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Message from the Program Chairs 
 
It is our pleasure to welcome you to the 1st International Workshop on Mixed Criticality 
Systems (WMC) at the Real-Time Systems Symposium (RTSS) in Vancouver Canada, 3rd 
December 2013. 

The purpose of WMC is to share new ideas, experiences and information about research and 
development of mixed criticality real-time systems. 

The workshop aims to bring together researchers working in fields relating to real-time 
systems with a focus on the challenges brought about by the integration of mixed criticality 
applications onto singlecore, multicore and manycore architectures. These challenges are 
cross-cutting. To advance rapidly, closer interaction is needed between the sub-communities 
involved in real-time scheduling, real-time operating systems / runtime environments, and 
timing analysis. 

The workshop aims to promote understanding of the fundamental problems that affect Mixed 
Criticality Systems (MCS) at all levels in the software / hardware stack and crucially the 
interfaces between them. The workshop will promote lively interaction, cross fertilisation of 
ideas, synergies, and closer collaboration across the breadth of the real-time community, as 
well as attracting industrialists from the aerospace, automotive and other industries with a 
specific interest in MCS. 

For the first edition of the workshop a total of 18 submissions were received. The review 
process involved 14 Program Committee members, with each submission receiving at least 3 
reviews. The overall standard of submissions was exceptionally high. In total, 14 papers were 
selected for presentation. Our thanks go to the WMC Program Committee for the time and 
effort they put into carefully reviewing the submissions, and for meeting the tight timescales 
set for reviews. 

In addition to the regular papers, the workshop program also includes an invited talk from 
Steve Vestals whose seminal paper, “Preemptive scheduling of multi-criticality systems with 
varying degrees of execution time assurance” from RTSS 2007 underpins the line of research 
into the mixed critical systems that continues to this day. 

WMC 2013 would not be possible without the hard work of a number of people involved in 
the organisation of RTSS. In particular, we would like to thank the RTSS 2013 Workshops 
Chair, Nathan Fisher (Wayne State University, USA) for his excellent organisation of the 
overall workshop program. We also thank James Harbin (University of York, UK) for the 
excellent website design, the WMC Steering Committee for their guidance, and the MCC 
(UK EPSRC EP/K011626/1), Proxima (EU FP7 IP 611085) and Departs (French BGLE 
O16526-405635) projects for their support. 
Finally, we would like to thank all of the authors who submitted their work to WMC 2013, 
whether it was accepted or not; without them, this workshop would not be possible. 
We wish you an interesting and exciting workshop and an enjoyable stay in Vancouver. We 
look forward to seeing you again at WMC 2014. 
 

Liliana Cucu-Grosjean (INRIA, Paris-Rocquencourt, France) 
Rob Davis (University of York, UK) 
WMC 2013 Program Chairs 
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Towards A More Practical Model for Mixed
Criticality Systems

A. Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

S.K. Baruah
Department of Computer Science,
University of North Carolina, US.

Email: baruah@cs.unc.edu

Abstract—Mixed Criticality Systems (MCSs) have been the
focus of considerable study over the last six years. This work has
lead to the definition of a standard model that allows processors
to be shared efficiently between tasks of different criticality levels.
Key aspects of this model are that a system is deemed to execute
in one of a small number of criticality modes; initially the system
is in the lowest criticality mode, but if any task executes for more
than its predefined budget for this criticality level then a mode
change is made to a higher criticality mode and all tasks of
the lowest criticality level are abandoned (aborted). The initial
criticality level is never revisited. This model has been useful in
defining key properties of MCSs, but it does not form a useful
basis for an actual implementation of a MCS. In this paper we
consider the tradeoffs stemming from a consideration of what
systems engineers require at run-time and the actual properties
of the model that scheduling analysis guarantees. Alternative
models are defined that allow low criticality tasks to continue to
execute after a criticality mode change. The paper also addresses
robust priority assignment.

I. INTRODUCTION

Although the formal study of mixed criticality systems
(MCSs) is a relatively new endeavor, starting with the paper
by Vestal (of Honeywell Aerospace) in 2007 [24], a standard
model has emerged (see for example [4], [5], [13], [14],
[19]). For dual criticality systems this standard model has the
following properties:

• A mixed criticality system is defined to execute in either
of two modes: a HI-crit mode and a LO-crit mode.

• Each task is characterised by the minimum inter-arrival
time of its jobs (period denoted by T ), deadline (relative
to the release of each job, denoted by D) and worst-
case execution time (one per criticality level), denoted by
C(HI) and C(LO). A key aspect of the standard MCS
model is that C(HI) � C(LO).

• The system starts in the LO-crit mode, and remains in
that mode as long as all jobs execute within their low
criticality computation times (C(LO)).

• If any job executes for its C(LO) execution time without
completing then the system immediately moves to the HI-
crit mode.

• As the system moves to the HI-crit mode all LO-crit tasks
are abandoned. No further LO-crit jobs are executed.

• The system remains in the HI-crit mode.
• Tasks are assumed to be independent of each other (they

do not share any resource other than the processor).

This abstract behavioural model has been very useful in allow-
ing key properties of mixed criticality systems to be derived,
but it has met with some criticism from systems engineers1

that it does not match their expectations. In particular:
• In the HI-crit mode LO-crit tasks should not be aban-

doned but be allowed to make some progress, as long as
they are not interfering with HI-crit tasks.

• For systems which operate for long periods of time it
should be possible for the system to return to the LO-crit
mode when the conditions are appropriate.

• Whereas a HI-crit job executing for more than its C(LO)

execution time must induce a mode change, a LO-crit job
should be constrained so that it cannot execute for more
than C(LO) (so no a mode change).

Some of these criticisms are partly misplaced as any high
integrity system should remain in the LO-crit mode for its
entire execution: the transition to HI-crit mode is only a
theoretical possibility that the scheduling analysis can ex-
ploit [4]. Nevertheless, in less critical applications (such as
those envisaged in the automotive industry) actual criticality
mode changes may be experienced during operation and the
above criticisms should be addressed.
Our contributions. In this paper we address all of the con-
cerns listed above. First, we present alternative implementation
models that (a) do not abandon LO-crit tasks upon transition-
ing to HI-crit mode; and (b) define conditions for the system
to transition back to LO-crit mode. And second, we propose
priority-assignment techniques for fixed-priority mixed-crit
schemes that are more robust than previously-proposed tech-
niques in the sense that systems assigned priorities according
to these robust priority-assignment schemes are less likely to
undergo a mode change to HI-crit mode. In other work [9]
we have discussed (and removed) a further criticism of the
standard model – that tasks are independent. This was done
by revisiting and adapting the original priority ceiling protocol.
Other proposals comes from Lakshmanan et al. [15] They
define two protocols: PCIP (Priority and Criticality Inheritance
Protocol) and PCCP (Priority and Criticality Ceiling Protocol).
Both of these contain the notion of criticality inheritance. This

1For example at the tutorial presented at the 2012 Embedded System
Week http://www.esweek.org/ and at the workshop that was part of the
2013 HiPEAC conference http://www.hipeac.net/conference/berlin/workshop/
integration-mixed-criticality-subsystems-multi-core-processors.
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notion is also used by Zhao et al. [25] in their HLC-PCP
(Highest-Locker Criticality Priority Ceiling Protocol).
Related work. Background material on MCS research can be
obtained from the following papers [2], [4], [5], [12]–[14],
[24]). A survey on MCS research is available from the MCC
(Mixed Criticality Systems on Many-core Platforms) project’s
web site2 Santy et al. [19] attempt to remove some of the
strictness of the standard model; however, they largely focus
on a different set of issues.

II. LIMITATIONS IMPOSED BY SCHEDULING ANALYSIS

The standard model requires an immediate change to the
HI-crit mode and the consequent abandonment of all active
LO-crit jobs upon a change to HI-crit mode. Despite this
simplifying assumption, it has been shown [2] that the mixed
criticality schedulability problem is strongly NP-hard even if
there are only two criticality levels. Hence only sufficient
rather than exact analysis is computationally feasible. One of
the consequences of this intractability is that a significant pro-
portion of the available (sufficient rather than exact) analysis
that has been produced for MCSs actually assumes that any
LO-crit job that has been released at the time of the mode
change will complete, rather than being aborted – this is the
case with, e.g., the analysis in [2], [4], [24] (although not the
analysis of the EDF-VD algorithm [3]).

For example, for constrained deadlines tasks, the Adaptive
Mixed Criticality (AMC Method 1 or AMC-rtb) approach
presented at RTSS in 2011 [4] first computes the worst-case
response times for all tasks in the LO-crit mode (denoted by
Ri(LO)). This is accomplished by solving, via fixed point
iteration, the following response-time equation for each task:

Ri(LO) = Ci(LO) +

X

j2hp(i)

⇠
Ri(LO)

Tj

⇡
Cj(LO) (1)

where hp(i) is the set of all tasks with priority higher than
that of task ⌧i.

During the criticality change we are only concerned with
HI-crit tasks, so for these tasks:

Ri(HI) = Ci(HI) +

X

⌧j2hpH(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) +

X

⌧k2hpL(i)

⇠
Ri(HI)

Tk

⇡
Ck(LO) (2)

where hpH(i) is the set of HI-crit tasks with priority higher
than that of task ⌧i and hpL(i) is the set of LO-crit tasks with
priority higher than that of task ⌧i. So hp(i) is the union of
hpH(i) and hpL(i). Note Ri(HI) is only defined for HI-crit
tasks.

This equation is conservative for AMC as it does not take
into account the fact that LO-crit tasks cannot execute for the
entire busy period of a high criticality task in the HI-crit mode.

2http://www.cs.york.ac.uk/research/research-groups/rts/mcc/.

A change to HI-crit must occur before Ri(LO) and hence (2)
can be modified as follows:

Ri(HI) = Ci(HI) +

X

⌧j2hpH(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) +

X

⌧k2hpL(i)

⇠
Ri(LO)

Tk

⇡
Ck(LO) (3)

which ‘caps’ the interference from LO-crit tasks as Ri(HI)
must be greater than Ri(LO).

The cap is however at its maximum level. The maximum
number of LO-crit jobs are assumed to interfere and each
of these jobs is assumed to complete – each inducing the
maximum interference of Ck(LO).

Finally in this section we note that if, for any HI-crit task,
Ri(HI)  Di during the transition to the HI-crit mode then
this task will remain schedulable once the HI-critically mode
is fully established, and there is no execution from LO-crit
tasks.

III. ALTERNATIVE MODELS

Notice that one of the consequences of the limitations
imposed by the schedulability analysis that we described in
Section II above is that any LO-crit job, once released, is
assumed to complete. This “limitation” can be exploited in an
implementation model by only allowing the status of LO-crit
tasks to be changed when they are suspended between jobs.

To accommodate the requirement to allow some progress
for LO-crit tasks after the move to HI-crit mode, and to allow
a mode change back to LO-crit mode, LO-crit tasks must not
be abandoned. Rather they must remain runnable but in a way
that cannot impact on HI-crit jobs. For a fixed priority system
this means: (i) changing the priority of these tasks to be below
the lowest priority of any HI-crit task, or (ii) reducing the
execution time requirements of these tasks so that both HI
and LO criticality tasks can execute successfully in the HI-
crit mode, or (iii) extending the period of the LO-crit tasks to
achieve the same result.

In the rest of this paper we will concentrate on single proces-
sor systems scheduled using fixed priorities. We consider three
complimentary schemes. In the first LO-crit tasks have their
priorities reduced, in the second they have their execution-time
requirements reduced, and in the third they have their periods
extended.

A. Reducing LO-crit Tasks’ Priorities
Although with fixed priority scheduling priorities are

‘fixed’, to accommodate the requirements identified above,
it must be possible to dynamically change the priority of a
LO-crit task. Such tasks will have two priorities, Pi(LO) and
Pi(HI); with the constraints that Pi(HI)  Pi(LO) and
Pi(HI) < minj2HI (Pj) where HI is the set of all HI-crit
tasks. We note that most RTOSs and programming languages
allow the base priority of a task to be altered. For optimal
performance the relative ordering of the priorities of LO-crit
tasks will be the same in both criticality modes.

2



At run-time the overhead cost of changing the priority
of a runnable task can be relatively high as the task must
be taken out of the run queue and then reinserted at the
place appropriate for its new priority. Fortunately due to the
limitations of the analysis, which not only assumes all LO-
crit jobs complete but also assumes they do so at their current
priority, it is acceptable to only modify the priority of a task
(from Pi(LO) to Pi(HI)) when the task is suspended.

To return the system from HI-crit to LO-crit requires that a
further mode change is undertaken. This is a more extensive
mode change as new work (the LO-crit tasks) needs to be
reintegrated with the HI-crit work. Although there is analysis
that attempts to deal with complex mode change protocols
(eg. [17]), the most straightforward and easily verified protocol
to use is one that simply waits for a system idle tick and then
makes the mode change [23]. As the system is idle at that
point there can be no behavioural impact on the new LO-crit
mode from the previous HI-crit mode. This issue has been
further investigated in two recent papers [16], [20].

All but the simplest models of MCS require that the execu-
tion times of all jobs are monitored. Most RTOSs will allow
this to be done for single processor systems (although the
problem for multi-core platforms with shared buses remains
an open issue). For LO-crit tasks, an adequate behaviour
is for them to be prevented from executing for more than
their C(LO) budget. For HI-crit jobs there is no run-time
benefit to be gained from capping their execution times, but
the criticality mode switch must be made if any HI-crit job
executes for its C(LO) value without signaling completion.

B. Reducing LO-crit Tasks’ Execution Time Budgets
One possible criticism of the above scheme is that if LO-crit

tasks can have their priorities changed, this capability could
be exploited in a security breach to undermine the assurances
given to the HI criticality tasks. Another problem with the
approach is that no guarantees can be given to short deadline
LO-crit jobs executing after the mode change. In practice
there is likely to be spare capacity available (once the HI-
crit tasks have been scheduled in the high criticality mode)
and this capacity could be used to guarantee at least some
level of service to some of the LO-crit tasks. In this section
we introduce a different mixed criticality model that explicitly
retains (some) LO-crit work in the HI-crit mode.

We first introduce the model under the assumption that there
is a specific level of LO-crit work that must be guaranteed;
i.e. there is a schedulability test that will either accept, or
not, a given task set. This test is then used, in the context
of sensitivity analysis, to explore what levels of service are
possible whilst retaining schedulability.

The modified system model is as follows. Each task, ⌧i is
defined by the parameters: Ti, Di, Li, Ci(LO) and Ci(HI).
For HI-crit tasks Ci(HI) � Ci(LO), for LO-crit tasks
Ci(LO) � Ci(HI). Note, for some LO-crit tasks Ci(HI) may
be zero meaning that no jobs of such tasks start their execution
once the system is in the HI-crit mode. Static priorities (Pi) are
assigned to the tasks according to Audsley’s Optimal Priority

Assignment algorithm [1] (as explained in [4], [24]). The
system model is now defined by the following behaviours:

• The system starts in the LO-crit mode, and remains in that
mode as long as all HI-crit tasks execute within their low
criticality computation times (C(LO)).

• If any job of a HI-crit task ⌧i executes for its Ci(LO)

value without completing then the system immediately
moves to the HI-crit mode.

• The priorities of tasks are never modified.
• No job of a LO-crit task ⌧k is allowed to execute for

more than its Ck(LO) parameter in the LO-crit mode or
its Ck(HI) parameter in the HI-crit mode; any attempt
to do so will result in the task being suspended until its
next release (at least Tk after its last release).

• There is no bound on the execution time of HI-crit tasks.
• If the system is in the HI-crit mode and there is an

idle tick then the system can move back to the LO-crit
mode and all LO-crit tasks can have their execution time
budgets restored to their original C(LO) values.

Note that a LO-crit job released in the LO-crit mode is
not guaranteed to receive processing time of C(LO) by its
deadline, if there is a mode change during its execution and
its budget is reduced. It is however guaranteed to receive
processing time of C(HI) by its deadline.

We can now give the schedulability test for this model, using
the AMC-rtb (Method 1) approach. Equation (1) is again used
to compute the worst-case response time of all tasks in the LO-
crit mode. Considering the HI-crit mode, the starting point is
(3). This equation assumes that no LO-crit job released after
Ri(LO) can interfere with a HI-crit task ⌧i. Now we allow
interference, but at a lower level. This is easily accommodated;
firstly for HI-crit tasks:

Ri(HI) = Ci(HI) +

X

⌧j2hpH(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) +

X

⌧k2hpL(i)

⇠
Ri(LO)

Tk

⇡
Ck(LO) +

X

⌧k2hpL(i)

✓⇠
Ri(HI)

Tk

⇡
�

⇠
Ri(LO)

Tk

⇡◆
Ck(HI) (4)

Note that as Ri(HI) is always greater than or equal to Ri(LO)

the final term in (4) is never negative. Equation (4) thus
assumes the maximum possible number of releases of LO-crit
tasks with the higher execution time.

An alternative form for (4) is available by simply rearrang-
ing the terms:

Ri(HI) = Ci(HI) +

X

⌧j2hpH(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) +

X

⌧k2hpL(i)

⇠
Ri(LO)

Tk

⇡
(Ck(LO)� Ck(HI)) +
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X

⌧k2hpL(i)

⇠
Ri(HI)

Tk

⇡
Ck(HI)

to give:

Ri(HI) = Ci(HI) +

X

⌧j2hp(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) +

X

⌧k2hpL(i)

⇠
Ri(LO)

Tk

⇡
(Ck(LO)� Ck(HI)). (5)

For a LO-crit task ⌧i, which now continues after the mode
change, but with a reduced execution time requirement of
Ci(HI), the above equation also applies; however, a tighter
formulation is also possible. We note that if the task has
already executed for Ci(HI) in the LO-crit mode, then it has
trivially met its requirements in the HI-crit mode. Therefore
we need only consider the case where the mode change occurs
before it has executed for Ci(HI). Equation (1) computes the
worst-case response-time for LO-crit tasks assuming that the
task’s own requirement is Ci(LO), but here the only scenario
of interest is when the mode change occurs before it has
executed for Ci(HI) which must be earlier as Ci(HI) 
Ci(LO). Hence (1) can be modified for LO-crit tasks to give:

R⇤
i (LO) = Ci(HI) +

X

j2hp(i)

⇠
Ri(LO)

Tj

⇡
Cj(LO) (6)

and (4) then becomes:

Ri(HI) = Ci(HI) +

X

⌧j2hpH(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) +

X

⌧k2hpL(i)

⇠
R⇤

i (LO)

Tk

⇡
Ck(LO) +

X

⌧k2hpL(i)

✓⇠
Ri(HI)

Tk

⇡
�

⇠
R⇤

i (LO)

Tk

⇡◆
Ck(HI) (7)

again this can be rearranged to give:

Ri(HI) = Ci(HI) +

X

⌧j2hp(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) +

X

⌧k2hpL(i)

⇠
R⇤

i (LO)

Tk

⇡
(Ck(LO)� Ck(HI)). (8)

As indicated earlier, (4) and (7) (or (5) and (8)) could
be used to test a specific application’s requirements. More
practically, they would be used to explore the design space
– how much guaranteed capacity is available once all HI-crit
tasks are validated? Sensitivity analysis [8], [18] could be used
to explore this space. Possible questions to consider are:

• How many LO-crit tasks can have their full capacity (i.e.
C(HI) = C(LO)) with the rest having C(HI) = 0?

• By how much must all the C(LO) of LO-crit tasks be
reduced (i.e. C(HI) = ↵ ·C(LO)) with ↵ < 1 to give a
schedulable system?

• Can some or all LO-crit tasks employ alternative versions
that take less resources?

With this implementation model the mode change back to
LO-crit is straightforward. Again a low priority ‘background’
task can be used to implement the change back to LO-crit
mode; however, now the only action of this task is to return
the budgets for each LO-crit task to their larger LO-crit values
(C(LO) rather than C(HI)). This should be done atomically
to avoid any potential race condition.

C. Increasing LO-crit Tasks’ Periods

The elastic scheduling model [10] has been applied [22]
to EDF scheduled mixed criticality systems to allow a LO-
crit task to have its period extended after a mode change. We
can apply this idea to fixed priority systems by allowing a
LO-crit task to have two period values: Ti(LO) and Ti(HI)
with Ti(LO)  Ti(HI). After a mode change the task can
be released again but with an extended period (and perhaps
also a reduced budget). The equations of the previous section
can be extended to include a revised period after the mode
change. But as space is restricted this is left as an exercise for
the reader.

D. Capacity Inheritance with the Budget Reduction Scheme

The previous subsections have introduced three different
schemes for dealing with LO-crit tasks following a mode
change to HI-crit. One reduces LO-crit tasks to, in effect,
the background level; here they can utilise all available spare
capacity, but the schedulability of LO-crit tasks after the
criticality mode change is seriously undermined. The other
schemes guarantees some level of service, but does not utilise
spare capacity. This is a significant drawback as there is likely
to be considerable spare capacity in the HI-crit mode. A HI-
crit job may execute for more than C(LO), but will most
likely complete well before it has used its full C(HI) budget
– most of

�
C(HI)� C(LO)

�
could be available for LO-crit

jobs.
To improve the effectiveness of the second scheme two

strategies are possible:
1) Use the schemes together – once a low criticality job

has used up its C(HI) budget its priority is lowered to
its background level (Pi(HI)) where it can continue to
execute.

2) The spare capacity from HI-crit jobs is directly assigned
to LO-crit jobs.

The second strategy can exploit previously published tech-
niques such as Extended Priority Exchange [21], Capacity
Sharing [7] and History Rewriting [6] that were developed
for combined hard and soft real-time fixed priority task sets.
Within the context of mixed criticality systems these tech-
niques would work as follows. Assume the system is in the
HI-crit mode.
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• All HI-crit tasks have a budget equal to their maximum,
guaranteed, execution time C(HI).

• At run-time the actual execution time of each HI-crit job
is monitored;

• When a job with release time s and absolute deadline d
(with d = s+D) completes, its actual execution time is
noted (e) and its gain time (g) is computed (g = C(HI)�
e); g is assumed to be non-negative.

• The gain time is available to be allocated to lower priority
jobs.

• The gain time must be used by d (its expiry time).
The three techniques referenced above allocate the gain time
in different ways. For Extended Priority Exchange [21]:

• The gain time is allocated to the budget of the next
highest priority task that is ready to execute. (Note if
there is no ready task, then the gain time is lost).

For Capacity Sharing [7]:
• An executing job first uses its own budget of C(HI).
• When this budget is exhausted it ‘pulls down’ extra

capacity from any available higher priority gain time.
• The LO-crit job is said to be plugged to the budget of

the host HI-crit job.
• The plug is broken when the expiry time is reached, the

capacity is exhausted or the job completes.
If there are a number of higher priority gain times available
then any can be chosen and indeed more than one can be
utilised, though only one at a time. Useful heuristics to use are:
use the biggest g first, or use the earliest d first. An analysis
of these heuristics and the implementation efficiency of the
Capacity Sharing scheme is described in [7].

For History Rewriting [6] a retrospective reallocation of
budgets is undertaken. The problem with Capacity Sharing
is that the gain time has to be used before its expiry time or
it is lost. This is not the case with History Rewriting which
has the following characteristics:

• At the deadline (d) of a job the gain time is noted (g).
• A lower priority task that has executed for e before d is

chosen and its budget is increased by max (g, e� g), g
is reduced by this amount.

• Any remaining gain time is further allocated to lower
priority tasks.

In effect, a job that was executing from its own budget is
deemed to have been executing from the gain time of a higher
priority job, and hence its own budget is intact and can be
used to further the execution of the job. Further details of this
approach are given in [6].

Job Crit C(LO) C(HI) s d e g
⌧1 HI 1 4 0 8 2 2
⌧2 LO 6 4 4 12 - -

TABLE I
TWO JOB EXAMPLE

For an example of History Rewriting consider the simple
system of two jobs as defined in Table I. In the HI-crit

mode both jobs are guaranteed 4 units of execution (although
the LO-crit job would prefer 6). As ⌧1 only executes for
2 units there is a gain time of 2 at time 2. But ⌧2 is not
active at time 2 and so the gain time cannot be utilised with
Extended Priority Exchange or Capacity Sharing. With History
Rewriting, however, the gain time of 2 becomes available at
the deadline of ⌧1 at time 8 after ⌧2 has executed for 4 units.
Two of these units can now be considered to be gain time
and hence ⌧2 can execute at time 8 for 2 more units thereby
satisfying its full requirement.

IV. ROBUST PRIORITY ASSIGNMENT

For a dual-crit system C(LO) values must, of course, be
known. Once schedulability has been established however, it
is possible to derive [19], using sensitivity analysis, a scaling
factor f (f > 1) such that the system remains schedulable
with all C(LO) values replaced by f · C(LO). Using these
scaled values at run-time will increase the robustness of the
system, as LO-crit tasks will be able to execute for longer
before they are suspended. Further, HI-crit tasks will be able
to execute for longer without inducing a mode change.

Although the work of Santy et al. [19] allows the com-
putation time of tasks to be increased it does this without
modification to the priority ordering of the tasks. Here, we
note that as the use of Audsley’s Optimal Priority Assignment
algorithm takes into account task computation times, a scheme
that looks to increase robustness by extending the allowed
execution times, will perform better if it also considers priority
assignment.

In their work on Robust Priority Assignment algorithms,
Davis and Burns [11] showed that for a general class of
additional interference functions, Deadline Monotonic (DM)
is both an optimal and a robust partial ordering for any
subset of tasks that would on their own have DM as their
optimal priority ordering. In this way, HI-crit tasks may be
viewed as the subset of tasks which have DM as their optimal
partial order with the LO-crit tasks constituting additional
interference, and also vice-versa (assuming that all of the tasks
have constrained deadlines). Hence an overall optimal and
robust priority ordering can be achieved via a merge of the
DM partial order of HI-crit tasks with the DM partial order of
LO-crit tasks as described in [4]. This requires at most 2n�1

task schedulability tests for a system of n tasks.
We note that changes to execution times will not affect the

separate DM partial orderings of the two groups of tasks, but
will potentially change the merge and hence the overall priority
ordering. For example, if all C(LO) values are close to zero
but all C(HI) values for HI-crit tasks are at their maximum
level for schedulability then a total priority ordering in which
all HI-crit tasks have higher priorities than all LO-crit tasks
is optimal; however, if we increase the budgets for LO-crit
execution and make C(LO) equal to C(HI) for all tasks then
the optimal and robust priority ordering has the complete set
of tasks in DM order.

Given the benefits that priority reassignment provides, we
recommend this straightforward extension to Santy et al.’s
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approach [19].

V. CONCLUSIONS

This paper has addressed some of the issues that have been
raised with what has become the standard analysis model for
mixed criticality systems. As the tightest available analysis
often assumes any released LO-crit job completes, there is no
benefit for the actual run-time behaviour to require that LO-
crit jobs are immediately abandoned. There is, however, a need
for a real implementation to incorporate a means of returning
the mode of the system to the initial mode if conditions are
acceptable for this to occur. These needs are satisfied by the
model presented in this paper. Other topics covered in this
paper include allowing reduced but still guaranteed behaviour
for low criticality tasks after a criticality mode change, and
the use of robust priority assignment to reduce the likelihood
of such mode changes.

This paper, like many on mixed criticality, is limited to only
addressing dual criticality systems. This restriction helps to
clarify descriptions. However, it is important that protocols do
generalise to a realistic number of criticality levels. Perhaps
up to five levels may be needed (see, for example, the IEC
61508, DO-178B, DO-254 and ISO 26262 standards). In
the models presented in this paper, HI-crit tasks have the
particular property that they are not themselves abandoned
if they execute for more than their budgets. As they have
the highest criticality level the best run-time behaviour is
always to allow them to continue to execute. When more than
two levels are present then only the highest criticality level
retains this ‘privilege’. All the others must be monitored and
criticality mode changes affected where necessary. The models
developed in this paper are easily extended to a small number
of levels. With, say, five levels of criticality it is unlikely that
a task will have five levels of service defined. Nevertheless the
models defined do have the capability to be used in this way.

Taken together, the contributions of this paper aim to define
a model for mixed criticality systems that has practical utility.
It aims to ease the movement of the wealth of theoretical
results that have appeared since 2007 into industrial practice.
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Abstract—As Mixed Criticality work has progressed it has be-
come increasingly clear that considering only 2 levels of criticality
will not suffice. Many industrial standards such as IEC 61508
and DO-178B define 4 or 5 levels, whereas the majority of current
analytical approaches consider just 2. In this work we evaluate
the performance of several fixed priority approaches and how
they might be extended to facilitate more than 2 criticality
levels. A well-established scheme, Period Transformation is also
considered and extended. The effectiveness of the extensions is
assessed by way of an evaluation. We show that the schemes
maintain their performance relative to each other as the number
of criticality levels increases.

I. INTRODUCTION

The field of Mixed Criticality systems is advancing rapidly.
Driven by industrial pressure to support new and complex
hardware, attention is turning away from the more simplistic
uni-processor case. However, in order to further the case for
implementation, such systems must be certified and standards
must be met. When considering the number of criticality levels
that a system might be required to manage it becomes clear
that just 2 levels will not suffice. Standards such as IEC 61508
and DO-178B define 4 or 5 Safety Integrity Levels (SIL). It
is reasonable to assume that mixed criticality implementations
will be required to support at least 5 levels.

Before consideration can be given to an increased number
of criticality levels on complex hardware, it seems logical to
begin with a single processor approach. Much of the work
since Vestal’s [4] seminal paper in 2007 has revolved around
2 levels of criticality. Approaches such as AMC (Adaptive
Mixed Criticality), presented by Baruah et al. [2] have fo-
cused on 2 criticality levels while claiming extendability to
many. We focus on single processor analysis and extend both
approaches suggested in [2], AMCrtb (Response Time Bound)
& AMCmax, to facilitate n potential levels. Additionally we
consider Period Transformation [3] as proposed by Vestal [4].
We provide some improvements on the initial analysis and
compare its performance with other approaches.

The remainder of the document is organised as follows;
Section II considers the original Dual Criticality approaches,
Section III considers how such approaches can be extended
to include a greater number of criticality levels, Section IV
provides an evaluation and Section V closes the work with
some concluding remarks.

II. DUAL CRITICALITY ANALYSIS

Baruah et al. [2] present a dual-criticality scheme known
as Adaptive Mixed Criticality (AMC). AMC monitors, at run-
time, the execution of each task and ensures that it remains

within its budget for the current criticality level. If a job
exceeds its allocated budget, a criticality change is triggered,
AMC permanently suspends all tasks at the current criticality
level when a change occurs. Two methods are presented in
[2]:

A. AMCrtb

The original analysis presented by Baruah et al. [2] is shown
in Equations (1), (2) and (3), for a sporadic task model using
standard notation (C, T,D,R with D  T ), LO-crit & HI-crit.
There are two stages to the approach, the first is to consider the
LO and HI criticality levels individually and ensure they are
schedulable. The second stage is to consider the schedulability
of the criticality change from LO to HI .

Stage 1A: Check the schedulability of the LO mode for all
tasks.

Ri(LO) = Ci(LO) +
X

j2hp(i)

⇠
Ri(LO)

Tj

⇡
Cj(LO) (1)

Stage 1B: Check the schedulability of the HI mode for HI
tasks.

Ri(HI) = Ci(HI) +
X

j2hpH(i)

⇠
Ri(HI)

Tj

⇡
Cj(HI) (2)

Where hpH is the set of all higher priority HI criticality
tasks.

The next step is to assess the schedulability of any HI
criticality task executing during a criticality level change.

Stage 2A: Calculate the schedulability of the criticality change
for HI tasks.

R⇤
i (HI) = Ci(HI)+

X

j2hpH(i)

⇠
R⇤

i (HI)

Tj

⇡
Cj(HI)+

X

k2hpL(i)

⇠
Ri(LO)

Tk

⇡
Ck(LO)

(3)

Where hpL is the set of all higher priority LO criticality
tasks. Ri(LO) represents a static value for higher priority but
lower criticality tasks, this allows AMC to place an upper
bound upon any potential low-criticality interference during
a criticality change. R⇤

i (HI) is the value replaced into the
equation with each iteration. This is appropriate due to the
way in which AMC handles a criticality level change. Under
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AMC, all LO criticality tasks are suspended when a criticality
change occurs, as such during this time their ability to interfere
with the high-criticality tasks is limited. This limit is the LO
response time of the HI-crit task as after that time the system
will be running in the HI criticality mode, or the task will
have completed and no criticality change need occur.

B. AMCmax

There are a finite number of points in time at which a
criticality change might take place. It is possible to bound
these points as the criticality change must occur sometime
between the start of execution, time 0 and the LO response
time (Ri(LO)). AMCmax uses these points and seeks to
determine the point at which the worst-case phasing for a
HI criticality task might occur.

Fig. 1. Example AMCmax criticality change.

Figure 1 shows a criticality change occurring and the system
moving into the HI mode. The diagram also shows the
Interference suffered in both the LO and HI modes. Baruah
et al. [2] illustrate this change with Equation (4), showing the
calculations required to determine the response time of a HI
criticality task if the change occurs at time s.

Rs
i (HI) = Ci(HI) + IL(s) + IH(s) (4)

From Equation (4) it is easy to see the two segments of
interference we must assess, IL and IH . These sections are
also shown in Figure 1.

The technique used to assess the response time of low-
criticality tasks is straightforward, it can be seen in Equation
(5):

IL(s) =
X

j2hpL(i)

✓�
s

Tj

⌫
+ 1

◆
Cj(LO) (5)

The floor function is used to ensure that all tasks are accounted
for immediately upon release. This algorithm is also used
when calculating the LO response times of all tasks, in this
case Rs

i (LO) is used rather than s.
Baruah et al. [2] consider high-criticality response times

IH(s). They consider the high mode as an interval of t � s
where t > s. t is the response time of the task and is the
value that is replaced in each iteration. The number of releases
in this interval, t � s, for a HI criticality task ⌧k, can be
calculated: ⇠

t� s

Tk

⇡
+ 1

This can be extended for cases where Dk < Tk:
⇠
t� s� (Tk �Dk)

Tk

⇡
+ 1

The full calculation is shown in Equation (6) presented in the
form of a function M . With input parameters k, s and t, where
k is the task, s is time s and t is time t (or the response time
replaced into the equation).

M(k, s, t) = min

⇢⇠
t� s� (Tk �Dk)

Tk

⇡
+ 1,

⇠
t

Tk

⇡�
(6)

Equation (6), accounts for all completions of task ⌧k, within
the interval s . . . Ri(HI). Rare cases are possible where the
calculation is overly pessimistic, the function ensures that the
value returned is no greater than the total number of releases.

The number of releases in the LO criticality mode is easily
calculable by removing the results of Equation (6) from the
total number of releases.

✓⇠
t

Tk

⇡
�M(k, s, t)

◆
Ck(LO)

Therefore IH(s) is:

IH(s) =
X

k2hpH(i)

⇢
(M(k, s, t)Ck(HI))+

✓✓⇠
t

Tk

⇡
�M(k, s, t)

◆
Ck(LO)

◆� (7)

And thus the full equation:

Rs
i =

X

j2hpL(i)

✓�
s

Tj

⌫
+ 1

◆
Cj(LO)+

X

k2hpH(i)

⇢
(M(k, s, Rs

i )Ck(HI))+

✓✓⇠
Rs

i

Tk

⇡
�M(k, s, Rs

i )

◆
Ck(LO)

◆�

(8)

And:
Ri = max(Rs

i )8s

Finally they look at which points of s, within 0 . . . Ri(LO)
require consideration. Baruah et al. [2] note that the amount
of low-criticality interference increases (as a step function),
as the value of time s increases. Similarly the high-criticality
interference decreases as the low increases. Therefore the
response time changes only at the release of a low-criticality
job, thus we can limit our search to points of s where a LO
criticality job is released.

C. Period Transformation

Vestal [4] proposed a Mixed Criticality Period Transforma-
tion (PT) approach. He used PT, not to create a harmonic task
set, but to allow for a Criticality and Rate Monotonic based
priority ordering. The approach proposes that only those HI
criticality tasks with periods greater than that of the shortest
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LO criticality period be transformed. This will allow all HI
criticality tasks to attain a higher priority than the LO and
thus avoid the problem of criticality inversion and allow for
criticality monotonic assignment.

This gives us 3 groups of tasks. Those of a LO criticality,
these do not need transformation. Those with a HI criticality
but a period shorter than the shortest LO criticality task, these
do not need transformation. Finally those with a HI criticality
with a period greater than that of the shortest LO criticality
task, these are the tasks that must be transformed.

The analysis of HI criticality tasks, in the HI mode is
calculated via standard response time techniques [1]. The
analysis for the LO criticality mode is detailed as follows:

Tasks are transformed by a factor, m.

m =

⇠
Tj

Tl

⇡

Where ⌧l is the LO criticality task with the shortest period
and ⌧j is a HI criticality task that must be transformed.

