
Towards A More Practical
Model for Mixed Criticality

Systems
Alan Burns and Sanjoy Baruah

University of York, UK

University of North Carolina, USA

WMC 2013 – p. 1/26



Standard Model - 1
A mixed criticality system is defined to
execute in either of two modes: a HI-crit
mode or a LO-crit mode

Each task is characterised by:

L (equal to either LO or HI)
T and D, period and deadline
C(HI) and C(LO), execution times, with
C(HI) ≥ C(LO)

WMC 2013 – p. 2/26



Standard Model - 2
The system starts in the LO-crit mode, and
remains in that mode as long as all jobs
execute within their low criticality computation
times (C(LO))

If any job executes for its C(LO) execution
time without completing then the system
immediately moves to the HI-crit mode

As the system moves to the HI-crit mode all
LO-crit tasks are abandoned. No further
LO-crit jobs are executed

WMC 2013 – p. 3/26



Standard Model - 3
The system remains in the HI-crit mode

Tasks are assumed to be independent of
each other (they do not share any resource
other than the processor)

WMC 2013 – p. 4/26



Important Note

LO-crit is still critical

If all C(LO) values are safe, then the system
never leaves LO-crit mode

However, some C(LO) values may not be
safe, and

We need to address the harshness of
‘abandon all LO-crit tasks’

WMC 2013 – p. 5/26



More Realistic
Assumptions

LO-crit jobs should not be aborted

LO-crit tasks should survive in some sense

The LO-crit mode is eventually returned to

Tasks are not independent of each other –
see paper at ReTiMiCS

More than two criticality levels – see next
paper here

LO-crit tasks are constrained to execution for
at most C(LO)

i.e. mode change is only triggered by
HI-crit jobs WMC 2013 – p. 6/26



AMC-rtb Test (LO)

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈

Ri(LO)

Tj

⌉

Cj(LO)

WMC 2013 – p. 7/26



AMC-rtb Test (HI)

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI)

+
∑

τk∈hpL(i)

⌈

Ri(LO)

Tk

⌉

Ck(LO)

WMC 2013 – p. 8/26



Limitation/Benefits of
Analysis

All released LO-crit jobs are assumed to
complete

So no need to abort jobs during their
execution

though these jobs may not meet their
deadlines

WMC 2013 – p. 9/26



Alternative Models –
on mode change:

Reduce priority of LO-crit tasks

Reduce execution-time of LO-crit tasks

Increase period/deadline of LO-crit tasks

Allow LO-crit tasks to inherent slack from
under-utilising HI-crit tasks

Then return to LO-crit mode on idle tick

WMC 2013 – p. 10/26



Reduced execution
time

For HI-crit tasks: C(HI) ≥ C(LO)

WMC 2013 – p. 11/26



Reduced execution
time

For HI-crit tasks: C(HI) ≥ C(LO)

For LO-crit tasks: C(HI) ≤ C(LO)

WMC 2013 – p. 12/26



Reduced execution
time

For HI-crit tasks: C(HI) ≥ C(LO)

For LO-crit tasks: C(HI) ≤ C(LO)

For some tasks C(HI) = 0

WMC 2013 – p. 13/26



Analysis for HI-crit

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

Ri(LO)

Tk

⌉

Ck(LO) +

∑

τk∈hpL(i)

(⌈

Ri(HI)

Tk

⌉

−

⌈

Ri(LO)

Tk

⌉)

Ck(HI)

WMC 2013 – p. 14/26



Analysis for HI-crit

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

Ri(LO)

Tk

⌉

(Ck(LO)− Ck(HI)) +

∑

τk∈hpL(i)

⌈

Ri(HI)

Tk

⌉

Ck(HI)

WMC 2013 – p. 15/26



Analysis for HI-crit

Ri(HI) = Ci(HI) +
∑

τj∈hp(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

Ri(LO)

Tk

⌉

(Ck(LO)− Ck(HI))

WMC 2013 – p. 16/26



Analysis for LO-crit
task in LO-crit mode

R
∗
i (LO) = Ci(HI) +

∑

j∈hp(i)

⌈

Ri(LO)

Tj

⌉

Cj(LO)

WMC 2013 – p. 17/26



Analysis for LO-crit
task in HI-crit mode

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

R
∗
i (LO)

Tk

⌉

Ck(LO) +

∑

τk∈hpL(i)

(⌈

Ri(HI)

Tk

⌉

−

⌈

R
∗
i (LO)

Tk

⌉)

Ck(HI)

WMC 2013 – p. 18/26



Analysis for LO-crit
task in HI-crit mode

Ri(HI) = Ci(HI) +
∑

τj∈hp(i)

⌈

Ri(HI)

Tj

⌉

Cj(HI) +

∑

τk∈hpL(i)

⌈

R
∗
i (LO)

Tk

⌉

(Ck(LO)− Ck(HI))

WMC 2013 – p. 19/26



Alternative Models –
use together:

Reduce execution-time of LO-crit tasks, and

Increase period/deadline of LO-crit tasks

WMC 2013 – p. 20/26



Alternative Models –
use together:

Reduce execution-time of LO-crit tasks

Increase period/deadline of LO-crit tasks

Allow LO-crit tasks to inherent slack from
under-utilising HI-crit tasks

WMC 2013 – p. 21/26



Alternative Models –
use together:

Reduce execution-time of LO-crit tasks

Increase period/deadline of LO-crit tasks

Allow LO-crit tasks to inherent slack from
under-utilising HI-crit tasks

Reduce priority of LO-crit tasks

WMC 2013 – p. 22/26



Capacity Inheritance

Capacity Sharing

Extended Priority Exchange

History Rewriting

WMC 2013 – p. 23/26



Robustness
Another practical issue is increasing system
robustness

For example, use sensitivity analysis with the
schedulability tests to increase C(LO)s and
C(HI)s

And allow priorities to change as part of this
process

WMC 2013 – p. 24/26



Conclusion
Our models must be realistic

MCS theory must deal with the survival of
LO-crit tasks following a mode change

A number of schemes are possible

This paper has concentrated on reducing
execution time

Paper has also addressed robust priority
assignment, and capacity inheritance

WMC 2013 – p. 25/26



Future Work
Looking at more aggressive methods of
returning system back to LO-crit mode

Note review on mixed criticality research on
my home page, and on the home page of our
MCC project

WMC 2013 – p. 26/26


	Standard Model - 1
	Standard Model - 2
	Standard Model - 3
	Important Note
	More Realistic Assumptions
	AMC-rtb Test (LO)
	AMC-rtb Test (HI)
	Limitation/Benefits of Analysis
	Alternative Models -- on mode change:
	Reduced execution time
	Reduced execution time
	Reduced execution time
	Analysis for HI-crit
	Analysis for HI-crit
	Analysis for HI-crit
	Analysis for LO-crit task in LO-crit mode
	Analysis for LO-crit task in HI-crit mode
	Analysis for LO-crit task in HI-crit mode
	Alternative Models -- use together:
	Alternative Models -- use together:
	Alternative Models -- use together:
	Capacity Inheritance
	Robustness
	Conclusion
	Future Work

