Time-Triggered Mixed-Critical Scheduler¹

Dario Socci, Peter Poplavko, Saddek Bensalem and Marius Bozga

Verimag - Université Joseph Fourier - Grenoble

Workshop on Mixed Criticality Systems

¹The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 288175 [Certainty].

- scheduling is a major challenge of Mixed Critical System design
- finite set of jobs in dual critical systems:
 - every job is is classified as critical (HI) or non-critical (LO)
 - every job is labeled with two Worst Case Execution Times:
 - LO WCET computed with industrial standard tools (realistic estimation)
 - HI WCET computed with Certification Authority tools (very pessimistic estimation)
 - both HI and LO jobs are Hard Real-Time

過 ト イヨ ト イヨト

• a set of jobs is correctly scheduled if:

3

∃ ► < ∃ ►</p>

< (T) > <

- a set of jobs is correctly scheduled if:
 - Condition 1: If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline.

- a set of jobs is correctly scheduled if:
 - Condition 1: If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. (VALIDATION)

- a set of jobs is correctly scheduled if:
 - Condition 1: If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. (VALIDATION)
 - Condition 2: If at least one job's execution time exceeds its LO WCET, then all HI jobs must complete before their deadline, whereas LO jobs may be even dropped.

- a set of jobs is correctly scheduled if:
 - Condition 1: If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. (VALIDATION)
 - Condition 2: If at least one job's execution time exceeds its LO WCET, then all HI jobs must complete before their deadline, whereas LO jobs may be even dropped. (CERTIFICATION)

< 同 ト く ヨ ト く ヨ ト

- a set of jobs is correctly scheduled if:
 - Condition 1: If all jobs respect their LO WCET, then both HI and LO jobs must meet their deadline. (VALIDATION)
 - Condition 2: If at least one job's execution time exceeds its LO WCET, then all HI jobs must complete before their deadline, whereas LO jobs may be even dropped. (CERTIFICATION)

• the scheduling problem is NP-complete

一日、

Basic scenario

- an execution where all jobs terminates after executing for C(LO) before a switch time t_s and for C(HI) after t_s is called basic scenario
- analyzing basic scenario is enough
- we call a basic scenario LO if no jobs run for C(HI) $HI - J_s$ if J_s is the first job to execute for more than C(LO)

・ 同 ト ・ 三 ト ・ 三 ト

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

3

A (10) A (10) A (10)

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

EDF

D. Socci et al. (UJF / Verimag) Time-Triggered Mixed-Critical Schedu

3

Example of scheduling problem

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

-

___ ▶

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

• VERIFIED

47 ▶

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

• VERIFIED

___ ▶

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

- VERIFIED
- NOT CERTIFIED

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

Criticality Monotonic

- VERIFIED
- NOT CERTIFIED

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

- VERIFIED
- NOT CERTIFIED

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

• VERIFIED

NOT VERIFIED

NOT CERTIFIED

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

• VERIFIED

NOT VERIFIED

NOT CERTIFIED

5

Example of scheduling problem

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

• VERIFIED

• NOT CERTIFIED

- NOT VERIFIED
- CERTIFIED

D. Socci et al. (UJF / Verimag)

ime-Triggered Mixed-Critical Schedule

WMC, 3 Dec 2013 5 / 15

___ ▶

э

Example of scheduling problem

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

Example of scheduling problem

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

- VERIFIED
- NOT CERTIFIED

- NOT VERIFIED
- CERTIFIED

D. Socci et al. (UJF / Verimag)

Time-Triggered Mixed-Critical Scheduler

WMC, 3 Dec 2013 5 / 15

< 🗗 🕨

э

Example of scheduling problem

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

D. Socci et al. (UJF / Verimag)

Example of scheduling problem

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

D. Socci et al. (UJF / Verimag)

3

< 🗇 🕨 🔸

Example of scheduling problem

• Let us apply different scheduling to the instance:

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

D. Socci et al. (UJF / Verimag)

Time-Triggered Mixed-Critical Scheduler

WMC, 3 Dec 2013 5 / 15

3

- < ∃ →

< 🗇 🕨

• Fixed Priority (FP)

- fixed priority per job table
- "mode ignorant"

3

くほと くほと くほと

- Fixed Priority (FP)
 - fixed priority per job table
 - "mode ignorant"
- Fixed Priority per Mode (FPM)
 - one priority table per criticality mode
 - the knowledge of the current mode improves schedulability

