the same criticality level.
We refer to such a scheme of switching between workloads of
different criticality levels as synchronised switching. We focus
our attention in this paper on synchronized switching. That is,
we seek to construct cyclic executives in which each minor
cycle may be considered partitioned into V criticality levels.
Initially the highest criticality jobs are executed, when they
have finished the next highest criticality jobs are executed, and
so on. This continues until finally the lowest criticality jobs are
executed. In a simple system with just two criticality levels,

HI and LO, there is a switchover time S defined within each
minor frame. Before S each core is executing HI-criticality
work, after S each core is executing LO-criticality work. To
give resilient fault tolerant behaviour, if the HI-criticality work
has not completed by time-instant S on any core then the LO-
criticality work is postponded (on every core), thereby giving
extra time for the HI-criticality work to execute (up to the end
of the minor cycle). In this paper we will explore how to find
acceptable (safe and efficient) values for the switching times.
Implementing the criticality switches. Giannopoulou et
al. [7] advocated, if supported by the hardware platform, the
use of synchronisation barriers. In the case of dual-criticality
workloads (the generalization to > 2 criticality levels is
straight-forward), each core calls the barrier upon completing
its assigned HI-criticality work. When the final core completes
and calls the barrier, all the calls are released from the barrier
and each core continues with executing LO-criticality work.

The benefit of this barrier-based scheme is that it can take
advantage of time gained by jobs executing for less than
their estimated WCETs. So at the end of the HI-criticality
executions if the signal occurs before the pre-computed barrier
S, then all cores can move to LO-criticality executions early.
Additionally, there may be situations arising at run-time when
a late switch to one criticality level is compensated by time
gained from under-execution within jobs of the next criticality
level. For example, the switch occurs at some time > S, but
the LO-criticality jobs end up executing for less than their
Ci(LO) WCET values and hence all complete by the end of
the frame.

III. DUAL CRITICALITY JOBS

In this section, we consider the scheduling of a collection of
jobs within a single frame of an m-processor platform, when
there are only two criticality levels (V ≡ 2). All the jobs are
assumed to become available at the start of the frame (without
loss of generality, denoted as being at time 0), and they all have
a deadline at the end of the frame (denoted D). In keeping with
prior work on the scheduling of such dual-criticality systems,
we use the notation HI and LO to denote the greater and lesser
criticality levels (i.e., L1 ≡ HI and LV ≡ L2 ≡ LO). The
criticality of job ji is denoted by χi ∈ {LO, HI}; each LO-
criticality job ji is characterized by a single WCET parameter
Ci(LO), while each HI-criticality job is characterized by two
WCET parameters Ci(LO) and Ci(HI).

Given a collection of such dual-criticality jobs to be sched-
uled within a frame of duration D upon an m-processor
platform, our objective is to determine the switching point S
such that only HI-criticality jobs are executed over the interval
[0, S). If all HI-criticality jobs complete by time-instant S,
then LO-criticality jobs are executed over [S,D); else, the LO-
criticality jobs are abandoned and execution of HI-criticality
jobs continues over [S,D) as well. It follows that there are
three conditions that need to be satisfied:

1) If each HI-criticality job ji executes for no more than
Ci(LO), then all the HI-criticality jobs must fit into the
interval [0, S).

2) All the LO-criticality jobs must fit into the interval [S,D)
3) If each HI-criticality job ji executes for no more than

Ci(HI), then all the HI-criticality jobs must fit into the
interval [0, D).

In Section III-A below, we derive a simple and efficient
algorithm for determining S (and the corresponding schedules)
such that these conditions are satisfied; in Section III-B,
we describe an optimization to this simple method. These
algorithms assume minimal run-time support; if additional
run-time support is available, then a further optimization is
possible – this is described in Section III-C.

A. A simple scheme for constructing CEs
We first define two (potential) candidates for the switching

point S:
Smin The earliest instant at which all HI-criticality jobs

have completed their LO-criticality work.
Smax The latest instant at which a switch must occur for

the LO-criticality work to complete by time D.
It is evident that any candidate S must satisfy the two
inequalities Smin ≤ S ≤ Smax.

Let us additionally define two interval durations, which
constrain the possible values of Smin and Smax.

∆LO The duration (makespan) of the interval needed for
all the LO-criticality jobs to (begin and) complete
execution.

∆HI The duration of the interval needed for all the HI-
criticality jobs to execute the extra work they must do
in HI-criticality mode — i.e., the amount (Ci(HI)−
Ci(LO)), for each ji with χi = HI.

To determine these durations, we employ the optimal
scheme of McNaughton [8, page 6]. Given a collection of n
jobs with execution requirements c1, c2, . . . , cn, McNaughton
showed that the minimum makespan of a preemptive schedule
for these jobs on m unit-speed processors is given by

max

(∑n
i=1 ci
m

,
n

max
i=1
{ci}

)
(1)

The actual schedule is obtained by taking the jobs (in any
order) and allocating them to m intervals of the size of the
makespan, each representing one of the m processors. As one
interval is filled, perhaps with part of a job, the next interval
starts with the rest of this job. At most (m− 1) jobs are split
across intervals in this manner. During run-time a job that
was split across two intervals will run at the beginning of the
time-interval upon one processor, and towards the end of the
time-interval on the other processor.

A direct application of McNaughton’s result yields the con-
clusion that the minimum makespan for a global preemptive
schedule for the jobs in LO-criticality mode is given by

∆LO def
= max

(∑
χi=LO Ci(LO)

m
, max
χi=LO

{
Ci(LO)

})
(2)

We therefore set

Smax def
= D −∆LO (3)

Similarly, a direct application of the makespan result allows
the minimum interval for the HI-criticality work (in LO-
criticality mode) to be computed:

Smin def
= max

(∑
χi=HI Ci(LO)

m
, max
χi=HI

{
Ci(LO)

})
(4)

Clearly for the whole system to be schedulable, it is
necessary that Smin ≤ Smax which is equivalent to requiring
that

Smin ≤ D −∆LO

⇔ Smin + ∆LO ≤ D (5)