At runtime, transformed tasks are expected to execute up
to their Cj(HI)/m until they reach their untransformed,
Cj(LO), only then can we determine if a task will overrun
its LO execution bounds and a mode change would need to
occur. Transformed tasks, running in the LO mode execute in
Cj(HI)/m time slices until Cj(LO).

The number of transformed dispatches that might interfere
with ⌧i could be calculated as follows:

⇠
Ri

Tj/m

⇡

The number calculated above will contain several complete
executions of Cj(LO) and a remainder, this remainder can
execute for no longer than Cj(LO), Vestal assumes this value.
He calculates the number of transformed executions which
complete to Cj(LO):

�
Ri

Tj

⌫
Cj(LO)

So including the added pessimism of those transformed ex-
ecutions that do not complete, the total interference from ⌧j
can be summed as follows.

�
Ri

Tj

⌫
Cj(LO) + Cj(LO)

Clearly there are several disadvantages to Vestal’s technique.
The use of Cj(LO) to account for transformed releases which
do not constitute an entire Cj(LO) is overly pessimistic.
Vestal’s approach also loses one of the key properties of Period
Transformation, the ability to create harmonic task sets and,
by proxy, the  1 utilisation bound for RM schedulability.
Although not all tasks are transformed it is likely that by
transforming the HI tasks the number of context switches
will increase significantly. This coupled with the need for
additional run-time monitoring causes PT overheads to remain
high.

III. EXTEND TO n CRITICALITY LEVELS

A. AMCrtb

When considering n possible criticality levels for AMCrtb
we re-examine the two stages of the analysis. In stage one we
examine each level, up to n, and determine schedulability. In
stage two we consider the feasability of n� 1 criticality level
changes.

1) Stage One: Consider a system containing 5 distinct
criticality levels, L1 . . . L5 where L1 > L5. The analysis
for L5 must consider the potential interference of all higher
priority tasks, regardless of criticality level (as L5 is the lowest
level). To calculate the interference suffered from higher
priority L4 tasks we use the following term:

X

j2hp(i)|Lj=L4

⇠
Ri(L5)

Tj

⇡
Cj(L5)

The algorithm looks for those higher priority tasks, ⌧j , where
the criticality level (Lj) is equal to L4. This considers any
interference suffered from a task at L4, but uses their L5
values. The calculation can be completed to account for levels
L3 . . . L1 as shown in Equation (9).

Ri(L5) = Ci(L5)+
X

j2hp(i)|Lj=L4

⇠
Ri(L5)

Tj

⇡
Cj(L5) +

X

k2hp(i)|Lk=L3

⇠
Ri(L5)

Tk

⇡
Ck(L5) +

X

l2hp(i)|Ll=L2

⇠
Ri(L5)

Tl

⇡
Cl(L5) +

X

m2hp(i)|Lm=L1

⇠
Ri(L5)

Tm

⇡
Cm(L5)

(9)

This process is repeated for each of the remaining criticality
levels to check their schedulability. It is possible to generalise
these equations to one that can deal with 2 �! n criticality
levels. We must consider the schedulability of n criticality
levels individually.

For each criticality level.

8L 2 1 . . . n

For all tasks where the criticality level is greater than or equal
to L.

8⌧i|Li � L

Calculate the response times for that level.

Ri(L) = Ci(L) +
X

j2hp(i)|Lj�L

⇠
Ri(L)

Tj

⇡
Cj(L) (10)

Equation (10) considers the response time of task ⌧i
at criticality level L by accounting for any interference
from higher priority tasks with a criticality level greater
than or equal to L. This test is repeated for each of the n
criticality modes. Equations (1) and (2) are the dual criticality
application of Equation (10).

9



2) Stage Two: When assessing the interference suffered
during a criticality change we must consider two groups of
tasks. The first group are those tasks of a higher priority
and with a criticality level greater than or equal to the task
in question. This has been considered in Stage One. The
second group are those tasks with a higher priority but a lower
criticality level. It is clear that under AMC, those tasks with a
higher priority but lower criticality will have a bounded effect
on a higher criticality task if a criticality change occurs.

The interference suffered by higher criticality task, ⌧i from
higher priority but lower criticality task, ⌧k during a criticality
change is bounded by ⌧i’s response time at ⌧k’s criticality
level, Ri(Lk).

X

k2hp(i)|Lk<Li

⇠
Ri(Lk)

Tk

⇡
Ck(Lk)

For all tasks with a higher priority than ⌧i where the
criticality level is lower. Ri(Lk) is the response time of ⌧i
at the criticality level of ⌧k. These values are static bounds
and do not change upon each iteration.

If we combine the analysis for the higher priority tasks with
a criticality level greater than or equal to Li and the analysis
for the higher priority tasks with a criticality level less than
Li we can produce an algorithm to assess the feasibility of
the criticality level changes in a system. In a system with
n criticality levels we must consider n � 1 criticality level
changes.

For each criticality level.

8L 2 1 . . . n

For all tasks where the criticality level is greater than or equal
to L

8⌧i|Li � L

Beginning at the lowest criticality level, calculate the schedu-
lability of each criticality change.

R⇤
i (L) = Ci(L) +

X

j2hp(i)|Lj�L

⇠
R⇤

i (L)

Tj

⇡
Cj(L) +

X

k2hp(i)|Lk<Li

⇠
Ri(Lk)

Tk

⇡
Ck(Lk)

(11)

Equation (11) assesses the schedulability of criticality changes
for 2 �! n criticality levels. This combined with the
algorithm in Equation (10) provides an AMCrtb schedulability
test generalised to n levels of criticality.

B. AMCmax

Consider the case of two criticality levels A and B, where
A is the lowest criticality level in the system, (B > A). We
would use the dual criticality analysis shown in Equation 8.

In order to determine the response time of a level B task,
AMCmax considers points of s where the criticality change
might occur. These points are bounded by the Ri(A) response
time of the task in question. If this system were also to include

a criticality level C, such that C > B > A then a criticality
change might occur at any point (s2) between the original
change from A to B, point s1, and the task’s response time
in criticality mode B, Ri(B).

Fig. 2. The system with modes A and B with an additional level, C added.

To calculate the interference suffered between two points
of s we define a new function, N:

N(k, s1, s2) =

�
s2 � s1 � (Tk �Dk)

Tk

⌫
+ 1 (12)

Function N provides the interference suffered between times
s1 and s2. In this case, this function is used to assess the
response time of tasks at criticality level B.

The calculation for the A criticality tasks is similar to
the LO calculation, we use s1 rather than s in order to
differentiate between criticality changes.

X

j2hpA(i)

✓�
s1
Tj

⌫
+ 1

◆
Cj(A)

The calculation for the B criticality tasks changes to make
use of the function N (see Equation (12)) as it is now used
to determine the interference suffered between two points of
s. The criticality A interference is calculated by removing the
number of releases, as calculated by function N from the total
number of releases.
X

k2hpB(i)

⇢
N(k, s1, s2)Ck(B)+

✓⇠
s2
Tk

⇡
�N(k, s1, s2)

◆
Ck(A)

�

Finally we may consider the calculation for criticality level
C. Functions M and N are used in order to calculate the
interference a criticality C task might suffer in modes C and
B respectively. Both functions M and N are removed from the
total number of releases to calculate the criticality A response
time.

X

l2hpC

⇢
M(l, s2, Ri(C))Cl(C) +N(l, s1, s2)Cl(B)+

✓⇠
Ri(C)

Tl

⇡
�N(l, s1, s2)�M(l, s2, Ri(C))

◆
Ci(A)

�

Where hpC refers to all higher priority tasks of criticality level
C. The complete calculation for ⌧i(C) is shown in Equation

10



(13).

Ri(C) = Ci(C) +
X

j2hpA(i)

✓�
s1
Tj

⌫
+ 1

◆
Cj(A)+

X

k2hpB(i)

⇢
N(k, s1, s2)Ck(B)+

✓⇠
s2
Tk

⇡
�N(k, s1, s2)

◆
Ck(A)

�
+

X

l2hpC

⇢
M(l, s2, Ri(C))Cl(C) +N(l, s1, s2)Cl(B)+

✓⇠
Ri(C)

Tl

⇡
�N(l, s1, s2)�M(l, s2, Ri(C))

◆
Ci(A)

�

(13)

Where:
Ri(C) = max(Ri(C))8sn

Equation (13) shows how Ri(C) can be calculated by consid-
ering points of s1 where the change from A to B might occur
and points of s2 where the change from B to C might occur.

If we were to extend this system to introduce a 4th
criticality level, D, we would follow the same steps as we
did for criticality level C. Consider points for the criticality
change from C to D at time s3 bounded by the criticality C
response time, Ri(C). It is important to note that the function
N is always used to calculate the number of releases between
two points of s and the function M is always used to calculate
the response time at the highest criticality level currently being
considered.

The process of adding another set of points to check for
each criticality level may be repeated to account for as many
criticality levels as desired. However, the computational load
increases almost exponentially as the number of criticality
levels increases.

C. Period Transformation

In his analysis, Vestal [4] assumes a value of Cj(LO)
for the remaining transformed executions, Cj(HI)/m that do
not constitute a complete execution of Cj(LO). This value,
although an effective upper bound, is undesirably pessimistic.
The work below considers a more accurate approach to finding
the interference from transformed executions that do not
constitute a complete untransformed execution.

We calculate the number of complete executions of Cj(LO)
that might interfere with ⌧i:

�
Ri

Tj

⌫
Cj(LO)

Rather than assuming the value of Cj(LO) for all remaining
transformed executions, we seek to determine the size of the
incomplete interval. To find the size of the remaining interval,
P , we do the following:

P = Ri �
�
Ri

Tj

⌫
Tj

And thus we use the value P , to calculate the number of

transformed executions within the remaining interval, x:

x =

⇠
P

Tj/m

⇡
Cj(HI)

m

Therefore the complete calculation will include the trans-
formed tasks within the incomplete interval and the complete
executions of Cj(LO). This is shown in Equation [14].

min{x,Cj(LO)}+
�
Ri

Tj

⌫
Cj(LO) (14)

The interference suffered from the transformed tasks within
the incomplete interval will be the minimum of x or Cj(LO).

In keeping with the nature of this work we then considered
how the more accurate analysis presented above might be
adapted to work in a system with more than two criticality
levels. The analysis itself is applicable with little alteration.

The number of complete executions of Cj(Li) within the
interval can be calculated.

�
Ri

Tj

⌫
Cj(Li)

And therefore we calculate the interference in the remaining
time period from the transformed executions.

P = Ri �
�
Ri

Tj

⌫
Tj

x =

⇠
P

Tj/m

⇡
Cj(Lj)

m

The complete calculation for n criticality levels is shown in
Equation [15].

min{x,Cj(Li)}+
�
Ri

Tj

⌫
Cj(Li) (15)

As can be seen, the analysis is almost directly applicable. The
key challenge is the transformation of the tasks in such a way
that a criticality monotonic order is created.

Rather than transforming all higher criticality tasks, with
a period greater than the shortest period of any LO task,
the process for n criticality levels must be iterative. Consider
Table I where HI > ME > LO.

T L
⌧1 80 HI
⌧2 110 ME
⌧3 100 LO

TABLE I
3 CRITICALITY LEVEL PT EXAMPLE, UNTRANSFORMED

Of the three tasks shown in Table I, ⌧2 is the only one
requiring transformation as it has a period greater than that of
⌧3. We can calculate the transformation factor, n, as follows:

m =

⇠
110

100

⇡

Thus m = 2, this will give ⌧2 a transformed period of 55, less
than the period of ⌧1. The set is not criticality monotonic and,
as such, it is clear that this calculation will not suffice. Rather
⌧1 must also be transformed to give it a period of 40.
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IV. EVALUATION

We tested the algorithms above on randomly generated task
sets. The task sets were generated the same way as in [2]. We
generated 5000 sets of 10 tasks per 2% total utilisation. As MC
tasks might have multiple WCETs, we consider the WCET
value generated for each task to be at the highest criticality
level in the system. The lowest level in the system is half the
highest, each additional level is evenly distributed between the
highest and lowest.

Our experimental data uses Criticality Dependant Utili-
sation to assess the percentage of tasks schedulable at any
particular utilisation.

Ui(Li) =
Ci(Li)

Ti
(16)

In order to provide a thorough comparison we considered
the performance of AMCrtb, AMCmax and PT (ignoring the
inherent overheads). Alongside SMC [2], SMC-NO(Vestal’s)
[4] and Criticality Monotonic ordering (CrMPO).

Fig. 3. Two Criticality Levels

Figure 3 shows the performance, at two criticality levels, of
each technique at varying utilisations (Criticality Dependant).
It is clear that AMCrtb out-performs SMC, CrMPO and SMC-
NO. AMCmax performs slightly better than AMCrtb and PT
performs well if overheads are ignored.

Fig. 4. Three Criticality Levels

As the number of criticality levels is increased each of the
algorithms, apart from PT, maintain their performance relative

Fig. 5. Five Criticality Levels

to each other. Period Transformation’s performance degrades
due to the increasing complexity of the transformations re-
quired as the number of criticality levels is increased. Figures
3, 4 and 5 are typical of the relative results obtained for task
sets with different characteristics.

V. CONCLUSION

It is clear that both AMC methods perform well compared
to other techniques as the number of criticality levels is
increased. Importantly both AMCrtb and AMCmax maintain
their strong dominance over SMC. Although AMCmax does
out-perform AMCrtb, AMCrtb remains an excellent approxi-
mation of AMCmax while keeping computational costs rela-
tively low. As Mixed Criticality systems move forward it may
become important to support even greater than 5 levels of
criticality. In this case AMCrtb’s relatively low computational
cost would allow its application.

Period Transformation performs as expected. It provides
a schedulability boost and avoids criticality inversion at the
cost of vastly increased overheads and the requirement for
additional runtime monitoring.

In short, AMCrtb remains dominant over SMC and provides
a good approximation of AMCmax at any number of criticality
levels. In practice AMCrtb will out perform PT.
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Abstract—Scheduling contexts allow flattening hierarchical
schedules in virtualized mixed-criticality setups. However, their
expressiveness in terms of supported higher-level scheduling
algorithms is not yet well understood. This paper makes a first
step in this direction by investigating how recently proposed
mixed-criticality algorithms can be mapped to fixed-priority
scheduling contexts and how scheduling contexts can be extended
to support these algorithms. We found that although the initial
implementation of scheduling contexts was rather limited, a few
practically feasible extensions broadened their applicability to all
investigated algorithms.

I. INTRODUCTION

In 2005, Steinberg, Wolter and Härtig [1] introduced
scheduling contexts as an elegant and simple way of imple-
menting priority inheritance in microkernel-based systems. In
these systems the majority of resources are threads executing
in application-level servers. The basic idea is to schedule time
quanta (described through scheduling contexts) instead of the
threads or jobs that correspond to them. This way, inheritance
is simply a matter of activating the recipient thread whenever
the quanta is selected.

The primary purpose of scheduling contexts was to improve
imprecise [2] and quality-assuring scheduling [3]. However, we
have seen examples that make use of scheduling contexts in a
much more general way, even when not donating them to other
threads. For example, Lackorzynski et al. [4] demonstrated
the flattening of hierarchical mixed-criticality schedules in
virtualized guest operating systems by exporting part of the
internal task structure to the hypervisor and by assigning guests
multiple scheduling contexts to choose from. But how general
are scheduling contexts and how can they be extended to
become more general?

As a first step in this direction, this paper investigates how
mixed-criticality scheduling can be mapped to a scheduling-
context-based fixed-priority scheduler in the hypervisor.

Mixed-criticality scheduling [5] seeks to consolidate tasks
of different importance (or criticality) into the same system.
Naturally, because tasks of higher criticality may cause more
severe damage when late, their analysis is taken more se-
riously and results in more pessimistic worst-case execution
time (WCET) estimates. Mixed-criticality scheduling is about
granting all tasks (lower and higher criticality) their optimistic
estimates while guaranteeing the completion of higher criti-

H

L

3 6

criticality inversion criticality decision point

�

�

Fig. 1. Schedule of ⌧L = (LO , 3, 3, (1,�)T ) and ⌧H =
(HI , 6, 6, (3, 2)T ). Shown is the criticality inversion of ⌧LO,1 and the
criticality decision point after ⌧HI ,1 received 3 time units.

cality tasks in the exceptional case where one of the more
optimistic WCET estimates ceases to hold.

As a side-effect of guaranteeing up to the optimistic WCET
estimates for all tasks in case all higher criticality jobs com-
plete within low bounds, a particularly puzzling situation called
criticality inversion may occur. Figure 1 gives an example of
such a situation for the two tasks ⌧L and ⌧H . Here, and in
the following, we denote the release of a job with an upward
arrow and its absolute deadline with a downward arrow. Darker
colors are used to mark the excess budget of a task, that
is the difference between the WCET estimate for the higher
criticality level and for the respective next lower. If we had
given ⌧H priority over the first job of ⌧L, the low criticality
job could miss its deadline if ⌧H executes longer than two
time units. Latest at time 4, after ⌧H received 3 time units,
we know whether ⌧H exceeds its low WCET estimate. If so,
the scheduler drops the second job of ⌧L and relocates its
resources to ⌧H in order to guarantee the completion of high
criticality tasks in all situations. Otherwise, if ⌧H stops within
the low bounds, sufficient time remains to complete ⌧LO,2. We
call the point in time after which ⌧H received its low budget
a criticality decision point of ⌧H .

The contribution of this paper is an analysis of situa-
tions like the one in Figure 1 to identify whether and how
mixed-criticality schedulers can be mapped to a configuration
of scheduling contexts. More precisely, we shall look at
such mappings for the mixed-criticality schedulers: criticality
monotonic (CrMPO) [5], [6], own-criticality based priority
(OCBP) [5], [6] and several static mixed criticality variants
(SMC-*) [7], adaptive mixed criticality (AMC-*) [7], and
earliest deadline first with virtual deadlines (EDF-VD) [8].
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After formally introducing mixed-criticality tasksets, their
feasibility criterion and scheduling contexts, we exemplify how
such a mapping works by reciting some of the results from
flattening. In Section III, we return to the question how to
map the above schedulers to a fixed-priority scheduler with
multiple scheduling contexts per task. Section IV reviews
related attempts. Section V summarizes what we achieved and
shows directions where to go from here.

II. MIXED CRITICALITY, SCHEDULING CONTEXTS AND
FLATTENING

A. Mixed Criticality

Although mixed-criticality scheduling is not limited to
sporadic tasks, let us focus in this paper on this specific type
of tasksets.

Let li 2 L be the criticality level of the sporadic task ⌧i
drawn from the totally ordered set of criticality levels L. We
characterize ⌧i by the tuple ⌧i = (li, �i, Pi, Ci) where �i is the
deadline relative to the release ri,j of ⌧i’s current job ⌧i,j and
Pi is the minimal interrelease time. We assume constrained
task sets, that is, �i  Pi. The vector Ci denotes for each
criticality level l the WCET estimate Ci(l) at this level. We
assume WCET estimates are monotonically increasing with
increasing criticality level and constrain Ci by Ci(l)  Ci(h)
for every l  h. We generally assume that schedulers enforce
the execution budgets they grant. That is, once a job exceeds
Ci(li), the scheduler will reclaim all resources assigned to it (in
our case CPU-time). It is therefore safe to set Ci(h) = Ci(li)
for all criticality levels h � li. The feasibility criterion for
mixed-criticality schedulers is:

Definition 1 (MC-Schedulability): A task set T is mixed-
criticality schedulable if all jobs ⌧i,j receive Ci(li) time units
in between ri,j and ri,j + �i provided all jobs of higher
criticality tasks ⌧h complete before Ch(li).

From Baruah and Vestal [9] we know that sporadic task
sets are MC-schedulable if they are MC-schedulable at their
synchronous arrival sequence. In this sequence, the first job of
all tasks arrives at time 0 and subsequent jobs follow Pi apart.
Also we know from Baruah et al. [10] that OCBP is optimal
among the class of fixed job-priority algorithms.

In this paper, we shall use the terms job and task (i.e.,
sequence of jobs) to refer to the entities considered by mixed-
criticality schedulers and scheduling contexts (SC) and thread
when we talk about mapping tasks and jobs to a SC-based
scheduler. We will introduce SCs in the next paragraph. We
shall also write x̂ to distinguish SC parameters from task pa-
rameters, which we denote by simple variables x. We assume
that threads signal completion after they finish executing a job
and that they then wait for a signal indicating the release of
the next job.

B. Scheduling Contexts

In the following we introduce scheduling contexts (SC)
and exemplify their use in previous work [4]. SCs are basic
operating system primitives that are used for driving schedul-
ing decisions. Traditionally, operating systems keep scheduling
information (such as a thread’s priority or budget) and all

other thread-specific information (such as the thread’s user-
level register content) in the same data structure called thread
control block (TCB). SC-based systems refactor TCBs into
two data structures: the scheduling context (SC), which keeps
all scheduling information plus the pointers to be linked into
the ready queue, and the execution context (EC), which keeps
all remaining state that is required to execute the thread.

Now by separating SCs and ECs, the first limitation of
TCBs that can easily be dropped is that threads can have
no more than one time quantum. For now we regard a time
quantum as a guarantee of the scheduler to provide CPU
time up to a given budget Ĉi (typically set to the task’s
WCET Ci) every P̂k time units whenever there is no thread
that is currently consuming higher prioritized time. Imprecise
computations [2] and quality assurance scheduling [3] made
use of this option to prioritize the mandatory work of all
threads over optional parts such as filters and other video post-
processing steps, which improve the result. The mechanism
that is required to implement these scenarios is the ability to
switch between SCs. That is, a thread executing on an SC must
be able to select another SC, possibly discarding the remaining
budget of the former.

A second application becomes possible by allowing also
incoming signals to choose SCs. When scheduling the virtual
CPUs (vCPUs) of multiple virtual machines (VM) one has
to frequently activate each to preserve the impression of
reactiveness although the VM may be off focus and running
non-interactive background load. By assigning one SC with
a small high priority time quantum and a second SC with a
larger quantum but lower priority, VMs can react quickly to
incoming signals activating the high priority SC and dropping
down to the low priority SC for non-interactive tasks or in other
situations determined by the VM-internal scheduler. Running
applications of different importance in a VM turns this setup
into a mixed-criticality system.

C. Flattening: Exemplifying SCs for Mixed Criticality

To obtain a deeper understanding how SCs can express
mixed-criticality systems and in particular to clarify some of
the properties we like to preserve when extending SC-based
scheduling, let us repeat some of the results from flattening
hierarchical mixed-criticality scheduling.

When considering VMs, time-slicing multiple vCPUs on
one physical CPU is a typical approach to progress tasks
scheduled by the VMs’ internal schedulers. However, when
VMs are mixed-criticality, time-slicing ceases to work. In [4],
we presented an example similar to the one depicted in
Figure 2(a). Assume two VMs (VMA and VMB) run the
two low criticality tasks ⌧AL = (LO , 3, 3, (1, 1)T ) and ⌧

0A
L =

(LO , 6, 6, (1, 1)T ) in VMA and the high criticality task ⌧BH =
(HI , 6, 6, (3, 4)T ) in VMB on the same physical CPU. It is
easy to see that there is no single time quanta such that VMA’s
and VMB’s internal scheduler can guarantee that all tasks meet
their deadlines. Because CH(LO) = 3, we have to prioritize
⌧AL over ⌧BH and invert criticality. But then, if we assign a single
budget of ĈA = 1.5 time units every P̂A = 3 (or even a budget
of 1 for the first 3 time units and of 2 for the second 3), VMB

can no longer guarantee the completion of ⌧BH . However, if like
in Figure 2(b) we assign two distinct time quanta to VMA by
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Fig. 2. Mixed-criticality schedule of the tasks ⌧AL = (LO , 3, 3, (1, 1)T ) and ⌧
0A
L = (LO , 6, 6, (1, 1)T ) in VMA and ⌧BH = (HI , 6, 6, (3, 4)T ) in VMB .

linking to it one scheduling context SC1
A with Ĉ1

A = 1 every
P̂ 1
A = 3 and a second one SC2

A with Ĉ2
A = 1 every P̂ 2

A = 6,
the taskset becomes MC schedulable. The priority ordering for
this to work is that SC1

A is higher prioritized than SCB and
SC2

A lower than SCB .

In Figure 2(b), the scheduler inside VMA used the budget
of SC1

A to run ⌧AL and SC2
A to run ⌧

0A
L . However, it is also

possible for VMA to use SC1
A at time 3 to complete ⌧

0A
L and

leave SC2
A for ⌧AL ’s second job. There are two points why this

choice is important: First, although we will not further follow
this direction in this paper, we would like to allow VMs to
hide as much of their internal structure as possible. That is,
VM internal schedulers should be able to give guarantees to
the VM internal threads without having to expose all these
threads to the hypervisor scheduler, which in fact may be
different from the internal scheduler. However, unlike typical
hierarchical schedulers (see e.g., Regehr and Stankovic [11] or
Zhang and Burns [12]), SCs allow nested schedulers to work
with more than just a single time quantum.

The second important point is that we seek to build our sys-
tems such that guarantees are robust against failures in tasks,
nested schedulers or even the entire VM. As a consequence,
any operation that a VM or thread may perform on its assigned
SCs must not violate the timing guarantees offered to other
threads. Notice, we do not extend this control to the thread
as a whole because SCs provide us external control over the
timing behavior of a thread without having to worry about the
remainder of its state. An execution context without an SC
simply will never get the CPU.

III. MIXED-CRITICALITY SCHEDULING WITH
SCHEDULING CONTEXTS

We now turn our attention to the mapping of mixed
criticality schedulers to SCs.

A. Criticality-Monotonic and
Static Fixed Task-Priority Algorithms

The initial implementation described in Steinberg et al. [1]
equipped SCs with just a budget Ĉi, a period P̂i and a priority
⇡i. However, they already allowed restricting their release to
the point in time when both an inter-process communication
message was received and P̂i time units have passed since the
last release. SCs were scheduled by a fixed-priority scheduler
and only the single highest prioritized active SC was kept in
the scheduler’s ready queue.

It is easy to see that such a setting can support implicit
deadline constrained sporadic tasksets (i.e., tasks with �i = Pi)
and static-priority mixed-criticality schedulers. A scheduler is
static-priority if it assigns a fixed priority to each task and then
relies on this priority (and the enforcement of deadlines and
budgets) to ensure MC schedulability. Each task ⌧i is assigned
exactly1 one SC with Ĉi = Ci(li) and P̂i = Pi.

Prominent examples of such a mixed-criticality scheduler
are the fixed task-priority instances of the Criticality Mono-
tonic Priority Ordering (CrMPO) [6] family. CrMPO assigns
priorities such that higher criticality tasks are strictly higher
prioritized than lower criticality tasks. Within the priority
strips of equally critical tasks, priorities are assigned following
a standard scheduling algorithm such as rate or deadline
monotonic.
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Fig. 3. Deadline overrun with side effect to task in other VM.

Standard SCs are not equipped for enforcing deadlines of
constrained tasksets. For example, the taskset comprised of
⌧AH = (HI , 4, 6, (2, 4)T ), ⌧AL = (LO , 3, 3, (1, 1)T ) and ⌧BH =
(HI , 6, 6, (1, 2)) is MC-feasible (e.g., with ⇡A

H > ⇡A
L > ⇡B

H ).
However, a bug in ⌧AH causing a late start after its release may
result in ⌧AH overrunning its deadline and in turn ⌧BH missing
its deadline. Figure 3 illustrates this point.

To support constrained deadline sporadic tasks, our first
extension to SCs is a deadline �̂i up to which budgets must
have been consumed to not interfere with other tasks in the
way we have just seen. Because our scheduler enforces budgets
by setting a timeout to the remaining budget Ĉi,remaining ,
enforcing deadlines comes almost for free. Instead of setting
this timeout to t + Ĉi,remaining when switching at time t to
⌧i,j , we set it to min(t + Ĉi,remaining , ri,j + �̂i) where ri,j
is the release of ⌧i,j . The only situation where constrained

1In case of hierarchical scheduling, multiple tasks of the same VM with
adjacent priorities and the same periods could be consolidated to the same
SC. However, as already mentioned, this line of argumentation is out of the
scope of this paper.
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(b) expansion with per-task SC queues containing one SC per
job

Fig. 4. Expansion of EDF schedule using SC queues and deadline-enforcing
SCs

deadline enforcement causes a scheduling overhead not present
in budget enforcing schedulers is when the activation signal of
the next sporadic job ⌧i,j+1 arrives before ri,j+Pi. In this case
we have to set a second timer to ri,j + Pi, which will always
fire.

B. Own-Criticality Based Priority Ordering and
Static Fixed Job-Priority Algorithms

The extension to deadline-enforcing SCs and a feature that
was already present and required for imprecise computing [2]
and quality-assuring scheduling (QAS) [3] brings us a big step
closer to fixed job-priority algorithms such as own-criticality
based priority ordering [6].

In QAS, the idea is to drop to a lower priority once
the important part of work has completed. This gives other
threads the chance of completing their important work before
continuing to increase the quality of the result. The SC
mapping therefore involves one SC for the mandatory part
of the work, which must be completed, plus one additional
SC for each optional, quality improving step. Once a thread
completes its mandatory work, it steps ahead to the next SC,
which in the course discards the budget of the previous SC
and enables the new budget.

Although more efficient solutions exist for greedy fixed
job-priority algorithms such as EDF, it is “almost” possible
to use SCs and a fixed SC-priority scheduling algorithm to
implement arbitrary static fixed job-priority algorithms. Let us
first explain the idea and then fix the “almost” in the above
statement.

Figure 4 gives an example for EDF with a classic (i.e.,
single-criticality) taskset. Rather than using SCs to describe a
single recurring release of a task, we use it to describe the
release of a single job in the hyperperiod HP of the entire

taskset. A task ⌧i executes n = HP
Pi

jobs in a hyperperiod.
For each task, we instantiate n SCs and combine them into a
list in the order of the release of these jobs. The parameters
of these SCs are P̂i = HP and Ĉi = Ci for all SCs and
�i,j = Pi · j for the SC representing the jth job ⌧i,j (1  j 
n). We set the priority of the SCs according to the fixed job-
priority algorithm. For EDF, these are ⇡o,p > ⇡q,r whenever
ro,p + �o  rq,r + �q (breaking ties if necessary).

Because SCs are ordered in lists, a thread executing on the
list of SCs will discard the remaining budget prior to executing
the next job. Also, no thread can extend the budget received for
executing a job ⌧i,j beyond this job’s deadline. However, and
here comes the “almost” into play, there is so far no means of
preventing a thread from immediately switching to the next SC
and hence from consuming the budget of a not-yet released job.
Although this is not a problem for EDF where SC priority are
monotonically decreasing, it becomes an issue when allowing
priorities to increase.

To enforce the use of budgets only after the release of the
corresponding job, we propose to apply the same mechanism
for switching to the next job that Jean Wolter introduced to
cope with sporadic tasks in the first place. In addition to
P̂i, we therefore introduce a second inter-release time: the
refill time R̂i plus configuration options to determine whether
SCs are queued or loose (i.e., simultaneously available) and
whether switching to the next SC corresponds to the release
of the next sporadic job. To not confuse terminology with the
task parameters, we will use P̂i as before for the job-to-job
minimal inter-release time and set R̂i = HP to ensure the
job’s availability in the next hyperperiod.

Several variants of static mixed-criticality (SMC) algo-
rithms have been proposed that can all be mapped in the
above described way. For example, Vestal [5] suggested an
algorithm based on Audsley’s algorithm [13] to determine a
MC-feasible per job priority assignment called own-criticality
based priority assignment (OCBP). The basic idea is that if a
job ⌧i still receives sufficient time in between its release and
deadline when it runs at the lowest priority and if we don’t care
about the order of or deadline misses of higher prioritized jobs,
then we can fix this job at this priority and search for a next
suitable job in the remaining set. Thereby, higher prioritized
jobs ⌧h are assumed to require at most Ch(li). Lacking budget
enforcement, Vestal first assumed a complete analysis of lower
criticality tasks also at higher criticality levels leading to
Ci(h) > Ci(li) for h > li. Adding this additional constraint,
Baruah and Burns [14] could improve on the schedulability of
this algorithm. In [7], Baruah, Burns and Davis could finally
show that presenting OCBP with a limited choice (deadline
monotonic sorting of jobs within a criticality level and then for
each level the job with the largest absolute deadline) suffices
to obtain a feasible schedule.

Notice, although SC representations of all jobs in the
hyperperiod are possible, other representations may be more
appropriate for systems where it is feasible to support one
specific class of MC-scheduling algorithms. In these systems,
where the majority of all jobs follow a standard priority
assignment such as EDF, a third extension of SCs will be
helpful: to regard queued SCs as exceptions of one dedicated
SC yielding the regular behavior. For example, if all jobs but
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the third and fifth follow the EDF priority assignment, an EDF
SC-scheduler could be used to schedule the dedicated SC with
the exception of those jobs that have alternatives queued. That
is, after finishing the first job, the scheduler awaits the second
release of the dedicated SC at which time it inserts it to the
ready queue based on the stored relative deadline. However, for
the third release it makes this decision based on the adjusted
deadline of the alternative SC.

C. Adaptive Mixed-Criticality Algorithms

So far we have only considered scheduling algorithms that
rely on the relative priority ordering of SCs to guarantee
MC-schedulability. However, with an appropriate monitor of
thread execution times, which is trivially given in the form of
the next scheduling-context signal, MC schedulers could also
react to tasks exceeding their low criticality WCET estimates.
This class of scheduling algorithms is called adaptive mixed-
criticality algorithms [7]. Whenever a job ⌧i,j exceeds the
WCET estimate Ci(l) of a criticality level l, the scheduler
follows this transition from l to l + 1 and discontinues the
execution of all l-criticality tasks. To do so, with scheduling
contexts, a fourth extension is required: to disable a group
of scheduling contexts. Adding this extension requires an
indirection to an enabled token, which the scheduler can toggle
to disable at once all SCs that refer to this token.

Notice, to meet the demands of the MC-schedulability
criterion, lower criticality jobs need never be continued once
a higher criticality job has exceeded its low WCET estimate.
However, it is of course desirable to return to a fully opera-
tional system as quickly as possible. The challenge is therefore
in quickly re-enabling SCs once they have been disabled and
it is safe to re-enable low SCs. As low WCET overruns
are extremely rare events, we propose to simply deactivate
but not dequeue inactive SCs from the ready queue. This
way, re-enabling boils down to setting a bit in the enabled
token. The additional scheduling overhead when skipping over
disabled SCs is deterministic and can be considered for the
high criticality WCET estimates.

H

L,2
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M

L,1

H, M, LH, M, L
H, M, L

�

�

�
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¬
¬ ¬

Fig. 5. Use of enabled token to disable groups of SCs.

Figure 5 shows the structure of enabled tokens in an
example that is not schedulable with classical OCBP because
of the consideration of ⌧L,1 for ⌧H , although ⌧L,1’s execution
time is hidden behind ⌧M ’s medium-criticality excess budget.

Because ⌧M and ⌧H require together all 6 time units, none of
the low jobs ⌧L,1 and ⌧L,2 may be higher prioritized than both
of the higher criticality tasks. On the other hand, because ⌧M ’s
low WCET estimate is 2 time units and ⌧H ’s is 0.5, we cannot
run both of them at a higher priority than the first low job ⌧L,1

because otherwise, if both the medium and the high criticality
task stay within their low budgets, ⌧L,1’s completion could not
be guaranteed. The only priority assignments that remain are
therefore ⌧L,1 at an intermediate priority between ⌧M and ⌧H .
However, OCBP considers CL(H) +CM (H) if ⌧L,2 executes
at a lower priority than ⌧H or 2CL(H) + CM (H) otherwise,
which both is not enough to complete ⌧H at one of the two
lowest priorities.

Shown at the bottom of Figure 5 is the gradual increase of
the system’s criticality level, which has lead to the dropping
of ⌧L’s jobs. Also shown is the enabled token.

We suggest implementing the enabled token as a small
bitfield complemented with a mask inside each SC. The mask
is used to determine which bits are significant for this SC. This
way, the first n criticality levels could be disabled by clearing
the bit of the nth criticality level and making all tasks of
criticality l significant on all bits of higher or equal criticality.

D. Earliest Deadline First — Virtual Deadlines

Realizing that fixed-job priority algorithms (such as OCBP)
are limited in their schedulable utilization, Baruah, Bonifaci
and D’Angelo [8] transitioned from single priority schemes
to a dual priority scheme (or more generally an n priority
scheme where n = |L| is the number of criticality levels). For
as long as no task exceeds its low WCET estimate, the schedule
follows the EDF algorithm with virtual deadlines to make room
for a potential criticality change. Once such a change happens,
low tasks are disabled and the high tasks transition to a second
priority scheme based on classical EDF.