12 N 4 12 N

- Fixed Priority (FP)
 - fixed priority per job table
 - "mode ignorant"
- Fixed Priority per Mode (FPM)
 - one priority table per criticality mode
 - the knowledge of the current mode improves schedulability

• Time Triggered (TT) Schedulers

- the scheduler intervals are precomputed (certification is easier)
- "mode ignorant"

- Fixed Priority (FP)
 - fixed priority per job table
 - "mode ignorant"
- Fixed Priority per Mode (FPM)
 - one priority table per criticality mode
 - the knowledge of the current mode improves schedulability
- Time Triggered (TT) Schedulers
 - the scheduler intervals are precomputed (certification is easier)
 - "mode ignorant"
- Single Time Table per Mode (STTM)[1]
 - one TT table per criticality mode

[1] S. Baruah and G. Fohler. "Certification-Cognizant Time-Triggered Scheduling of Mixed-Criticality Systems". In: *Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd.*

D. Socci et al. (UJF / Verimag)

Consider the set of jobs schedulable by the following approaches:

FP OCBP MCEDF FPM STTM

3

(日) (周) (三) (三)

Consider the set of jobs schedulable by the following approaches:

$$FP \stackrel{[2]}{=} OCBP MCEDF FPM STTM$$

[2] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. "Towards the Design of Certifiable Mixed-criticality Systems". In: *Real-Time and Embedded Technology and Applications Symposium*. RTAS'10.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the set of jobs schedulable by the following approaches:

$$FP \stackrel{[2]}{=} OCBP \stackrel{[3]}{\subsetneq} MCEDF FPM STTM$$

[2] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. "Towards the Design of Certifiable Mixed-criticality Systems". In: *Real-Time and Embedded Technology and Applications Symposium*. RTAS'10.

Consider the set of jobs schedulable by the following approaches:

$$FP \stackrel{[2]}{=} OCBP \stackrel{[3]}{\subsetneq} MCEDF \subsetneq FPM \quad STTM$$

[2] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. "Towards the Design of Certifiable Mixed-criticality Systems". In: *Real-Time and Embedded Technology and Applications Symposium*. RTAS'10.

Consider the set of jobs schedulable by the following approaches:

$$FP \stackrel{[2]}{=} OCBP \stackrel{[3]}{\subsetneq} MCEDF \subsetneq FPM \subsetneq STTM$$

[2] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. "Towards the Design of Certifiable Mixed-criticality Systems". In: *Real-Time and Embedded Technology and Applications Symposium*. RTAS'10.

Consider the set of jobs schedulable by the following approaches:

$$FP \stackrel{[2]}{=} OCBP \stackrel{[3]}{\subsetneq} MCEDF \subsetneq FPM \subsetneq STTM$$

Alg: $FPM \mapsto STTM$

[2] Sanjoy K. Baruah, Haohan Li, and Leen Stougie. "Towards the Design of Certifiable Mixed-criticality Systems". In: *Real-Time and Embedded Technology and Applications Symposium*. RTAS'10.

The algorithm

• INPUT:

FPM scheduling defined by the priority tables PT_{LO} and PT_{HI}

• OUTPUT:

STTM scheduling defined by two TT table LO and HI*

3

くほと くほと くほと

The algorithm

• INPUT:

FPM scheduling defined by the priority tables PT_{LO} and PT_{HI}

- OUTPUT: STTM scheduling defined by two TT table LO and HI*
- We generate table LO by simulating the execution of the LO scenario

Job	A	D	χ	C(LO)	C(HI)
1	0	1	LO	1	1
2	0	3	LO	1	1
3	0	4	HI	1	3

The algorithm generation of HI*

- Let at time t:
 - $T_j^{LO}(t)$ (resp. $T_j^{HI*}(t)$) = progress of J_j in LO (resp. HI*) • $E^{LO}(t)$ = job running in LO

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The algorithm generation of HI*

- Let at time t:
 - $T_j^{LO}(t)$ (resp. $T_j^{HI*}(t)$) = progress of J_j in LO (resp. HI*) • $E^{LO}(t)$ = job running in LO

Generate **HI*** by simulation of HI jobs:

- each job executes for C(HI) time units
- the jobs are scheduled according to PT_{HI}
- a job is enabled by one of the following *rules*:

$$egin{aligned} T_j^{LO}(t) &= C_j(ext{LO})\ T_j^{HI*}(t) &< T_j^{LO}(t)\ T_j^{HI*}(t) &= T_j^{LO}(t) & \wedge E^{LO}(t) = J_j \end{aligned}$$