We now consider the final constraint — the scheduling of
HI-criticality jobs executing in HI-criticality mode. It has been
shown [1, Example 1] that this is not necessarily ensured
by simply computing the makespan (using McNaughton’s
method, as above) with the Ci(HI) values, and validating that
the resulting makespan is ≤ D. We instead determine the
minimal makespan for all the HI-criticality jobs, subject to
each such job having received an amount of execution equal
to its LO-criticality WCET by time-instant Smin. To determine
this makespan, we apply McNaughton’s scheme to the work
that is left to do after time-instant Smin (i.e. Ci(HI)−Ci(LO)
for each job ji with χi = HI). Letting Ci(EX) denote the
“excess” computational requirement of job ji in HI-criticality
mode over LO-criticality mode:

Ci(EX)
def
=
(
Ci(HI)− Ci(LO)

)
,

we have

∆HI def
= max

(∑
χi=HI Ci(EX)

m
, max
χi=HI

{
Ci(EX)

})
(6)

It is evident that Smin + ∆HI ≤ D is sufficient for schedu-
lability; earlier (Expression 5) we had shown that Smin +∆LO

should also be ≤ D. Putting these pieces together, we may
summarize this method as follows. We compute Smin,∆LO,
and ∆HI according to Expressions (4), (2), and (6) respectively,
and require that

Smin + max
(
∆LO,∆HI

)
≤ D (7)

as a sufficient schedulability condition. If this condition is
satisfied, S ← Smin (i.e., we declare Smin to be the switch-
point we had set out to compute).

B. An improvement

Let us now suppose that Condition 7 is violated, and Smin+
max

(
∆LO,∆HI

)
> D. Since

(
Smin+∆LO ≤ D

)
is a necessary

condition for schedulability (see Inequality 5), it must be the
case that

Smin + ∆HI > D.

Now if
(∑

χi=HI Ci(HI) ≥ mD
)
, there is nothing to be done.

Otherwise, there must be some unused processor capacity
in the McNaughton schedule constructed according to Ex-
pression 4 for the interval [0, S), and/or in the McNaughton

schedule constructed according to Expression 6 for the interval
after time-instant S. Let us consider the situation where the
schedule has some unused processor capacity over the interval
[0, S) (recall that S ← Smin in the method of Section III-A).
An inspection of Expression (4) reveals that this happens if∑

χi=HI Ci(LO)

m
< max
χi=HI

{
Ci(LO)

}
Our idea, intuitively speaking, is that any such unused capacity
prior to time-instant S may as well be allocated to some HI-
criticality task, for use in the event of the system undergoing
a mode-change into HI-criticality mode. (If the system does
not undergo such a mode-change, this allocated capacity may
end up remaining unused.) Doing so leaves less execution
remaining to be completed after the switch instant S in HI-
criticality mode, and may thus result in a smaller makespan
in HI-criticality modes (i.e., a smaller value for ∆HI).

Such a scheme is particularly effective if the duration of the
HI-criticality schedule after S — the one of duration ∆HI —
is also dominated by longer jobs, i.e., if in Expression 6∑

χi=HI Ci(EX)

m
< max
χi=HI

{
Ci(EX)

}
If this be the case, then the unused capacity prior to time-
instant S can be filled so as to minimise the maximum Ci(EX)
by bringing forward work to before S — this is accomplished
by increasing Ci(LO) for such a job and decreasing its Ci(EX)
by the same amount. However, jobs that have (Ci(LO) = S)
cannot have work brought forward in this manner since this
would result in S increasing as well.

It is evident that this scheme is effective since:

• Any work brought forward will not change S,
• The first term in Expression (6) is not increased by

bringing work forward, and
• The second term in Expression (6) is reduced by always

choosing the largest value and decreasing it.

We note that if more than one job has the same Ci(EX)
value then an arbitrary choice is made (and has no impact
on optimality).

And what if there is no unused processor capacity in the
schedule over [0, S)? In that case, the switch-point S may be
increased to any value ≤ Smax (where Smax is as defined
by Expression (3)). An obvious choice for S is S ← Smax;
an algorithm for achieving the smallest value of S (i.e., the
earliest possible switch-time) is as follows. Setting the switch
point S to be Smin + 1 will generate m free slots. So Ci(LO)
values of HI-criticality jobs can be increased by this amount
(and the corresponding C(EX) values decreased). If this will
reduce the size of ∆HI by more than one then an overall
decrease in S + ∆HI will have been achieved . This cycle
is repeated (i.e. adding 1 to S) until either no further gain is
made or S takes the value of Smax. At each step of the cycle
no C(LO) value should increase beyond the current value of
S.

χi Ci(LO) Ci(HI) Ci(HI)− Ci(LO)
j1 LO 3 - -
j2 LO 2 - -
j3 LO 2 - -
j4 HI 2 7 5
j5 HI 3 7 4
j6 HI 3 3 0
j7 HI 4 4 0

TABLE I
AN EXAMPLE DUAL-CRITICALITY JOB INSTANCE

Example 1: To illustrate the above scheme consider the
scheduling of the mixed-criticality instance of Table I upon
3 unit-speed processors with a frame length of 8 (D = 8).

We can immediately use the equations above to compute:
∆LO = 3 (and hence Smax = 5) and Smin = 4. So the first
step to schedulability is satisfied (i.e. Smin ≤ Smax). We note
that if we ignore mixed criticality issues then the minimum
makepsan for the HI-criticality jobs (ignoring LO-criticality
work) is 7. So a completely separated scheme would require
a frame size of 10 (7 + 3).

If we initially focus on Smin then we note that there are
no free slots, so equation(6) gives a makespan in HI-criticality
mode (∆HI) of 5. So the use of this value for S (i.e. 4) gives
a required frame size of 9 (4+5); since the frame-size is 8, the
instance would be deemed unschedulable with S ← 4.

However, if we set S ← (Smin+1) which equals Smax = 5
then the total work available on three processors by time 5 is
15. The work required using C(LO) values for HI-criticality
work is 12. Hence 3 units of work can be added to these
C(LO) values. If we make C4(LO) = 4 and C5(LO) = 4 then
maximum Ci(EX) becomes equal to 3. Hence ∆HI = 3 and
Smax + ∆HI = 8. Therefore the job set fits into the frame size
of 8, with a switch time of 5.

C. More flexible implementations

The cyclic executives constructed as discussed above are
implementable as lookup tables. Three lookup tables are
constructed as dictated by the McNaughton procedure: one
for the interval [0, S), another for HI-criticality jobs over the
interval [S,D), and a third for LO-criticality jobs over the
interval [S,D). The first lookup table is always executed, while
one of the other two is selected depending upon whether all
HI-criticality jobs have completed or not by time-instant S.