Group enable and disable (as we have seen it in the
previous section) allow us to keep both priority settings
simultaneously (either explicit or implicit through deadlines
interpreted by a host EDF scheduler). Once a criticality change
happens, all low-criticality SCs are disabled by clearing their
significant low flag and high criticality SCs are enabled by
setting the formerly disabled high criticality flag in the enabled
token.

IV. RELATED WORK

Most closely related to our work, although not mixed-
criticality, is part of the work by Regehr and Stankovic in
the context of hierarchical scheduling of soft real-time tasks
(see Table 1 in [11]). As part of their hierarchical scheduling
framework they derived a map how guarantees provided by
one kind of scheduler translate into the guarantees that a nested
scheduler may give for its tasks. For example, a scheduler re-
ceiving X = 50% CPU share may translate this guarantee into
multiple proportional share guarantees up to the point where
the sum of shares Yi is at most X . A particularly interesting
case and direction of future work for this work is Surplus Fair
Scheduling (SFS) [15]. Given multiple shares, SFS is able to
produce a new set of shares carrying a combination of the
received guarantees.
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Zhang and Burns [12] investigate the schedulability of
multiple earliest deadline first layers on top of a fixed-priority
scheduler. Although not per se mixed criticality, Zhang’s
analysis can easily be extended to criticality monotonic settings
where each nested EDF scheduler is responsible for tasks of
one criticality level. To decide MC-schedulability, all that has
to be done is to repeat the analysis for each criticality level l
assuming the tasks in all higher prioritized EDF schedulers do
not exceed Ci(l). SCs and the consideration of slack in Zhang’s
analysis would even allow for occasional criticality inversions
by raising selected tasks above higher criticality EDF levels
provided there is enough slack in these levels.

Queued SCs generalize dual priority scheduling [16] when
the transition to the next SC is not limited to thread-triggered
events but for example to the release of the thread in the first
place. In this case, P̂i serves as trigger to switch to the higher
band priority.

V. CONCLUSIONS AND FUTURE WORK

As a first step in the direction of evaluating fixed SC-
priority scheduling algorithms where tasks have multiple time
quanta to choose from, we have investigated the mapping
of five mixed-criticality algorithms. We found that although
initially not all algorithms could be supported, small changes to
the use and interface of SCs allowed us to map all investigated
algorithms to SC-based scheduling. These changes are deadline
enforcement, a separate refill period, support for sporadic
jobs in the form of queued SCs and group enable/disable
functionality through enabled tokens. Most of these exten-
sions appeared recurringly as demands in discussions about
Fiasco.OC’s SC-based scheduling interface and are feasible
to be implemented both in microkernel-based systems and
elsewhere. Proper integration in a microkernel-based system
regarding isolation and security characteristics are subject to
evaluation.

Directions for future work include a more elaborate and
formal handling of the question what scheduling guarantees
can be given from a combination of fixed-priority time quanta
and an investigation of further algorithms including and be-
yond mixed-criticality.
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Abstract—In 2007, Vestal proposed Mixed-Criticality Schedul-
ing (MCS) to increase utilisation despite imperfect timing evi-
dence. Others have since refined the MCS problem formulation,
proposed alternative scheduling approaches, and evaluated their
performance. We assess existing MCS problem formulations
from a safety assurance perspective and report problems found.
Among these is the use of the word ‘criticality’ to mean several
related but distinctly different things such as Safety Integrity
Levels (SIL), importance, and confidence. We conclude with
suggestions for addressing the problems found.

I. INTRODUCTION

In 2007, Vestal proposed Mixed Criticality Scheduling
(MCS) as a way to achieve high utilisation despite imperfect
timing evidence [1]. He observes that (a) increased confidence
in WCET limits comes at the expense of increased pessimism
and (b) tasks vary in criticality. MCS schedules a system so
that all tasks can run if they adhere to a low-confidence WCET
limit. Failing that, the most critical tasks can run if they adhere
to a larger, higher-confidence WCET limit. Later work ex-
panded the problem definition, proposed alternative scheduling
algorithms, and demonstrated superior utilisation [2]–[10].

But existing definitions of the MCS problem are presented
primarily from a scheduling perspective. We report an analysis
of the MCS problem from a safety assurance perspective.
Amongst other findings, we show that current formulations use
the word ‘criticality’ to represent several related but distinct
concepts, including Safety Integrity Level (SIL), importance,
and confidence. We discuss how this affects safety assurance
and present suggestions for addressing the problems found.

In section II, we survey formulations of the MCS prob-
lem. We discuss confidence in execution time assessments in
section III and the MCS-related demands of safety assurance
in section IV. In section V, we critically examine existing
problem formulations and suggest improvements. We discuss
future work in section VI and conclude in section VII.

II. EXISTING PROBLEM FORMULATIONS

Vestal was the first to publish a formulation of the MCS
problem [1]. Others, including Baruah and Yi, have extended
the problem formulation to account for more parameters
changing with criticality and to generalise criticality modes.

A. The Vestal Formulation
Vestal’s 2007 formulation of the MCS problem begins with

the ‘conjecture that the higher the degree of assurance required

that actual task execution times will never exceed the WCET
parameters used for analysis, the larger and more conservative
the latter values will become in practice’ [1]. In his model, a
system has tasks ⌧1 . . . ⌧n, each with period Ti and deadline
Di. System development adheres to ‘an ordered set of design
assurance levels’ L = {A,B,C,D} with A being the highest.
Ci,l gives the compute time for task ⌧i at assurance level l,
with Ci,A � Ci,B � Ci,C � Ci,D for all i. The goal is ‘to
assure to level Li’ that each task ⌧i ‘never misses a deadline’.

B. The Baruah and Burns Formulation

Baruah and Burns extend Vestal’s formulation [2], [5]. A
system is ‘defined as a finite set of components K’, each with
level of criticality L [5]. As in Vestal’s formulation, each task
⌧i is defined by (Ti, Di,

~

Ci, Li). ~

Ci ‘will be derived by a
process dictated by the criticality level’ and ‘the higher the
criticality level, the more conservative the verification process
and hence the greater will be the value of Ci’. However,
noting that ‘the higher the criticality level, the greater the
need for the task to complete well before any safety-critical
timing constraint’, the model permits different deadlines at
different criticality levels so long as L

1
i > L

2
i ) D

1
i  D

2
i .

Moreover, noting that ‘the higher the criticality level, the
tighter the level of control that may be needed’, Baruah and
Burns allow different periods at different criticality levels so
long as L

1
i > L

2
i ) T

1
i  T

2
i . If a task at criticality level

` overruns Ci,`, tasks at criticality levels ` and lower are
prevented from running again until the processor is idle [2].

Baruah and Burns identify two ‘issues’ that MCS must
address: static verification and run-time robustness [5]. By the
former, they mean that ‘for each criticality level `, all jobs of
all tasks with criticality � ` will complete by their deadlines in
any criticality-` behavior’. By the latter, they mean that after
a transient overload, ‘a robust scheduling algorithm would,
informally speaking, be able to “recover” . . . and go back to
meeting the deadlines of lower-criticality jobs as well’.

C. The Ekberg and Yi Formulation

Ekberg and Yi extend Vestal’s formulation further [7].
Previous formulations defined criticality modes purely as a
mechanism for preserving timing guarantees. Noting that ‘it
should be up to the system designer to decide what it means
for the system to be in any one particular criticality mode’,
they propose using criticality modes to reconfigure systems in
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response to events such as hardware failures. (General models
for such reconfiguration have been proposed elsewhere [11];
the contribution of Ekberg and Yi lies in combining MCS with
more general notions of reconfiguration.) In their model, a
system is defined by a set of tasks ⌧ and a DAG G. The vertex
set V (G) defines the criticality modes and the edge set E(G)
specifies the permissible changes between them. Each task is
defined by the set of criticality modes in which it is active, L,
and for each m 2 Li a tuple (Ci(m), Di(m), Ti(m)). During
a criticality level switch from m to m

0:
• Where m 2 Li and m

0
/2 Li, the system suspends ⌧i.

• Where m /2 Li and m

0 2 Li, the system activates ⌧i.
• Where m 2 Li and m

0 2 Li, the system changes ⌧i’s
parameters to those specified for m0.

These changes take immediate effect. For example, if the
system suspends ⌧i, it discards any active jobs.

Note that G is a DAG: if the system switches to a higher-
criticality mode, it will never switch back. Ekberg and Yi
observe in a footnote that ‘one could easily find a time point
where it is safe to switch back’, but leave this to future work.

III. CONFIDENCE IN EXECUTION TIME ASSESSMENTS

A key assumption behind all three MCS problem for-
mulations is WCET confidence monotonicity: that the de-
gree to which a WCET limit overestimates true WCET in-
creases monotonically with confidence. WCET assessment
approaches can be classified as (a) dynamic (measurement-
based), (b) static (analysis-based), or (c) hybrid [12]. We
consider the WCET confidence monotonicity assumption with
respect to each WCET assessment approach in turn.

A. Dynamic Approaches to WCET Assessment

The simplest dynamic WCET assessment approach is High
Water Mark testing (HWM). In HWM, analysts use the longest
execution time observed in testing as a WCET estimate [12].
The primary source of uncertainty in WCET limits derived
from HWM testing is imperfect test coverage. Secondary
sources include the correctness of any tools, the integrity of
data gathering, any differences between the test system and
the deployed system. These sources are epistemic, i.e. related
to what we do not know rather than arising from chance.

Developers sometimes analyse execution paths and choose
test cases in an attempt to stimulate the worst case [1]. If a

and b are sets of test cases and a ⇢ b, then HWM testing
using b inspires more confidence than the same testing using
a. Unfortunately, it is not generally possible to quantify either
the likelihood or degree of underestimate using this tech-
nique [12]. Two examples of why are as follows. Firstly, the
tasks are analysed for their WCET in isolation with the cache
flushed, however the cache is not flushed before the task starts
executing. Cache-related anomalies exist which mean that this
situation can lead to a higher execution than the measured
WCET [13]. Secondly, the WCET is measured during system
integration testing however this cannot for instance cover all
initial cache states and preemptions scenarios.

In probabilistic approaches, analysts use Extremal Value
Theory (EVT) to fit observed execution times to a distribu-
tion [12], [14]. By selecting a WCET estimate from further to
the right of the distribution, a developer can reduce the uncer-
tainty from test coverage at the cost of increased pessimism.
Because the distributions do not model epistemic uncertainty,
probability figures taken from them are not complete descrip-
tions of the confidence testing should inspire. However, we
know of no reason to think that total confidence does not rise
monotonically with distribution-derived probabilities.

B. Static Approaches to WCET Assessment
Static WCET analysis considers all possible paths through

analysed code. Thus, it is not affected by the main source of
uncertainty in dynamic approaches. However, static analysis
does not produce perfect confidence [12]. User inputs such as
loop bound limits might be wrong, tools might be buggy, and
processor models may be wrong.

Because primary sources of uncertainty in static approaches
are epistemic, there is no clear relationship between confidence
and overestimate amongst static approaches. Consider two
static analysis tools A1 and A2 and a program p for which
A1 produces a greater WCET figure than A2. The extra
overestimate might mask some tool defects (if any), but if
the tool qualification evidence for A2 is more comprehensive
than that for A1, we might justifiably have more confidence
that A2 does not underestimate true WCET.

We can’t quantify test coverage uncertainty in HWM-based
approaches. But all other issues (e.g. developer competence,
tool qualification evidence) being equal, static approaches
produce greater confidence. Since a static analysis approach
(if it is sound, given correct inputs, etc.) never underesti-
mates WCET and HWM testing never overestimates, static
approaches will overestimate more. The degree of overesti-
mate will depend on the target CPU’s complexity and the
analysis tool’s sophistication. Analysis results within 20% of
the highest observed execution time have been achieved [15],
but complex features such as multi-level caches can result in
overestimates of 100% or more [16]. Analysis of software on
multicore platforms is particularly challenging [12].

It is not clear how confidence and overestimation compare
between static approaches and probabilistic approaches, at
least at the high end of the distribution.

C. Hybrid Approaches to Determining WCET
Hybrid approaches combine static analysis and measure-

ment [12], [17]. These approaches divide the software into
blocks, dynamically measure the runtime of each, statically
analyse the software structure, then combines block timing
figures into a complete WCET estimate. The simplest form
of hybrid approach uses a HWM time for each block, but
more complex analyses take inter-block dependencies into ac-
count [18]. For a given test suite, hybrid approaches should be
less likely to underestimate WCET than simple HWM testing:
many test cases might provoke a given block’s worst perfor-
mance, but only one case yields the worst performance for the
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task being tested. However, the basic sources of uncertainty
are the same as with dynamic methods. Underestimation and
overestimation are possible and their likelihood unknown [12].
It is less clear how either the confidence inspired by hybrid
approaches or the degree of overestimate compares to those
of static approaches. In addition, no proof of safeness exists
for the hybrid approaches.

D. The WCET Confidence Monotonicity Assumption
Between the HWM testing approach and any sound, well-

constructed static analysis approach, the WCET confidence
monotonicity assumption almost certainly holds. With other
approaches, it is less clear that this assumption holds. We
return to this issue and its implications in subsection V-A.

IV. THE DEMANDS OF SAFETY ASSURANCE

Successful instantiations of MCS in safety critical systems
must provide the properties and evidence needed for safety and
safety assurance. In this section, we outline the timing-related
demands of typical safety assurance approaches.

Standards for software for use in safety critical systems vary.
For example, software for use on commercial air transports is
constructed in conformance to RTCA DO-178B [19] or its
successor DO-178C [20]. Software for general safety-related
systems is often developed in conformance to IEC 61508 [21].
Software for road vehicles is developed in conformance with
ISO 26262 [22]. There are standards for rail applications [23]
and other specific domains. In yet other domains, standards
dictate a systems safety approach but no specific approach to
software [24]. In this section, we consider typical safety assur-
ance approaches, referring to common standards for concrete
examples where appropriate.

A. Derivation of Timing-Related Safety Requirements
Engineers typically derive timing-related safety require-

ments from hazard and risk analyses. For example, engineers
following IEC 61508 (1) define the system concept and scope,
(2) perform hazard and risk analysis, (3) define overall safety
requirements, and (4) allocate safety requirements to particular
functions and subsystems1 [21]. The aim of hazard and risk
analysis is to determine (a) the system hazards, (b) the event
sequences that could lead to those, and (c) the risks related to
the identified hazards. The overall safety requirements detail
risk reduction measures meant to achieve functional safety
targets. Engineers allocating safety requirements specify an
appropriate SIL2 for each function and then for the sub-
systems implementing those functions. Timing-related safety
requirements capture when these functions must be activated,
performed, completed, etc. if the system is to meet its safety
targets. Most standards for software in safety critical systems
use some variant of this process. (RTCA DO-178B [19] and
DO-178C [20] do not: they exclude system safety engineering
from their scope. These standards are used with SAE ARP
4754A [25], which does follow a broadly similar pattern.)

1IEC 61508 uses the term ‘system’ here, but this process applies to multiple
interacting ‘systems’ and considers over-arching safety goals.

2SILs go by different names (e.g. ASIL, DAL, SWDAL) in other standards.

B. The Meaning and Role of Safety Integrity Levels
SILs play a complex and frequently misunderstood role in

safety standards that use them [26]. SIL is not a measure of
target reliability generally: if failure of a subsystem would
have little effect on safety but a disastrous effect on business
objectives, that subsystem might have a low SIL. SIL is not a
measure of the importance of any particular property: a high-
SIL function might cause harm if not performed correctly but
not if completed late. SIL is also not a measure of achieved
reliability. In IEC 61508 [21] (and also in ISO 26262 [22]),
SIL drives which techniques (e.g. use of formal methods or
dynamic reconfiguration) the standard recommends. However,
developers are not obligated to use even highly recommended
techniques: they may instead explain their reasoning to an
assessor and agree an alternative process [21]. Even if software
development process was a strong predictor of reliability –
there is little or no direct evidence showing that it is –
standards don’t strictly dictate development practice3.

The role of SILs is best viewed as part of a process of
deriving an appropriate development process from the hazard
and risk analysis [26]. For example, consider IEC 61508,
which applies to control systems meant to mitigate risks
posed by equipment under control (e.g. an industrial metal
fabrication tool) [21]. During hazard and risk assessment,
engineers work out both the consequences (i.e. severity) and
likelihood of harm (assuming no mitigation from the control
system). These factors determine risk, which is compared with
tolerable risk thresholds to determine the need for mitigation.
From this, engineers derive a tolerable rate of failure for each
mitigation function. This failure rate is converted into a SIL
and used to drive development of appropriate development
process. While other standards that use SIL do so in a broadly
similar way, there are substantial differences and these can be
a source of confusion [26].

C. Partitioning and Integrity
Software running on one microprocessor frequently imple-

ments multiple functions. These functions might have different
safety integrity needs and developers might want to save
money by using less-rigourous processes to implement lower-
SIL functions. However, software implementing one function
could interfere with software implementing another, for ex-
ample by writing to a random memory address. Standards
typically address this by assigning to software the highest SIL
of any function it implements unless developers demonstrate
partitioning integrity. For example, IEC 61508 allows allocat-
ing different SILs to different parts of the software only when
developers show that ‘there is sufficient independence of im-
plementation between these particular safety functions’ [21].

D. Adequate Confidence in Timing Claims
None of the common standards for software in safety critical

applications clearly defines what constitutes adequate confi-

3Not even DO-178B [19] or DO-178C [20]. Developers and assessors agree
a Plan for Software Aspects of Certification that details the specific activities
undertaken to achieve the standard’s SWDAL-specific objectives.
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dence in a claim about task execution time [12]. For example,
RTCA DO-178B requires ‘review and analysis’ to ‘determine
the correctness and consistency of the source code, including
. . . worst-case execution timing’ [19]. This objective applies
at all but the least-critical SILs. A companion document
clarifies that dynamic approaches to determining WCET are
sometimes appropriate but does not discuss which approaches
are appropriate and not appropriate at each SIL [27].

E. Survivability and Graceful Degradation
Common standards for software in safety critical applica-

tions focus mainly on preventing or detecting defects. But it is
not generally possible to ensure that software-based systems
will never fail. Recognising this, some standards, researchers,
and authorities advocate building software so as to achieve
survivability [28]. Survivability can be broadly defined as the
ability of a system to provide essential services in the face
of attacks and failures. To achieve this resilience, engineers
build systems to reconfigure themselves in response to defined
failure and attack conditions [11]. Such reconfiguration is one
way to achieve the ‘graceful degradation’ that IEC 61508
recommends at low SILs and highly recommends at high
SILs [21]. Researchers have formalised the definition of a
survivability specification as {S,E,D, V, T, P} where:

• S specifies acceptable forms of service from the system
(e.g. full service, limp-home mode)

• E gives permitted values for each aspect of service value
(e.g. {mass air flow sensor 7! {working, failed} , . . .})

• D defines legal combinations of the values in E

• V : S ⇥D ! N1 gives the relative value that each con-
figuration supplies under each environmental condition

• T ✓ S ⇥ S ⇥D defines the legal mode transitions
• P : S ! {p : R | 0 < p < 1} specifies the proba-

bility with which the implementation of each service
mode must meet its dependability requirements (e.g.
{full service 7! 0.999, limp home 7! 0.99999}) [28]

Achieving graceful degradation always requires understand-
ing how a system reacts to adverse events but does not
always require explicit mode transitions. For example, graceful
degradation might mean avoiding a design that causes a system
that receives one too many requests to service none of them.

F. Modes of Operation
Standards use the word ‘mode’ to mean different things.

Each configuration in a survivability architecture can be called
a mode. But when IEC 61508 directs engineers conducting
hazard and risk analysis to ‘give particular attention to abnor-
mal or infrequent modes of operation of the [equipment under
control]’ [21], it means something different. The modes in this
case are the ways in which the system is used (e.g. continuous
production, prototyping/piecework, maintenance, etc.).

V. CRITIQUE OF EXISTING PROBLEM FORMULATIONS

Most published work on MCS is from a scheduling per-
spective. In this section, we criticise the MCS problem for-
mulations outlined in section II and suggest improvements.

A. Impact of the WCET Confidence Monotonicity Assumption
As we showed in section III, it is not clear that the WCET

confidence monotonicity assumption holds over all WCET
assessment approaches. Static analysis approaches generally
produce both greater confidence and greater overestimate than
HWM testing approaches, but the issue is less clear where
statistical approaches or hybrid approaches are concerned.

However, it might not matter that the WCET confidence
monotonicity assumption does not hold universally. Suppose
that, for a given task in a given system, a high-confidence
WCET assessment approach yields a lower WCET limit than
a low-confidence approach. Developers could simply use the
high-confidence WCET limit for both CHI and CLO.

When judging the risk associated with a design that includes
MCS, developers need to reason about the confidence inspired
by the WCET assessment approach used. This is compli-
cated by our general inability to precisely quantify the total
confidence / uncertainty associated with WCET assessment
techniques. But this difficulty is not unique to MCS; it applies
even when other scheduling approaches are used [12].

1) Suggestion: Confidence in WCET limit figures is in-
completely understood and MCS might not provide benefit in
cases where the WCET confidence monotonicity assumption
does not hold. But there are important cases where it does,
chief among them between HWM testing and static analysis.
For the most critical functions, engineers and regulators might
agree that only a technique that significantly overestimates
true WCET provides sufficient confidence. Standard safety
processes dictate that developers must either demonstrate
partitioning integrity or use the same technique for all parts of
the software. The MCS problem formulation should position
MCS as a way to demonstrate partitioning integrity despite
using less-conservative techniques such as HWM testing for
functions that can tolerate greater uncertainty.

B. Multiple Meanings of ‘Criticality’
Vestal’s formulation [1] used ‘criticality’ synonymously

with SIL (or ‘Design Assurance Level’ in RTCA’s DO-178B
nomenclature [19]). That formulation uses criticality to indi-
cate both the consequence of a task missing its deadline and
confidence in the WCET limit figures used in timing analysis.
As we noted in subsection IV-B, SIL is at best a crude indicator
of these things. A high-SIL task overrunning its deadline might
cause little or no safety impact and SIL is only the starting
point for a negotiation between developers and assessors (if
any) over which WCET assessment approach is appropriate.
Moreover, engineers using a standard that defines five SILs are
unlikely to use five different WCET assessment techniques.

The Baruah and Burns formulation [2], [5] extends the
Vestal formulation [1] but uses the word criticality in much
the same way. The Ekberg and Yi formulation [7] goes
further, extending the Vestal formulation to combine MCS
with reconfiguration for survivability. In doing so, it uses the
word criticality as a label for what the survivability literature
calls an ‘acceptable form of service’ [28]. This meaning is not
interchangeable with either of the first two. Shifting to a new
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form of service might increase the consequences of some tasks
missing their deadlines and decrease the consequences for
others. For example, suppose that a combat UAV is engaged
in aerial combat and reconfigures into a dogfighting mode. In
that mode, timely vision and control actuation might become
more important than in normal flight while automatic de-icing
becomes less important. But while the importance of a task
might change when reconfiguring for survivability, confidence
in WCET limits will not.

1) Suggestion: The MCS problem formulation should use
different terms for each of the different concepts now being
referred to as criticality. We suggest the following definitions:

• ‘Importance’ should be used to describe the consequence
of a task overrunning its deadline. Importance varies
with service mode and might be lower than the SIL(s)
associated with the tasks’ service would indicate.

• ‘Confidence’ should be used to describe confidence in a
WCET limit or WCRT figure. Uncertainty is the lack of
confidence (e.g. for the reasons discussed in section III).

• ‘Mode’ should only be used as part of a complete term
that describes a specific mode. Service mode should
describe a mode used in reconfiguration for survivability.
Mode of operation should describe the way in which a
system is being used by its operators. Scheduler mode
should be used to describe whether a scheduler is exclud-
ing low-importance tasks in order to help high-importance
tasks meet their deadlines.

Because SILs are defined and used differently in different
standards [26], the MCS problem should not be described
in terms of SIL. Where helpful, documents giving advice for
building systems using MCS can explain how importance and
confidence map to a specific standard’s definition of SIL.

C. There Are Modes, and Then There Are Modes
The Ekberg and Yi MCS problem formulation [7] includes

a single reconfiguration mechanism meant to facilitate both
(a) surviving equipment failure and (b) recovering from an
overrun of a low-confidence WCET figure. This is meant to
promote generality (for its own sake) and reuse of validated
approaches. They write, ‘we would like the task model to be
as general as possible. . . . It is not unlikely that some existing
solutions regarding the scheduling of regular mode switching
systems can be adapted for mixed-criticality scheduling’ [7].
However, it is not clear that (i) the Ekberg and Yi recon-
figuration model is general enough for general survivability
purposes, (ii) that a sufficiently general model would be suited
to tolerating overruns, or (iii) that a combined model would
be practical from a safety assurance standpoint.

In subsection IV-E we described a formal model of reconfig-
uration for survivability [28]. Such reconfigurations might take
much longer than simply setting a mode variable to a different
value. For example, a system migrating a task to a different
computing node might need to load object code and initial
state into that node’s memory [29]. Clearly, the time budget for
such reconfigurations cannot be included in the time budget for
normal task execution. To accommodate such reconfigurations,

reconfiguration architectures include special procedures that
are executed to accomplish the reconfiguration [11].

As Baruah and Burns point out, MCS is meant to protect im-
portant services from a task failing to meet its low-confidence
WCET limits due to a transient overload [5]. Achieving this
requires reacting within a period. It is doubtful that one
mechanism would be suitable for such reconfigurations and
those that take many periods to complete.

As we described in subsection IV-C, many standards re-
quire developers to demonstrate temporal partitioning integrity.
Where such integrity relies in part on MCS, demonstrating
it requires demonstrating that reconfiguration protects impor-
tant services from overruns of low-confidence WCET limits.
Graceful degradation, on the other hand, is validated through
architectural review, testing and analysis of the implemen-
tation, and analysis of how mode transitions could lead to
hazards. Using a single mechanism to implement both mixes
goals and concepts usually kept separate in the standards’
process and might complicate the safety assurance effort. If
tolerating overruns requires x distinct modes and tolerating
hardware failures requires y distinct modes, a unified system
might implement x⇥ y modes and corresponding mode tran-
sitions. Because each of these must be tested, the combined
implementation might significantly increase testing effort.

1) Suggestion: While reconfiguration in response to low-
confidence WCET limit overruns and reconfiguration in re-
sponse to hardware failure share some features, these recon-
figurations are different and should be handled by separate
reconfiguration mechanisms. However, as discussed in sub-
section V-B, some tasks might be more important in some
service modes than in others. The MCS problem formulation
should be given in terms of task importance rather than SIL
to facilitate graceful degradation.

D. To Kill or Not to Kill?
The Partitioned Criticality (PC) scheduling scheme assigns

priorities so as to preserve temporal isolation without the need
for a special monitoring and intervention mechanism [5]. In
contrast, Static Mixed Criticality (SMC) uses run-time moni-
toring to restrict tasks to their run-time limits. Adaptive Mixed
Criticality (AMC) goes further, using run-time monitoring to
halt all criticality ` tasks whenever a criticality ` or higher
task overruns its WCET limit. Unfortunately, some definitions
of this monitoring are inappropriate for many applications.

It strains credulity to think that some tasks are so unim-
portant that they need never be executed following a transient
overload. Indeed, anecdotes told to us in confidence reveal
that some developers create high-SIL functions that depend
on input from low-SIL functions, justifying this arrangement
by designing the high-SIL task to tolerate bad or missing
input until health monitoring restarts the low-SIL task. A
reasonable MCS approach must restart halted tasks when it
is safe to do so. Baruah and Burns do this when the processor
is next idle [2]. The Ekberg and Yi MCS problem formulation
kills unimportant tasks permanently, but a footnote raises the
possibility of restarting halted tasks [7].
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1) Suggestion: MCS problem formulations should explic-
itly define when they will restart tasks following an overrun.
It would also help to explain what will happen when an
important task overruns a high-confidence WCET limit.

VI. FUTURE WORK: AN MCS ASSURANCE ARGUMENT

A safety argument for a given system explains how evidence
in a safety case shows satisfaction of safety requirements and,
ultimately, the operational definition of ‘adequately safe to
operate’ in use in that system [30]. Other forms of assurance
argument, such as conformance argument, can be used to show
conformance with a safety standard [31].

Timing evidence, scheduling policy, and task allocation have
a complex relationship with risk and safety standards. We
have described some of that complexity in this paper. Such
complexity makes it difficult to determine by ad hoc review
whether a given formulation of the MCS problem captures the
properties and evidence needed for safety assurance.

In prior work, we created an assurance argument to facilitate
criticism of timing-related safety evidence and processes [12].
In this work, we suggested improvements to existing MCS
problem formulations. We further suggest creating and criticis-
ing a safety argument for the revised formulation as a means of
assessing its completeness and utility. Conformance arguments
would likewise help to assess the problem formulation’s fitness
for use with a given standard and type of system.

VII. CONCLUSIONS

In some safety-critical software systems, adequate risk
reduction requires meeting deadlines. Unfortunately, some
WCET assessment approaches that yield high confidence
might substantially overestimate WCET. MCS promises to
always permit important services to run for up to some high-
confident system while delivering the utilisation that less-
conservative WCET limits would allow.

In this paper, we reviewed three MCS problem formulations
from a safety assurance perspective. We found four issues:
(1) reliance on a questionable assumption about confidence in
WCET limits, (2) use of the word ‘criticality’ to mean several
different things, (3) flawed support for survivability-related
reconfiguration, and (4) a haphazard treatment of recovery
from transient overloads. We suggested improvements in the
model formulation to address these issues. We further suggest
the development of an assurance argument for MCS as a
means of exploring the complex assurance issues and tradeoffs
surrounding scheduling policy, task allocation, confidence in
timing evidence, partitioning, and graceful degradation.
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Abstract—The development of mixed-criticality systems that
integrate applications of different criticality levels (safety, secu-
rity, real-time and non real-time) can provide multiple benefits
such as product cost-size-weight reduction, reliability increase
and scalability. However, the integration of applications of dif-
ferent levels of criticality leads to several challenges with respect
to safety certification standards.

This paper defines a safety certification strategy for IEC-61508
compliant industrial mixed-criticality systems based on multicore
partitioning. The final objective is the certification of a wind-
turbine mixed-criticality control system according to IEC-61508
and ISO-13849 industrial safety standards. This approach is
illustrated with a simplification of the safety concept currently
under detailed review by a certification body.

Index Terms—mixed-criticality ; safety; IEC-61508; certifica-
tion; multicore; partition

I. INTRODUCTION

Conventional embedded system architectures in multiple
domains follow a federated architecture paradigm, in which the
system is composed of interconnected embedded subsystems
where each of them provides a well defined functionality. The
ever increasing demand for additional functionalities leads to
a considerable complexity growth [1] that in some cases limits
the scalability of the federated approach. For example, a mod-
ern off-shore wind turbine dependable control system manages
up to three thousand inputs / outputs, several hundreds of
functions are distributed over several hundred nodes grouped
into eight subsystems interconnected with a fieldbus and the
distributed software contains several hundred thousand lines
of code.

The integration of additional functionalities also leads to an
increase in the number of subsystems, connectors and wires
increasing the overall cost-size-weight and reducing the overall
reliability of the system. For example, in the automotive
domain, field data has shown that between 30-60% of electrical
failures are attributed to connector problems [2].

The integration of applications of different criticality (safety,
security, real-time and non-real time) in a single embedded
system is referred as mixed-criticality system. This integrated
approach can improve scalability, increase reliability reducing
the amount of systems-wires-connectors and reduce the overall
cost-size-weight factor. However, safety certification according
to industrial standards becomes a challenge because sufficient

evidence must be provided to demonstrate that the resulting
system is safe for its purpose. Higher safety integrity functions
must be interference free with respect to lower safety integrity
functions.

This paper contributes with the definition of a safety certi-
fication strategy for IEC-61508 compliant industrial mixed-
criticality systems based on multicore partitioning, and il-
lustrates it with a safety concept for a wind-turbine mixed-
criticality control system. Both the strategy and the example
safety concept consider the usage of Commercial off-the-shelf
(COTS) multicore processors.

The paper is organized as follows. Section II introduces
basic concepts and Section III analyses related work. Section
IV describes the proposed safety certification strategy and
Section V briefly describes the safety concept. Finally, Section
VI draws the overall conclusion and future work.

II. BACKGROUND

A. Certification standards

IEC-61508 [3], [4], [5] is an international standard for elec-
trical, electronic and programmable electronic safety related
systems. IEC-61508 is a generic safety standard from which
different domain specific standards have been derived for
industrial and transportation domains, e.g. machinery, industry
process, automotive, railway, etc.

Safety Integrity Level (SIL) is a discrete level corresponding
to a range of safety integrity values where 4 is the highest level
an 1 is the lowest. As a rule of thumb, the highest the SIL the
highest the certification cost.

B. Fail-safe and fail-operational

Safety systems can be classified as either fail-safe or fail-
operational. A system is fail-safe if there is a safe state in the
environment that can be reached in case of a system failure
either by the safety function or diagnostics, e.g., a process
plant can be safely stopped, a train can be stopped, a lift can
be stopped, etc. A system is fail operational if no safe state
can be reached in case of a system failure, e.g., a flight control
system aboard an airplane, drive by wire in a car, etc.
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III. RELATED WORK

Multiple analyses [6], [7], [8], [9], [10], [11] and research
publications [12], [13], [14], [15], [16] indicate that is likely to
be a significant increase in the use of multicore devices over
the next years replacing applications that have traditionally
used single core processors. Multicore and virtualization tech-
nology can support the development of mixed-criticality sys-
tems by means of software partition, or partition for short.
Partitions provide functional separation of the applications and
fault containment, to prevent any partitioned application from
causing a failure in another partitioned application.

However, the development of safety critical embedded
systems based on multicore and virtualization technology
is a challenge [17], [18], [19], [20], [21], [22]. Providing
sufficient evidence of isolation, separation and independence
among safety and non-safety related functions distributed in a
multicore processor is not a trivial task [21], [22].

IEC-61508 safety standard does not directly support nor
restrict the certification of mixed-criticality systems. Whenever
a system integrates safety functions of different criticality,
sufficient independence of implementation must be shown
among these functions [3], [4]. If there is not sufficient
evidence, all integrated functions will need to meet the highest
integrity level. Sufficient independence of implementation is
established showing that the probability of a dependent failure
between the higher and lower integrity parts is sufficiently low
in comparison with the highest safety integrity level [4].

Therefore, spatial and temporal isolation are key require-
ments in mixed-criticality systems because otherwise low
criticality applications could interfere with those of high
criticality. While spatial isolation can be commonly achieved
using state of the art solutions (e.g., MMU), temporal isolation
at application level depends on the time guarantees provided
by the underlying multicore processor. The usage of time
deterministic architectures and processors [19] could simplify
the collection of evidences for a certification process because
determinism is a sufficient precondition for logical reasoning
required for time behaviour analysis [1]. However, most of the
existing COTS multicore processors were not designed with a
focus on hard-real time applications but towards the maximal
average performance. This is the source for multiple temporal
isolation challenges [21], [22].

The avionics industry has widely adopted the Integrated
Modular Avionics (IMA) [23] architecture, which allows in-
tegrating several applications on a single processing element.
Applications are encapsulated into partitions that are tempo-
rally and spatially isolated from one another, enforcing fault
containment [24].

However, the migration of an existing set of pre-certified
single-core avionics IMA systems into a multi-IMA multicore
system is not a trivial task. The fundamental challenge is to
ensure that the temporal and spatial isolation of the partitions
will be maintained without incurring huge recertification costs
[8], [9], [16], [25], [26], [27], [28], [29].

IV. SAFETY CERTIFICATION STRATEGY

This section describes an IEC-61508 compliant safety cer-
tification strategy for mixed-criticality systems based on mul-
ticore partitioning, based on the following assumptions:

• The IEC-61508 standard mainly targets fail-safe systems.
• The fault hypothesis defines overall safety assumptions
• An hypervisor ported to a given platform is provided as

a certified compliant item
• The hypervisor supports a static cyclic scheduling algo-

rithm with guaranteed time slots defined at design time
• A system level diagnosis strategy is defined
As multicore partitioning based solutions are still not com-

mon practice in industry, the strategy shown in Figure 1
considers a three step safety concept transformation from a
federated architecture to a multicore integrated architecture.

• Transform federated to multiprocessor: Transform the
safety concept of a federated architecture to a multipro-
cessor safety concept using well known techniques that
are common practice in industry

• Transform multiprocessor to multicore: Transform pre-
vious safety concept to multicore safety concept still
abstracted from detailed analysis of shared-resources.
Analyse and select the platform with regard to isolation

• Analyse multicore shared resources: Define, analyse and
asses in detail shared resources and their effect
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Fig. 1. Safety concept transformation strategy in consecutive steps.