・ 同 ト ・ 三 ト ・ 三 ト

Example

Job	A	D	χ	C(LO)	C(HI)
1	0	12	HI	3	5
2	1	4	HI	1	2
3	6	11	HI	2	4
4	7	8	LO	1	1

$$\begin{array}{ll} PT_{LO} = & J_4 \succ J_2 \succ J_3 \succ J_1 \\ PT_{HI} = & J_2 \succ J_3 \succ J_1 \end{array}$$

3

<ロ> (日) (日) (日) (日) (日)

Example

$$T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$$

$$T_i^{HI*}(t) < T_i^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

Example

$$T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$$

$$T_i^{HI*}(t) < T_i^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

イロン イヨン イヨン イヨン

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Enabled	0	0	3	5			\checkmark
2								
3								

Example

$$T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

<ロ> (日) (日) (日) (日) (日)

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Disabled	1	1	3	5			
2	Enabled	0	0	1	2			 ✓
3								

Example

$$T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

イロン イヨン イヨン イヨン

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Enabled	1	1	3	5			\checkmark
2	Enabled	1	1	1	2	\checkmark		
3								

Example

 $T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

イロン イヨン イヨン イヨン

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Enabled	1	2	3	5		\checkmark	
2	Term.	2	1	1	2			
3								

Example

 $T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Enabled	3	3	3	5	\checkmark		
2	Term.	2	1	1	2			
3								

Example

 $T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Enabled	4	3	3	5	\checkmark		
2	Term.	2	1	1	2			
3	Enabled	0	0	2	4			\checkmark

(日) (四) (王) (王) (王)

Example

 $T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Enabled	4	3	3	5	\checkmark		
2	Term.	2	1	1	2			
3	Disabled	1	1	2	4			

(日) (四) (王) (王) (王)

Example

 $T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Term.	5	3	3	5			
2	Term.	2	1	1	2			
3	Enabled	1	1	2	4			\checkmark

(日) (四) (王) (王) (王)

Example

 $T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Term.	5	3	3	5			
2	Term.	2	1	1	2			
3	Enabled	2	1	2	4	\checkmark		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example

 $T_j^{LO}(t) = C_j(\mathsf{LO}) \qquad (1)$

$$T_j^{HI*}(t) < T_j^{LO}(t) \qquad (2)$$

$$T_{j}^{HI*}(t) = T_{j}^{LO}(t) \wedge E^{LO}(t) = J_{j}$$
 (3)

Job	STATUS	$T^{HI*}(t)$	$T^{LO}(t)$	C(LO)	C(HI)	(1)	(2)	(3)
1	Term.	5	3	3	5			
2	Term.	2	1	1	2			
3	Term.	4	1	2	4			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proof of correctness

Theorem

If the FPM policy leads to a feasible schedule, then a switched time triggered schedule that uses **LO** and **HI*** as, respectively, LO-mode and HI-mode table, is a feasible schedule as well.

3

→

< 47 ▶ <

Proof of correctness

Theorem

If the FPM policy leads to a feasible schedule, then a switched time triggered schedule that uses **LO** and **HI*** as, respectively, LO-mode and HI-mode table, is a feasible schedule as well.

the proof is based on the followings:

Lemma

If at any time we switch from **LO** to **HI***, then all the unterminated jobs will have enough time reserved in **HI*** to terminate their work.

Proof of correctness

Theorem

If the FPM policy leads to a feasible schedule, then a switched time triggered schedule that uses **LO** and **HI*** as, respectively, LO-mode and HI-mode table, is a feasible schedule as well.

the proof is based on the followings:

Lemma

If at any time we switch from **LO** to **HI***, then all the unterminated jobs will have enough time reserved in **HI*** to terminate their work.

Theorem

For all HI jobs J there exists a basic scenario of the FPM scheduling where J terminates no earlier than in **HI***

3

イロト 不得下 イヨト イヨト

correctness of example

It is easy to show that the lemma is true for our example

Lemma

If at any time we switch from **LO** to **HI***, then all the unterminated jobs will have enough time reserved in **HI*** to terminate their work.

くほと くほと くほと

correctness of example

Theorem

For all HI jobs J there exists a basic scenario of the FPM scheduling where J terminates no earlier than in HI*

Gantt chart

Conclusions

- Proof that $FPM \subset STTM$
- Algorithm to translate FPM solution into STTM
 - this can make certification easier

3

Conclusions

- Proof that *FPM* \subset *STTM*
- Algorithm to translate FPM solution into STTM
 - this can make certification easier

• Future work

- More than two criticality levels
- Multiprocessor