Lookup tables are a very restrictive form of run-time
dispatching. If a certain amount of additional flexibility is
permitted, then more efficient use of platform resources may
be possible, We illustrate with an example.

Suppose that C1(LO) in the example instance of Table I
were equal to 4 (rather than 3 as listed in Table I). It may
be verified that ∆LO for this instance is then equal to 4; the
switch-point must therefore be ≤ (8 − 4) or 4. But we saw
in Example 1 that this is not possible, since setting S ← 4
results in a makespan of (4 + 5 =) 9 in HI-criticality mode.

Let us therefore choose S ← 5 as mandated by the argu-
ments in Example 1, and consider the CE schedule specified
in Figure 1 over the interval [0, 5). Notice that this schedule is

-
0 1 2 3 4 5

Proc1

Proc2

Proc3

j7 j4

j6 j5

j4 j6

Fig. 1. Dynamic switching.

compliant with the requirements of Example 1: j4 and j5 both
execute for 4 units over [0, 5) while j6 and j7 each execute
for their Ci(LO) values of 3 and 4 respectively. Hence in HI-
criticality mode all HI-criticality jobs would complete by the
end of the frame, at time-instant 8.

Now observe that in any LO-criticality behaviour,

• j4 would complete C4(LO) = 2 units of execution by
time-instant 2; hence, the execution of j6 on processor 3
could be moved forward1 to the interval [2, 4).

• As a consequence, j6 would complete its C6(LO) = 3
units of execution by time-instant 4.

• j5 would complete its C5(LO) = 3 units of execution
over [1, 4), also completing by time-instant 4, and

• j7 would execute to completion over [0, 4).

Thus, all the HI-criticality jobs processors will have completed
their LO-criticality execution by time-instant 4, and the plat-
form becomes available for the LO-criticality jobs to execute
at time-instant 4 and complete by time-instant 8.

This example illustrates that the added run-time flexibility
of adjusting the pre-computed schedule may permit enhanced
schedulability — instances not schedulable without this flex-
ibility can be scheduled correctly. We are currently working
on better understanding what kinds of run-time flexibility are
reasonable to permit within the context of cyclic executives;
we leave as future work the design of algorithms that would
construct schedules such as the one shown in Figure 1.

IV. JOBS WITH MORE THAN TWO CRITICALITY LEVELS

We now assume there are V > 2 criticality levels, L1

(the highest) to LV (the lowest). Recall from Section II
that each job ji, of criticality χi, has just has two WCET
estimates, one for the base criticality level LV , Ci(normal) =
Ci(LV), abbreviated to Ci(NL), and one for its own criticality
level, Ci(self) = Ci(χi), abbreviated to Ci(SF). We define
Ci(EX)

def
= Ci(SF) − Ci(NL). We overload the symbols Li

to also denote the set of jobs of that criticality. We seek to
compute (V −1) switch points S1 to SV−1 that are constrained
as follows (for notational convenience we let S0 and SV

denote the start and end of the frame respectively (i.e S0 ≡ 0
and SV ≡ D)). So for each criticality level Li, and frame f
we require that

1Note that this moving forward of j6’s execution is not permitted in a pure
lookup table dispatcher; this is the additional implementation flexibility that
is sought in this section.

• If each job ji ∈ Li executes for no more than Ci(NL),
then all the jobs in the set Li must fit into the interval
(Si−1,Si]

• If each job ji ∈ Li executes for no more than Ci(SF),
then all the jobs in the set Li must fit into the interval
(Si−1,SV].

To compute the switching times we extend the process
defined in Section III above to > 2 criticality levels. It is
possible to start at the lowest or highest criticality level;
experimentation shows that it is better to start at the highest.
So first we compute minimum makespan for criticality level
L1:

Smin
1

def
= max

(∑
ji∈L1

Ci(NL)

m
, max
ji∈L1

{
C(NL)

})
(8)

Next we compute ∆1 and check that Smin
1 + ∆1 is no greater

than SV (= D):

∆1 def
= max

(∑
ji∈L1

Ci(EX)

m
, max
ji∈L1

{
Ci(EX)

})
(9)

If Smin
1 + ∆1 > SV then work must be brought forward

so that Smin
1 is increased but ∆1 is decreased by a greater

amount. This is achieved by adding to C(NL) so as to minimise
the maximum C(EX) (for jobs of criticality L1). If such
alterations cannot deliver Smin

1 + ∆1 ≤ SV then the job set is
unschedulable. Alternatively, S1 is fixed to be the minimum
value computed.

This process is repeated for each criticality level, Li using:

Smin
i

def
= max

(∑
ji∈Li

Ci(NL)

m
, max
ji∈Li

{
Ci(NL)

})
(10)

and

∆i def
= max

(∑
ji∈Li

Ci(EX)

m
, max
ji∈Li

{
Ci(EX)

})
(11)

with the conditions

Si−1 + Smin
i + ∆i ≤ SV (12)

and for all jobs of criticality Li

Ci(NL) ≤ Smin
i . (13)

At all stages, modification to Ci(NL) (and hence Ci(EX))
are made to ensure these two conditions are met. Note that
some movement of computation time may be possible without
increasing a Smin

i value. Each step fixed Si.

A. An Example

We illustrate the above scheme upon an example with two
cores, four criticality levels and three jobs per criticality level.
Table II lists the parameters for the jobs. The frame length
is 20 units. We note that independent makespans for the
four criticality levels would require a frame length of 48
(20+15.5+8.5+4).

First Smin
1 and ∆1 are computed; they are seen to equal 3

and 18 respectively. Together this is too large (as the frame size
is 20). So S1 is set to 4 (i.e. C1(NL) = 4 with C1(EX) = 16).

χi Ci(NL) C(SF) Ci(EX)
j1 L1 2 20 18
j2 L1 1 8 7
j3 L1 3 9 6
j4 L2 6 13 7
j5 L2 1 3 2
j6 L2 4 15 11
j7 L3 5 6 1
j8 L3 3 8 5
j9 L3 1 3 2
j10 L4 3 3 0
j11 L4 4 4 0
j12 L4 1 1 0

TABLE II
AN EXAMPLE MIXED-CRITICALITY JOB SET.