A. IEC-61508 and fail-safe systems
IEC-61508 based safety-critical embedded systems must

be developed with a safety life-cycle that aims to reduce
the probability of systematic errors and ensure that sufficient
fault avoidance and fault control techniques are implemented.
Regarding temporal isolation, this means that isolation needs
to be systematically guaranteed (or give safe worst case
bounds) and diagnosis techniques must be used to detect
temporal isolation violations (e.g., watchdog, logic execution,
etc. ). If this unexpected violation occurs, diagnosis should
lead the system to safe-state (e.g., reset). Therefore, the lack
of complete temporal isolation would reduce the availability
of the system but should not jeopardize safety.

B. Fault hypothesis
The fault-hypothesis [30] of this strategy consists of the

following assumptions:
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• FSM: All safety relevant systems are developed with an
IEC-61508 Functional Safety Management (FSM)

• Node: The node computer forms a single Fault-
Containment Region (FCR) that can fail in an arbitrary
failure mode. The permanent failure rate is assumed to
be in the order of 10-100 FIT (i.e., about one thousand
year) and the transient failure rate is assumed to be in
the order of 100.000 FIT (i.e., about one year)

• Processor: The multicore processor might not provide
complete temporal isolation (or not sufficient evidence
for certification), but bounded temporal interference can
be estimated and validated with measurements

• Hypervisor: The hypervisor provides interference free-
ness among partitions (bounded time and spatial isola-
tion), it is certified and fails in an arbitrary failure mode
when it is affected by a fault

• Partition: A partition can fail in an arbitrary failure mode,
both in the temporal as well as the spatial domain

C. Compliant item: Hypervisor and platform

Hypervisor is a layer of software (or a combination of
software / hardware) that allows running several independent
execution environments in a single computer platform. Hy-
pervisor solutions such as XtratuM [31] have to introduce a
very low overhead compared with other kind of virtualizations
(e.g., Java virtual machine); the throughput of the virtual
machines has to be very close to that of the native hardware.

The strategy assumes that a hypervisor and platform are
provided as a single certified compliant item according to
IEC-61508. The safety manual should state that the compliant
item provides the following techniques and properties:

• Startup, configuration and initialization: The hypervisor
must start up, configure and initialize in a known, repeat-
able and correct state within a bounded time (e.g., internal
data structures, virtualized resource initialization, etc.).
Configuration data is static and defined at design stage.

• Virtualization of resources: Provide a virtual environment
in a safe, transparent and efficient way (e.g., CPU,
memory and Input / Output (I/O) devices)

• Isolation, diagnosis and integrity:
– Spatial isolation: To prevent one partition from

overwriting data in another partition, or a memory
address not explicitly assigned to this partition

– Temporal isolation: To ensure that a partition has
sufficient processing time to complete its execution,
ensuring that partition cyclic schedule and time slots
are assigned as statically configured

– Health monitoring: To control random and system-
atic failures at hypervisor or partitions level. Actions
to handle these errors are statically defined.

– Exclusive access to peripherals: Protect access to
peripherals used by a safety partition

– Hypervisor Execution Integrity: The hypervisor ex-
ecution should be in privileged mode, isolated and
protected against external software faults.

• Communication and synchronization:
– Inter-partition communication: The hypervisor must

support mechanisms that allow safe data exchange
between two or more partitions

– Time Synchronization: Fault-tolerant time synchro-
nization that provides a global notion of time to the
hypervisor partition scheduler

D. Scheduling

The scheduling of partitions should follow a static cyclic
scheduling algorithm with pre-assigned guaranteed time slots
defined at design time. The scheduling of partitions among
cores should be synchronized based on the global notion of
time provided by the hypervisor.

E. Diagnosis strategy

In order to manage the complexity management [1] arising
from the safe integration of multiple mixed-criticality parti-
tions, a diagnosis strategy is defined taking into consideration
the following assumptions:

• Partitions are developed abstracted from the platform
• The hardware platform provides autonomous hardware

diagnosis an diagnosis to be commanded by software
• The execution platform (hardware and hypervisor) is

abstracted from the partitions to be executed. The hy-
pervisor provides health monitoring that might be com-
plemented with additional system diagnosis partition(s)

• The system architect is responsible for the architectural
design, safety integration and must take care of:

– Analysing safety manuals of integrated safety parti-
tions and compliant items

– Selection of partitions and diagnosis partitions
– Defining the design time static configuration,

e.g., scheduling and allocation of resources
Based on this assumptions, the recommended diagnosis

strategy is described below:

• The partition should be self contained and should provide
safety life-cycle related techniques (e.g., IEC-61508-3
Table A.4 defensive programming) and platform inde-
pendent diagnosis (e.g., IEC-61508-2 Table A.7 input
comparison voting) abstracted from the details of the
underlying platform

• The hardware provides autonomous diagnosis (e.g., IEC-
61508-2 Table A.9 Power Failure Monitor (PFM)) and
diagnosis components to be commanded by software
(e.g., IEC-61508-2 Table A.10 watchdog)

• The hypervisor and associated diagnosis partitions should
support platform related diagnosis (e.g., IEC-61508-2
Table A.5 signature of a double word)

• The system architect specifies and integrates additional
diagnosis partitions required to develop a safe product
taking into consideration all safety manuals
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V. CASE STUDY

This section briefly describes a case-study where previously
defined safety certification strategy (Section IV) is applied for
the definition of a safety concept for a mixed-criticality wind
power control based on multicore partitioning.

A wind park is composed of interconnected wind turbines
and a centralized wind park control center as shown in Figure
2. As previously explained current wind turbine control unit
follows a federated architectural approach and provides three
major functionalities:

• ’Supervision’: Wind turbine real-time control and super-
vision.

• ’SCADA’: Non real-time Human Machine Interface
(HMI) and communication with SCADA system

• ’Safety Protection’: Safety functions that ensure that
design limits of the wind turbine are not exceeded

Windpark
control center

Control unit

Control unit Control unit

I/O

I/O

I/O

I/O

I/O

I/O

EtherCAT EtherCAT

EtherCAT

EtherCAT

Internet

SCADA Center

Fig. 2. Simplified wind park diagram.

The safety protection system must ensure that design limits
of the wind turbine are not exceeded (e.g., over speed) and if
exceeded output safety-relays connected to the safety-chain
must be opened. As shown in Figure 3, there is a safety-
chain composed of safety-relays in serial that activates the
’pitch control’ safety function whenever the chain is opened.
The ’pitch control’ safety function leads the wind turbine to
a safe-state within a Process Safety Time (PST). The safety
protection system must meet ’PLd’ level of ISO-13849 [32]
and IEC-61508 SIL2/3.

Pitch control

Safety Chain

Fig. 3. Wind turbine safety chain.

A. Safety concept

This section describes the safety concept of a mixed-
criticality wind power system based on multicore and virtual-
ization partitioning.

1) Transformation (Federated to multiprocessor): The first
step is to transform a subset of the current federated archi-
tecture into an integrated architecture based on two or more
processors. The safety concept behind the architecture shown
in Figure 4 is common practice in industry: 1oo2(D) dual-
channel architecture based on two independent processors, two
shared diverse input sources (rotation speed) and two output-
relays connected in serial to the safety-chain.

The node has a Hardware Fault Tolerance (HFT) of one
(HFT = 1)) based on two independent processors. Each
processor controls one independent safety-relay that can be
de-activated (safe-state) either directly commanded by ’safety
protection’ or indirectly by ’diagnosis’. If the ’diagnosis’
detects a fatal error, it does not refresh the associated watchdog
and this leads to a reset of the node. As a summary:

• ’P0’ and ’P1’ are independent single core processors
• ’P0’ processor executes safety related partitions only:

’safety protection’ and ’diagnosis’
• ’P1’ processor executes all partitions
• Each processor controls one independent safety-relay
• EtherCAT ’communication stack’ is managed in P1 and

the safety-communication layer in ’safety protection’
• Local and cross-channel ’diagnosis’ in each processor
• An independent ’watchdog’ monitors each processor
• An IEC-61508 SIL2 system with HFT = 1 requires a

Safe Failure Fraction (SFF) of 90% > SFF >= 60%

SCPU

P0 P1

Speed Sensor(s)

ETHERCAT

watchdog[0] watchdog[1]

safety relay safety relay

diagnosis diagnosis

safety protection

safety protection

communication stack

SCADA supervision

Fig. 4. Safety concept(1oo2; 2 processors)

The future scalability of this approach is also limited. The
number of integrated functionalities will continue to increase,
but the usage of fans is not allowed in order to meet reliability
and availability requirements. The computation power of the
single core processor is limited and if processor ’P1’ does
not provide sufficient computation power new processors
will be need to be added. Adding new processors and their
associated communication buses leads to additional reliability
and availability issues (e.g., material reliability, EMC, etc. ).

2) Transformation (multiprocessor to multicore): Previous
multiprocessor based safety concept shown in Figure 4 is
transformed into a multicore architecture shown in Figure 5.
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At this abstraction level, different platforms are analysed
taking into consideration features such as safety, computa-
tion, memory, communication, isolation, etc. The theoretical
analysis based on available documentation must be validated
with experimental evaluation. The mapping of partitions to
cores can also be modified according to platforms specific
constraints and properties. The selected platform shown in
Figure 5 is an heterogeneous quadcore processor (two ’x86’
cores and two ’LEON3 FT’ softcores), that meets application
requirements, application dependencies with ’x86’ architecture
and has been positively assessed [33].

In addition to this, the diagnosis strategy defined in the pre-
vious transformation needs to be reviewed taking into consid-
eration the details of the new platform. For example, a single
processor node requires a processor that meets IEC-61508-2
Annex E in order to claim a HFT = 1 and this is not common
for COTS processors. If this claim does not hold, a higher SFF
is required (a IEC-61508 SIL2 system with HFT = 0 requires
99% > SFF >= 90%), which implies additional diagnosis
techniques and updates in previously selected ones.

Processor

SCPU

C0: LEON3 FT + Hypervisor C1: x86 + Hypervisor

C2: LEON3 FT + Hypervisor C3: x86 + Hypervisor

Speed Sensor(s)

ETHERCAT

watchdog[0] watchdog[1]

safety relay safety relay

diagnosis diagnosis

safety protection

safety protection

communication stack

SCADA supervisionsupervision

Fig. 5. Simplified safety concept (1oo2), multicore).

3) Shared resources: Figure 6 shows the detailed processor
diagram taking into consideration major shared-resources. The
real platform is composed of two commercial nodes, a dual-
core Intel Atom processor connected via PCIe to an FPGA
that integrates two ’LEON3 FT’ softcores. For the purpose
of this analysis, they are considered to be a single silicon
rather than two independent silicon. ’LEON3 FT’ softcores
have associated a local memory for program and data (’LS
memory’) and use an external shared memory (’external shared
memory’) for inter-partition communication. ’x86’ cores have
L1/L2 cache and share and external memory (’external shared
memory 2’). Communication among partitions allocated in
’x86’ and ’LEON3 FT’ cores is implemented using an external
shared memory accessed by a shared bus (AHB bus - gateway
- PCIe). A periodic interrupt common to all cores is used for
hypervisor time synchronization purposes.

The extended safety concept includes FMEAs, error reaction
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Fig. 6. Safety concept (1oo2), multicore with shared resources).

definitions and it is complemented with a detailed assessment
of the platform [33]. Spatial isolation was positively assessed.
However, it was concluded that temporal characteristics of
partitions could be influenced by different loads scenarios in
other partitions due to shared resources. For example:

1) Shared memory: x86’ cores use shared-memory and
’LEON3 FT’ cores use shared memory for inter-partition
communication. Maximum temporal interference suf-
fered by a partition is estimated and measured

2) Shared cache: Atom processor (dual core ’x86’) does not
support temporal freeness in shared cache, the maximum
temporal interference suffered by a partition is measured

3) Interrupts: Some interrupts in the Atom processor can
not be rerouted and this can influence the timing be-
haviour of the hypervisor, the maximum temporal inter-
ference suffered by a partition is measured

4) Communication channel: Complete decoupling of sender
and receiver partitions connected with a communication
channel require temporal isolation

Different solutions are defined in order to avoid and control
failures due to previously described temporal interferences:

• Fault avoidance
– Shared-resources: ’Safety protection’ and ’diagnosis’

partition Worst Case Execution Time (WCET) are
measured for each core type (’x86’ and ’LEON3
FT’). Both partitions are scheduled at the beginning
of each periodic cycle with a pre-assigned time-
slot bigger than the maximum estimated execution
time, which considers both the WCET and maximum
estimated time interference due to shared resources

– Interrupts: All unused interrupts are routed to ’diag-
nosis’ or health monitoring

– Communication channel: The communication among
’safety protection’ and ’diagnosis’ partitions in dif-
ferent cores is delayed one execution cycle, which
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it is considered sufficient to diminish temporal inter-
ferences due to shared resources.

• Fault control:
– Shared-resources: Safety partitions are executed in

two diverse cores (’x86’ and ’LEON3 FT’) with dif-
ferent hypervisor configuration. Each ’diagnosis’ par-
tition refresh an independent watchdog if monitored-
time constraints are met.

– Interrupts: ’Diagnosis’ partition traps unused inter-
rupts and decides whether to refresh an independent
watchdog based on the severity of the error

– Communication channel: Safety partitions monitor
communication channel time-outs.

VI. CONCLUSION AND FUTURE WORK

While mixed-criticality paradigm based on multicore and
partitioning provides multiple potential benefits, it is clear
that the safety certification of such systems based on COTS
multiprocessors not designed for safety is a challenge.

This paper has contributed with a safety-certification strat-
egy for IEC-61508 based safety systems based on COTS
multiprocessors that have been illustrated with a safety con-
cept currently under detailed review by a certification body.
The assumptions and analysis considered at this stage will be
reviewed in the following design stages and validated at the
final stage of the case-study within FP7 MultiPARTES project.
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Abstract—Multi- and many-core processors are becom-
ing increasingly popular in embedded systems. Many of
these processors now feature hardware virtualization ca-
pabilities, such as the ARM Cortex A15, and x86 pro-
cessors with Intel VT-x or AMD-V support. Hardware
virtualization offers opportunities to partition physical
resources, including processor cores, memory and I/O
devices amongst guest virtual machines. Mixed criticality
systems and services can then co-exist on the same plat-
form in separate virtual machines. However, traditional
virtual machine systems are too expensive because of
the costs of trapping into hypervisors to multiplex and
manage machine physical resources on behalf of separate
guests. For example, hypervisors are needed to schedule
separate VMs on physical processor cores. In this paper,
we discuss the design of the Quest-V separation kernel,
that partitions services of different criticalities in separate
virtual machines, or sandboxes. Each sandbox encapsulates
a subset of machine physical resources that it manages
without requiring intervention of a hypervisor. Moreover,
a hypervisor is not needed for normal operation, except to
bootstrap the system and establish communication channels
between sandboxes.

I. INTRODUCTION

Embedded systems are increasingly featuring multi-
and many-core processors, due in part to their power,
performance and price benefits. These processors offer
new opportunities for an increasingly significant class of
mixed criticality systems. In mixed criticality systems,
there is a combination of application and system com-
ponents with different safety and timing requirements.
For example, in an avionics system, the in-flight en-
tertainment system is considered less critical than that
of the flight control system. Similarly, in an automotive
system, infotainment services (navigation, audio and so
forth) would be considered less timing and safety critical
than the vehicle management sub-systems for anti-lock
brakes and traction control.

A major challenge to mixed criticality systems is
the safe isolation of separate components with differ-
ent levels of criticality. Isolation has traditionally been
achieved by partitioning components across distributed
modules, which communicate over a network such as

This work is supported in part by NSF Grant #1117025.

a CAN bus. For example, Integrated Modular Avionics
(IMA) [1] is used to describe a distributed real-time
computer network capable of supporting applications of
differing criticality levels aboard an aircraft. To imple-
ment such concepts on a multi-core platform, a software
architecture that enforces the safe isolation of system
components is required.

The notion of component isolation, or partitioning, is
the basis of software system standards such as ARINC
653 [2] and the Multiple Independent Levels of Security
(MILS) [3] architecture. Current implementations of
these standards into operating system kernels [4][5][6]
have focused on micro-kernel and virtual machine tech-
nologies for resource partitioning and component isola-
tion. However, due to hardware limitations and software
complexity, these systems either cannot completely elim-
inate covert channels of communication between isolated
components or add prohibitive performance overhead.

Hardware-assisted virtualization provides an oppor-
tunity to efficiently separate system components with
different levels of safety, security and criticality. Back in
2006, Intel and AMD introduced their VT-x and AMD-
V processors, respectively, with support for hardware
virtualization. More recently, the ARM Cortex A15 was
introduced with hardware virtualization capabilities, for
use in portable tablet devices. Similarly, some Intel Atom
chips now have VT-x capabilities for use in automobile
In-Vehicle Infotainment (IVI) systems [7], and other
embedded systems.

While modern hypervisor solutions such as Xen [8]
and Linux-KVM [9] leverage hardware virtualization to
isolate their guest systems, they are still required for
CPU and I/O resource multiplexing. Expensive traps into
the hypervisor occur every time a guest system needs to
be scheduled, or when an I/O device transfers data to
or from a guest. This situation is both unnecessary and
too costly for mixed criticality systems with real-time
requirements.

In this paper we present a new operating system design
leveraging hardware-assisted virtualization as an extra
ring of protection, to achieve efficient resource partition-
ing and performance isolation for subsystems. Our sys-
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tem, called Quest-V, is a separation kernel [10] design.
The system avoids traps into a hypervisor (a.k.a. virtual
machine monitor, or VMM) when making scheduling
and I/O management decisions. Instead, all resources are
partitioned at boot-time amongst system components that
are capable of scheduling themselves on available pro-
cessor cores. Similarly, system components are granted
access to specific subsets of I/O devices and memory so
that devices can be managed without involvement of a
hypervisor.

In the rest of this paper, we describe how Quest-V can
be configured to support a Linux front-end responsible
for low criticality legacy services, while native Quest
services can operate on separate hardware resources
(memory, I/O and CPU cores) to ensure safe, predictable
and efficient service guarantees. In this way, high criti-
cality Quest services can co-exist with less critical Linux
services on the same hardware platform.

II. QUEST-V SEPARATION KERNEL ARCHITECTURE

Quest-V partitions a system into a series of sandbox
kernels, with each sandbox encompassing a subset of
memory, I/O and CPU resources. The current imple-
mentation works on Intel VT-x platforms but plans are
underway to port Quest-V to the AMD-V and ARM
architectures.

Fig. 1. Example Quest-V Architecture Overview

A high-level overview of the Quest-V architecture
is shown in Figure 1. Trusted monitor code is used
to launch guest services, which may include their own
kernels and user space programs. A monitor is respon-
sible for managing special extended page tables (EPTs)

that translate guest physical addresses (GPAs) to host
physical addresses (HPAs), as described later in Figure 2.

We chose to have a separate monitor for each sand-
box, so that it manages only one set of EPT memory
mappings for a single guest environment. The amount of
added overhead of doing this is small, as each monitor’s
code fits within 4KB 1. However, the benefits are that
monitors are made much simpler, since they know which
sandbox they are serving rather than having to determine
at runtime the guest that needs their service. Typically,
guests do not need intervention of monitors, except to
establish shared memory communication channels with
other sandboxes, which requires updating EPTs.
Mixed-Criticality Example – Figure 1 shows an ex-
ample of three sandboxes, where two are configured
with Quest native safety-critical services for command,
control and sensor data processing. These services might
be appropriate for a future automotive system that assists
in vehicle control. Other less critical services could be
assigned to vehicle infotainment services, which are
partitioned in a sandbox that has access to a local display
device. A non-real-time Linux system could be used in
this case, perhaps managing a network interface (NIC)
to communicate with other vehicles or the surrounding
environment, via a vehicle-to-vehicle (V2V) or vehicle-
to-infrastructure (V2I) communication link.

A. Resource Partitioning
Resource partitioning in Quest-V is mostly static, and

takes place at boot-time. However, communication chan-
nels between sandboxes can be established at runtime,
requiring some dynamic memory allocation.

CPU Partitioning – In Quest-V, scheduling is per-
formed within each sandbox. Since processor cores are
statically allocated to sandboxes, there is no need for
monitors to perform sandbox scheduling as is typically
required with traditional hypervisors. This approach
eliminates most of the monitor traps otherwise necessary
for sandbox context switches. It also means there is no
notion of a global scheduler to manage the allocation
of processor cores amongst guests. Each sandbox’s local
scheduler is free to implement its own policy, simplifying
resource management. This approach also distributes
contention amongst separate scheduling queues, without
requiring synchronization on one global queue.

Memory Partitioning – Quest-V relies on hardware
assisted virtualization support to perform memory parti-
tioning. Figure 2 shows how address translation works
for Quest-V sandboxes using Intel’s extended page ta-
bles. Each sandbox kernel uses its own internal paging

1The EPTs take additional data space, but 12KB is enough for a
1GB sandbox.
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structures to translate guest virtual addresses to guest
physical addresses. EPT structures are then walked by
the hardware to complete the translation to host physical
addresses.

Fig. 2. Extended Page Table Mapping

On modern Intel x86 processors with EPT support,
address mappings can be manipulated at 4KB page
granularity. For each 4KB page we have the ability to set
read, write and even execute permissions. Consequently,
attempts by one sandbox to access illegitimate memory
regions of another will incur an EPT violation, causing
a trap to the local monitor. The EPT data structures are,
themselves, restricted to access by the monitors, thereby
preventing tampering by sandbox kernels.

EPT mappings are cached by hardware TLBs, expe-
diting the cost of address translation. Only on returning
to a guest after trapping into a monitor are these TLBs
flushed. Consequently, by avoiding exits into monitor
code, each sandbox operates with similar performance
to that of systems with conventional page-based virtual
address spaces [11].

Cache Partitioning – Microarchitectural resources
such as caches and memory buses provide a source
of contention on multicore platforms. Using hardware
performance counters we are able to establish cache
occupancies for different sandboxes [12]. Also, memory
page coloring can be used to partition shared caches [13].

I/O Partitioning – In Quest-V, device management
is performed within each sandbox directly. Device inter-
rupts are delivered to a sandbox kernel without monitor
intervention. This differs from the “split driver” model
of systems such as Xen, which have a special domain to
handle interrupts before they are directed into a guest.
Allowing sandboxes to have direct access to I/O devices
greatly reduces the overhead of monitor traps to handle
interrupts.

To partition I/O devices, Quest-V first has to restrict
access to device specific hardware registers. Device
registers are usually either memory mapped or accessed
through a special I/O address space (e.g. I/O ports).
For the x86, both approaches are used. For memory
mapped registers, EPTs are used to prevent their ac-
cesses from unauthorized sandboxes. For port-addressed
registers, special hardware support is necessary. On
Intel processors with VT-x, all variants of in and out

instructions can be configured to cause a monitor trap
if access to a certain port address is attempted. As a
result, a hardware provided I/O bitmap can be used to
partition the whole I/O address space amongst different
sandboxes. Unauthorized access to a certain register can
thus be ignored or trigger a fault recovery event.

Any sandbox attempting access to a PCI device must
use memory-mapped or port-based registers identified
in a special PCI configuration space [14]. Quest-V
intercepts access to this configuration space, which is
accessed via both an address and data I/O port. A trap
to the local sandbox monitor occurs when there is a PCI
data port access. The monitor then determines which
device’s configuration space is to be accessed by the
trapped instruction. A device blacklist for each sandbox
containing the Device ID and Vendor ID of restricted PCI
devices is used by the monitor to control actual device
access.

Fig. 3. PCI Configuration Space Protection

A simplified control flow of the handling of PCI
configuration space protection in a Quest-V monitor is
given in Figure 3. Notice that simply allowing access
to a PCI data port is not sufficient because we only
want to allow the single I/O instruction that caused the
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monitor trap, and which passed the monitor check, to be
correctly executed. Once this is done, the monitor should
immediately restrict access to the PCI data port again.
This behavior is achieved by setting the trap flag (TF) bit
in the sandbox kernel system flags to cause a single step
debug exception after it executes the next instruction.
By configuring the processor to generate a monitor trap
on debug exception, the system can immediately return
to the monitor after executing the I/O instruction. After
this, the monitor is able to mask the PCI data port again
for the sandbox kernel, to mediate future device access.

In addition to direct access to device registers, in-
terrupts from I/O devices also need to be partitioned
amongst sandboxes. In modern multi-core platforms, an
external interrupt controller is almost always present to
allow configuration of interrupt delivery behaviors. On
modern Intel x86 processors, this is done through an I/O
Advanced Programmable Interrupt Controller (IOAPIC).
Each IOAPIC has an I/O redirection table that can be
programmed to deliver device interrupts to all, or a
subset of, sandboxes. Each entry in the I/O redirection
table corresponds to a certain interrupt request from an
I/O device on the PCI bus.

Fig. 4. APIC Configuration

Figure 4 shows the hardware APIC configuration.
Quest-V uses EPT entries to restrict access to memory
regions, used to access IOAPIC registers. This way, the
IOAPIC interrupt redirection table is prevented from
alteration by an unauthorized sandbox. Attempts by
a sandbox to access the IOAPIC space cause a trap
to the local monitor as a result of an EPT violation.
The monitor then checks to see if the sandbox has
authorization to update the table before allowing any
changes to be made. Consequently, device interrupts are
safely partitioned amongst sandboxes.

B. Linux Sandbox Support

In addition to native Quest kernels, Quest-V is also
designed to support other third party sandbox kernels
such as Linux and AUTOSAR OS. Currently, we have
successfully ported a Puppy Linux distribution with

Linux 3.8 kernel to serve as our system front-end, pro-
viding a window manager and graphical user interface.
A Quest kernel is first started in the Linux sandbox
to bootstrap our paravirtualized Linux kernel. Because
Quest-V exposes maximum possible privilege of hard-
ware access to sandbox kernels, the actual changes made
to the original Linux 3.8 kernel are well under 100 lines.
These changes are mainly focused on limiting Linux’s
view of available memory and handling I/O device DMA
offsets caused by memory virtualization.

The VGA frame buffer and GPU hardware are always
assigned to the bootstrapped Linux sandbox. All the
other sandboxes will have their default terminal I/O
tunneled through shared memory channels to virtual
terminals in the Linux front-end. We developed libraries,
user space applications and a kernel module to support
this redirection in Linux. A screen shot of Quest-V
after booting the Linux front-end sandbox is shown in
Figure 5. Here, we show two virtual terminals con-
nected to two different native Quest sandboxes similar
to the configuration shown in Figure 1. In this particular
example, we allocated 512MB to the Linux sandbox
(including an in-memory root filesystem) and 256MB to
each native Quest sandbox. The network interface card
has been assigned to Quest sandbox 1, while the serial
device has been assigned to Quest sandbox 2. The Linux
sandbox is granted ownership of the USB host controller
in addition to the GPU and VGA frame buffer. Observe
that although the machine has four processor cores, the
Linux kernel detects only one core.

C. VCPU Scheduling

Fig. 6. VCPU Scheduling Hierarchy

Sandboxes running Quest kernels use a form of virtual
CPU (VCPU) scheduling for conventional tasks and
interrupt handlers [15]. Two classes of VCPUs exist, as
shown in Figure 6: (1) Main VCPUs are used to schedule
and track the PCPU usage of conventional software
threads, while (2) I/O VCPUs are used to account for,
and schedule the execution of, interrupt handlers for
I/O devices. This distinction allows for interrupts from
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Fig. 5. Quest-V with Linux Front-End

I/O devices to be scheduled as threads, which may be
deferred execution when threads associated with higher
priority VCPUs having available budgets are runnable.
I/O VCPUs can be specified for certain devices, or for
certain tasks that issue I/O requests, thereby allowing
interrupts to be handled at different priorities and with
different CPU shares than conventional tasks associated
with Main VCPUs.

By default, VCPUs act like Sporadic Servers [16],
[17]. Local APIC timers are programmed to replenish
VCPU budgets as they are consumed during thread
execution. Sporadic Servers enable a system to be treated
as a collection of equivalent periodic tasks scheduled by
a rate-monotonic scheduler (RMS) [18]. This is signifi-
cant, given I/O events can occur at arbitrary (aperiodic)
times, potentially triggering the wakeup of blocked tasks
(again, at arbitrary times) having higher priority than
those currently running. RMS analysis can be applied,
to ensure each VCPU is guaranteed its share of CPU
time, VU , in finite windows of real-time.

III. EXPERIMENTAL EVALUATION

Figure 7 shows the performance of a video benchmark
using a non-virtualized Linux system (labelled Linux),
and a Linux front-end running in Quest-V (labelled
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Quest Linux). This experiment was run on a mini-ITX
machine with an Intel Core i5-2500K 4-core processor,
featuring 4GB RAM. The figure shows the time spent
in the video codec (VC) and the video output (VO), to
play back a 1080P MPEG2 video from the x264 HD
Benchmark.

In Quest-V, the Linux sandbox has exclusive control
over the integrated HD Graphics 3000 GPU. The video
is about 2 minutes long and the file is 102MB in
size. During normal playback, both Linux and Quest-
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Linux produce the same frame rate. By switching to
benchmark mode with no audio (invoking mplayer with
-benchmark and -nosound), mplayer will try to
decode and display each frame as fast as possible. With
the -vo=null argument, mplayer will further skip the
video output and try to decode as fast as possible. The
results show that Quest-V virtualization inflicts almost
no overhead for HD video decode and display in Linux.

IV. RELATED WORK

Xen [8], Linux-KVM [9], XtratuM [6] and the Wind
River Hypervisor [19] all use virtualization technologies
to logically isolate and multiplex guest virtual machines
on a shared set of physical resources. LynxSecure [5] is
another similar approach targeted at safety-critical real-
time systems.

PikeOS [4] is a separation micro-kernel [20] that sup-
ports multiple guest VMs, and targets safety-critical do-
mains such as Integrated Modular Avionics. The micro-
kernel supports a virtualization layer that is required to
manage the spatial and temporal partitioning of resources
amongst guests.

In contrast to the above systems, Quest-V statically
partitions machines resources into separate sandboxes.
Services of different criticalities can be mapped into
separate sandboxes. Each sandbox manages its own
resources independently of an underlying hypervisor.
Quest-V also avoids the need for a split-driver model
involving a special domain (e.g., Dom0 in Xen) to handle
device interrupts. Interrupts are delivered directly to the
sandbox associated with the corresponding device, using
I/O passthrough.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces Quest-V, which is an open-
source separation kernel built from the ground up. It
uses hardware virtualization in a first-class manner to
separate system components of different criticalities.
It avoids traditional costs associated with hypervisor
systems, by statically allocating partitioned subsets of
machine resources to guest sandboxes, which perform
their own scheduling, memory and I/O management.
Hardware virtualization simply provides an extra logical
ring of protection. Sandboxes can communicate via
shared memory channels that are mapped to immutable
entries in extended page tables (EPTs). Only trusted
monitors are capable of changing the entries in these
EPTs, preventing access to arbitrary memory regions in
remote sandboxes.

Quest-V requires system monitors to be trusted. Al-
though these occupy a small memory footprint and are
not involved in normal system operation, the system

can be compromised if the monitors are corrupted.
Future work will investigate the use of hardware features
such as Intel’s trusted execution technology (TXT) to
enforce safety of the monitors. Additionally, online fault
detection and recovery strategies will be considered.

Please see www.questos.org for more details.
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Abstract

Mixed criticality systems (MCS) allow software compo-
nents of differing criticalities to use the same physical re-
sources (ie. CPU, memory). MCS highlight the trade-off be-
tween partitioning components of different criticalities and effi-
cient resource usage. Components are partitioned due to safety
concerns, but physical partitioning requires more resources
than if components are unpartitioned and share resources.

Influential recent work in scheduling of MCS shows the
benefits of sharing resources between criticality levels. One
issue with this work is that allowing resource sharing within
MCS requires that sufficient partitioning and separation can
be provided by the architecture to ensure mixed criticality
components can share resources without compromising system
safety at the highest criticality levels.

This paper examines this issue from the perspective of the
memory hierarchy for Network-on-Chip architectures, consid-
ering memory system design for partitioning to support MCS
scheduling approaches for multiprocessor systems – without
the need for the resource expensive approaches of totally
separated (ie. federated) approaches.

I. INTRODUCTION

Mixed Criticality Systems (MCS) are becoming increas-
ingly important within the embedded real-time domain. Such
systems contain components with different levels of criticality
on a single platform. Domain motivation for MCS comes from
mainly from aerospace and automotive. The former embodies
the concept of components with different criticality levels
within domain safety standards (eg. IEC 61508, DO-178B).
Interestingly, the aerospace industry has also been developing
mixed criticality infrastructure (ie. platforms, OSs), allowing
components of different criticality levels to reside on the same
physical platform, for several over 20 years via IMA [1], [2],
[3], [4]. The automotive industry appears to be moving towards
MCS as the number and complexity of in-vehicle software
components increases.

In both aerospace and automotive domains, the main
motivation for considering MCS designs is to meet non-
functional requirements related to, for example, space, cost
and weight – and for aerospace especially, fault-tolerance1. By
allowing components of different criticalities to share physical
resources, potentially fewer resources are required. In con-
trast, traditional (federated) systems architectures dictate that

1In an IMA system in aerospace if a lane fails (e.g. one processor board
from three) functionality from the failed board can be re-assigned to one of the
other boards. This results in the possibility that software components of mixed
criticality levels would eventually be resident on the same board, even if the
original configuration placed functions of differing criticalities on physically
separate boards.

components of differing criticalities are allocated physically
separate resources.

Mixed criticality systems highlight the fundamental trade-
off between partitioning or separating components of different
criticalities and efficient resource usage. From a safety per-
spective, partitioning is required: high criticality components
must be protected from the interference and potential failure of
lower criticality components. To achieve adequate partitioning,
federated architectures can be used. These help when there is
a need to show that a single failure cannot lead to a complete
system failure – a typical requirement for safety-critical (fault-
tolerant) systems. However, the approach is expensive in terms
of physical resources needed.

In contrast, influential recent work in mixed criticality
scheduling has shown the benefits of sharing resources be-
tween criticality levels [5]. The work is motivated primarily by
resource efficiency, allowing software components of different
criticalities to be scheduled on the same CPU (either in a single
or multiprocessor system).

This paper examines MCS from the perspective of the
memory hierarchy, showing how memory systems can be
designed so that partitioning can be achieved to support MCS
scheduling approaches – without the need for the resource
expensive approaches of totally separated (ie. federated) ap-
proaches. The approach taken is to use a memory hierarchy
designed for a predictable multiprocessor Network-on-Chip
(NoC) system and enable support for multiple criticality levels
within that architecture. We note that this is in contrast
to conventional critical system design which seeks to use
unpredictable (commodity) components and constrain them to
be (almost) predictable.

The remainder of this paper is structured as follows.
Section II reviews memory architectures. In section III the
predictable memory architecture developed within the EU T-
CREST project is introduced, which is extended into an appro-
priate architecture for MCS systems in section IV. Conclusions
are offered in section V.

II. MEMORY ARCHITECTURE REVIEW

Memory provides storage for state (data) and code (instruc-
tions) which must be delivered to the CPU when required,
within the time and resource constraints of the system. For
real-time systems, constraints are focussed upon time – in-
creasing memory latencies will increase worst-case execution
times (WCET) and reduce the overall schedulability of the
system. There are a number of issues for memory architectures

37



for realistic mixed criticality systems, including2:

1) Performance – the increasing gap between CPU per-
formance and memory system performance (ie. the
“memory wall” [6]).

2) Scalability – increasing numbers of CPUs sharing the
same memory hierarchy.

3) Physical Separation – a memory architecture must
also provide sufficient physical separation between
software components using memory to meet system
safety requirements.

Performance and scalability requirements suggest moving to-
wards higher performance architectures – which is in direct
conflict towards the provision of physical separation needed
within safety-related systems. At the extreme, in safety-critical
systems a single failure cannot lead to a total system failure.
When applied to the system architecture this implies that
degrees of fault-tolerance are used (eg. redundancy). When ap-
plied to the memory architecture it implies protection between
memory used by different components (particularly if they are
of differing criticality levels). The simple method to achieve
protection is physically separated system components; or at
least to physically separate components of different criticality
levels. Otherwise, the method by which memory protection
is achieved becomes an important part of the safety argument
for the system. Unfortunately, conventional (commodity) CPUs
do not provide simple memory protection, but rather memory
protection based upon complex memory management units (eg.
virtual memory) which can be viewed as too complex to be
free of errors (and hence usable within safety-critical systems).

The conventional memory hierarchy for safety-critical sys-
tems is illustrated in Figure 1. Storage increases in volume,
but decreases in performance and cost (per byte), as the
hierarchy is descended [7]. The degree of potential sharing
between software components also increases as the hierarchy
is descended.

The remainder of this section discusses the memory hier-
archy, together with memory architectures for basic systems,
multicore systems and many core systems. Throughout, issues
in mixed criticality are highlighted.

PROCESSOR

REGISTERS

CPU CACHE

PHYSICAL MEMORY    (RAM / DDR etc)

SOLID STATE MEMORY   (Non-volatile Flash-based memory)

Embedded
Real-Time
Systems

Fig. 1. Memory Hierarchy for Embedded Real-Time Systems

2Application Complexity is also important in terms of the memory hierarchy,
as increasing complexity is being seen in terms of the amount of data being
input, accessed, processed and stored by a system, e.g. due to the use of high
bandwidth I/O devices within systems, and large scale persistent data storage
(eg. for storing maps in navigation). These issues are not discussed further in
this paper.

A. Basic Memory Architecture

Many systems have used simplistic memory architectures
– a single CPU is connected directly to a memory structure
consisting of some form of RAM, together with persistent
program / data storage, the latter used mainly during bootstrap.

Within this architecture, memory latencies consist of the
latency of the memory device itself; together with the bus
between CPU and memory. In simplistic architectures the
latter is minimal (a few cycles). Burst mode memory accesses
together with DMA (potentially from I/O devices) can increase
the latency of memory access as viewed by an application
executing upon the CPU (eg. as their memory access may be
delayed by the DMA burst instigated by an I/O device).

More complex CPUs may include caches to help per-
formance, particularly as CPU speeds increase compared
to available memory bandwidth. Worst-case execution time
(WCET) calculation becomes more complex in the presence
of cache [8], [9] as it is difficult to predict during analysis
the state of cache at any time. Other memory variants include
scratchpad memory (SPM), which make WCET calculation
easier and less pessimistic [10], [11].

Clearly, basic memory architectures can be used with more
complex high performance CPUs, with multi-level caches for
performance, and that support memory protection via Memory
Management Units (MMUs). We note the issue regarding the
complexity of MMUs raised above.

B. Multicore Memory Architecture

Multicore CPUs (within the context of this paper) refer to
the incorporation of several CPUs on the same chip, biased
towards a shared memory architecture [7]. The development
from the basic memory architecture to the multicore archi-
tecture is merely the presence of several (commonly upto 4)
accessing memory via the same shared bus.

One of the largest effects of CPUs sharing the bus is upon
memory latencies – a CPU may have to wait for the memory
transactions of other CPUs to finish before it is able to access
the bus. Similarly, a memory request reaching the physical
memory may be delayed by the completion of requests for
other CPUs (eg. when using DDR).

Within multicore architectures, there are many memory
design choices, two important ones being whether one or
more cache levels are shared between CPUs; whether to
use symmetric or non-symmetric memory architecture. Shared
caches are often used in high performance (eg. desktop)
architectures, needing hardware support for cache coherence
for obtain adequate performance [7]. In terms of real-time
systems, it is not clear that any performance advantage is
gained, given that execution times are extremely hard to model
and bound accurately with shared coherent caches, resulting
in pessimistic WCETs [8] (potentially removing any perfor-
mance gained). From a safety-critical perspective, it is unclear
whether the complexity of cache-coherence implementations
(at the hardware level within the CPU) are appropriate.

Non-Uniform Memory Architectures (NUMA) allow dif-
ferent physical views of memory for each CPU. Thus, the
addition of private memories to the CPUs within a sym-
metric architecture would make the architecture NUMA. We
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can consider the non-uniform nature of the architecture at a
number of levels. At a physical level, access latencies will
be different depending upon whether the CPU addresses the
shared memory, or its own private memory. Access to the other
CPU’s private memory may well be provided at the physical
level (ie. within the address map of the CPU), or could require
OS, and/or application support.

NUMA architectures where CPUs have private memories
as well as access to shared (global) memory are an interesting
option for safety-critical systems. Private memories support re-
quirements for physical separation – assuming that components
of different criticalities were placed upon different physical
CPUs. If components changed criticality level however, there
is a requirement to then move to a different CPU, which raises
issues of migration overhead as well as schedulability of the
changed system configuration.

C. Many-Core Memory Architecture

Many-core architectures (within the context of this paper)
refer to approaches to scaling the number of CPUs within
a chip in a manner far exceeding conventional multicore. A
key difference in approach is to move away from a shared
bus approach to connecting CPUs to shared memory as this
approach is not scalable from the perspective of contention
delays [12]. In contrast, many-core architectures adopt a form
of communication mesh to connect CPUs and memories [13].
This results in many routes between a CPU and memory, so
that contention on the connections between CPUs and memory
can be reduced. We note that when requests actually arrive at
the memory, contention will still occur at the physical level.

The manycore approach is exemplified by the Network-
on-Chip (NoC) approach [14]. Typically a packet switched
communications mesh of regular Manhattan topology is used,
with arbiters at junctions routing traffic, and CPU tiles con-
nected to arbiters via a local link. Essentially, the NoC appears
as a distributed system, with separate CPUs connected by a
communications network. In terms of memory architecture,
external shared memory is attached to an arbiter at the edge
of the mesh (as is any I/O); CPU tiles can also contain
local memory. Alternatively, a second network can be used to
connect CPUs to shared external memory to remove memory
traffic from the mesh [15], [16].

This is essentially a non-symmetric approach. Each CPU
has a different view of the memory depending upon how many
hops are between it and the external memory, and other CPUs
(if a CPU is allowed to indirectly access other CPUs local
memory [17], [18]).

In terms of achieving adequate performance from the
memory architecture, the mapping of application components
to CPUs and memories within the many-core becomes crucial.
Code needs to be close to required data; application threads
that communicate should be placed on CPUs that are close.
Mapping approaches are an active research area [19], noting
that optimal solutions are NP-complete.

D. Summary: Memory Requirements for MCS

Mixed criticality systems highlight the fundamental trade-
off between partitioning or separating components of different

criticalities and efficient resource usage. Recent MCS research
(based upon [5]) considers scheduling CPUs between pro-
cesses of differing criticality levels, largely ignoring other
resources. For memory, available separation is defined by
the physical architecture. To facilitate recent MCS scheduling
approaches, memory architectures require software processes
of differing criticality levels to share physical memory, with
two areas of sharing to consider:

• Shared route / connection between CPU and memory:
Shared connections imply the potential for interfer-
ence between competing memory transactions. This
can lead to race conditions between memory transac-
tions, and difficulties in bounding transaction latency.

• Shared physical memory:
Where memory (and memory controller) are phys-
ically shared between many CPUs, the memory is
effectively multiplexed between the CPUs – hence
memory requests from one CPU may be delayed by
those of another.

One of the characteristics of MCS scheduling approaches is
that Worst-Case Execution Times (WCET) are dependent on
criticality level – more conservative (higher) values are used
if the process is assigned a higher criticality level. In terms
of memory access latencies (a part of WCET), there is a
fundamental requirement for predictability. However, different
assumptions regarding competing memory transactions can be
made to allow less pessimistic memory latency times to be
derived (see sections III and IV).

μ0 μ1 μ2

μ4 μ5 μ6

μ8 μ9 μ10

μ12 μ13 μ14

μ3

μ7

μ11

μ15

μBluetiles Router MicroBlaze Tile

Fig. 2. Blueshell Network-on-Chip with 16 CPU Tiles

III. PREDICITABLE MEMORY ARCHITECTURE

The EU T-CREST project3 is developing NoC architectures
suitable for safety-critical systems requiring the highest levels
of predictability. In this section we discuss a shared memory
tree architecture (Bluetree) that has been developed within T-
CREST. Subsequently we show how this architecture supports
mixed criticality systems.

We note that the memory hierarchy that is discussed in
this section was designed to support timing predictability. This
paper contends that this is a more appropriate starting point
for a MCS memory architecture than adopting commodity
hardware approaches and attempting to restrict their behaviour
to being (nearly) predictable.

3T-CREST – Time Predictable Multicore Architecture for Embedded Sys-
tems: http://www.t-crest.org/
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Each CPU tile in the Bluetiles NoC (see figure 2) also connects directly (via
cache) to the Bluetree shared memory (binary) tree to access external DDR
memory, shown above. There is no interference between CPU to CPU
messages across the NoC and CPU to memory transactions across the tree.

A. Bluetree Shared Memory Tree Architecture

Bluetree is a shared memory tree architecture developed for
NoC architectures [15], [16], [20] CPUs are arranged in a mesh
(Figure 2) to allow CPU to CPU communication. Each CPU
tile within the architecture has two main interfaces (Figure 3),
one to access the mesh (Home Interface) and one to access
shared memory (Server Interface). The separation of inter-CPU
communications from shared memory access (eg. for cache
misses) ensures that memory accesses do not interfere with
CPU to CPU communications – thus aiding predictability. The
shared memory tree architecture is illustrated in Figure 4:4

• Routers: Routers are 32-bit bi-directional with X-
Y routing used (destination is contained in the first
word). We note that the choice of routing policy does
not impact upon the research presented in this paper,
since this research focuses on the communication over
Bluetree; Bluetiles is only used for simple synchroni-
sation.

• Shared Memory Tree (Bluetree): 2-to-1 multiplexors
form a tree connecting CPUs to memory – CPUs
are the leaves of the tree, memory being at the root.
High-bandwidth memory requests do not impact the
performance of other CPUs – there is no interference
between CPU to CPU messages across the NoC and
CPU to memory transactions across the tree. Each

4Bluetree has also been implemented with a pre-fetch unit between off-chip
and on-chip memory[15], [16], [20].

multiplexor port allows 128 bits of data (correspond-
ing to the cache line size).

• CPU Tiles [15], [16]: CPU tiles are built using the
Microblaze CPU. CPU configuration is 8kB split data
and instruction caches, and a 8kB shared scratchpad
used for fast local storage. The CPU accesses the
cache via Microblaze LMB interfaces; cache misses
being issued to external memory via Bluetree. The
CPU tile contains custom cache control is configured
to allow selective invalidation of cache lines and to
record prefetch related data on a per cache line basis
(the cache control unit also serves as the Microblaze’s
interrupt controller and provides a clock-cycle counter
facility). Cache control is accessed via Microblaze
Fast Simplex Links (FSL), utilising single-cycle FI-
FOs. Further details of the cache design are given
in [15], [16].

B. Off-chip Memory

The Bluetree shared memory tree is connected to off-
chip memory as shown in Figure 4. The key component
is the memory controller which interfaces between requests
originating from the CPU and passing over the shared memory
tree, and the external (off-chip) SDRAM (ie. DDR). The
controller is based upon the architecture in [21], but has
been developed with additional configuration infrastructure to
allow, effectively, several distinct channels. The motivation
for this is to allow, for example, separate memory access
bandwidths to be specified for each channel, thus providing a
degree of separation in the memory system – essentially each
channel forms a separate queue of memory requests which are
then multiplexed (according to remaining bandwidth) onto the
single SDRAM.

IV. PREDICTABLE MEMORY ARCHITECTURE FOR MCS

This section discusses the predictable memory architecture
described in section III in the context of MCS. Initially an
appropriate arbitration scheme is outlined for Bluetree. This is
then taken, together with definition of the worst-case latency
across the memory tree, to provide a worst-case timing of the
memory architecture. Finally, this is assessed to see whether
it supports MCS and MCS scheduling approaches.

A. Arbitration within Bluetree

The shared memory tree requires arbitration at each of the
multiplexors. A simple approach would be to adopt a first-
come-first-served approach. It could be argued that this could
lead to starvation, as one input (CPU) to a multiplexor could
monopolise – although this would require memory requests to
be generated on every clock cycle, which is unlikely. Another
approach would be to always favour one input over another, but
this could lead to, eg. priority inversion (in a priority scheduled
system). Another approach could be to ensure that turns were
taken at each multiplexor to eliminate starvation, but would
partially suffer from effects like priority inversion.

The approach taken within Bluetree is to allow run-time
programming of the arbiters. Essentially, each memory request
from a CPU is accompanied by some measure of importance
(eg. priority) so that the most important request always wins
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arbitration at a multiplexor. We note that this easily maps onto
criticalities – at each multiplexor, if two requests arrive at the
same time (ie. same clock cycle) the request with the highest
criticality would be forwarded. In the event of a tie (i.e. equal
criticality) a secondary mechanism can be used, eg. turns.

The Bluetree arbitration approach provides separation be-
tween streams of memory requests originating from software
components of different memory criticalities. From a safety-
critical perspective it would be relatively straightforward to
show that there can be no interference between input channels
to the multiplexor (as they have separate latches) – and
therefore that separation is maintained (multiplexor logic is
simple, cf. MMUs).

B. Worst-Case Latency

The worst-case time for a memory request issued Bluetree
is the sum of three components:

1) Latency to cross Bluetree from CPU to memory con-
troller: The basic latency to cross a shared memory
tree multiplexor is two cycles (Bluetree uses a buffer
for both input and output) [16], hence total latency is
2 + (2 * the memory tree depth) – noting that there
is an extra latch stage used to link shared memory
tree to the memory controller.

2) Latency to cross the memory controller and access the
SDRAM: This varies according to the exact configu-
ration and build of the controller, but typical figures
are around 25 cycles for a read (and 1 cycle for
subsequent reads in a burst), and 1 cycle for a write.
These figures refer the time needed before return can
be made to the CPU.

3) Latency to cross Bluetree from memory controller to
CPU: This is 1 + the memory tree depth (as no
latching occurs within the tree on the return path).
For a burst, the first word returned would suffer the
full return path latency, successive bytes are delivered
in successive clock cycles.

Note that a burst read, which can be encapsulated within
a single 128 bit request to the memory controller (and is
therefore non-preemptable within the tree) is actually broken
into a series of successive memory requests to the SDRAM
– hence there is potential for pre-emption within the memory
controller if required.

C. Worst-Case Timing of Bluetree for MCS

The worst-case timing across the shared memory tree re-
quires the worst-case latency and MCS arbitration approaches
(above) to be combined.

Consider a CPU executing with a software component of
criticality level X. All memory requests from that CPU (whilst
that software component is executing) have the criticality of the
issuing software component. At each multiplexor a memory
request can be delayed by at most one request of equal
criticality; and by the maximum number of successive requests
of higher criticality memory requests.

When a memory request exits the multiplexor connected
to the memory controller and At the memory controller, there
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Fig. 5. Memory tree with (a) Single Memory Queue and (b) Memory Queue
per Criticality Level
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Fig. 6. Memory tree with Memory Queue and Memory per Criticality Level

are three possibilities when considering memory request m of
criticality X:

1) Single Memory Queue (Figure 5(a)) – account must
be taken for all other memory requests that arrive
ahead of m that are therefore ahead within the
memory controller queue.

2) Multiple Memory Queue (Figure 5(b)) – where there
are separate queues for each criticality level. Here
account must be taken for all other memory requests
of the same criticality that arrive ahead of m that are
therefore ahead within the memory controller queue;
and of all other memory requests in higher criticality
queues.

3) Multiple Memory Queue and Memory (Figure 6) –
where there are separate queues and physical mem-
ories for each criticality level. Here account must
be taken for all other memory requests of the same
criticality that arrive ahead of m that are therefore
ahead within the memory controller queue.

One issue remains, that of the effect of bursts. If they are not
pre-emptable (see discussion above) then allowance has to be
made for the total burst length when calculating maximum
delay at the memory controller. If this becomes dominant, it
may be appropriate to adopt more bandwidth oriented memory
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controller approaches (eg. see [21]).

D. Mixed Criticality Timing Analysis Principles and Memory

The essential principle of MCS is that a software tasks’
WCET is dependent upon its criticality level. At a high level
of criticality code will have a higher WCET than if it is
assigned a lower criticality level. This reflects the degree of
pessimism that is required at different criticality levels – if
exceeding the WCET is deemed a failure, then at the highest
level of criticality (in aerospace systems) this failure has a
probability of no more than 1 in 109 occurrences. At lower
levels of criticality, the same code can be assigned lower
(less pessimistic) WCET bounds. Although the chances of
exceeding the WCET has increased, the effect on the system
is not as great – eg. system integrity is not compromised by
multiple failures of components at the lowest criticality level.

The essential principles outlined above applies equally well
to the analysis for the memory architecture defined within
this section. As the criticality level of a software component
increases, a more pessimistic view of the potential interference
of other tasks upon memory requests must be included in the
analysis. If assigned the highest criticality level, each memory
access of a task would assume worst-case interference upon
its memory requests as given above – potentially large. At
lower levels of criticality, la ess pessimistic view can be taken:
that accesses will suffer less interference. This is achieved by
considering the number of cycles assumed between successive
memory transactions from other CPUs – for high levels of
criticality the minimal number of cycles can be assumed; for
low levels of criticality longer intervals can be assumed (more
realistic in the average case).

V. CONCLUSIONS

This paper has considered the role of the memory hierarchy
within many core architectures (specifically Network-on-Chip)
proposing an appropriate memory hierarchy for MCS based
upon a predictable shared memory tree memory hierarchy.
The paper has shown that sufficient partitioning and separation
can be provided by the architecture to ensure mixed criticality
components can share resources without compromising system
safety at the highest criticality levels. Thus the approach
supports the MCS scheduling work within the real-time com-
munity which allows components of mixed criticality to share
resources.

The architecture includes an arbitration approach within
the memory tree that directly supports criticality levels. The
additional benefit of this is that if stricter memory separation
was needed to support safety-critical requirements, separate
memories can be included, one per criticality level. This is less
than normally required for federated architectures which would
dictate one memory per component (not criticality level).
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Abstract—Industrial fields must build at the most competi-

tive price real-time systems made of an increasing number of

functionalities. This can be achieved by hosting high-criticality

tasks as well as consumer real-time low-criticality tasks on a same

chip. The design of such Mixed-Criticality (MC) systems requires

the use of an appropriate task model and a specific scheduling

strategy. In this work, inspired by the existing elastic task model,

we introduce stretching factors as a way for the low-criticality

tasks to reduce their utilization, as well as a level of importance in

order to define an order for applying these stretching factors. At

run-time, the slack time generated by both the over-provisioned

high-criticality and the low-criticality tasks is used to maximize

the execution rate of the low-criticality tasks. We also show how

to integrate this approach in the Time-Triggered paradigm (TT),

in particular its impact on the data visibility principle between

the low-criticality tasks when they have been stretched.

I. INTRODUCTION

Traditionally, industrial systems use a dedicated (possibly
multiprocessor) chip for executing a set of real-time tasks
with a same level of criticality. When such tasks are safety-
critical, high margins are taken on their Worst-Case Execution
Time (WCET). This leads to the specification of high allocated
budgets of time for such high-criticality tasks. Besides, the
probability that the WCET of a set of high-criticality tasks
occur simultaneously is very low. However, the schedulability
demonstration of safety-critical systems must be performed in
the worst-case situation, due to certification constraints. This
therefore leads to a huge over-sizing of the CPU resources that
are needed compared to what is really used, in average, while
the system is running. This practice becomes incompatible
with the current trend of tighter economical constraints of
various industrial domains, such as the automotive or energy
distribution fields. Therefore, there is a need to use these
generally unused processing capabilities for executing the low-
criticality tasks.

This type of system where both the low and high-criticality
tasks are allocated on a single chip are called Mixed Criticality
(MC) systems. Note that in general, two criticality levels
are generally considered in existing work on this topic, as
well as in the remainder of this paper. To fulfil certification
requirements, mainly from the avionic domain, and enable
an efficient scheduling of the high and low-criticality tasks,
task models and scheduling algorithms addressing MC systems
have recently been proposed ([18], [10], [3]). The goal is to
increase the schedulability of the low-criticality tasks, while

still guaranteeing in the worst-case scenario the schedulability
of the high-criticality tasks. Classical scheduling algorithms
can indeed lead to well-known priority inversion problems, as
they are unaware of the criticality parameter of the tasks. Most
existing work defines two modes for a MC system and each
task must specify its criticality level. The MC system starts in
the low-criticality mode where all tasks are executed. However,
when a deadline is missed the MC system switches to the
high-criticality mode, where only the high-criticality tasks are
executed. The low-criticality tasks are simply dropped. This
degrades the level of service provided by MC systems. Besides,
processing capabilities are wasted.

Maximizing the level of service provided by a set of
real-time tasks for controlling a physical system has been
the subject of numerous work in the domain of real-time
control ([7], [1]). When a perturbation/event suddenly affects
the controlled system, the higher the sampling period is, the
better the reactivity of the system is. However, the higher the
processing load is. This requirement has therefore led to the
proposal of a more flexible task model, called the elastic task
model [5], where the periodicities of tasks can take a range
of values. This task model, combined with an appropriate
scheduling algorithm, avoids the need of dropping tasks when a
deadline is missed. The periodicity of some tasks must simply
be increased appropriately. Recently, the elastic task model
has been studied in the context of MC systems for the low-
criticality tasks [16]. The goal is to deal with the service abrupt
problem of dropping the low-criticality tasks when the MC
system switches to the high-criticality mode.

This work also proposes a solution to this problem. In
this work, we also adapt the elastic task model for solving
the following problem: how to maximize the utilization of the
processing capabilities of an architecture, in which high- and
low-criticality tasks are schedulable taken separately, while
the sum is not? One goal is therefore to avoid dropping the
low-criticality tasks. Off-line, we use a linear programming
approach to compute the different stretching factors that must
be applied on the periodicity of the low-criticality tasks, so that
the schedulability of the high-criticality tasks are guaranteed.
On-line, we bet on the availability of slack time generated
by high and low-criticality tasks. No stretching factors are
therefore applied in order to execute the low-criticality tasks
at their fastest rates. However, when a deadline is going to be
missed by a low-criticality task, its deadline is stretched up to
point that prevents the deadline miss.
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Another contribution of this work is to show how our
proposed approach to deal with the low-criticality tasks can
be used within the TT paradigm [13], used to build safety-
critical real-time systems. Using this paradigm, the triggering
of activities, that correspond to task releases and deadlines, are
specified by the application designer. At these dates, data ex-
changed between the tasks are made visible. Stretching a task
introduces a modification in these statically defined triggering
points as well as in the visibility date of the produced data.
Therefore, when stretching a low-criticality task, the deadline
of some other low-criticality tasks must also be postponed in
order to keep the system temporally consistent.

The remainder of this paper is as follows. Section II
describes the related work in the scheduling algorithms for
MC systems as well as their practical implementation. Then
Section III formulates the problem, while Section IV presents
the proposed task model and the on-line decision algorithm
used within the TT paradigm to stretch the low-criticality
tasks. Finally, Section V evaluates the proposed solution and
Section VI concludes.

II. RELATED WORK

In [18], Vestal introduces the most used task model for
specifying MC real-time systems, therefore sometimes called
the MC task model. The classical periodic task model is
extended with two WCET values, named C

i

(LO) and C
i

(HI),
and a criticality level, which can be either low or high. As
stated previously, we consider that a MC system has only two
modes of criticality: high and low. C

i

(LO) is the maximum
allowed execution time for the task in the low-criticality mode,
while C

i

(HI) is the maximum allowed execution time for
the task in the high-criticality mode (C

i

(LO) < C
i

(HI)).
The rationale for specifying two WCETs is that the higher the
criticality level, the more conservative the verification process
and hence the greater will be the value of C

i

.

In the context of digital control systems, early work has fo-
cused on an off-line analysis to compute the tasks frequencies
that minimize the cost of the control and tracking error. This
has lead to the definition of the so-called elastic task model [5]
to increase the flexibility of the periodic task model. In addition
to its execution time, each task is characterized by: a nominal
period T

i0 , a minimum period T
i

min

, a maximum period T
i

max

and an elastic coefficient e
i

� 0. The elastic coefficient
specifies the flexibility of the task to vary its utilization
within the range of possible periods. [17] also presents a task
model which allows to jointly optimize the used computing
resources and the control performance of a computer-based
instrumentation and control system. Each control task is able
to trigger itself: the timing constraints are dynamically adjusted
based on the whether the controlled system is stable or subject
to perturbations. Finally, [14] proposes to integrate in the task
model a parameter to specify a minimal distance between two
consecutive skips of instances of a task, that is between two
deadline misses.

In this area, our closest related work is [16], where the
elastic task model is applied in the context of MC systems for
specifying the behavior of the low-criticality tasks. However,
this task model does not allow to specify an order between the
low-criticality tasks, as how a set of elastic tasks is compressed
depends on their utilization.

Appropriate scheduling algorithms must then be defined to
support task models used within MC systems, in particular the
criticality-level parameter. The goal is to ensure the schedula-
bility in the worst-case scenario of the high-criticality tasks,
while improving the schedulability of the low-criticality tasks.
This is possible thanks to the introduction of C

i

(LO) for each
high-criticality task. Several approaches have been followed:
using either a fixed priority algorithm [18], a zero-slack
algorithm on top a fixed priority scheduler [10], the assignment
of virtual and smaller deadlines for the high-criticality tasks
(EDF-VD for EDF-Virtual Deadlines) [3] or the definition or
early release points for accelerating the execution rate of the
low-criticality tasks [16] (ER-EDF for Early Release EDF).
This last decision algorithm for releasing earlier or not the low-
criticality tasks is the closest related work to ours. However, it
takes the opposite approach to execute the tasks at their fastest
execution rate: it computes a new (early) release point when
the task finishes, while we extend the deadline of the task when
it is going to miss its deadline.

On the implementation side of MC systems, [11] presents
a first implementation of a MC hierarchical scheduling frame-
work on a multi-core system, that addresses the criticality
levels of the avionic domain. It is based on LITMUS [6], an
extension to Linux that was developed to study in practice real-
time multiprocessor schedulers. The focus is put on optimizing
the implementation of the proposed hierarchical schedulers
for MC systems, by using fine-grained locking mechanisms
to reduce scheduling overheads. In our work, we are also
interested in the integration of MC scheduling into real-time
operating systems, but more specifically in the TT paradigm.
Finally, [2] presents an implementation in ADA of mode
changes in MC systems, from low-criticality to high-criticality
as well as the opposite. The authors consider the problem of
when returning to the original ordering, as doing it prematurely
can cause a high-criticality task to miss its deadline. However,
none of these works have considered the impact on data
exchanges between the tasks when switching to another mode
of execution.

III. PROBLEM FORMULATION

A. Motivation

Within an embedded system, the tasks can be either critical,
less (or even non-) critical. Let us for instance, take a protec-
tion relay used within medium voltage electrical networks. The
safety-function of the software part of protection relays is to
first detect any faults within the supervised power network, and
then ask the tripping of the circuit breakers in order to isolate
the faulty portion of the network. More details on the required
set of high-criticality tasks needed to achieve this functionality
can be found in [12]. As any safety-related system, protection
relays have to comply with a Safety Integrated Level (SIL), as
defined by the IEC 61508 standard. This standard requires that
the schedulability demonstration of the high-criticality tasks
must be performed. To take into account worst-case situations,
high margins are taken on the WCET of these high-criticality
tasks. This leads to an over sizing of the required CPU power,
compared to what is required in average while the system is
running.

On the other hand, there is a need to embed additional less
(or non) safety functionalities, such as displaying information,
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optimizing the distribution of energy to the current need, etc.,
in order to distinguish the product from competitors. This leads
to the requirement of executing applications with different
levels of criticality on the same system. Besides, assuming the
WCET for the high-criticality tasks and executing the low-
criticality tasks in the remaining CPU power is no longer a
viable approach: too much processing power is wasted. Such
an approach is no longer compatible with current economical
constraints that push for minimizing the CPU power. Such
products must take advantage of the slack time generated by
the tasks, when they are not using their WCET, in order
to execute the low-criticality tasks. Therefore, the problem
we address is to enable the design of MC systems, where
taken separately the high and the low criticality tasks are
schedulable but the union is not.

B. Approach

Our goal in this work is to allow the low-criticality tasks to
use the slack time and, when a deadline is going to be missed
by a low-criticality task, to relax its temporal constraints. To
this end, we consider the deadline of the low-criticality task
as a flexible parameter that can be extended. This flexibility
is handled through a so-called stretching period factor (or
simply stretching) that we introduce in the classical implicit-
deadline periodic task model. A stretching factor is a value
by which the periodicity of a low-criticality task can be
multiplied. Stretching factors should be specified off-line by
the application designer so that a bound is defined. They can
be a set of values or a range of values and a same value of
stretching factor can be given to several tasks. Besides, we
assign to each low-criticality task an importance level. This
importance level denotes an order for choosing which low-
criticality tasks should be stretched first. Our task model is
simpler than the elastic task model [5], as it does not contain
a minimum period and an elastic coefficient, linked to the
utilization of the task.

Off-line, the stretching factors are used in the schedulability
analysis of a task set, made of both the high and the low-
criticality tasks. This guarantees that the stretching factors used
on-line cannot lead to a situation where a deadline is missed.
Besides our task model introduces a way to specify an order
between the low-criticality tasks for applying the stretching
factors. This gives more control to the application designer
to specify a set of possible temporal behavior for the low-
criticality tasks. Furthermore, the formal demonstration of the
fulfilment of end-to-end constraints for these tasks is therefore
still possible. This was main requirement that lead us to the
definition of our task model.

IV. USING STRETCHING FACTORS

A. Task model and notations

Let � = {⌧1, ⌧2, ..., ⌧n} be a set of n independent,
synchronous, preemptible and periodic tasks. The set � is
partitioned into two disjoint subsets: �

ct

the set of the high-
criticality tasks, made of n

high

tasks, and �
nct

the set of the
low-criticality tasks, made of n

low

tasks. We therefore have
n = n

low

+ n
high

.

� is handled using the classical implicit-deadline periodic
task model. Each task ⌧

i

2 � has the following temporal

parameters ⌧
i

= (P
i

, C
i

, D
i

). P
i

is the period of the task, C
i

is
its WCET, D

i

its deadline and we have P
i

= D
i

. Furthermore,
each non-critical task ⌧

i

2 �
nct

has two additional parameters
V
i

and S
i,max

, where V
i

is the importance level of the task and
S
i,max

is the maximum stretching factor that can be applied to
P
i

. We denote by S
i

an actual value for the stretching factor
of task ⌧

i

and we have: 1  S
i

 S
i,max

. We denote by
P
i,max

the period when S
i,max

is applied and corresponds to
the maximum period the task can have. The higher the value
of V

i

, the higher is the importance level of the low-criticality
task. But the later its stretching factor will be increased first
when a deadline is going to be missed.

The processor utilization of ⌧
i

, a low-criticality task, is:
u
i

= C

i

S

i

⇥P

i

. The lower bound of u
i

(noted u
i

min

) is reached
when the maximum stretch factor (S

i,max

) is applied to ⌧
i

,
while its upper bound (noted u

i

max

) is reached when its
nominal period is used. The processor utilization of a high-
criticality task is u

i

= C

i

P

i

. We note respectively U
low

and
U
high

the total utilization of the low and the high-criticality
tasks: U

low

=
P

⌧

i

2�
nct

C

i

S

i

⇥P

i

and U
high

=
P

⌧

i

2�
ct

C

i

P

i

.
The total utilization of the system is noted U and is equals
to U

low

+ U
high

. Finally, let m be the number of processors.

B. Off-line CPU maximization

Off-line, we compute for each low-criticality task the
minimum stretching factor (S

i,min

) that must be used so that
no deadline is missed, assuming that each task uses it WCET.
Therefore, we have S

i,min

 S
i,max

. S
i,min

is a feedback to
the application designer on the worst-case temporal behavior
the low-criticality task may use on-line. As we focus on the
low-criticality tasks only, we can therefore remove from U the
utilization generated by the high-criticality tasks. We denote by
U
r

this remaining CPU capacity, which is equal to m�U
high

.
A first constraint therefore expresses the fact that U

r

upper
bounds the utilization that can generate the low-criticality
tasks:

U
low

 U
r

,
X

i2�
nct

C
i

S
i

⇥ P
i

 U
r

(1)

Then, a second constraint therefore expresses the fact that
the utilization value of a low-criticality task is bounded, as
seen in the previous section.

u
i

min

 C
i

S
i

⇥ P
i

 u
i

max

(2)

Our objective is to maximize the utilization of the re-
sources, while stretching the less important low-criticality tasks
first, that is:

MaxZ =
X

i2�
nct

V
i

⇥ u
i

=
X

i2�
nct

V
i

⇥ C
i

S
i

⇥ P
i

(3)

By applying the following change of variable: x
i

=
1
S

i

, 8⌧
i

2 �
nct

, we obtain the following linear program:

(LP-1)

8
><

>:

Max :
P

i2�
nct

V
i

⇥ x
i

⇥ C

i

P

i

s.t :
P

i2�
nct

x
i

⇥ C

i

P

i

 U
r

u
i

min

 x
i

⇥ C

i

P

i

 u
i

max

, 8⌧
i

2 �
nct

(4)

45



Algorithm 1 Decision algorithm for setting the stretching
factors of low-criticality tasks.
Require: ⌧

i

2 �
nct

k

and the current time t
1: S

i

 ComputeStretching(⌧
i

, t,D
i

, S
i

);
2: if S

i

� S
i,min

then Stop ⌧
i

and log the error; end if

3: D
i

 S
i

⇤ P
i

;
4: UpdateReady(⌧

i

);
5: Call the scheduler;

The total number of decision variables of the linear pro-
gram LP-1 is equal to n

low

, the number of low-criticality
tasks. The total number of constraints is equal to 2n

low

+ 1.
Indeed, there are two constraints for each decision variable
in order to express the upper and lower bounds, plus the
constraint of remaining CPU capacity. LP-1 can thus be solved
in polynomial time.

C. On-line decision algorithm

We now focus on the on-line decision algorithm that sets
the stretching factors. We assume that the high-criticality tasks
have a higher priority over the low-criticality tasks. Clearly,
this increases the number of times the low-criticality tasks are
preempted. As in [19], a wrapper-task mechanism for the slack
time can be used to avoid such situations.

Our decision algorithm is called when the system detects
that one of the low-criticality task is going to miss its deadline.
This is the beginning of an overloaded situation for the low-
criticality tasks, during which other low-criticality tasks may
reach a point where they are also going to miss or have already
missed their deadlines. This last case can occur when the
system reschedules the low-criticality tasks after some high-
criticality tasks have been executed, while in an overloaded
situation. Therefore, our decision algorithm is also called
before scheduling the low-criticality tasks.

When our decision algorithm is called, we assume that
the most important low-criticality task is being executed. To
achieve this, the low-criticality tasks could be scheduled using
a hierarchical approach: first using the importance level and
then using EDF within a given importance level. Another
solution would be to use EDF-VD [3] to favour important
low-criticality tasks that have far away deadlines over less
important low-criticality tasks that have closer deadlines. More
generally, our decision algorithm can be combined with any
scheduling algorithm if the aforementioned hypotheses are
fulfilled. Finally, when a low-criticality task finishes, if it
has stretched, then its stretching factor is reset to 1. Note
that other strategies could be defined, such as a fixed-timeout
strategy before resetting the stretching factor in order to avoid
additional calls to our decision algorithm and the associated
system calls overhead, if the overloaded situation goes on. The
definition and the evaluation of such strategies is currently left
as future work.

Algorithm 1 presents the major steps of our decision
algorithm when the low-criticality task ⌧

i

is going to miss its
deadline. The function ComputeStretching, used to compute
the stretching factor of ⌧

i

(line 1), can be implemented using
different strategies. An optimistic strategy would be to choose
a first reasonable value that leads to set a deadline in the future

Algorithm 2 Additionnal steps in the decision algorithm when
integrated in the TT paradigm, compared to algorithm 1.
Require: �

nct

k

with ⌧
i

2 �
nct

k

1: for all ⌧
j

2 �
k

6= ⌧
i

do

2: if ⌧
j

is ready then RemoveFromReady(⌧
j

);
3: else RemoveFromSleeping(⌧

j

); end if

4: if S
i

� S
j,min

then Stop �
nct

k

, log the error; end if

5: D
j

 P
j

+ (D
j

� P
i

);
6: if ⌧

j

is finished then SetFlag(Stretched); end if

7: InsertReady(⌧
j

);
8: end for

(S
i

⇤P
i

> t). By reasonable, we mean that the task has a good
chance, according to the distribution of its execution time, to
finish its execution before its new deadline (set at line 5). Other
strategies are possible that might reduce the number of times
the stretched deadline is reached.

D. Using stretching factors within the TT paradigm

Applying stretching factors to the low-criticality tasks
within the TT paradigm raises an issue. The hypothesis of
independent tasks that can be made at a system level, does not
hold any more at the application level. In the TT paradigm,
to each produced data is indeed associated a timestamp: the
deadline of the producer task. Then, a task may only use data
whose timestamps are equals or inferior to its release date,
leading to a deterministic execution with demonstrable end-
to-end temporal constraints. Therefore, the visibility date of
data produced by a low-criticality task changes when the task
is stretched. However, the low-criticality tasks have defined
triggering points (release date and deadlines) assuming the
non-stretched temporal behavior. This leads to an inconsistency
between the expected temporal behavior of the tasks, if the
stretching factor of a single task is modified. In addition, this
inconsistency has an impact on the various worst-case end-to-
end temporal behaviors that can fulfil the low-criticality tasks.