χi Ci(NL) C(SF) Ci(EX)
j1 L1 4 20 16
j2 L1 1 8 7
j3 L1 3 9 6
j4 L2 6 13 7
j5 L2 1 3 2
j6 L2 7 15 8
j7 L3 5 6 1
j8 L3 4 8 4
j9 L3 1 3 2
j10 L4 3 3 0
j11 L4 4 4 0
j12 L4 1 1 0

TABLE III
THE EXAMPLE JOB SET OF TABLE II TRANSFORMED.

This now delivers Smin
1 = 4 and ∆1 = 16 which is sufficient

for criticality level L1.
Next level L2 is checked. Note the frame size for this

criticality level is, in effect, 16 (i.e. 20 - S1). So, Smin
2 = 6

and ∆2 = 11; again this is too long so Smin
2 is set to 7, with

the result that C6(NL) is made equal to 7 and C6(EX) is 8.
As a result ∆2 is now equal to 8.5, and the sum of the two
intervals is 15.5 which is sufficient. This fixes S2 to be 11
(4+7).

Continuing with L3. Frame size is now 9. Value of Smin
3

is 5, and ∆3 is 5 also. As 10 > 9 there is again a need to
reduce ∆3. Here this can be done without increasing Smin

3

(as this interval was not ‘full’). Let C8(NL) = 4 and hence
C8(EX) = 4. Now ∆3 = 4 and Smin

3 + ∆3 = 9 (5+4). Again
this is sufficient and S3 is set equal to 16.

The final step is to check that the lowest criticality jobs will
fit into the interval left for them. The interval is of length 4, and
the makespan (∆4) for this set is 4. So they are accommodated
and the job set can be declared schedulable.

To further illustrate the process of modifying the job set to
obtain a schedulable one, Table III gives the parameters of the
job set obtained after modification. It is easy to observe that
the new job set is obtained from the initial one by just adding
to the C(NL) estimates. And also it is clear that the new job
set is schedulable with switch points 4, 11 and 16.
Optimality. The scheme outlined at the beginning of this
section via equations/conditions (10) to (13), and illustrated
with the example above, is optimal in the following sense.

Definition 1: An allocation scheme (of jobs to frames) is
optimal if it leads to the smallest possible switching points
and a schedulable system.

This notion of optimal is intuitive as for each criticality level
the earliest switching point maximises the time available for
the lower criticality levels. The scheme produces the optimal
value for each switching point, Si, as:
• If Si = Smin

i satisfies condition (12) then this is the
minimum makespan by definition [8, page 6].

• If condition (12) is not satisfied the scheme increases
C(NL) values by the minimum amount commensurate
with decreasing the maximum C(SF) so that the condition
is met. This leads to a minimum increase in Si.

• If no Si can be found (i.e. it continues to increase until
∆i = 0 without satisfying condition (12) then the system
is unschedulable.

V. CONCLUSIONS

Single processor safety-critical systems are often con-
strained so that they can be implemented as a series of frames
in a repeating cyclic executive. In this paper we have extended
this approach to incorporate multi-core platforms and mixed
criticality applications. We allow a minimum number of jobs
to be split across the frames, and propose a practical means of
constructing the necessary cyclic schedule. Future work will
extend our approach to multi-cycle systems.

Acknowledgements. This research is partially supported by NSF grants CNS
1115284, CNS 1218693, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-
0161, ARO grant W911NF-14-1-0499, and a grant from General Motors Corp. It is also
supported by ESPRC grant MCC (EP/K011626/1). No new primary data were created
during this study.

REFERENCES

[1] S. Baruah and A. Burns. Achieving temporal isolation in multiprocessor
mixed-criticality systems. In Proc. of the 2nd Workshop on Mixed
Criticality Systems (WMC), 2014.

[2] S. Baruah and G. Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In Proc. of the Real-Time Systems
Symposium (RTSS), 2011.

[3] I. Bate and A. Burns. An integrated approach to scheduling in safety-
critical embedded control systems. Real-Time Systems, 25(1):5–37,
2003.

[4] A. Burns. An augmented model for mixed criticality. In Sanjoy K.
Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza,
editors, Mixed Criticality on Multicore/Manycore Platforms (Dagstuhl
Seminar 15121), volume 5(3). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2015.

[5] A. Burns, T. Fleming, and S. Baruah. Cyclic executives, multi-core
platforms and mixed criticality applications. In Proc. ECRTS, 2015.

[6] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In Proc. of the Real-Time Systems
Symposium, pages 291–300, 2009.

[7] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling
of mixed-criticality applications on resource-sharing multicore systems.
In International Conference on Embedded Software (EMSOFT), pages
17:1–17:15, 2013.

[8] R McNaughton. Scheduling with deadlines and loss functions. Man-
agement Science, 6:1–12, 1959.

[9] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered
mixed critical scheduler. In Proc. of the Workshop on Mixed Criticality
Systems (WMC), pages 67–72, 2013.

[10] D. Tamas-Selicean and P. Pop. Design optimization of mixed-criticality
real-time applications on cost-constrained partitioned architectures. In
Proc. of the Real-Time Systems Symposium (RTSS), 2011.

[11] D. Tamas-Selicean and P. Pop. Task mapping and partition allocation for
mixed-criticality real-time systems. In Dependable Computing (PRDC),
17th Pacific Rim International Symposium on, pages 282–283, 2011.

[12] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the Real-Time
Systems Symposium, pages 239–243, 2007.

Investigating Mixed Criticality Cyclic Executive
Schedule Generation

Tom Fleming
Department of Computer Science,

University of York, UK.
Email: tdf506@york.ac.uk

Alan Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

Abstract—Mixed Criticality systems require a difficult com-
promise to be drawn between efficient system utilisation and
sufficient separation of critical components. In addition to these
challenges, hardware platforms are becoming increasingly multi-
core in nature bringing up additional scheduling issues. Previous
publications have met these challenges by suggesting a Cyclic
Executive based approach for Mixed Criticality scheduling. They
make use of a barrier protocol to separate the execution within
each minor cycle, executing higher critical work, then less
critical work. The barrier protocol allowed such a separation
of criticalities to remain consistent across all cores in a given
platform. This strict separation has the advantage that higher
criticality work cannot suffer interference from lower, including
communication and recourse access. One of the key challenges of
using a Cyclic Executive is the construction of a valid schedule.
In this work we consider the question, “Is it worth using an
optimal solver such as Integer Linear Programming (ILP) for
Cyclic Executive schedule generation?”. We start by extending
the Cyclic Executive model to include multiple minor cycles. An
ILP model is described and evaluated against the heuristic worst
fit. The results show that ILP significantly outperforms worst fit.
Finally we show that ILP is not only effective, but also efficient in
terms of runtime and scalability for the examples and parameters
considered in this work, making it a practical choice for Cyclic
Executive schedule generation of real systems.