To solve this issue, we assume that the application designer
can gather in groups the low-criticality tasks that must be kept
temporally consistent between them. Therefore, �

nct

is made
of a set of groups, noted �

nct

k

. A low-criticality task ⌧
i

can
only be inside a single group and the multiplicity of a group
can range between 1 to n

low

. Off-line, our task model must
be adapted so that the importance level and the stretching-
factor parameter is applied to the group level. Therefore, the
only modification to the linear program LP-1 is to consider
the utilization of each group �

nct

k

and not the utilization of
each task. The utilization of a group �

nct

k

is defined as 1
S

k

⇥P
⌧

i

2�
nct

k

C

i

P

i

.

Algorithm 2 then presents the additional steps that must
be done before calling the scheduler (line 5 in algorithm 1) to
stretch the other tasks within a group �

nct

k

, in which task ⌧
i

is going to miss its deadline. Two cases must be considered
when recomputing the deadline of a task ⌧

j

: either it has been
released but is not finished (line 2) or it is already finished (line
3). In this last case, the visibility date of already produced data
must be changed and the part of the task that sets the visibility
date must therefore be re-executed. This is signaled by setting
the flag Stretched (line 6) and setting back the task in the set
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of tasks waiting to be executed (line 7) using the InsertReady
function. This function is also called in the other case to sort
the tasks according to the scheduling policy, as their deadlines
have changed. Computing the new deadlines simply consists of
translating the offsets triggering points of �

nct

k

with the initial
deadline to the stretched deadline of ⌧

i

(line 5). The Stretched
flag is also used by the tasks, from �

nct

l

with l 6= k, to avoid
updating the values of data they use while the visibility dates
of the stretched tasks are recomputed.

Note that the low-criticality tasks cannot use at a given
timestamps different values of the same data (i.e., a data
inconsistency). Our algorithm is indeed called at the visibility
date of data, produced by the initial stretched task. Therefore
by definition, these data are not yet visible by the other
tasks. While on a uniprocessor system implementing this is
straightforward, on a multiprocessor this can be achieved using
a spin-lock for the management of scheduling structures. Also
note that the stretching factors of the other groups �

nct

l

(with
l 6= k) do not need to be modified. These groups are indeed
by definition less important, so their stretching factors will be
computed when the hierarchical scheduler will schedule them.

V. PRELIMINARY EVALUATIONS

The goal of our simulation experiments is to validate our
proposed task model in its ability to specify an order for
choosing which tasks should stretch. We therefore focus on
the off-line part of our proposal.

A. Simulation environment

We generate random task sets for both the low-criticality
and the high-criticality tasks. The utilization of each task is
computed randomly between 0.01 and 0.99 with a uniform
distribution using the UUniFast-Discard algorithm from Davis
and Burns [9], an extended version of the UUniFast algorithm
from Bini and Buttazzo [4] targeting multiprocessor systems.
We bound the range of possible periods between 10ms and
100ms and use a uniform distribution when assigning P

i

.
The task sets with a hyper-period larger than 10s are rejected
to remain in a realistic bound of typical industrial systems.
Each task is assigned a boolean value that determines whether
it is a high-criticality or a low-criticality task. This step is
repeated until the number of high-criticality tasks and their
total utilization U

high

reaches a value of 50%. Then, for each
low-criticality task a value between 10 and 100 is randomly
generated. This value represents the importance of this task
in the system (in practice less importance levels would be
used). Finally, we assume for each low-criticality task that
S
i,max

= 2.

For the evaluation, three task sets are generated. In order to
get as close as possible to expected MC systems, we assume
that each task set is made of 20% of high-criticality tasks. The
first task set (TS1) is made of 50 tasks with 5 high-criticality
tasks. The second task set (TS2) is made of 60 tasks with
12 high-criticality tasks. Finally, the third task set (TS3) is
made of 70 tasks with 14 high-criticality tasks. For each set,
we generated the tasks three times so that the initial total CPU
utilization is 100%, 125% and 150% on a 2 processors system.

TABLE I. OBTAINED Si,min ACCORDING TO METRICS Aver, Aver25+
AND Aver75 FOR THE TASK SETS TS1 , TS2 AND TS3 RESPECTIVELY.

U Aver Aver25+ Aver75 Aver w/o Vi

125 1.69/1.36/1.59 1/1/1 1.94/1.48/1.79 1.65/1.3/1.48
150 1.86/1.65/1.83 1.5/1/1.37 2/1.87/2 1.97/1.67/1.74

B. Stretching factors analysis

We use the following metrics to evaluate the behavior of
our task model for the different aforementioned initial total
CPU utilization: Aver, Aver25+ and Aver75. Aver is the average
stretching factor for all the low-criticality tasks. Aver25+ is
the average stretching factor for the 25% most important low-
criticality tasks, while Aver75 is the average stretching factor
for the remaining tasks, i.e. the 75% less important tasks.

Table I shows the numerical results obtained for the stretch-
ing factors S

i,min

according to the previously introduced
metrics and for each initial utilizations on a 2 processors
system. The last column presents the results of S

i,min

when
the importance level parameter is not used, i.e. all the low-
criticality tasks have the same importance. Therefore, all the
low-criticality tasks will have the same S

i,min

value, making
the use of the Aver25+ and the Aver75 metrics unnecessary. In
each cell, the three values are respectively the value of S

i,min

for the task set TS1, TS2 and TS3. The result for the initial
utilization of 100% is omitted as all the stretching factors are
equal to 1 by construction.

As expected, these results show that the stretching factors
are reduced for the most important tasks (Aver25+) and much
higher for the less important tasks (Aver75). For instance,
when the initial utilization is 150%, the most important low-
criticality tasks have in average their stretching factors ranging
from 1 (stretching is not required) to 1.5. On the other
hand, the less important low-criticality tasks have in average
their stretching factors ranging from 1.87 to 2, the maximum
possible value (S

i,max

). Table I also shows that without the
importance level the stretching factors are slightly inferior
(column 5) than when the importance parameter is used (col-
umn 2). That is, the low-criticality tasks should be stretched
more when using the importance level parameter. However,
when using this parameter in the model to compute stretching
factors, the most important low-criticality tasks (column 3)
have their stretching factors greatly reduced and even not used
in most cases. These results demonstrate that our improved
model of elastic tasks allows to execute both the low and the
high-criticality tasks of a MC system, while giving first priority
to the high-criticality tasks and then to the low-criticality tasks
according to their importance level.

Figure 1 shows the distribution of the values of S
i,min

in
two different configurations. Tasks are ordered by decreasing
importance level. Configuration A corresponds to the task set
TS3 with an utilization of 150% where the values of V

i

are
randomly generated. In the configuration B, the application
designer specified that the 25% most important low-criticality
tasks should have their values of S

i,min

set to 1.25, while
the other tasks can have higher stretching factors (S

i,max

=
2). Such control over the values of the stretching factor for
each task opens the opportunity for application designers to
more easily dimension the required processing power when
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Fig. 1. Evolution of the distribution of stretching factors when setting the
Si,min for the 25% most important low-criticality tasks.

designing a MC system.

VI. CONCLUSION

Within real-time embedded systems, there is a need to
embed less (or even non-) safety tasks in addition to hard real-
time tasks. This requires executing applications with different
levels of criticality on a same chip. Such systems are called
Mixed-Criticality (MC) systems. Certification constraints to
prove the schedulability of MC systems lead to an over sizing
of the CPU power, compared to what is required in average
while the system is running. Such an approach is no longer
compatible with current economical constraints that push for
minimizing the CPU power.

In this work, we propose a task model and an associated on-
line decision algorithm to maximize the execution rate of the
low-criticality tasks within a safety-critical real-time system.
Our task model, inspired by the elastic task model, allows to
specify an order between the low-criticality tasks for applying
so called stretching factors. Off-line, the minimum value for
these stretching factors so that a MC system can be scheduled
are computed. On-line, we then show how these stretching
factors are used to relax the temporal constraints of the low-
criticality tasks in order to avoid any deadline miss, while
maximizing the execution rate of the low-criticality tasks. This
approach can be used to size the required processing power for
designing a MC system.

In future work, we plan to evaluate the actual values
stretching factors can take depending on the distribution of
the actual execution time of the low-criticality tasks. Besides,
we plan to evaluate the overhead introduced by the different
possible on-line decision algorithms for increasing/resetting
the stretching factors. We also plan to investigate a different
approach for supporting the execution part of our contribu-
tion, by relying on the use of a generalized form of the
time-triggered paradigm, called eXternal-Triggered (xT) [8].
Using this paradigm, recomputing the visibility dates of low-
criticality tasks being stretched would no longer be necessary.
Finally, it would be interesting to apply the proposed task
model in order to lessen the deadline miss ratio of the low-
criticality tasks when setting a trade-off with energy consump-
tion [15].
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Abstract—In this paper, we consider the partitioned EDF-VD
scheduling problem of mixed critical systems with two criticality
levels (LO and HI) on identical multiprocessors. Partitioned
scheduling is an NP-hard problem that has been widely studied
in the literature. The most common metaheuristic to solve
partitioning problems consists in ordering tasks by a given
criteria (such as task utilization) then assign tasks to processors
in that order, choosing which processor using a heuristic rule
such as First Fit or Best Fit. The current state of the art results
show that First Fit Decreasing Density provides the best success
ratio for single-criticality scheduling. In the context of mixed-
criticality, we would like to investigate whether this is also true
for assigning LO and HI critical tasks to processors. We consider
two cases, one called “criticality aware” that first tries to assign
HI tasks to processors and then LO tasks separately and the
other one called “criticality unaware” that assigns tasks without
taking their criticality into account. We test the performance of
all combinations of sorting/partitioning heuristics in both cases,
which leads to 1024 different heuristics in the aware case and 32
in the unaware case. We define two search algorithms to efficiently
find which of these heuristics obtains the best success ratio. In
addition, a new mixed-criticality multiprocessor random task set
generation algorithm is proposed.

I. INTRODUCTION

In this paper, we consider the problem of multiprocessor
scheduling of mixed critical periodic tasks in the dual criti-
cality case (LO and HI). In the multiprocessor case, two main
paradigms have been considered for the scheduling of real-time
tasks: the global scheduling and the partitioning approaches.

The global scheduling approach allows a job to migrate during
its execution. At any time, a job is run only by one processor
but the scheduler can decide to migrate it to another processor.
The global scheduling approach provides better feasibility
bounds but does not take into account job migrations costs.

In this paper, we consider the Partitioned scheduling problem.
With the partitioning approach, the feasibility analysis on a
multiprocessor requires to solve two problems:

• First, find a partitioning algorithm according to a
partitioning heuristic.

• Second, use a uniprocessor feasibility condition on
each processor to decide on the schedulability of the
task set.

The partitioning approach therefore consists in statically as-
signing tasks to processors and then in solving the feasibility
problem for a given partitioning on each processor. The

problem of finding a feasible partitioning is a bin packing
problem known to be NP-hard in the strong sense [1].

The partitioned approach received much more attention in
the industry than the global one as it is a natural extension
of uniprocessor scheduling. Partitioning has the advantage of
utilizing all the feasibility results of uniprocessor scheduling
[2] but also introduces some pessimism. In pathological cases,
a partitioned system could be unfeasible with utilization just
above 50% of the platform’s capacity but simulation results
[3] show that partitioned scheduling offers good success
ratio (the ratio of successfully scheduled task sets over all
task sets considered) even for high utilization. Furthermore,
partitioned scheduling remains the industry standard in
multiprocessor real-time systems and is for this reason still
an important research subject, especially when all tasks do
not have the same criticality. This means that the system may
be subject to various certification processes, which are only
concerned with the validation of a subset of the functionalities.

Furthermore, the certification processes are carried out
using analysis methods whose rigor depends on the criticality
of the tasks that need to be certified. Mixed-criticality systems
are an attempt to model systems that need to be certified
at various levels of assurance. In practice, a task that is
subject to multiple certification processes will be characterized
by multiple estimations of its Worst-Case Execution Time
(WCET), some of which are more pessimistic than others. This
reflects the differences in rigor adopted by the certification
authorities.

The more a certification authority wants to ensure a task
will never exceed its WCET, the more conservative its estima-
tion will be. Nevertheless, when certifying that a task will meet
its constraints, the assurance level that is used for other tasks
is equal to the criticality of that particular task. This means
that when running the system, if another task is run at a level
of assurance that is higher (w.r.t. to its execution duration)
than the criticality of the initial task, then this task will be
suspended, since the conditions that guarantee its feasibility
are no longer met.

A. This paper

In this paper we want to compare a set of criticality aware
and unaware partitioned heuristics using experimental success
ratio measurements based on task sets created through a new
random system generator. As the large number of contesting
heuristics introduces a considerable workload, special evalua-
tion techniques based on a race approach are used to find the
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best performing heuristic in the least amount of tests. These
methods are also described in this paper through pseudocode.

B. Organisation

In Section II a brief review of other works in mixed-
criticality uniprocessor and multiprocessor scheduling is given.
In Section III the mixed-criticality task set model and notations
are recalled. Section IV covers the description of the parti-
tioning problem and a definition of the partitioning heuristics
that are used in this paper and Section V covers our methods
to evaluate the average success ratios of these heuristics.
In Section VI our random task set generation algorithm is
explained in detail as well as the results of our experiments.

II. RELATED WORK

Mixed-Criticality scheduling is an emerging research do-
main which has gained a lot of interest in the past years.
This approach was first introduced by Vestal [4]. In his work,
he highlighted the difficulty in computing exact WCETs, and
observed that in practice, the higher the degree of assurance
required that a task will never exceed its WCET, the more
conservative the approximation of the latter becomes. This
degree of assurance is characterized by a level of criticality.
He also suggested a fixed-task-priority strategy based on the
Audsley priority assignment scheme [5]. Dorin et al. [6] proved
that under the restricted case of independent task systems with
constrained-deadlines, Vestal’s modified Audsley’s approach
was optimal in the class of fixed-task priority algorithms.
Nowadays, the Mixed-Criticality (MC)-Schedulability problem
is commonly known to arise in two different contexts. The
first one is concerned with applications that are subject to
multiple certification requirements. In this context, different
Certification Authorities (CA) need to validate the application
functionalities. Nevertheless, the more critical a functionality
is, the more pessimistic the CA will be in the estimation
of the WCET. Baruah et al. [7] studied mixed-criticality
systems in this context, but restricted their work to a set of
mixed-criticality jobs. In particular, Baruah [8] pointed out the
intractability of the MC-Schedulability problem, and quantified
the fundamental limitations of MC-Scheduling for certification
considerations. To tackle the intractability of MC-Scheduling,
they suggest two sufficient schedulability conditions, referred
to as the WCR-schedulability and OCBP-schedulability con-
ditions. Later, Baruah and Li [9] extended their previous
work and suggested a fixed-job-priority scheduling strategy
based on their OCBP-schedulability condition. Baruah et al.
also adapted the Earliest Deadline First algorithm to mixed-
criticality systems, by modifying the deadlines of tasks. This
approach is known as EDF-VD and is the one under study
in this paper. More recently, Guan et al. [10] presented a
new approach for scheduling mixed-criticality systems, which
relies on an offline fixed-job-priority ordering computation,
which is then used on-line by the scheduler. At the same time,
Baruah et al. [11] formalized the response time analysis for
mixed-criticality tasks. In [12] an overview of mixed-criticality
scheduling on multiprocessors is proposed.

III. MODEL AND NOTATIONS

This paper is set in the context of constrained deadline
periodic synchronous dual-criticality real-time task systems on

a discrete timeline model. Each system is represented by a
task set ⌧ = {⌧1, ⌧2, . . . ⌧n} where each task ⌧i is a 4-uple
(CLO

i , CHI
i , Di, Ti) where CLO

i is the worst case execution
time (WCET) in LO mode, CHI

i is the WCET in HI mode,
Di is the relative deadline (the maximum allowed amount of
time between an arrival and the corresponding end of this task)
and Ti is the inter-arrival time (the period). All tasks satisfy
the conditions 0 < CLO

i 6 Di 6 Ti. If CHI
i > 0, ⌧i is said to

be a HI criticality task and additionally CLO
i < CHI

i 6 Di.
A few additional notations are defined :

• The set of HI tasks : ⌧HI = {⌧i 2 ⌧ | CHI
i > 0}

• The set of LO tasks : ⌧LO = {⌧i 2 ⌧ | CHI
i = 0}

• Task ⌧i utilization in LO and HI modes : ULO(⌧i) =
CLO

i
Ti

and UHI(⌧i) =
CHI

i
Ti

• Task ⌧i density in LO and HI modes : �LO(⌧i) =
CLO

i
min(Di,Ti)

and �HI(⌧i) =
CHI

i
min(Di,Ti)

• LO mode system utilization : ULO(⌧) =
P
⌧i2⌧

ULO(⌧i)

• HI mode system utilization : UHI(⌧) =
P
⌧i2⌧

UHI(⌧i)

• nLO and nHI are (respectively) the size of ⌧LO

(respectively) ⌧HI

• n = nHI + nLO

IV. PARTITIONED EDF-VD

A. EDF-VD Feasibility Condition

EDF-VD is a mixed-criticality uniprocessor scheduling
algorithm [13]. It has later been extended to multiprocessor
platforms [14] by using the same concept as fpEDF [15], a
multiprocessor single-criticality scheduling algorithm. EDF-
VD performs by applying EDF on a set of tasks where the
HI criticality tasks have smaller relative deadlines when the
system is in LO mode. In [13] all such virtual deadlines (VD)
are the product of a unique factor (the value is the same for
all tasks in the system) with each of their original deadlines.
A improvement over EDF-VD is made in [16] by defining an
heuristic algorithm (tuneSystem) that reduces virtual deadlines
on a per-task basis. The schedulability test corresponding
to tuneSystem is also defined in [16]. This finer grained
uniprocessor test is the one used by the partitioning heuristics
in this paper, as it displays among the best average success
ratio in the current uniprocessor mixed-criticality scheduling
state of the art.

Ekberg and Yi [16] extend the common definition of the
demand bound function (DBF) to mixed-criticality systems.
For a dual-criticality task set ⌧ , two demand bound functions
are defined : dbfLO(t) and dbfHI(t). These two functions have
the properties of a single-criticality DBF. This means that we
have the EDF feasiblity condition :

8t > 0 : dbfLO(t) 6 t and dbfHI(t) 6 t

() the system is schedulable

To verify schedulability using these conditions, the tuneSystem
algorithm (see Algorithm 1) is run [16]. tuneSystem like
EDF-VD will shift the load of the HI mode DBF towards
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the LO mode DBF by reducing the virtual LO mode
deadlines of HI tasks. However, tuneSystem makes accurate
modifications to single tasks instead of multiplying all of
them by a factor, which makes it more complex but also
more powerful than EDF-VD [16]. Each time some t that
does not satisfy the condition is found, a deadline is changed
to fix the problem if possible. When the virtual deadlines
of multiple tasks have been reduced, the algorithm can also
backtrack some of these changes in order to maintain the
condition on the LO mode DBF. This continues until either
the condition is satisfied or no deadline changes can be
made anymore, in which case the system is not schedulable
using tuneSystem. This algorithm achieves much higher
success ratio than EDF-VD for utilization above 80% as
EDF-VD starts to fail the scheduling of some systems at
around 70% utilization [16]. Before running the algorithm,
a bound (tBound) on the latest time instant for which
the dbf condition must be verified is computed using the
technique in [17]. Doing this in HI and LO mode results in
two different bounds, out of which the highest must be chosen.

Algorithm 1: tuneSystem
Require: tBound as defined in text
1 candidates ⌧HI

2 changed true
3 modTask  ✏
4 while changed do
5 changed false
6 for t = 0 to tBound do
7 if dbfLO(t) > t then
8 if modTask = ✏ then
9 return false

10 end if
11 increment the virtual deadline of modTask
12 if modTask 2 candidates then
13 candidates candidates \modTask
14 end if
15 modTask  ✏
16 changed true
17 break
18 end if
19 if dbfHI(t) > t then
20 if candidates = � then
21 return false
22 end if
23 modTask  task in candidates which HI dbf

increases the most between t and t� 1
24 decrement the virtual deadline of modTask
25 if the WCET in LO mode of modTask is equal

to its virtual deadline then
26 candidates candidates \modTask
27 end if
28 changed true
29 break
30 end if
31 end for
32 end while

B. Partitioning heuristics

The problem of finding an assignment of tasks to proces-
sors that fits a given platform is similar to the Bin-Packing

problem (BPP) which is known to be NP-hard. Variants of
BPP frequently occur in computer science problems and this
resulted in various heuristics being developped in the literature
[18]. In this paper the focus will be put on heuristics following
a strict framework (which can be thought as a metaheuristic) :
items (tasks) are sorted given a specific criteria then they are
assigned to bins in that order. The choice of which bin a given
item will be assigned to is specified by an assignment rule.
Together, the sorting criteria and assignment rule unequivocally
describe the heuristic [19]. A total of four possible task
ordering criteria are considered : utilization, period, deadline
and density (U, P, L and D for short) and two possible orders
for each of them (increasing or decreasing, respectively I and
D). Additionally, the most frequent assignement rules are First
Fit, Next Fit, Best Fit and Worst Fit (F, N, B and W). In the
single-criticality partitioning literature, Best Fit and First Fit
with Decreasing Utilization or Decreasing Density are found
to display the best success ratio [19].

All variants considered, there is a total of 32 possible
heuristics following this “criticality unaware” framework. In
this paper a new type of heuristic (“criticality aware”) is
defined specifically for mixed-criticality systems. In this new
kind of heuristic, the task set ⌧ is split into HI and LO
task sets, ⌧HI and ⌧LO. First, tasks in ⌧HI are partitioned
on all processors following one of the heuristics described
above. Then, tasks in ⌧LO are partitioned on the remaining
space on the platform following another (possibly the same)
heuristic. There are 1024 different heuristics following this
new structure. In criticality aware heuristics, Worst Fit and
Best Fit behave a little differently, as it makes more sense to
use the utilization in HI mode during the assignment of tasks
in ⌧HI and the utilization in LO mode during the assignment of
tasks in ⌧LO. Following the same principle, in all heuristics LO
criticality tasks of are ordered using their CLO

i value as WCET
(which is needed to calculate utilization and density) and HI
criticality tasks with their CHI

i value as WCET. Heuristics are
noted using their assignement rule followed by the two letters
code of their ordering criteria. For example, Best Fit Increasing
Period will be noted BIP . Criticality aware heuristics are noted
by giving the heuristic for the LO tasks followed by a slash
then the heuristic for the HI tasks, such as BIP /NIL.

V. PARTITIONING HEURISTICS SELECTION

One of the goals of this paper is to assess which heuristic
has the best success ratio by experimentation or to what extent
the kind of tested system can influence which heuristic is best.
The results of such experiments heavily rely on which system
generation algorithm was used (described in Section VI-A)
but also on its parameters. Both heuristic evaluation methods
use the same system generation parameters, which can be
described as follows :

• System tailored for 4 processors

• 20 tasks, out which 8 are HI criticality tasks

• Both ULO(⌧) and UHI(⌧) randomly (and indepen-
dently) distributed between 0 and the number of
processors

• The minimum period tMin = 5 and the maximum
period tMax = 50
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A. Racing between heuristics

The large number of possible heuristics and long compu-
tation time required to test systems on many heuristics leads
to a need for efficiency. In Algorithm 2, the search of the best
heuristic is concentrated towards those that showed a good
success ratio in past experiments. Such selection algorithms
are usually called racing algorithms and are used in machine
learning for model selection and parameter tuning [20]. In
our context this approach enables us to quickly eliminate non
significant heuristics. The search algorithm itself uses three
parameters :

• nRounds is the number of times the outer loop (called
round) of the algorithm is executed, corresponding to
the number of times the working set of heuristics is
shrunk.

• nTests is the number of systems generated and tested
during the first round.

• exploration is the factor (between 0 and 1) of re-
duction of the size of the working set of heuristics.
Additionally the number of tested systems is multi-
plied by 1

exploration each round.

Algorithm 2: Racing for heuristics
Require: nRounds, nTests and exploration as defined

previously.
1 heuristics all possible heuristics
2 curTests nTests
3 for r = 1 to nRounds do
4 for t = 1 to curTests do
5 system randomly generated system
6 for all h 2 curHeuristics do
7 partition system with h
8 update success ratio of h with the result
9 end for

10 end for
11 curHeuristics the explorationr portion of

heuristics with highest success ratio
12 curTests curTests/exploration
13 end for
14 return heuristics sorted by success ratio

The time complexity of Algorithm 2 in terms of number of
partitionings is in O(nRounds · nTests · |heuristics|). Note
that the number of partitionings per round does not change. In
later rounds, fewer heuristics are tested on a larger number of
systems.

B. Direct elimination

Direct elimination is a slightly different form of racing. In
Algorithm 3 heuristics are selected for further testing based
on their ability to dominate other heuristics rather than simply
success ratio. Each run begins with all heuristics being tested
on one system. If at least one heuristic could schedule the
system, all the heuristics that were unable to schedule it are
discarded. This is repeated until only one heuristic remains in
the set of heuristics (or if we have reasonable evidence that
stability has been reached, see stability), then the whole set
of heuristics is reset and the operation is repeated.

• nRuns determines the number of times the complete
operation (starting with all heuristics and reducing
until stability) is done.

• stability is the maximum amount of systems that will
be tested without eliminating heuristics.

Algorithm 3: Direct heuristic elimination
Require: nRuns and stability as defined previously.
1 for r = 1 to nRuns do
2 heuristics all possible heuristics
3 while t < stability and |heuristics| > 1 do
4 system randomly generated system
5 schedules mapping of all heuristics to false
6 for all h 2 heuristics do
7 partition system with h
8 if h can partition system then
9 schedules[h] true

10 end if
11 update success ratio of h with the result
12 end for
13 if 9i | schedules[i] and 9j | ¬schedules[j] then
14 t = 0
15 for all h 2 heuristics do
16 if ¬schedules[h] then
17 remove h from heuristics
18 end if
19 end for
20 else
21 t = t+ 1
22 end if
23 end while
24 end for
25 return heuristics sorted by success ratio

The worst case number of tests of Algorithm 3 is in
O(nRuns ·stability · |heuristics|) as it will take a maximum
of nTest� 1 tests to eliminate each heuristic individually. In
practice Algorithm 3 is faster than Algorithm 2 because the
actual number of tests depends on the generated systems for
Algorithm 3 but not for Algorithm 2. One system is very often
enough to eliminate a large portion of the set of heuristics,
which means stability · |heuristics| is a very pessimistic
estimate of the time required for one round.

VI. EXPERIMENTS

A. Task set generation

Widely used standard random task set generation algo-
rithms exist for uniprocessor single-criticality scheduling, such
as UUniFast [21] for generating uniform task utilizations. But
this standard way of generating task sets does not extend
to more specific systems, where an ecosystem of techniques
still exists. UUniFast has been extended to multiprocessor
systems in [22], which is the basis of the multiprocessor
mixed-criticality task set generation algorithm found in this
paper. Other works in the literature have proposed techniques
for generating mixed-criticality task sets, such as [14], [23]
using an explicit scaling factor between the utilization in HI
and LO mode.

In this paper task utilizations in LO and HI mode are
generated taking the constraints specific to mixed-criticality
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systems into account and in a way that aims to keep the
uniformity of the generated systems intact. The generator
receives guidelines on UHI(⌧), ULO(⌧), the ratio of HI tasks
(ratioHI = n

nHI
) and the maximum and minimum period

(tMax and tMin). The generator will try to create a system
meeting those guidelines as precisely as possible, although
making no guarantees.

1) LO and HI utilizations: The algorithm generates n uti-
lization values from ULO(⌧) for LO mode and nHI utilization
values from UHI(⌧) for HI mode using a variant of the mul-
tiprocessor UUniFast algorithm [22]. Those utilization values
are then associated to one another in HI-LO couples making
sure that for each HI task the HI utilization is higher than the
LO utilization. If this cannot be achieved, HI utilizations are
re-generated for one less HI task until one such association can
be found. When a valid association is found, it is randomly
shuffled with the limitation that is has to stay correct.

2) Periods, WCETs and deadlines: Periods are randomly
chosen between tMin and tMax with a log uniform random
variable biased towards lower values, as done in [22]. WCETs
are then directly calculated from those periods and the uti-
lizations. HI WCETs are checked to be at least one plus the
corresponding LO WCET. Periods are then adjusted to make
sure no task has utilization above or equal to one then ensuring
that the total system utilization is below the given guidelines
for LO and HI utilization. This is done by repeatedly choosing
a random task in ⌧ and incrementing its period until both
conditions become satisfied. Finally, deadlines for each task
are randomly chosen between the highest WCET (CLO

i for
LO tasks, CHI

i for HI tasks) and the period with a logarithmic
uniform random variable biased towards higher values.
B. Results

The methods explained in Section V-A and Section V-B
agree on the general domination of the single-criticality heuris-
tics FDU and FDD both in criticality unaware (confirming
previous results in single-criticality systems [19]) and in criti-
cality aware mixed-criticality partitioning heuristics. However
the conducted experiments aggregated success ratios based on
systems with utilizations in HI and LO mode ranging from 1
to the number of processors (4), giving the same weight to
each system. In a realistic environment, it is expected that
systems with higher utilization will be more interesting as
we want to use the platform to maximum capacity (or use
lighter hardware to run the same set of tasks). Three of the
best heuristics have been run on new systems generated with
a range of fixed HI and LO utilizations (all other parameters
remaining the same) to show how their success ratio evolves
with HI and LO utilization. The results for FDD, FDD/FDD

and FDD/WDD are respectively shown in Figure 3, 1 and 2.
The intuitive expectation is that using WDD as a HI mode

heuristic will give better results when ULO(⌧) is high and
UHI(⌧) is low. This is motivated by the reasoning that if HI
utilization is as balanced between processors as possible, it is
more likely that more LO tasks will be schedulable over the
whole system. However if we forget about LO tasks, WDD

performs worse than FDD to find a good partitioning of HI
tasks (the same way it performs worse in single-criticality
scheduling), which means FDD/FDD has an advantage over
FDD/WDD when partitioning task sets with high UHI(⌧) and
low ULO(⌧). This is verified in our experiments as when

Fig. 1. Success ratio of FDD/FDD for various HI and LO utilizations

Fig. 2. Success ratio of FDD/WDD for various HI and LO utilizations

compared to FDD/FDD, FDD/WDD does globally better
when HI utilization is lower than 2.5 if LO utilization is at
least 3.5.

Fig. 3. Success ratio of FDD for various HI and LO utilizations

FDD obtains slightly better success ratio in most situations.
However if we try to directly compare FDD with FDD/WDD,
we obtain surprising results.

In Figure 4 the amount of systems that are schedulable by
FDD/WDD but not by FDD is compared with the amount
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Fig. 4. Number of systems where FDD/WDD dominates FDD and vice
versa

of systems schedulable by FDD but not by FDD/WDD for
various values of ULO(⌧) and UHI(⌧). For all the chosen
utilization combinations, there are very few systems that
belong to the second category. This number increases as HI
utilization increases and LO utilization decreases, which hints
that not allowing LO tasks to be partitioned before any HI
tasks (the definition of criticality aware heuristics) might not
be a good choice in systems that have heavy LO tasks.

VII. CONCLUSION

In this paper, we have considered the problem of partitioned
EDF-VD scheduling for mixed critical (HI and LO) periodic
tasks on identical multiprocessors. In a mixed critical system,
it is mandatory to grant HI critical tasks. We have studied
different meta-heuristic that maximize the success ratio of LO
critical tasks while granting HI critical tasks. We considered
two partitioned scheduling approaches, one called criticality
aware that first tries to assign HI tasks to processors and then
LO tasks separately and one called “criticality unaware” that
does not take into account the criticality of the tasks. We have
adopted a race metaheuristic to select the best partitioning
heuristics according to several placement and sorting criteria.
We show that taking into account criticality levels by first
assigning HI critical tasks leads to better success ratio for HI
tasks. Furthermore, when Worst Fit with Decreasing Density
succeeds to partition HI tasks, assigning LO tasks with Fist Fit
Decreasing Density maximizes the success ratio of LO tasks.
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Abstract—In this paper, we propose a mixed-criticality schedul-

ing scheme for selection of JPEG2000 codestream features to be

transmitted over Wireless Multimedia Sensor Networks (WM-

SNs). We extend the application of mixed-criticality scheduling

model to the wireless domain. We show that by adopting mixed-

criticality scheduling scheme, an improved end-to-end response

time is gained with respect to the classical case where all

information exhibit the same level of importance.

I. INTRODUCTION

Thanks to the integration of inexpensive complementary
metal-oxide semiconductors (CMOS) cameras and micro-
phones, WMSNs are emerged as interesting framework for
applications such as enhanced surveillance and monitoring
systems. These networks are capable of sensing multimedia
content including audio, still images and videos in addition to
scalar sensor data (e.g. temperature, humidity, etc ...) [1].

Several surveys were conducted on different aspects of
wireless multimedia sensor networks. For example, [1] and [2]
clearly highlights the state-of-the-art and main research chal-
lenges for development of WMSNs. These surveys discussed
several characteristics of WMSNs, among which application
scenarios, existing solutions and different open research issues.
Since WMSNs are resource constrained networks (e.g limited
computation power, reduced memory, narrow bandwidth, etc
...), image and video transmission over such networks is still
an important challenge which needs to be addressed.

In this context, mixed-criticality scheduling is used to ar-
bitrate flows generated from different sources. Each source
uses JPEG2000 compression algorithm to encode images with
multi-layer and multi-resolution features of JPEG2000. During
transmission of image/video from the sources, all information
do not possess the same level of criticality. Information from
one source is more critical than that of other source depending
on the available channel capacity. Hence, we can model our
system based on the mixed-criticality properties.

The mixed-criticality nature of the system arises from the
fact that while we would like to transmit all information (all

layers and resolutions) under high availability of the band-
width. However, it is important that the critical information has
to be transmitted even when the bandwidth is low. We consider
a communication channel with L-levels of bandwidth values
and transmission of periodic images that possess different
levels of criticality. Furthermore, the model is considered as a
non-preemptive scheduling problem, in the sense that once the
transmission of an image is started, it cannot be preempted by
another with higher criticality.

Due to rapidly increasing cost, power and thermal dissi-
pation constraints, there is an increasing trend in embedded
system towards implementing multiple functionalities upon a
single shared computing platform. Typically, all these different
functionalities do not possess the same level of criticality
to the overall system performance. This concept of mixed-
criticalities gave rise to a mixed-criticality scheduling problem.
It is initially introduced by Vestal [3]. He pointed out that there
is a difficulty in computing the exact Worst Case Execution
Times (WCETs). The more conservative the approximation of
WCETs, the high level of assurance that the execution of the
task never exceeds it WCET. This confidence levels form the
basis for different levels of rigorousness (level of criticality) of
the system. To solve the problem of mixed-criticality schedul-
ing, he also suggested a fixed-task-priority strategy based
on ”Audsley approach” [4]. Based on this approach, other
authors provide an improved way to tackle the intractability
of mixed-criticality scheduling. For instance, Baruah et. al. [5]
proposed an algorithm called Own Criticality Based Priority
(OCBP) to schedule a mixed-criticality system with a finite
number of jobs. In their work, they showed that OCBP-
schedulability offers performance guarantee that is superior to
performance guarantee offered by the Worst Case Reservations
(WCR) schedulability. In [6], the authors proposed another
algorithm, called Priority List Reuse Scheduling (PLRS) to
schedule certifiable mixed-criticality sporadic tasks system.
They used fixed-job-priority scheduling scheme and assigned
job priorities by exploring and balancing the asymmetric
effects between the workload of different criticality levels.
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Through simulation, they found that the run-time complexity
of PLRS is polynomial time.

In our work, we model the transmission channel as a non-
preemptive uniprocessor with limited amount of transmission
time. The channel has L levels of speed, which corresponds
to the amount of available bandwidth in the network. We can
represent B(l) as the available bandwidth at criticality level l2
[1,L]. Hence, the transmission time C

i

(l) can be seen as the
time it takes to send data units at a rate of B(l) and criticality
level l.

The remainder of this paper is organized as follows. In
section 2, we discuss mixed-criticality scheduling model along
with some overviews on JPEG2000 compression algorithm
and available bandwidth estimation tools. Then in section
3, the application of mixed-criticality scheduling to video
streaming system is given. In section 4, implementation of
the proposed algorithm is detailed. Experiments and results
are provided in section 5. Then, conclusion and future work
are followed in section 6.

II. MODEL, DEFINITIONS AND OVERVIEWS

A. Mixed-criticality Scheduling

1) MC tasks and jobs : We consider the scheduling of
Mixed-criticality(MC) tasks on a non-preemptive single pro-
cessor with task sets ⌧ = {⌧1, ⌧2, ..., ⌧n}. Furthermore, the
maximum criticality of a task is bounded by L. Each MC task
is characterized by 5-tuple ⌧ = {R

i

, T
i

, D
i

,�
i

, C
i

} where:

• R
i

2 N is the release time of the first job of task ⌧
i

• T
i

2 N \ {0} is the period of task ⌧
i

• D
i

2 N \ {0} is the deadline of task ⌧
i

, D
i

 T
i

• �
i

2 N is the maximum criticality of the task ⌧
i

, �
i

 L
• C

i

2 NL is a size L vector of WCETs, where C
i

(l) is an
estimation of the WCET of task ⌧

i

at criticality level l 2
[1,L]

We assume C
i

(l) is monotonically non-decreasing for increas-
ing l. More precisely, for task ⌧

i

:

• 8 m 2 [1, �
i

] : C
i

(m)  C
i

(m+ 1)
• 8 m 2 [�

i

, L] : C
i

(m) = C
i

(�
i

)

A job in MC system is characterized by a 5-tuple of parame-
ters: J

j

= {r
j

, d
j

,�
j

, C
j

, c
j

} where:

• r
j

2 N is the release time of the job J
j

,
• d

j

2 N is the absolute deadline,
• �

j

2 N+ is the criticality of the job,
• C

j

2 NL is a size L vector of WCETs of J
j

,
• c

j

2 N \ {0} is the exact execution of the job J
j

.

The idea of the MC job model is: job J
j

is released at time
r
j

, has deadline at d
j

, and needs to execute for some amount
at time c

j

. However, the value of c
j

is not known beforehand,
but only becomes revealed by actually executing the job until

it signals that it has completed execution.
At any time, we call a job is available if its release time has

passed and the job has not signalled execution completion.
Let us define a notion of a scenario. Each job J

j

requires
an amount of execution time c

j

within [r
j

, d
j

]. We call a
collection of execution times S = {c1, c2, ..., cn} a scenario
and it consists of n jobs.

The criticality level of a scenario S can be defined as the
smallest integer l such that c

j

 C
j

(l) 8j. If no such l exists,
then the scenario is said to be erroneous, since at least one
task exceeds its WCET at its own criticality.

2) MC-schedulability: In literature, it is shown that MC-
scheduling problem is NP-hard in strong sense. For example
in [5], Baruah et al. proved that when MC is applied to a finite
set of jobs, it is not possible to find a solution in polynomial
time. This condition forces the research community to come
up with a sufficient condition that can be verified in polynomial
time. In [3], Vestal determined a total ordering of the tasks in ⌧
offline. Each task is assigned a distinct priority and jobs inherit
the priority of the task that released them. At each moment, the
scheduler dispatches the available job with the highest priority.
The priority assignment is realized using ”Audsley approach”
based on the following definition with assumption of priority
n be the lowest priority and 1 be the highest priority.

Definition: A task ⌧
i

in a mixed-criticality task set ⌧ is said
to be viable at the lowest priority level if all of the following
conditions hold true:

1) the lowest priority is assigned to ⌧
i

,
2) all other tasks in ⌧ can be assigned any priority provided

that these priorities are higher than the priority assigned
to ⌧

i

and
3) every job released by ⌧

i

meets its deadline when it is
executed for at most C

i

(�
i

) time units and all other tasks
⌧
j

in ⌧ generate jobs that run for at most C
i

(�
i

) time
units.

The procedure is repeatedly applied to the set of jobs excluding
the lowest priority job, until all jobs are ordered, or at some
iteration a lowest priority job does not exist.

Since the priority of the a task is based on its own criticality
level, we can say that a task set is Own Criticality Based
Priority(OCBP)-schedulable as long as we find a complete
ordering of the tasks.

B. Worst case end-to-end response time

In real-time applications, timeliness is one of Quality of
Service (QoS) parameters which has utmost importance. For
example, in real-time video/audio streaming applications, de-
lay matters. If the system is unable to deliver frames within
a sliding window of period, the frames arrived outside the
window will be discarded. So, this results in reduced Quality
of Experience (QoE), i.e., less visual comfort for users. Shorter
end-to-end response time helps the frames to arrive within
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sliding window and it contributes to the overall performance
of the system.

Several approaches can be used to determine the maximum
end-to-end response time, such as stochastic or determinis-
tic approach [7]. Furthermore, the deterministic approach is
divided into holistic and trajectory approaches. In our work,
we consider trajectory approach that gives better estimation of
the end-to-end response time when compared to the holistic
approach.

C. JPEG2000

JPEG2000 is an image compression standard and coding
scheme. In addition to its high coding efficiency, JPEG2000
also provides with a number of highly desirable features such
as seamless progressive transmission by resolution or quality,
lossy to loss-less compression, random codestream access and
processing, and region of interest. In [8], JPEG2000 is covered
in much detailed way.

D. AVAILABLE BANDWIDTH ESTIMATION

Accuracy of available estimated bandwidth and convergence
delay algorithm are research challenges in wireless network
measurements. In wireless communication networks, the avail-
able bandwidth could be used as an important parameter to
take decisions concerning many issues such as load control,
admission control and routing.

Available bandwidth estimation methods can be divided in
two major approaches:

• Intrusive approaches - these methods are based on end-
to-end probe packets to estimate the available bandwidth
on the link.

• Passive approaches - they use local information on the
used bandwidth ( e.g. the channel usage computed by
sensing the radio medium) and exchange this information
through Hello messages that are used in many routing
protocols.

In [9], Prasad et. al presented four types of bandwidth esti-
mation tools which uses intrusive approaches. All techniques
are provided in their paper.

In our work, we rely on an active probing available band-
width estimation tool called Wireless Bandwidth estimation
tool (WBest). This algorithm is proposed in [10]. The au-
thors demonstrated that WBest has higher accuracy and faster
convergence time in wireless environment with respect to
other tools. They made a comparison with existing available
bandwidth estimation tools such as: IGI/PTR , PathChirp, and
Pathload. They recommended WBest for multimedia stream-
ing applications over wireless networks. In their work, they
pointed out that finding the optimal length of the trains used
in the steps is a difficult matter. They proposed that 10 packet
pairs for the first train and 30 packets for the second train are

good choices, which yield a sufficiently accurate bandwidth
estimation results. We also adopt these choices in our work.

III. JPEG2000 VIDEO STREAMING

In this section, first we define our architecture for the
wireless multimedia sensor network. The wireless network is
composed of Raspberry Pi platforms[11] and we name it ⇡-
sense network. Then we setup the mixed-criticality scheduling
model for the wireless network.

A. Network Setup

The raspberry pi platform is used as sensor node. It is a
credit-card-sized single-board computer with several periph-
eries for different purposes. EDIMAX WIFI dongle [12] is
attached to USB port of the raspberry pi board. The dongle
complies with wireless 802.11 b/g/n standards with data rates
up to 150 Mbps and supports smart transmit power control
and auto-idle state adjustment.

Figure 1. The ⇡-sense wireless network

One remaining part to add to this section is the routing
protocol we used in the ⇡-sense network. In [13], Murray
et al. made comparisons between Optimized Link State Rout-
ing (OLSR), Better Approach To Mobile Ad hoc Networking
(BATMAN), and Babel routing protocols. They investigated
the cause of performance loss or gain in multi hop ad hoc
networks. They pointed out that in small networks, Babel
offers higher throughputs due to reduced protocol overhead.
In our mesh network of raspberry pi platforms, we use Babel
routing protocol.

The whole network is depicted in figure 2. In the ⇡-sense
network, there are two sources transmitting video/image to the
sink.

B. MC-wireless Model

In this section, we setup the proposed scheduling algorithm
for the ⇡-sense wireless network. Since the available band-
width in the network varies, we took bandwidth estimates
(bits/sec) in discrete format by using WBest estimation tool.
We did this process offline so that we can know beforehand the
bandwidth needed for the transmission of the images/frames.

We represent B(l) as an estimate of available bandwidth at
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criticality level l 2 [1,L]. Furthermore, we assume that B(l)
is monotonically decreasing for increasing criticality level l,
i.e.,

• B(l + 1)  B(l) 8l 2 [1, L]

We consider mixed-criticality periodic frame sets f =
{f1, f2, ..., fn} on non-preemptive communication channel
where maximum criticality of the frame is L. The channel
has bandwidth of B(l) units per second, 8 l 2 [1,L].

Each MC frame is characterized by a 5 tuple f
i

=
{R

i

, T
i

, D
i

,�
i

, C
i

} where:

• R
i

2 N is the release time of the first packet of the frame
f
i

,
• T

i

2 N⇤ is the period of the frame f
i

,
• D

i

2 N⇤ is the deadline of the frame f
i

, D
i

 T
i

,
• �

i

2 N is the maximum criticality of the frame f
i

, �
i

 L,
• C

i

2 R+ is an L vector of transmission times of frame
f
i

.

By definition, C
i

(l) is the time needed to transmit frame f
i

of length N
i

at criticality level l 2 [1, L]. It is defined as:

C
i

(l) = Ni
B(l)

The rest of this section deals with the computation of worst
case end-to-end response time (WCERT). The WCERT is
computed at each level of criticality.

1) Notations: The following notations are used in our work:

• w
i,m

is the relative start time of transmission of frame f
i

for the mth period T
i

• WCERT
i

is the worst case end-to-end response time of
frame f

i

• Ch

i

(l) is transmission time of frame f
i

from node h at
criticality level l

• L
max

, L
min

- maximum/minimum network delay be-
tween two consecutive nodes in the wireless network

• Jin1
i

is the maximum jitter of frame f
i

at source node
• hp(i, l) is the set of frames having a priority higher than

f
i

at criticality �
i

� l
• lp(i, l) is the set of frames having a priority lower than

f
i

at criticality �
i

� l
• H1,h

i

is the maximum delay incurred by frame f
i

due to
f
j

2 lp(i, l), while going from source node (1) to sink
(h)

2) Worst case end-to-end response: To use trajectory
approach, we assume that all flows from both sources follow
the same path to the sink. In ⇡-sense network, the sources are
two hops away from the sink. Hence, nodes are marked from
1(source) to 3. The end-to-end response time is obtained by
summing the delays incurred on each node along the path of
the flows.

Due to non-preemption effect, the transmission of a high

priority frame (from source 1) can be delayed so that the
lower priority frame (from source 2) finishes its transmission.
The maximum delay incurred by f

i

due to f
j

2 lp(i, l) when
both of them follow the same path to the sink can be given as:
8
>>>>>><

>>>>>>:

H1,1
i

(l) = max
fj2lp(i,l)

�
C1

j

(l)� 1
 

H1,h+1
i

(l)  H1,1
i

(l) +max
fj2lp(i,l)

�
Ch+1

j

(l)
 

�min
fj2hp(i,l)[fi

�
Ch

j

(l)
 

+L
max

� L
min

Property 2 gives an upper bound on the maximum delay
incurred on the path h 2 [source, sink]. In [7], Martin et al.
gave proof of the upper bound on the delay.

Before obtaining the worst case end-to-end response time,
we need to find the latest release time of f

i

when the path
consists of q nodes. It is given by:
8
>>>>>><

>>>>>>:

wq

i,t

(l) =
P

fj2hp(i,l)(1 + bw

q
i (l)+Jin

1
i (l)
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c)xCslow
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)� Cq

i

(l)

+H1,q
i

(l) + (q � 1)xL
max

For the latest release time, the prove of existence of solution
and the upper bound is also given in [7].

Finally, the worst case end-to-end response time is given by:

WCERT 1,q
i

(l) = max
k=0..K

�
wq

i,t

(l) + Cq

i

(l)� k.T
i

+ Jin1
i

(l)
 

where the value of K is also provided in [7].
In the next section, implementation of MC-wireless is

given. Experimental results are shown in section 5.

IV. MC-WIRELESS IMPLEMENTATION

In this section, we implement mixed-criticality scheduling
scheme for the ⇡-sense WMSN. First, we assign fixed priority
for the information transmitted from the two sources (as
shown in figure 1). That is, at any time, source 1 gets higher
priority over source 2. The priority assignment can be based on
location, for example. Assume that source 1 is at the entrance
of a building and source 2 is inside the building. It is necessary
that frames from source 1 is transmitted to the sink even if
the available bandwidth is dropped. In this situation, source 2
stops transmission so that source 1 transmits its frames within
short period of time. When the available bandwidth is enough,
both sources transmit their frames over the wireless network.

Secondly, we define criticality levels that corresponds to the
values of the available bandwidth. In our work, we set number
of criticality levels to 3, i.e., l 2 [1,3]. Hence, B(l) is the
available bandwidth at criticality level l 2 [1,3].

At source nodes, we implement JPEG2000 algorithm to
encode the frames. The frames can be critical or non-critical
depending on the information encoded in it. For instance, when
the available bandwidth is too low, the frame is encoded with
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base layer and resolution (that means it is critical frame).
Hence, even if the bandwidth is low, we can still get a frame
with lower quality from source 1, but source 2 is disconnected
due to its lower importance.

frame frame length(KB) BW needed(Mbps)
f1 5.7 B(l)  1
f2 7.6 1< B(l)  1.8
f3 15.2 B(l) > 1.8

Table I
NEEDED BANDWIDTH FOR THE FRAMES

Figure 2. Required bandwidth for the sources

From table 1, we see that when the available bandwidth is
greater than 1.8 Mbps, both critical and non-critical informa-
tion (all layers with full resolution - i.e, f3) can be transmitted
to the sink. However, if the bandwidth is less than 1 Mbps, it
is necessary to transmit only the critical information ( i.e, f1).

Figure 2 shows required bandwidth for the two sources along
with estimated available bandwidth. The bandwidth values fall
into range of [0.1, 3.427] Mbps. We divide the range into 3
parts. The first part is when the bandwidth is in [0.1, 1.0]
Mbps. It corresponds to criticality level 3 (i.e., B(3) 2 [0.1,
1.0]). Then, if the available bandwidth is in (1.0, 1.8] Mbps,
we say that it is at criticality level 2 (i.e., B(2) 2 (1.0, 1.8]).
Finally, criticality level 1 corresponds to bandwidth values
above 1.8 Mbps.

There are 2 important points to consider in figure 2. At
point (a), the available bandwidth is dropped to 0.384 Mbps
from prior value of 2.914 Mbps. This means, it is changed
from criticality level 1 to 3 (i.e., the change is more than 1
step). In this situation, the appropriate selection from source
1 could be frame f1 that requires a bandwidth of 0.912 Mbps
(taking frame rate of 20 fps). However, due to comfort of
user visualization, we select frame f2 that requires 1.2 Mbps.
Clearly, the time it takes to transmit f1 is lower than that of
f2, but we have a good quality image at the end. Thus, it is
a trade-off between the quality of the image and transmission

time. Finally, it actually takes 158 ms (7.6KB/0.384Mbps) to
transmit f2. For source 2, we stop transmitting the frames
because it has lower priority and the bandwidth is dropped
too much.

Secondly, at point (b), the estimated available bandwidth is
at criticality level 1. Hence , it is sufficient to transmit both
critical and non-critical information from source 1. In this case,
source 2 can also transmit its frames.

V. EXPERIMENTS

In this section, we present the results gained by adopting
mixed-criticality scheduling to the ⇡-sense network. The MC-
wireless is compared against the classical case in which all
information are considered equally important.

Let us consider a classical situation where all the information
can be sent without considering the available bandwidth. This
corresponds of transmission of both critical and non-critical
information (i.e. f3). In this case, even if the bandwidth is
at criticality level 3, we transmit f3. However, according
to MC-wireless, we prioritize f1 over f3 because the the
bandwidth required for f3 is greater than that of f1 and f1
finishes transmission earlier than f3. Hence, we get reduce
transmission time by selecting f1 over f3.. This reduction in
transmission time leads to an improved end-to-end response
time.

The worst case end-to-end response time (WCERT) is shown
in figure 3 for both classical and MC-wireless cases. From
the figure, we see that MC-wireless improves the end-to-end
response time due to the fact that MC classifies the information
as critical/non-critical based on the available bandwidth. Ex-
perimental results of WCERTs are plotted for each criticality
level, that is, WCERT

l

represents the worst case end-to-end
response time at criticality level l 2 [1, 3].

Figure 3. WCERT with and without MC

Let us consider a case when the available bandwidth is below
1 Mbps (region corresponding to WCERT3). In this region, if
we transmit all information (i.e. f3), we end up incurring high
WCERT. However, transmitting only the critical information
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(i.e. f1), we gain a reduction in WCERT (from 0.822614
sec to 0.382091 sec when the available bandwidth is 0.2012
Mbps). This trend continues until the available bandwidth
becomes more than 1.8 Mbps. Hence, in the third region
(WCERT1), since the available bandwidth is enough to send
all the information, both MC-wireless and classical approaches
provide the same value of WCERT.

To provide the upper bound on WCERT, we calculate end-
to-end response time using the trajectory approach. On the
path from source 1 to sink, we have 3 nodes. So, we compute
delays at each node and obtain the response time for criticality
level 3. Since source 2 is not transmitting at this criticality
level, the delay due to non-preemption is ignored.

WCERT 1,3
1 (3) = Jinsource1

1 (3) + C1
1 (3) + C2

1 (3) + C3
1 (3)

+ 3*(L
max

� L
min

) = 0.623886 + K sec

where Jinsource1
1 (3) = 0.17023 sec, C1

1 (3) = C2
1 (3)

= 5.7KB/0.2012Mbps = 0.2266 sec and C3
1 (3) =

5.7KB/100Mbps = 0.000456 sec (the last node and sink
are connected through Ethernet cable). We can assume
that the processing time (L

max

� L
min

) on each node
is not significant compared to other transmission times.
Furthermore, since the bandwidth of every node is not exactly
known, we can bound their bandwidths by estimated available
bandwidth. Some of the nodes may have higher bandwidth,
but estimating WCERT by available bandwidth will give an
upper bound on the WCERT time. Hence,

WCERT 1,3
1 (3) = 0.623886 sec.

In our experiment, WCERT is found to be 0.382091 sec and
it is 0.623886 sec using trajectory approach. The upper bound
of WCERT will decrease if the capacity of each channel is
known (as a case in LAN network).

VI. CONCLUSION AND FUTURE WORK

In this paper, we applied mixed-criticality scheduling
scheme for wireless multimedia sensor networks. We showed
the gains of adopting mixed-criticality in comparison to
classical cases. An improved end-to-end response time is
achieved by our experiments.

An interesting extension of our work can be to apply the
proposed scheduling model to a larger network. In this case,
it is possible to cluster nodes based on their location in the
network. Such a scalable network will have a cluster head
in each group. The cluster heads manage flows by using
our proposed scheduling scheme. They also form another
hierarchical layer and are linked to the sinks. Hence, applying
the proposed scheduling scheme at each layer of the hierarchy
allows addressing scalability issues in large networks.
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Abstract—We present a new graph-based real-time task model
that can specify complex job arrival patterns and global state-
based mode switching. The mode switching is of a mixed-
criticality style, enabling immediate changes to the parameters
of active jobs upon mode switches. The resulting task model
therefore generalizes previously proposed task graph models as
well as mixed-criticality (sporadic) task models, and further
allows for the modeling of timing properties not found in any of
these models. We outline an EDF uniprocessor schedulability
analysis procedure by combining ideas from prior analysis
methods for graph-based and mixed-criticality task scheduling.

I. INTRODUCTION

We present the Mode-Switching Digraph Real-Time
(MS-DRT) task model, a model that can express complex ar-
rival patterns of jobs and global mode switching. The tasks are
represented with graphs that specify both the arrival patterns
and the synchronization points (mode switches) between tasks.
MS-DRT is a strict generalization of the Digraph Real-Time
(DRT) task model [1] and of the common mixed-criticality
sporadic task model [2], its variations [3] and generaliza-
tions [4]. MS-DRT also enables the modeling of many timing
properties that have no counterpart in the above models, some
examples of which are shown in Section III.

The modes in MS-DRT are system-wide, meaning that all
tasks synchronously switch from one mode to another. Mode-
switching logic is specified per state (vertex) of the task
graphs, so that behaviors may differ depending on the local
state of the tasks. The mode change protocol is of a generalized
mixed-criticality style, enabling immediate changes to the
timing parameters of active jobs at mode changes. As opposed
to the usual mixed-criticality setting, it is possible to have
cyclic mode changes in MS-DRT. In addition to being a
mixed-criticality task model, MS-DRT could, for example, find
applications as a timing model for statecharts [5] by consider-
ing the orthogonal components as tasks and expressing their
arrival and synchronization patterns.

We outline an EDF schedulability analysis procedure for
MS-DRT task systems on uniprocessors. The analysis proce-
dure combines ideas from previously published EDF schedu-
lability analysis methods for DRT task systems [1] and mixed-
criticality sporadic task systems [6], [4]. These are all based on
computing demand bound functions for tasks, and are therefore
possible to combine.

A. Related Work

Mixed-criticality scheduling theory has seen a process of
slowly generalized task models. After the seminal paper by
Vestal [2], which described fixed-priority response-time anal-
ysis for mixed-criticality sporadic task systems, the initial
research effort was based on scheduling static sequences of
mixed-criticality jobs. The work by Baruah et al. [7] provides
a good overview of such mixed-criticality job scheduling.

One of the scheduling theories developed for static job
sequences, the OCBP scheduling approach, was then gen-
eralized for sporadic tasks systems by Li and Baruah [8].
Shortly thereafter, Baruah et al. developed a new EDF-based
scheduling algorithm, called EDF-VD [9], for mixed-criticality
sporadic tasks. The initial work by Vestal on response-time
analysis of fixed-priority scheduling was also improved by
Baruah et al. [10]. This list is by no means exhaustive, many
other works have since been based on the mixed-criticality
sporadic task model.

EDF-based scheduling of mixed-criticality sporadic tasks
was further investigated by Ekberg and Yi [6]. This was based
on very similar runtime scheduling as the previous work on
EDF-VD by Baruah et al. [9], but the analysis was based on
computing demand bound functions for the mixed-criticality
tasks. Demand bound functions offer a handy abstraction for
use in EDF-based schedulability analysis, and have been suc-
cessfully applied to many varying task models outside of the
mixed-criticality setting. For example, EDF scheduling anal-
yses based on demand bound functions have been presented
for task models that offer greater expressiveness than sporadic
tasks regarding job arrival patterns, such as the GMF [11]
and DRT [1] task models. This wide applicability of demand
bound functions is what allows us analyze a combination of
mixed-criticality style mode switching with more general task
models for this paper.

Baruah [3] has also proposed a variation of the standard
mixed-criticality sporadic task model, in which the periods
of sporadic tasks rather than their execution-time estimates
are subject to uncertainties. A generalization by Ekberg and
Yi [4] covers the case where all parameters of the sporadic
tasks may change, and the potential mode switches can be
expressed as a directed acyclic graph instead of being linearly
ordered. Contrary, the MS-DRT task model proposed in this
paper is not constrained to sporadic behavior, and allows cyclic
mode switches.
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II. THE MODE-SWITCHING DIGRAPH REAL-TIME
TASK MODEL

In this section we describe the syntax and semantics of the
MS-DRT task model in as abstract terms as possible. Concrete
examples of MS-DRT tasks, outlining some more real-world
interpretations of the semantics, are presented in Section III.

A. Syntax

An MS-DRT task system is formally defined by a set of
tasks T = {⌧

1

, . . . , ⌧n} together with an associated set of
modes M(T ) = {µ

1

, . . . , µk}. An MS-DRT task ⌧ 2 T is
defined by an ordered tuple (V (⌧), E

cf

(⌧), E

ms

(⌧)), where
• V (⌧) is a set of vertices, representing job types,
• each vertex v 2 V (⌧) is labeled with an ordered tuple

he(v), d(v), µ(v)i 2 (N>0

⇥N>0

⇥M(T )), representing
worst-case execution time, relative deadline and mode of
the corresponding job type, respectively,

• E

cf

(⌧) is a set of directed edges representing task control
flow, such that µ(u) = µ(v) for each (u, v) 2 E

cf

(⌧),
• each edge (u, v) 2 E

cf

(⌧) is labeled with a minimum
inter-release separation time p(u, v) 2 N>0

,
• E

ms

(⌧) is a set of directed edges representing possible
mode switches, such that µ(u) 6= µ(v) for each (u, v) 2
E

ms

(⌧).
We assume that each task ⌧ 2 T satisfies the frame sepa-

ration property, a generalization of the constrained deadlines

concept for sporadic tasks. In other words, for each vertex
u 2 V (⌧) and (u, v) 2 E

cf

(⌧) we have d(u) 6 p(u, v).
Note that, by the above definition, E

cf

(⌧) and E

ms

(⌧) are
disjoint sets, that (V (⌧), E

cf

(⌧)) is a directed graph with up to
k disjoint subgraphs (one subgraph per mode of the task), and
that (V (⌧), E

ms

(⌧)) is a directed multipartite graph (colorable
with one color per mode).

B. Semantics

An MS-DRT system consists of a number of tasks that
all run in the same mode at any particular time point, i.e.,
the modes are system wide. While running in any mode, an
MS-DRT task ⌧ behaves in the same way as an ordinary DRT
task: the task runs by traversing the graph (V (⌧), E

cf

(⌧)),
releasing a job every time a vertex is visited. More formally, a
job is defined by a triple (r, e, d) 2 R3, representing the job’s
release time, execution-time budget and absolute deadline, re-
spectively. A valid job sequence [(r

1

, e

1

, d

1

), (r

2

, e

2

, d

2

), . . .]

is generated by ⌧ if there is a path (⇡

1

,⇡

2

, . . .) through
(V (⌧), E

cf

(⌧)) such that for all i
• ei = e(⇡i),
• di = ri + d(⇡i),
• ri+1

> ri + p(⇡i,⇡i+1

).
As edges in E

cf

(⌧) only go between vertices labeled with
job types of the same mode, traversing (V (⌧), E

cf

(⌧)) never
causes the task to switch mode.

For any point in time and any mode µ, if the latest visited
vertex u of each task ⌧ 2 T has an outgoing mode-switch edge
(u, v) 2 E

ms

(⌧) with µ(v) = µ, then an event can trigger
the system to switch to mode µ. At that time point, each

task ⌧ immediately and synchronously switches to the new
mode µ through one of the edges in E

ms

(⌧), chosen non-
deterministically if there are several such edges. Note that the
model does not specify the origin of the events triggering mode
switches, but rather just says that such events can arrive at
any time. Any event-triggering scheme chosen by the system
designer is then valid for the model. For example, mode-switch
events can be emitted due to the run-time behavior of the
tasks themselves, or due to execution-time overruns of jobs.
They could also be the result of errors or faults, or come from
external sources.

The mode switch protocol is of a (generalized) mixed-
criticality style, meaning that if the last released job of ⌧ is
still active (released, but not finished), it immediately has its
parameters changed to that of the job type at the target vertex.
In this way, the job types labeled on any two vertices u, v,
for which (u, v) 2 E

ms

(⌧), can be thought of as representing
different versions of the same job. Note that when a mode-
switch edge (u, v) 2 E

ms

(⌧) is taken, no new job is released
at vertex v. The job type labeled on v serves to update the
parameters of a job from u that is still active as follows.

1) The job’s total execution-time budget is changed from
e(u) to e(v), but is not replenished. If the job has already
executed for at least e(v) time units, it is immediately
considered to be finished.

2) The job’s absolute deadline is changed to be d(v) time
units after its release time.

Jobs that are active during a mode switch are called carry-over

jobs. Note that a job is still eligible to become a carry-over job
at the time point where its execution-time budget reaches zero;
this allows modeling of mode switches due to execution-time
overruns.

After the switch, the tasks can go on to generate new
job sequences by continuing to traverse (V (⌧), E

cf

(⌧)), now
only being able to visit vertices labeled with job types of the
new mode. The inter-release separation constraints hold across
mode switches. In other words, if the last released job of ⌧

(active or not) was released at time t in a previous mode, then
the first control-flow edge (v, w) 2 E

cf

(⌧) to be followed in
the new mode can be taken earliest at time t+ p(v, w).

A system may start with any mode as the initial one, and
with any vertices with job types of that mode as the initial
vertices of the tasks.1

III. EXAMPLES

In this section we present some example tasks, showing a
few of the properties that can be modeled with the MS-DRT
task model. In the figures we draw the control-flow edges as
straight arrows and the mode-switch edges as wiggly arrows.
The colors help reading, but carry no semantic information.

1In practice, systems will likely have just one or a few well-defined
initial states. However, allowing the system to start in any reachable state
does not negatively affect schedulability. As the goal of the model is to
over-approximate all the possible behaviors of the system, we found it
counterproductive to add syntax to needlessly restrict the behaviors of the
model.
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Example III.1 (Dual-criticality tasks). Figure 1 shows some

tasks that are similar to ordinary mixed-criticality tasks [2],

but with some additional semantics that can not be expressed

in the original model. Upon an execution-time overrun, the

system would switch from mode LO to mode HI.

⌧1 is equivalent to a dual-criticality sporadic task that

gets its execution-time budget increased at a switch

to the high-criticality mode (HI).

⌧2 will instead drop any active job at a mode switch,

and after a delay start a less intensive sporadic

workload. Recall that the inter-release separation

constraints hold transparently across mode switches,

so the extra dummy job at u

3

is introduced to ensure

that u

4

is visited no earlier than 100 time units after

the mode switch as opposed to 100 time units after

the last job release at u

1

.

⌧3 will stop releasing new jobs after a mode switch, but

must finish any active job that it has at that time;

the time given to finish the last job is increased to

70 time units instead of the 30 time units that are

normally given.

⌧4 is a direct extension of a two-vertex DRT task to the

dual-criticality semantics with different execution-

time estimates.

⌧5 represents overhead from the mode switch (e.g.,

reordering priority queues) by creating a one-off job

that must be executed immediately after the switch.

Note that the “worst-case” behavior of ⌧

5

is to

defer the release of a job at z

1

until the time point

where a switch to HI occurs, and then immediately

transforming it with the parameters at z

2

. It is often

the case that the model will have many possible

behaviors that are irrelevant for the concrete system,

as long as the behaviors of the system are a subset of

those of the model it is not an issue for performing

safety analysis.
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Fig. 2. An example task with coarse-grained mode switching.
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Fig. 1. Some example tasks of the ordinary dual-criticality style.

Example III.2 (Coarse-grained mode switching). More tra-

ditional, coarse-grained mode switching can also be modeled

in MS-DRT. Figure 2 shows a task that only has a single

entry point per mode. The rectangular boxes are syntactic

sugar expressing that the outgoing edges have copies from

each of the vertices inside the box. From any of the vertices

v

1

, . . . , v

5

, the task can switch to mode µ

2

by going to v

6

.

Any active job is dropped at v

6

, and some initial work has to

be performed immediately at v

7

. The task can switch to v

1

in

mode µ

1

from any of the vertices v

6

, . . . , v

9

, in the process

dropping any active job and delaying at least 50 time units

before continuing to release the first non-dummy job at v

3

.

Note that while the model dictates that all active jobs of the

task, if any, are dropped at a mode switch, a perfectly valid

behavior of the system that is modeled would be to only switch

to a new mode when the task actually has no active jobs.

Example III.3 (Period-adapting tasks). In this example we

model two tasks, shown in Figure 3, that periodically read

some sensor values and release jobs to process the readings.

Depending on the values that are read, the resulting jobs have
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different execution-time requirements. Some readings result in

“small jobs” with an execution-time requirement of 1 time

unit, and other readings result in “big jobs” that take up to

4 time units to complete.

The tasks are together adapting to the current sensor values

by switching to different modes where the periodicity of the

readings are matched against the execution-time requirements

of the resulting jobs. In mode µ

1

, both tasks are reading and

processing small jobs at the highest possible pace in v

1

and

u

1

, respectively. If ⌧

1

reads a sensor value implying a big job,

it goes to the dummy job v

5

and triggers a mode switch to

mode µ

2

, upon which the dummy job is transformed into a

big job at v

2

. At the same time, ⌧

2

must also switch to µ

2

and

goes to u

3

, where the current (small) job continues with the

same execution-time budget. The period of the sensor readings

in µ

2

is changed to 5 in order to match the total execution-

time requirements of the jobs. If ⌧

1

later reads a sensor value

implying a small job, it will go to v

9

and trigger a mode

switch back to µ

1

. Task ⌧

2

will switch back to µ

1

through u

8

,

allowing it to finish its current job with the deadline given to it

before reverting back to the smaller period of sensor readings.

Similarly, the system switches to mode µ

3

if ⌧

2

reads sensor

values resulting in big jobs, and to µ

4

if both tasks do.

IV. ANALYSIS

In this section we will briefly outline an EDF schedulability
analysis of MS-DRT task systems on uniprocessors. It is
based on ideas from previously published EDF schedulability
analyses of regular DRT task systems [1] and mixed-criticality
sporadic task systems [6], [4].

Following the analysis for the generalized mixed-criticality
sporadic task model [4], we define the mode structure G(T ) of
an MS-DRT task system T as the directed graph (V,E) where
V = M(T ) is the set of modes and E contains edges for the
possible mode switches.2 That is, (µi, µj) 2 E if and only if
each task ⌧ 2 T has vertices u, v such that (u, v) 2 E

ms

(⌧)

and µ(u) = µi and µ(v) = µj . For example, Figure 4 shows
the mode structure for the tasks in Example III.3.

To reduce the complexity of the schedulability analysis we
analyze each mode and mode switch separately. For each mode
µj we will analyze its schedulability during all possible time
intervals that do not include a mode switch. For every mode
switch (µi, µj) 2 E we will analyze the schedulability of µj

for all possible time intervals that start with a switch from µi

to µj , over-approximating any workload that can be carried
over from the previous mode.

The analysis is based on finding demand bound functions

for each task. The demand bound functions must safely over-
approximate the total execution demand of all jobs from the
task that together can have their entire scheduling windows
(from release time to deadline) within a time interval of a given
length. Let dbfµj (⌧, `) denote a demand bound function for ⌧
in mode µj for any time interval of length ` that do not contain

2In [4] the mode structure is constrained to be a directed acyclic graph,
here it can be any directed graph.

⌧
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Fig. 3. Two tasks that dynamically adapt to each other’s requirements.

a mode switch. Let dbfµi!µj (⌧, `) instead denote a demand
bound function for task ⌧ in mode µj for any time interval of
length ` that start with a switch from µi to µj . Only the latter
kind of demand bound function will be over-approximate. The
pessimism there comes from assuming the worst-case behavior
in the previous mode when bounding the demand of carry-over
jobs; this is the price that we pay for analyzing the modes
in relative separation. Experimental results from [4], where a
similar source of pessimism exists, shows that the resulting
analysis procedure still offers good performance compared to
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Fig. 4. The mode structure of the tasks in Example III.3.

other methods. Considering modes in separation also enables
us to handle systems with cyclic mode switches with relative
ease, as we only need to look to the immediately previous
mode to over-approximate the demand of carry-over jobs.

The demand bound functions described above can be used in
a schedulability test as expressed by the following proposition.

Proposition IV.1. An MS-DRT task system T with mode

structure G(T ) = (V,E) is schedulable by EDF if the

following two conditions hold for all µj 2 V :

8` > 0 :

X

⌧2T

dbfµj (⌧, `) 6 `, (1)

8µi 2 pred(µj), 8` > 0 :

X

⌧2T

dbfµi!µj (⌧, `) 6 `, (2)

where pred(µj)
def
= {µi | (µi, µj) 2 E} .

Conceptually, the above proposition checks the schedula-
bility of each mode in complete isolation. It can be thought
of as |M(T )| separate schedulability tests. For each mode
µj , we ensure in condition (1) that the demand of workload
released entirely inside µj is schedulable and in condition (2)
that workload including carry-over jobs from all possible
predecessor modes is schedulable. Considering this, a proof
of the above proposition can be made very similar to, e.g., the
proof of Theorem 1 in [11] and is omitted for space reasons.

A. Computing demand bound functions

The computation of demand bound functions for MS-DRT
tasks is based on the method for computing such functions
for regular DRT tasks [1]. A quick review of this method is
presented below.

1) Demand bound function computation for DRT: For any
path ⇡ = (⇡

1

, . . . ,⇡m) through a DRT graph, the execution-
time demand e(⇡) and deadline d(⇡) of ⇡ is defined as

e(⇡)

def
=

mX

i=1

e(⇡i),

d(⇡)

def
=

m�1X

i=1

p(⇡i,⇡i+1

) + d(⇡m).