I. INTRODUCTION

With the introduction of powerful multi-core architectures
comes the desire to consolidate functionality, that was pre-
viously spread across many nodes, onto a single common
hardware platform. Inevitably such a consolidation gives rise
to the situation where more critical work must be placed upon
the same resources as less critical work. This consolidation has
brought about the notion of a Mixed Criticality (MC) system.
Scheduling such a system is challenging as highly critical work
must often be certified and follow safety standards such as
Design Assurance Levels (DAL) in the aerospace industry and
ASIL (Automotive Safety Integrity Levels) in the automotive
industry. Care must be taken to ensure that less critical work
can not interfere with the execution of higher critical work.
The design of such systems becomes a trade-off between
efficiently utilising the system resources while providing an
adequate level of separation to satisfy any safety requirements.

One of the most widely used scheduling policies in industry
is the Cyclic Executive (CE). Such policies execute code
cyclically in a pre-defined order, as such they are highly

deterministic which makes them a favourable choice for highly
critical applications with stringent certification requirements.
Cyclic Executive systems are made up of a major cycle
which is composed on a number of minor cycles, the major
cycle repeats in a cyclic manner. Naturally this determinism
comes with some drawbacks, Baker and Shaw [1] performed
some initial evaluations on the CE model, they noted some
restrictions:

• Cyclic Executives can only easily support periodic work.
• Tasks must have periods that are multiples of the minor

cycle.
• Tasks must have deadlines equal to or less than the minor

cycle.
• Tasks cannot have a period greater than the major cycle.

In addition to these drawbacks, the creation of CE sched-
ules is well known to be NP-hard. Despite these issues the
high level of determinism makes Cyclic Executives popular
schedulers.

Baruah and Burns [3] investigate the notion of a mixed
criticality cyclic executive. In order to provide the separation
required between different levels of criticality they use the
scheme proposed by Ginnopoulou et al. [6]. This approach
uses a barrier protocol to completely separate the execution
of different criticality levels. The barrier mechanism works by
having each CPU call it when its execution for a particular
criticality level has completed. Once all CPUs have called the
barrier, they are released and allowed to execute the work for
the next criticality level. The barrier protocol requires minimal
hardware or OS support. Baruah and Burns make use of this
protocol within a CE context. Within each minor cycle, work
is executed in order of criticality, highest criticality first, each
level is separated by a barrier.

Burns et al. [5] build upon the work in [3] by considering
the creation of CE schedules using heuristics to allocate tasks
to cores. This work considers the simple case where a system
is made up of a single minor cycle (i.e. minor cycle = major
cycle), they assess the performance of First Fit (FF), Worst
Fit (WF) and First Fit with Branch and Bound (FFBB). They
show that the barrier protocol does impact the ability to create
CE schedules but conclude this it is a necessary compromise
to allow for more robust systems that are easier to certify.

In this work we seek to extend the investigation into cyclic
executive schedule construction. We will extend our view of
the system model to include multiple minor cycles within
a major cycle. Alongside heuristic based techniques there
are optimal solutions which typically come with increased
execution overheads. As we know that the MC scheduling
problem is NP-hard in the strong sense [2] we extend our
work to consider an optimal solver. One such technique is
Integer Linear Programming (ILP), in this work we make use
of ILP and show that not only does it allow a large number of
task sets to be scheduled, even in the extended system model
but for the purposes of CE schedule constriction it is efficient.

Throughout this work we will make use of the MC system
model proposed by Vestal in 2007 [8]. Vestals model proposes
that each task in a system has a WCET value for its own
criticality level and all those below. Our model is made up of
a number of dual criticality periodic tasks with the properties
τ = {C(LO), C(HI), T,D,L} where C(LO) is the LO
criticality WCET, C(HI) is the HI criticality WCET (and
C(HI) > C(LO)), T is the period, D is the deadline and L
is the criticality level (HI or LO). We use TF to denote the
minor cycle and TM to denote the major cycle.

In addition to the model above, we assume a constrained
system where the major cycle is a multiple of the minor cycle.
As such task periods must also be multiples of the minor cycle
and no greater than the major cycle. In general in this work
we consider 4 minor cycles per major cycle, where TF = 25
and TM = 100. We do not consider the issue of assigning an
arbitrary set of periods to a cyclic executive.

The remainder of this work is structured as follows, Section
II will detail the construction of an ILP model used to check
for feasible CE schedules and show its effectiveness against
heuristic based techniques, Section III will consider whether
ILP can be practically used by assessing its computational
overheads and Section IV will present some conclusions to
this work.

II. USING ILP TO CREATE CE SCHEDULES

In this section we will describe how the constraints of a
cyclic executive can be expressed as an ILP model and how
this model is used to check for a feasible schedule. We extend
the work of [3] by allowing for multiple minor cycles within
the major cycle, this leads to an allocation problem of tasks
to frames and the cores within each frame. We will briefly
recap the runtime of a mixed criticality CE using the barrier
protocol and its schedulability test, following this the ILP
implementation will be described by means of an example.

The runtime of a single minor cycle in a (dual criticality)
mixed criticality cyclic executive is as follows:

CE Runtime:
- The minor cycle begins by executing HI criticality tasks
on all cores.

- Once tasks on a core have finished executing HI work
they signal the barrier protocol.

- If all cores signal the barrier before their C(LO) execu-
tion times, LO criticality work may commence.

- If any core does not signal completion by their C(LO)
then the system moves into the HI criticality mode and
all HI tasks are allowed to execute up to their C(HI)
execution times.

The latest time at which each core could call the barrier
protocol to report HI work complete is denoted by S(i, j),
where i is the core and j is the minor cycle. The point at which
the system changes from executing the HI work in the LO
mode to executing the LO work is denoted by Smax(j), where
j is the minor cycle. As such the schedulability of a mixed
criticality CE can be determined as follows (where HI(i, j)
is the set of high criticality tasks scheduled on core i, minor
cycle j and LO(i, j) is the set of LO criticality tasks scheduled
on core i, minor cycle j):

1) HI criticality tasks must fit within the minor cycle:

∀i and j,
∑

k∈HI(i,j)

Ck(HI) ≤ TF .

2) The value of S(i, j) can be calculated for each core:

S(i, j) =
∑

k∈HI(i,j)

Ck(LO)

3) The value of Smax(j) used across all CPUs is:

Smax(j) = max(S(i, j))

4) LO criticality jobs must fit within the time between
Smax(i, j) and the end of the minor cycle:

∀i and j,
∑

k∈LO(i,j)

Ck(LO) ≤ TF − Smax(j)

We will describe the construction of our ILP model via the
use of an example. Consider the task set shown in Table I:

τ Ci(LO) Ci(HI) Ti Di Li

T1 3 4 25 25 HI
T2 4 5 50 50 HI
T3 5 6 50 50 HI
T4 13 15 25 25 HI
T5 10 - 25 25 LO
T6 2 - 50 50 LO
T7 3 - 25 25 LO
T8 5 - 100 100 LO

TABLE I
A MIXED CRITICALITY TASK SET WITH 4 MINOR CYCLES

(TF = 25, TM = 100).

The construction of the ILP model to check the schedula-
bility of the task set in Table I will now be described based
on a 2 core platform. We will describe this model based on
the syntax of the Gurobi optimiser [7] which is the tool used
throughout this work.

In order to achieve our goal of testing for any valid CE
schedule we require a simplistic method of modelling our
system. In order to model the possible locations of a task

we create a variable for each location, the variables are in
the format T [tasknumber] [core][cycle]. Each variable is
declared as a binary value, therefore if it is set to 1 the task is
scheduled in that location. For example T1 has a period of 25,
as such is included in all 4 of the minor cycles, therefore it
must be scheduled on one of the two cores within each minor
cycle, (T 11 or T 21 where TF = 1). In the next part of the
model we define the bounds for these variables so that each
task might only be scheduled the correct number of times in
the correct places (no duplicate tasks etc.).

With this in mind we construct our maximize statement,
the first section of the ILP model. As we are not interested
in optimising any particular parameter, we need not include
anything in this section. We merely seek to discover if a
scheduleable assignment exists, we require at least one feasible
schedule.

The second stage of the model is the Subject To section, in
this section the key constraints of the model are defined. To
model this we set-up a constraint for each minor cycle, for
cycle one T1 would have the constraint T1 11+T1 21 = 1,
this ensures that T1 is only scheduled on one of the two cores
in the first minor cycle. These constraints are repeated for the
remaining minor cycles.

If a task has a period of 50, it must be scheduled once
in the first two minor cycles and once in the second two.
We use the same notation to model this, for example cycles
one and two for T2 can be constrained with the following:
T2 11 + T2 21 + T2 12 + T2 22 = 1.

Finally if a task has a period of 100 then it must be
scheduled only once within the major cycle, we model this for
T8 as follows: T8 11 + T8 21 + T8 12 + T8 22 + T8 13 +
T8 23 + T8 14 + T8 24 = 1.

The complete set of constraints for the task set shown in
Table I are shown below:

S u b j e c t To
T1 11 + T1 21 = 1
T1 12 + T1 22 = 1
T1 13 + T1 23 = 1
T1 14 + T1 24 = 1
T2 11 + T2 21 + T2 12 + T2 22 = 1
T2 13 + T2 23 + T2 14 + T2 24 = 1
T3 11 + T3 21 + T3 12 + T3 22 = 1
T3 13 + T3 23 + T3 14 + T3 24 = 1
T4 11 + T4 21 = 1
T4 12 + T4 22 = 1
T4 13 + T4 23 = 1
T4 14 + T4 24 = 1
T5 11 + T5 21 = 1
T5 12 + T5 22 = 1
T5 13 + T5 23 = 1
T5 14 + T5 24 = 1
T6 11 + T6 21 + T6 12 + T6 22 = 1
T6 13 + T6 23 + T6 14 + T6 24 = 1
T7 11 + T7 21 = 1
T7 12 + T7 22 = 1
T7 13 + T7 23 = 1
T7 14 + T7 24 = 1
T8 11 + T8 21 + T8 12 + T8 22 +
T8 13 + T8 23 + T8 14 + T8 24 = 1

Statements are now required to ensure that the taskset is
schedulable in the configuration chosen. This is done in three
stages.

Stage One: The first stage aims to ensure that the HI
criticality work is schedulable when it executes up to its
maximum C(HI) WCET value. This is done by multiplying
each tasks WCET with the variables representing the possible
locations of the tasks. If the variable is set to 1 and the task
is scheduled, then the answer will be equal to the WCET, if 0
then the answer is 0. The notation for the HI criticality tasks
in the HI mode is shown below:
4 T1 11 + 5 T2 11 + 6 T3 11 + 15 T4 11 <= 25
4 T1 21 + 5 T2 21 + 6 T3 21 + 15 T4 21 <= 25
4 T1 12 + 5 T2 12 + 6 T3 12 + 15 T4 12 <= 25
4 T1 22 + 5 T2 22 + 6 T3 22 + 15 T4 22 <= 25
4 T1 13 + 5 T2 13 + 6 T3 13 + 15 T4 13 <= 25
4 T1 23 + 5 T2 23 + 6 T3 23 + 15 T4 23 <= 25
4 T1 14 + 5 T2 14 + 6 T3 14 + 15 T4 14 <= 25
4 T1 24 + 5 T2 24 + 6 T3 24 + 15 T4 24 <= 25

Stage Two: The second stage checks the schedulability of
the HI criticality tasks executing to their LO WCET values,
this is done in the same way as stage one. In addition to
this an X value is added to the calculation, one X value per
minor cycle (X 1, X 2, X 3, X 4). The X value represents
the time between the point at which all cores complete their
execution of the HI criticality tasks (Smax), and the end of
the minor cycle (TF).
3 T1 11 + 4 T2 11 + 5 T3 11 + 13 T4 11 +X 1<= 25
3 T1 21 + 4 T2 21 + 5 T3 21 + 13 T4 21 +X 1<= 25
3 T1 12 + 4 T2 12 + 5 T3 12 + 13 T4 12 +X 2<= 25
3 T1 22 + 4 T2 22 + 5 T3 22 + 13 T4 22 +X 2<= 25
3 T1 13 + 4 T2 13 + 5 T3 13 + 13 T4 13 +X 3<= 25
3 T1 23 + 4 T2 23 + 5 T3 23 + 13 T4 23 +X 3<= 25
3 T1 14 + 4 T2 14 + 5 T3 14 + 13 T4 14 +X 4<= 25
3 T1 24 + 4 T2 24 + 5 T3 24 + 13 T4 24 +X 4<= 25

Stage Three: The final stage seeks to ensure than the
LO criticality tasks are schedulable within the time X we
calculated above. This is achieved by a similar process to
stages one and two, but this time also subtracting X . The
solution must be less than or equal to 0 for the LO criticality
execution to be schedulable within X .
10 T5 11 + 2 T6 11 + 3 T7 11 + 5 T8 11 −X 1<= 0
10 T5 21 + 2 T6 21 + 3 T7 21 + 5 T8 21 −X 1<= 0
10 T5 12 + 2 T6 12 + 3 T7 12 + 5 T8 12 −X 2<= 0
10 T5 22 + 2 T6 22 + 3 T7 22 + 5 T8 22 −X 2<= 0
10 T5 13 + 2 T6 13 + 3 T7 13 + 5 T8 13 −X 3<= 0
10 T5 23 + 2 T6 23 + 3 T7 23 + 5 T8 23 −X 3<= 0
10 T5 14 + 2 T6 14 + 3 T7 14 + 5 T8 14 −X 4<= 0
10 T5 24 + 2 T6 24 + 3 T7 24 + 5 T8 24 −X 4<= 0

The model then declares any bounds required, as all but 4
of the variables used are declared as binaries only 4 bounds
are defined. The X values are bounded to be less than or equal
to 25, in reality these variables should never reach this point.
Bounds
X 1 <= 25
X 2 <= 25
X 3 <= 25
X 4 <= 25

Finally we declare all variables used.

B i n a r i e s
T1 11 T1 21 T1 12 T1 22 T1 13 T1 23 T1 14 T1 24
T2 11 T2 21 T2 12 T2 22 T2 13 T2 23 T2 14 T2 24
T3 11 T3 21 T3 12 T3 22 T3 13 T3 23 T3 14 T3 24
T4 11 T4 21 T4 12 T4 22 T4 13 T4 23 T4 14 T4 24
T5 11 T5 21 T5 12 T5 22 T5 13 T5 23 T5 14 T5 24
T6 11 T6 21 T6 12 T6 22 T6 13 T6 23 T6 14 T6 24
T7 11 T7 21 T7 12 T7 22 T7 13 T7 23 T7 14 T7 24
T8 11 T8 21 T8 12 T8 22 T8 13 T8 23 T8 14 T8 24

I n t e g e r s
X 1 X 2 X 3 X 4

End

In order to access the performance of the ILP model
we compared it against the heuristic Worst Fit (WF) which
performed well in the experimentation undertaken in [5]. In
the work of [5] WF performed its allocation in two stages:

• Stage One Allocate the HI criticality tasks and locate
point Smax.

• Stage Two Allocate the LO criticality tasks in the time
remaining, TF − Smax.

As the prior work dealt with the simpler single cycle model,
the implementation of worst fit used in this work had to take
into account the multi-cycle system. This is done as follows:

• Stage One Allocate the HI criticality tasks to minor
cycles.

• Stage Two Allocate the LO criticality tasks to minor
cycles.

• Repeat For Each Minor Cycle
Stage One Allocate HI criticality tasks assigned to the
minor cycle to cores and locate point Smax.
Stage Two Allocate the LO criticality tasks assigned to
the minor cycle in the time remaining, TF − Smax.

Worst fit and ILP were compared by means of experimental
data using randomly generated task sets. The parameters for
this experimentation were as follows:

• Our experiments were based on a 4 core platform.
• Each task set consisted of 20 tasks.
• 10,000 task sets were generated at each 5% utilisation

interval.
• Tasks were generated as follows: utilisations (U) were

uniformly generated via UUniFast [4], periods were se-
lected from the set {25, 50, 100}, C(LO) values were
created by, C(LO) = U × T , C(HI) values were
created by multiplying C(LO) values via a random value
between 1.1 and 1.9.

• The criticality levels within a task set were evenly dis-
tributed.

• CE execution is split across 4 minor cycles where TF =
25 and TM = 100.

• Tasks may have periods of 25, 50 and 100. These are
allocated randomly during taskset generation.

0 0.5 1 1.5 2 2.5 3 3.5 4

Utilisation

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty

ILP

WF

Fig. 1. The effectiveness of WF and ILP to generate CE schedules.

Figure 1 is typical of the results found over a range of
parameters and shows that ILP significantly out performs the
WF heuristic. Where ILP still boasts schedulability at nearly
0.8 WF is only able to manage around 0.1. ILP provides a
clear improvement over the heuristic based techniques. With
ILP being an optimal solver this improvement is somewhat
expected, the question remains, are the overheads of using
ILP in comparison to WF worth the increase in the number
of CE schedules generated.

On an alternate note, if ILP is used in the constrained
CE model from [5] where TF = TM then the results are
interesting.

0 0.5 1 1.5 2 2.5 3 3.5 4

Utilisation

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty

ILP

FFBB

WF

FF

Fig. 2. A comparison between ILP and prior heuristics presented in [5].

Figure 2 shows that for the restricted case of a single minor
cycle, the heuristics FFBB1 and WF perform extremely close
to the ILP solution. This makes it clear that these heuristics
are very well optimised for this problem, but the additional
complexity of multiple minor cycles is a significant issue. This
is likely down to it becoming a two stage allocation process
for the heuristic techniques (allocate to minor cycles then to
cores within those cycles).

III. THE EFFICIENCY OF USING ILP FOR CE SCHEDULE
CREATION

As established in Section II, ILP can provide significant
improvements for CE schedule creation, especially when a
more complex CE model is considered. However ILP based
solutions are well known for having high computational over-
heads. This section will investigate the overheads involved
with our technique and show how ILP can be effectively used
for schedule generation.

In order to investigate the computation time required for
ILP in comparison to WF we made use of the inbuilt timing
tools in Matlab. This provides a comparable baseline which
allows the real world performance of each approach to be
assessed. Our test platform consisted of a 32 core (AMD
Opteron 6134) compute server. We timed the execution of
the complex test with the aim of investigating the cost of the
additional schedulability provided by ILP.

The figures in Table II show the average time taken to
execute (in seconds), per task set for both ILP and WF. The
parameters of this experiment were: 20 tasks per set with
evenly distributed (dual) criticality levels.

WF ILP
Average Time (sec) 0.010 0.0125

TABLE II
THE AVERAGE EXECUTION TIME OF WF AND ILP.

While these results do show that on average the ILP solver
takes longer than WF to solve the CE schedule generation
problem, both times are negligible when you consider real
world use. During experimentation thousands of task sets are
tested in order to produce results, while the experiments take
some time to run, a single set of tasks can be checked quickly.
In a real use case it is likely that only a single version of
the system need be checked at any given time and both WF
and ILP take, on average, a very small amount of time to
solve a single problem. ILP however boasts greatly increased
schedulability, we observed an average increase of 0.19 and
up to 0.53 at some utilisations. The question remains, if this
is true for a system with 20 tasks, how do both approaches
fair when the number of tasks are increased? In other words,
is it scalable?

1Inital allocation is performed by First Fit, the largest and smallest Smax

values are identified, these are used to perform a Branch and Bound search
to attempt to minimise Smax. See [5] for details.

This was explored by re-running the experiments and vary-
ing the number of tasks from 20 to 100, the results of this are
shown in Figure 3:

Task Set Size & Allocation Technique
WF20 ILP20 WF40 ILP40 WF60 ILP60 WF80 ILP80 WF100 ILP100

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 3. The increase in computation time as the number of tasks per set is
increased.

The results in Figure 3 show data for more than 99.99% of
the task sets tested, the majority of the outliers not shown here
completed within 4 seconds2. Although a rise in the average
computation time can be seen as the number of tasks per set
is increased, the time required still remains very low. The
low execution requirements of the ILP implementation comes
down to the desire to simply discover if a suitable schedule
exists, no optimisation is required. As the number of tasks
per set increases, the number of variables required to model
the problem increases dramatically. However due to the binary
nature of the variables that decide where a task is placed and
the lack of a maximization requirement the execution time
remains low.

It is also possible to observe this scalability with regard
to the number of CPU cores in a system. Figure 4 shows
again 99.99% of all task sets tested3. It is clear that our ILP
solution is scalable both as tasks and CPU cores are added to
the system.

During this investigation we do not claim to have the most
efficient implementation of the WF heuristic and other aspects
of the code could affect the timing results. The results are
representative of the real world performance of the solutions
and of their performance relative to each other. By increasing
the number of tasks per set and cores we have shown that
our ILP implementation is scalable, further reinforcing the
argument for its use during the development of real world
industrial systems.

2A small number did not complete within a 24 hour test period. The outliers
are omitted as over 80000 task sets were tested per plot while the outliers
numbered less than 100.

3as before all but a very small number of the outliers completed within
0.11 seconds and a small number did not completed within the 24 test period.

Number Of Cores & Allocation Technique
WF2C ILP2C WF4C ILP4C WF6C ILP6C WF8C ILP8C WF10C ILP10C

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Fig. 4. The increase in computation time as the number of tasks per set is
increased.

IV. CONCLUSIONS

Throughout this work we addressed the following problems.
Firstly we extended the mixed criticality cyclic executive
model used in [5] to consider multiple minor cycles per
major cycle. This significantly increased the complexity of
the allocation problem as now a schedule must be constructed
by allocating tasks to the appropriate number of minor cycles,
and from there to cores within each minor cycle.

Secondly we showed that when the heuristic based approach
WF, is applied to the more complex system model it performs
poorly due to the increased complexity of the allocation
process. We introduce the notion of using ILP to model the
CE system and check for a suitable valid schedule. We show
that in the complex case ILP provides significant gains in
schedulability over WF. Interestingly in the simple case with
a single minor cycle we observed that the heuristics tested
(excluding FF) perform very well and manage a level of
schedulability close to that provided by ILP. In addition to
this, the high MC performance of ILP clearly implies similarly
good performance for the non-MC case.

Finally we showed through code timings that our ILP
implementation was able to produce a result for a single task
set within a very reasonable time frame. In addition to this
we investigated the scalability of the solution showing that,
although the execution time required did increase as a result of
increasing the number of tasks in a set, the time taken was still
very reasonable. We showed that for any practical application,
an ILP model could be comfortably used to generate a mixed
criticality cyclic executive schedule.

The specific ILP tool employed did demonstrate a small
number of runs that either took an excessive amount of time to
complete or indeed did not completed within a 25 hour period.
Those that did complete were mainly unscheduledable. It is
therefore a sensible pragmatic approach to deem the task set

to be unschedulable if the tool did not obtain a result within
4 seconds.

At the start of this work we posed the question: Is it
worth using an optimal solver for CE schedule generation over
heuristic based techniques? We have shown that it is worth
using, both from the angle of performance and computational
efficiency. In addition to this we have shown that the ILP
model proposed is scalable allowing it to handle practical
system parameters with ease.

ACKNOWLEDGEMENTS

The authors acknowledges the support and funding provided
for this work by BAE Systems, and the ESPRC (UK) via MCC
grant (EP/K011626/1). The authors also wish to thank Sanjoy
Baruah for insightful discussions on the content of this work.

REFERENCES

[1] T. Baker and A. Shaw. The cyclic executive model and
ada. In Real-Time Systems Symposium, 1988., Proceed-
ings., pages 120–129, Dec 1988.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Scheduling real-
time mixed-criticality jobs. Computers, IEEE Transactions
on, 61(8):1140 –1152, aug. 2012.

[3] S. Baruah and A. Burns. Achieving temporal isolation
in multiprocessor mixed-criticality systems. In WMC,
page 21, 2014.

[4] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154,
2005.

[5] A. Burns, T. Fleming, and S. Baruah. Cyclic executives,
multi-core platforms and mixed criticality applications.
ECRTS 2015, 2015.

[6] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele.
Scheduling of mixed-criticality applications on resource-
sharing multicore systems. In Embedded Software (EM-
SOFT), 2013 Proceedings of the International Conference
on, pages 1–15, Sept 2013.

[7] I. Gurobi Optimization. Gurobi optimizer 6.0.
http://www.gurobi.com/.

[8] S. Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance.
In Real-Time Systems Symposium, 2007. RTSS 2007. 28th
IEEE International, pages 239 –243, dec. 2007.

	WMC2015proceedings_new
	7
	8