To compute a (precise) demand bound function of a DRT task
for a time interval length `, we must find the maximum e(⇡)

for all paths ⇡ through the graph with d(⇡) 6 `.

As the number of paths through a graph grows exponentially
with the path length, a path abstraction called demand tuples

was introduced in [1] to alleviate this problem. Each demand
tuple can abstractly represent several concrete paths that are
equivalent for the purposes of computing the demand bound
function. The most basic demand tuple abstraction of a path
⇡ = (⇡

1

, . . . ,⇡m) is simply a triple he(⇡), d(⇡),⇡mi with
the execution demand, deadline and final vertex of the path.
The same demand tuple would abstract all paths that share
these three properties. The demand tuples can be used instead
of concrete paths for traversing the task graph by extending
them with more vertices. If (u, v) is an edge of the graph
and he, d, ui a demand tuple for path ⇡, then he0, d0, vi with
e

0
= e+ e(v) and d

0
= d� d(u)+ p(u, v)+ d(v) is a demand

tuple for ⇡ extended by v.
The problem of finding the maximum e(⇡) for any path

⇡ with d(⇡) 6 ` can then be transformed into finding
max {e | he, d, vi demand tuple with d 6 `}. To generate all
demand tuples required to compute the demand bound function
for all relevant values of the interval length `, we first
find an upper bound `

max

on the values of ` that must be
considered for schedulability. We then create demand tuples
he(v), d(v), vi for all vertices (or 0-length paths) v, and then it-
eratively extend each demand tuple he, d, vi with more vertices
as explained above, as long as d 6 `

max

. Duplicate demand
tuples can be discarded on the fly, and other optimizations
can be applied as well [1]. It was shown in [1] that a pseudo-
polynomial `

max

can be found assuming that the utilization of
the task set is bounded by a constant strictly smaller than
1. There are therefore at most pseudo-polynomially many
demand tuples to consider, and the process of computing
the demand bound function is of pseudo-polynomial time
complexity.

2) Demand bound function computation for MS-DRT: The
above method for computing demand bound functions can
be used for finding the intra-mode demand bound functions
dbfµj (⌧, `) for MS-DRT tasks ⌧. The initial demand tuples
he(v), d(v), vi are created from vertices v 2 V (⌧) with µ(v) =

µj , and the tuples are extended using edges from E

cf

(⌧). In
fact, one can apply the demand bound function computation
for DRT tasks directly on the subgraph (V (µj , ⌧), Ecf

(⌧)),
where V (µj , ⌧)

def
= {v 2 V (⌧) | µ(v) = µj}. Computing a

bound `

max

on the values of ` that must be considered for
mode µj in Proposition IV.1 can be done exactly as in [1],
using the set {(V (µj , ⌧), Ecf

(⌧)) | ⌧ 2 T} as the set of DRT
tasks.

It is more difficult to compute the demand bound functions
dbfµi!µj (⌧, `) for time intervals starting with a mode switch,
as these must account for possible carry-over jobs from the
previous mode. To achieve this, we adapt the ideas from [6],
[4] for bounding the demand of carry-over jobs for mixed-
criticality sporadic tasks. Consider a task ⌧ that switches from
mode µi to µj through an edge (u, v) 2 E

ms

(⌧), as illustrated
in Figure 5.

We will assume that mode µi is schedulable when comput-
ing dbfµi!µj (⌧, `), i.e., that all deadlines are met in µi. By
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t

t+ d(u) t+ d(v)

Release of job type labeled on u.

Mode switch via edge (u, v) 2 Ems(⌧).
The job is transformed to the job type labeled on v.

d(v)� d(u)

x

Time

Fig. 5. Task ⌧ switches from µi to µj trough an edge (u, v) 2 Ems(⌧).
The parameters of the active job are updated with the parameters of the job
type labeled on vertex v. The job’s remaining execution-time budget in µi is
at most x time units, assuming that µi is schedulable.

reasoning similar to that in [4], this is a safe assumption for
the purposes of finding demand bound functions to be used
for schedulability analysis as in Proposition IV.1. With this
assumption, we can conclude that if the mode switch happens
x time units before the carry-over job’s absolute deadline in
µi, the job can have at most x time units left of its execution-
time budget in µi at that time point. The job’s remaining
execution time budget as it enters mode µj is then at most
e(x, u, v)

def
= min(x, e(u))+e(v)�e(u) time units. The length

of the time interval until its new absolute deadline in µj is
d(x, u, v)

def
= x + d(v) � d(u) time units. For the purposes

of computing the demand bound function, we consider the
carry-over job in µj as a new job released at the time of
the mode switch, with execution-time budget and deadline
as above. Such a job, if it exists, must be the first job to
contribute demand to a time interval starting at a mode switch.
A straightforward approach to computing dbfµi!µj (⌧, `) is
then to create the initial demand tuples

he(x, u, v), d(x, u, v), vi

for all (u, v) 2 E

ms

(⌧) and x 2 [0, e(u)] such that µ(u) = µi

and µ(v) = µj . Note, however, that x = e(u) corresponds to
the “worst-case” demand in the sense that a smaller x leads
to e(x, u, v) decreasing by the same amount as d(x, u, v). If
the demand of the entire task set can be too high for some
interval length `

1

with x 6 e(u), then it can also be too high
for another interval length `

2

> `

1

when x = e(u).3 It is
therefore enough for our purposes to create the above demand
tuples with x = e(u).

If the task has no active job at the time of the switch from
µi to µj , then the first job to contribute demand in µj must be
of a job type labeled on a vertex w such that (v, w) 2 E

cf

(⌧)

and (u, v) 2 E

ms

(⌧) for some u, v with µ(u) = µi and µ(v) =

µj . For all such vertices w, we need to create demand tuples
he(w), d(w), wi. These demand tuples, together with the ones

3This reasoning only holds under the assumption of a unit-speed dedicated
processor as in Proposition IV.1. If we instead use some supply bound
function (that is piecewise-linear between integer points) as a model of the
computing platform, we might have to create demand tuples for all integers
x 2 {0, . . . , e(u)}.

for the carry-over jobs above, are all that are needed for safely
abstracting the demand of all 0-length paths that start at a
switch from µi to µj . These initial demand tuples can then
be extended with additional vertices in the same manner as
for regular DRT tasks, and ultimately be used to construct a
dbfµi!µj (⌧, `) for use in Proposition IV.1.

V. CONCLUSIONS

We have presented MS-DRT, a task model that supports
the modeling of complex arrival and synchronization patterns
with state-based mode changes. The mode switching proto-
col is of a mixed-criticality style, implying that MS-DRT
generalizes both previous graph-based and mixed-criticality
(sporadic) task models. MS-DRT also enables the modeling
of many types of systems that fall outside of what is usually
considered for mixed-criticality scheduling, some examples of
such systems were shown in Section III. We have outlined how
EDF schedulability analysis for MS-DRT can be performed
by combining ideas from previous methods that use demand
bound functions. We believe that MS-DRT offers a type of
expressiveness not seen in commonly used models of mode-
switching systems. At the same time, it offers the possibility
of schedulability analysis that is significantly more efficient
than for powerful timing models such as timed automata [12].

The schedulability analysis for mixed-criticality sporadic
tasks that we adapted for MS-DRT can be greatly improved
by a parameter-tuning preprocessing procedure [6], [4]. This
tuning artificially decreases some of the relative deadlines in
order to shift demand between the demand bound functions
of different modes. A similar procedure can be applied to
MS-DRT tasks, although the process of tuning is considerably
more involved. As future work we plan to tackle this challenge,
as well as to work out the remainder of the schedulability
analysis in more technical detail.
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Abstract—Modern safety-critical systems, such as avionics,
tend to be mixed-critical, because integration of different tasks
with different assurance requirements can effectively reduce their
costs. Scheduling is one of the main challenges of such systems.
In this work we show that a generalization of the Time Triggered
(TT) scheduling paradigm, Single Time Table per Mode (STTM)
dominates other approaches like Fixed Priority or Fixed Priority
per Mode (FPM). We also propose an algorithm to transform any
FPM priority assignment to an equivalent set of STTM tables.

I. INTRODUCTION

Advances in technology is leading towards an increasing
trend in integration of multiple functionalities on a single chip.
Integration is an effective way of reducing cost and power
consumption of embedded systems. On the other hand, for
safety-critical domains, such as avionics, this is leading to
the integration of tasks with significantly asymmetric safety
requirements on a single assembly of processing resources.

Such system have called into existence a special Mixed-
Critical System (MCS) scheduling theory, that has been devel-
oped at least since 2007 [1]. This theory treats the asymmetric
safety requirements by adequate scheduling methods, which
leads to much more efficient resource usage compared to
classical scheduling approaches [2]. In particular, MCS-aware
scheduling methodologies were demonstrated in [3] to signif-
icantly outperform traditional approaches such as reservation-
based techniques.

A major branch of the MCS scheduling theory is the
certification-cognizant mixed-critical scheduling, which as-
sumes that all tasks are hard real-time and supports the
certification prescribed by safety-critical standards such as
DO�178B [4]. Although this approach follows these prescrip-
tions in a rather simple pragmatic way, it faces NP-complete
problems even under basic assumptions [3].

Following a significant volume of previous MC scheduling
work (e.g., [3], [5], [6], [7]) in this paper we consider the
basic problem of single-core scheduling for a finite set of jobs
whose exact arrival times are known a priori. As stated in [6],
this assumption applies without restrictions when generating
schedules for time-triggered architecture, in this case one
can just apply a finite job algorithm, like the one presented
in this paper, to a hyperperiod of periodic tasks. We also
restrict ourselves to dual-critical problems. This restriction
is often assumed in literature ([5], [6], [7], [8], [9]). Dual-
critical system are also of practical interest, such applications

The research leading to these results has received funding from
CERTAINTY – European Community’s Seventh Framework Programme
[FP7/2007-2013], grant agreement no. 288175.

as Unmanned aerial vehicles (UAVs) assume two criticality
levels: safety critical and mission critical.

The Own-Criticality Based Priority (OCBP) [5] is theoreti-
cally the best among all Fixed Priority per job (FP) scheduling
algorithms for MCS. Recent extensions of the fixed job priority
policy [8], [9] perform a switch between different priority
tables for different modes. This Fixed Priority per Mode per
job (FPM) policy can lead to better results due to their higher
flexibility. In particular Mixed-Critical Earliest Deadline First
(MCEDF) [10] has been proven to dominate OCBP, and hence
FP scheduling, for dual-critical problems.

In [6] Baruah et al. propose a Time Triggered (TT) version
of OCBP. This scheduling algorithm uses one static table
per criticality mode. We will call this approach Single Time
Table per Mode (STTM). The Time Triggered algorithms are
important because they are easy to certify, since the time
intervals in which each job executes are statically known a
priori, while in an approach like FPM the jobs can interact in
different ways depending on the execution times. The only
unknown variable in STTM scheduler is the time when a
switch will occur, but there are only a small number1 of
precomputed instants of time where this can happen, while
in FPM these are infinite. Thus, even if STTM is a dynamic
scheduler, all the possible executions can be easily enumerated,
making certification easier. Also some commercial systems
implement TT as default scheduling mechanism. In general, it
is NP-complete problem to decide whether optimal scheduling
policy (OPT) exists.

This work focuses on STTM algorithms, giving two main
contributions: we prove that STTM approach dominates FPM
and we give an algorithm that allows to transform an FPM
priority assignment into a set of STTM tables. The following
gives a relation between the sets of schedulable instances for
dual-critical problems:

FP
1
( MCEDF

2
( FPM

3
( STTM✓OPT (1)

Inclusion 1 is proved by dominance of MCEDF over
OCBP [10]. Next, Inclusion 2 is true by definition of MCEDF.
We can easily prove that the inclusion is strict under the
hypothesis that P 6= NP . In fact under the restrictive hy-
pothesis that all arrival times are equal to zero, we have
that FPM is optimal, but the problem remains NP-complete
even under this assumption [3]. If we assume by contradiction
that MCEDF=FPM, then MCEDF could solve NP-complete
problems in polynomial time. Example A.1 shows an instance
that is FPM-schedulable but not MCEDF-schedulable.

1equal to the number of HI jobs in a dual-critical system
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Inclusion 3 is the main contribution of this paper. We will
prove in Section IV that there exists an algorithm that can
transform any FPM priority assignment into STTM tables. The
strictness of the inclusion is shown by Example IV.1. Note that
since the FPM policy is completely defined by a finite set of
basic scenarios [3], such scenarios could be used as tables for
a TT-like scheduling. This is theoretically feasible, but it has
little practical interest, since it would potentially require a huge
number of tables, whereas we require only two tables. Hence
in this paper we actually propose a TT extension for MCEDF
or any other FPM policy.

II. BACKGROUND

Consider a set of hard real-time jobs having different
levels of criticality. It is common in literature to model
different criticality requirements by giving different worst-case
execution times (WCETs) for the same job. In dual-criticality
systems we have the highly level, denoted as ‘HI’, and the
low critical (normal) level, denoted as ‘LO’. Every job gets
a pair of WCET values: the LO WCET and the HI WCET.
One important remark is that both HI and LO jobs are hard
real-time, so both must terminate their executions before the
deadlines. But only HI jobs undergo certification. This means
that the designer is confident that the jobs will never exceed
their LO WCET, calculated by exhaustive measurements and
adding some practical margin. However, it is required to prove
to the certification authorities that the HI jobs will meet
the deadlines even under the unlikely event that some jobs
would execute at their HI WCET, calculated by more safe
and pessimistic formal WCET estimation tools, required for
certification.

A. Formalism

In a dual-criticality MCS, a job Jj is characterized by a
5-tuple Jj = (j, Aj , Dj ,�j , Cj), where:

• j 2 N+ is a unique index

• Aj 2 Q is the arrival time, Aj � 0

• Dj 2 Q+ is the deadline, Dj > Aj

• �j 2 {LO,HI} is job’s criticality level

• Cj 2 Q2
+ is a vector (Cj(LO), Cj(HI)) where Cj(�)

is the WCET at criticality level �.

The index j is technically necessary to distinguish be-
tween the jobs with the same parameters. We assume that
Cj(LO)  Cj(HI). We also assume that the LO-criticality jobs
are forced to terminate after Cj(LO) time units of execution,
so (�j = LO) ) Cj(LO) = Cj(HI). An instance J of
the MC-scheduling problem is a set of K jobs. A scenario
of an instance J is a vector of execution times of all jobs:
(c1, c2, . . . , cK). If at least one cj exceeds Cj(HI), the scenario
is called erroneous. The criticality of scenario (c1, c2, . . . , cK)
is the least critical � such that 8j , cj  Cj(�). A scenario
is basic if for each j either cj = Cj(LO) or cj = Cj(HI).

A (preemptive) schedule is a mapping from physical time
to J[{?}, where ? denotes no job. Every job should start at
time Aj or later and run for no more than Cj(HI) time units.
The online state of a run-time scheduler at every time instance

consists of the set of terminated jobs, the set of ready jobs,
i.e., jobs that have arrived in the past and did not terminate
yet, the progress of ready jobs, i.e., how much each of them
has executed so far, and the current criticality mode, �mode,
initialized as �mode = LO and switched to ‘HI’ as soon as a
HI job exceeds Cj(LO). A schedule is feasible if the following
conditions are met:

Condition 1. If all jobs run at most for their LO WCET, then
both critical (HI) and non-critical (LO) jobs must terminate
before their deadline.

Condition 2. If at least one job runs for more then its LO
WCET, than all critical (HI) jobs must terminate before their
deadline, whereas non-critical (LO) jobs may be even dropped.

An instance J is clairvoyantly schedulable if for each
non-erroneous scenario, when it is known in advance (hence
clairvoyantly), one can specify a feasible schedule. By default,
the scheduling is non-clairvoyant.

Based on the online state, a scheduling policy determin-
istically decides which ready job is scheduled at every time
instant. A scheduling policy is optimal (or correct) for the
given instance J if for each non-erroneous scenario it generates
a feasible schedule. We assume without loss of generality that
the scheduling policies are monotonic per scenario, which
means one can check their optimality by simulating for
all basic scenarios [3]. A mode-switched scheduling policy
uses �mode in the scheduling decisions, e.g., to drop the
LO jobs, otherwise it is mode-ignorant. An instance J is
MC-schedulable if there exists an optimal scheduling policy
for it. A fixed-priority scheduling policy is a mode-ignorant
monotonic policy that can be defined by a priority table PT,
which is a K-sized vector specifying all jobs (or, optionally,
their indexes) in a certain order. The position of a job in PT
is its priority, the earlier a job is to occur in PT the higher
the priority it has. Among all ready jobs, the fixed-priority
scheduling policy always selects the highest-priority job in PT.
If a scheduling policy cannot be defined by a static priority
table, it is called dynamic-priority.

A Time-Triggered (TT) table is a static, pre-computed
table that defines at every instant of time which job must be
scheduled. We define a Single Time Table per Mode (STTM)
scheduling as an extension of TT scheduling that associates to
each mode a single TT table.

In this paper, we consider the construction of STTM table
starting from fixed priority per mode (FPM) policy, that is a
fixed-priority scheduling that has a different PT for each mode.
We assume that the scheduler is preemptive. For the given
job set J, this policy assumes two fixed-priority tables PTLO

before the mode switch and PTHI after the mode switch. We
assume that in the HI mode the LO jobs are dropped and hence
excluded from PTHI

2.

The basic scenario LO is the scenario where all jobs
execute for time C(LO). Under the FPM policy, the basic
scenario HI-J is the scenario where job J is the first job that
switches into HI mode after having executed for time C(LO).

2This assumption is legal according to Condition 2 and can only improve
the schedulability
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After the switch, job J and all non terminated HI jobs execute
for time C(HI).

If we simulate the FPM policy for LO and all HI-J
scenarios, we obtain function ELO and EHI�J , defined as
ELO|HI�J : T ime ! {?} [ J that specify for every time
instance the job that runs at given time instance or ? when the
processor is idle, when one job preempts another, or when a job
starts/terminates. Note that this leads to open intervals of job
activity and closed or single-point intervals of idle processor.
These functions could be used for time-triggered scheduling,
where we start in LO table defined by ELO and switch to HI-J
table defined by EHI�J whenever a given HI job J switches
to HI mode. But this would require an individual table per
HI job, which is of little practical value.

III. TRANSFORMATION ALGORITHM

Our goal is to obtain one single table HI* for the switch
to the HI mode by any HI job. In this section we will
show how to build such a table, while in Section IV we
will show its correctness. We propose a method to generate
this table by simulating fixed-priority for HI jobs with C(HI)
times using priority table PTHI and assuming that a HI job
can be disabled at any time when all three enabling rules
defined below are false. Whenever a non-terminated HI job
is (temporarily) disabled, a lower-priority HI job can execute
(priority inversion).

Before we give the rules, let us give some supplementary
definitions.

Let TLO
j (t) (resp. THI⇤

j (t)) be the cumulative execution
progress of job Jj by time t in table LO (resp. HI*). We
call a HI job that has executed for more than its C(LO) a
switched job. We say that such a job switches at time t if
TLO
j (t) = CLO. It is non-switched otherwise.

The method to generate HI* is as follows:

• at any time t, we execute the highest priority (accord-
ing to PTHI ) enabled HI job

• a job Jj is enabled at time t if:
� the job has arrived: t > Aj

� the job has not yet executed for its HI WCET:
THI⇤
j (t) < Cj(HI)

� at least one of the following rules is true:

TLO
j (t) = Cj(LO) (2a)

THI⇤
j (t) < TLO

j (t) (2b)
THI⇤
j (t) = TLO

j (t) ^ ELO(t) = j (2c)

Informally, Rule (2a) allows switched jobs to run as soon as
possible, while Rules (2b) and (2c) assure that a job will not
run in HI* for more time than in LO before the switch.

Example III.1. Let us consider the following instance as an
example:

Job A D � C(LO) C(HI)
1 0 12 HI 3 5
2 6 11 HI 2 4
3 7 8 LO 1 1
4 1 4 HI 1 2

Fig. 1. Basic scenarios and TT tables

and assume the following FPM priority assignment3:

PTLO = J4 � J1 � J2 � J3
PTHI = J4 � J1 � J2

Figure 1 presents all the basic scenarios and the table
HI*. Consider this table. At time 0, only J1 has arrived,
and it is enabled by Rule (2c). At time 1, J4 arrives, it has
higher priority then J1 and it is enabled by Rule (2c), so it
is chosen by the algorithm to be executed. At time 2 for job
J4 Rule (2c) will be false, but Rule (2a) will become true,
so we will continue execute it until time 3. At time 3 J4 will
terminate, so J1 will be enabled by Rule (2b) until time 5 and
by Rule (2a) from 5 on. So J1 will continue its execution till
time 6, when J2 arrives. J2 is enabled by Rule (2c), and it
has higher priority than J1, so it will be executed until time 7.
At this instant Rule (2c) becomes false for J2, disabling it. So
we execute J1. At time 8 J1 terminates and J2 is enabled by
Rule (2c). At time 9 Rule (2c) is false for J2, while Rule (2a)
becomes true. So J2 continues its execution until time 11, when
it terminates.

It is easy to verify the correctness of TT scheduling that
uses LO and HI* as tables. In fact in table LO all the jobs
meet the deadline. When there is a switch, at time t, from LO
to HI*, all HI job Jj must have from time t a quantity of time
reserved for them in HI* equal to Cj(HI)� TLO

j (t). In our
example, if there is a switch in the LO table at time 2, caused
by job J4, then J1, J4 and J2 will have enough remaining time
reserved in HI* (respectively 4 = C1(HI)� TLO

1 (2) = 5� 1,
1 = C4(HI)�1 and 4 = C2(HI)�0), and will terminate before
their deadlines. In this case we will drop job J3, since we do
not care about LO jobs when in HI mode. Similarly, in the case
of a switch at time 4, caused by J1, then J1 and J2 will have
respectively 3 = C1(HI) � 2 and 4 = C2(HI) � 0. Note that
in this case J1 will have one time unit more then it actually
needs. Finally, if there will be a switch at time 9, caused by
job J2, this job will have 2 other time units, terminating at
time 11, meeting its deadline.

IV. PROOF OF DOMINANCE

We will prove in this section the Inclusion 3 of Equa-
tion (1). At the same time we also provide an algorithm to
construct STTM tables from FPM priority tables, generated
by an algorithm such as MCEDF.

The following is the main claim of this paper:

3Can be computed using MCEDF [10]
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Theorem IV.1. If the FPM policy leads to a feasible schedule,
then a switched time triggered schedule that uses LO and HI*
as, respectively, LO-mode and HI-mode table, is a feasible
schedule as well.

To prove it, we first show that:

Lemma IV.2. If at any time we switch from LO to HI*, then
all the unterminated jobs will have enough time reserved in
HI* to terminate their work.

First, let us comment that, according to our rules to con-
struct HI*, no HI jobs get disabled forever because eventually
Rule (2a) becomes true, since all LO jobs eventually terminate.
Thus, all HI jobs get a total time C(HI) reserved in HI*.
Consequently, if a job switches at time t, then this and any
other job is guaranteed to get C(HI)�THI⇤

j (t) , but needs to
get at least C(HI)� TLO

j (t).

Therefore the lemma can be equivalently stated as follows:

no non-switched HI job makes more progress in HI* than
in LO.

Formally:

8t , TLO
j (t) < Cj(LO) ) TLO

j (t) � THI⇤
j (t)

Proof of Lemma IV.2: At time t = 0 the lemma thesis is
obviously true, and with progress of time it can be invalidated
only during the time when a job is scheduled in HI*. However,
as long as TLO

j (t) < Cj(LO) job Jj can only be scheduled
when either (2b) or (2c) is true, but they both imply that we
have TLO

j (t) � THI⇤
j (t).

Let TTHI(LO|HI�J 0)
J be the termination time of J in

HI* (respectively, LO, HI-J’).

Theorem IV.3. Let J least be the least priority job in PTHI ,
then 9J 0 : TTHI⇤

Jleast  TTHI�J 0

Jleast

Let us first give some definitions and support lemmas. A
busy interval in some table (be it LO, HI-J or HI* table) is
a maximal continuous interval of time where some jobs are
enabled for execution, where for table HI* we apply special
rules defined earlier which can disable a job temporarily. When
such rules are not applied, the busy intervals are obviously
open intervals, because they are composed of union of (in-
tersecting) open intervals between arrival and termination of
different jobs. We state without proof that even with the extra
rules we defined earlier for HI*, the busy intervals remain to
be open intervals.

For convenience, we use the term ‘busy interval’ also for
the set of jobs that are enabled at least once inside the busy
interval, and denote it BI , e.g., BIHI⇤ for busy intervals in
HI*. Note that for this table, unlike the other tables, it is not
always so that the total interval duration is exactly equal to
the total work of jobs in BI , because there are rules that
can temporarily disable a job after its arrival and before its
termination. Therefore, the total work of jobs in BIHI⇤ can
exceed the length of the busy interval. This also means that a
job may belong to several busy intervals of HI*.

In between BI , there are closed, sometimes single-point,
idle intervals. For HI*, we would like to distinguish an idle

interval as a hole if inside this interval there are HI jobs that
have arrived and not yet terminated, and are disabled because
neither of the rules (2a), (2b), (2c) is true. The idle intervals
that are not holes, are called empty intervals, i.e., those where
the job queue is empty.

For instance in Figure 1 in HI* there are two busy intervals:
(0,8) and (8,11), thus we have a hole of size 0 at time 8. This
happens because we have that immediately before time 8 J1 is
enabled by Rule (2a) while J2 is disabled. On the other hand,
at time 8 J1 is disabled (because it terminates) while J2 is
enabled by Rule (2c).

The following proposition is well-known for fixed-priority
policies, but needs to be re-established because we added the
rules that can disable jobs.

Lemma IV.4. If J least is the least priority job in PTHI then
it terminates at the end of some busy interval BIHI⇤.

Proof: Let us assume by contradiction that J least termi-
nates inside a busy interval at time t. This means that at time
t there is another enabled job (by definition of busy interval).
If that is so, then J least, having the least priority, should not
be running at time t.

Lemma IV.5. Let BIHI⇤ = (a, b) be a busy interval in HI*.
At time a, the set of non-terminated HI jobs is the same in
tables LO and HI*, and for all of them holds that at time
a the cumulative execution progress in LO is the same as in
HI*.

Proof: Consider time a. The lemma thesis is obvious for
any job that did not arrive yet, so in the sequel we consider
only those jobs that have arrived.

If a job J is non-terminated in LO then it is non-terminated
in HI* as well by Lemma IV.2. In addition, by the same lemma
we have:
(I) THI⇤

J (a)  TLO
J (a).

On the other hand, if job J is non-terminated in HI*
then the fact that it is not enabled at time a (by lemma
condition) implies that Rule (2a) is false and hence the job
is non-terminated in LO as well. Combined with the earlier
observations, we conclude that the sets of non-terminated jobs
at time a in these two tables are equal. In addition, also
Rule (2b) is false, which means:
(II) THI⇤

J (a) � TLO
J (a).

Combining (I) and (II) we have the equality of the cumulative
times.

Corollary IV.6. Let BIHI⇤ = (a, b) be a busy interval in
which some job switches. Let Js be the first such job, and let
ts be the time at which the switch occurs.

Then during the interval (a, ts) tables HI*, HI-Js and LO
are identical

Proof: Notice that HI-Js and LO are equal by construc-
tion in (0, ts) and hence in (a, ts) as well. Let us compare LO
and HI*. At time a the set of non terminated jobs in these
two tables are equal. In interval (a, ts) no job switched yet,
therefore all the jobs that run in HI* should satisfy Rule (2c),
which is due to the fact that the other two rules require a switch
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to have occurred. As long as Rule (2c) holds, the HI* table
replicates the LO table, and because it fills time interval (a, ts)
continuously, as ts 2 BIHI⇤, we have proved our thesis.

Proof of Theorem IV.3: Let BIHI⇤ = (a, b) be the
busy interval in which J least terminates. By Lemma IV.4,
TTHI⇤

Jleast = b. By Lemma IV.5, job J least is not yet switched
at start of this interval, and since this job terminates at the end
of BIHI⇤, we know also that it switches inside this interval
as well, so Corollary IV.6 applies for this interval.

Let us assume that BIHI⇤ = (a, b) is followed by an empty
interval, i.e., an idle interval which appears due to termination
of all HI jobs that have arrived so far. Because in this case all
the jobs of BIHI⇤ have terminated by time b, we have:

b = a+
X

j2BIHI⇤

�
Cj(HI)� THI⇤

j (a)
�

Let Js be the first job to switch in BIHI⇤, at time ts. By
Lemma IV.5 and Corollary IV.6, we have that the same jobs,
with the same remaining execution time as in HI* will run
from time a in HI-Js before the switch and, by construction
after the switch as well. Therefore BIHI⇤ = BIHI�Js and
J least, being the least-priority job, will terminate at time b in
both tables.

Let us now examine the other case, in which BIHI⇤ =
(a, b), the busy interval where J least terminates, is followed
by a hole, i.e., the idle interval which appears because at time b
the rules for table HI* have disabled the non-terminated jobs.
Also in this case J least by our hypothesis and Lemma IV.4
will terminate at time b, but in this case by construction not
all jobs of BIHI⇤ terminate by time b:

b < a+
X

j2BIHI⇤

�
Cj(HI)� THI⇤

j (a)
�

(3)

Let Js be the first job to switch in BIHI⇤, at time ts. Again
by Lemma IV.5 and Corollary IV.6 we observe the same initial
state and subsequent behavior in tables HI* and HI-Js of all
non-terminated HI jobs during the time interval (a, ts]. So we
conclude that all jobs of BIHI⇤ run in HI-Js after time a
continuously, at time a their total remaining work is equal to:

X

j2BIHI⇤

�
Cj(HI)� THI⇤

j (a)
�

In line with equation (3), in order to complete this workload,
table HI-Js has to continue execution after time b. New
jobs may arrive before the termination of the busy interval
BIHI�Js . this busy interval executes all these jobs, J least

being the last one to terminate. So we have:

BIHI⇤ ✓ BIHI�Js

and

TTHI�Js

Jleast � a+
X

j2BIHI⇤

�
Cj(HI)� THI⇤

j (a)
�

(4)

Combining (3) and (4), and observing that TTHI⇤
Jleast = b,

we have that also in this case in HI-Js the least-priority job
terminates no earlier than in HI*. This completes the proof of
Theorem IV.3.

Fig. 2. The TT tables for the instance of Example IV.1

Proof of Theorem IV.1: From Lemma IV.2 we know
that in any possible scenario all the HI jobs will have enough
processor resource to terminate. The termination time of J least

is guaranteed to meet the deadline due to the hypothesis that
it meets deadline in the FPM policy and Theorem IV.3. Now
let us prove that also the HI jobs with higher priority in PTHI

meet their deadlines. Let J least be the next least priority HI job
after J least in the PTHI table. Let J be the currently examined
problem instance and let J be the instance obtained from J
by reducing the criticality of J least to LO. It is easy to show
that the HI-mode table HI⇤ obtained for this new instance
coincides with HI* except that the intervals where J least is
running are idled. So, J least will terminate in HI* at the same
time as in HI⇤, where by Theorem IV.3 applied to instance J
it will terminate no later than the latest termination under FPM
policy. Obviously, also the latest termination of the FPM policy
for job J least is the same for both J and J. Because by our
hypothesis this policy is feasible we conclude that J least meets
its deadline. Iterating this reasoning recursively, we argue that
all HI jobs meet their deadline in HI*, and thus we have our
thesis.

Theorem IV.1 proves that FPM ✓ STTM. To prove the
strictness of the inclusion, we give the following counter-
example:

Example IV.1. Let Jd be the following instance:

Job A D � C(LO) C(HI)
1 0 5 HI 2 3
2 1 3 HI 1 2
3 0 3 LO 1 1

No FPM policy would schedule it. The only correct
scheduling policy for Jd is to execute J1 for 1 time unit, then
J2. If J2 terminates after 1 time unit, we execute J3 and then
J1 again, otherwise we drop J3 and execute J1. It is easy
to see that this is not an FPM schedule, as J1 changes its
priority w.r.t. J3 in the LO scenario. This scheduling policy
can be implemented using STTM tables as shown in Figure 2

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a method to transform any FPM
priority assignment into a set of STTM tables. This has a
practical importance since safety critical systems are designed
with a TT (also known as static) scheduler. A TT scheduler
has a behavior that is completely precomputed. This makes
certification of such system much easier. Although STTM is
not static, it has a finite number of switches that can be trivially
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checked the same way as TT. From a theoretical point of view,
we proved that STTM dominates FPM.

In future work we plan to extend this algorithm for more
than two levels of criticality. Also, it is necessary to investigate
the mixed-critical scheduling of task graphs, where there are
data dependencies between jobs.
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APPENDIX

The following example proves that MCEDF  FPM .

Example A.1. Consider the following instance:

Job A D � C(LO) C(HI)
1 0 8 LO 5 5
2 0 10 HI 2 3
3 0 11 HI 2 5

applying MCEDF4 to it we will have the following FPM
priority assignment:

PTLO = J2 � J1 � J3
PTHI = J2 � J3

It is easy to show that this priority assignment is not
correct. In fact, if J2 executes for C2(LO) and J3 executes for
C3(HI), then J3 will terminate at time 12, missing its deadline.

4refer to [10] to know how to compute these priorities

Fig. 3. Basic scenarios for Example A.1

On the other hand, the following FPM assignment:

PTLO = J3 � J1 � J2
PTHI = J3 � J2

is correct. This can be checked on the charts of Figure 3, where
the basic scenarios are reported.
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Abstract—Recent research in real-time scheduling for mixed
criticality systems has centered on an event-triggered/priority-
driven approach to scheduling. Current practice in many safety-
critical domains, however, favors a time-triggered approach.

We present here an effective and flexible approach for apply-
ing mode changes for time-triggered systems to handle mixed
criticality job sets.

It is based on a heuristic search algorithm for constructing
schedule tables for the different criticalities: a change of critical-
ity levels results in a change in the schedule table that is being
used. The sequence of steps in case of a change of criticality level
is known beforehand.

We present a search-tree based framework for our heuristic
search, and derive a heuristic function for guiding the search
that significantly reduces the search space for backtracking by
swapping search decisions over several levels in the search tree.

I. INTRODUCTION

The common approach to design embedded real-time sys-
tems with safety critical requirements, subject to certification,
has been complete spatial and temporal isolation between
activities in the system (e.g., in the ARINC standard [1] for
avionics). In many modern platforms, however, the impact on
performance and resource utilization of such strict separation
approaches can no longer be justified by certification efforts,
even more so as over pessimistic assumptions are mandated.

In order to certify a system as being correct, the certifi-
cation authorities (CAs) mandate certain assumptions about
the worst-case behavior of the system during run-time; these
assumptions, e.g., for execution time, are typically far more
conservative than the assumptions that the system designer
would use during the process of designing, implementing,
and testing the system if subsequent certification were not
required. However, while the CAs are only concerned with the
correctness of the safety-critical part of the system, the system
designer is responsible for ensuring that the entire system is
working correctly, including the non-critical parts. Traditional
scheduling criteria as deadlines, utilization, etc. have proved
inadequate for accommodating these contrasting demands of
low and high critical applications.

In the time-triggered (TT) paradigm [13] of real-time
scheduling, activities in the system are triggered by the pro-
gression of time only. A schedule for the entire duration of
a system’s execution is constructed prior to run-time. The
scheduling decision that is made at each instant during run-
time is completely determined by examining this pre-computed

This work has been supported in part by the European project DREAMS
under project No. 610640.

schedule, represented, e.g., in a schedule table. The schedule
tables typically used for TT systems are particularly easy to
verify; hence, they have been popular in safety critical systems
subject to certification.
In mixed criticality systems as described above, however, the
inflexibility of TT scheduling poses additional challenges:
tasks with different assumptions cannot be fit into a single
schedule table or changed, should the need arise during system
operations.

While current practice in many safety-critical application
domains is centered on time-triggered (TT) scheduling, much
recent research on scheduling for mixed criticality systems has
focused on even-triggered/priority-based scheduling.

In [5], an effort was made to show that the results obtained
by this mixed criticality research could indeed be applied to TT-
scheduled systems. It advocated the creation of two different
schedule tables, one based upon the system designers’ job
parameters and the other using the CAs’ parameters. At run-
time the system starts operation with the schedule table that was
constructed assuming that the system designers’ parameters are
correct. If a violation of the designer assumptions is detected
during run-time, the run-time dispatcher switches tables and
henceforth begins using the schedule table that was constructed
assuming that the CAs’ parameters are the correct ones.

Challenges in the construction of these schedule tables in-
clude the need to build two matching schedule tables, which al-
low for feasible and consistent switching from one to the other
at run-time while ensuring, e.g., that even during a switch, the
computational demands of individual jobs that are active during
the switch are met. Since jobs with two different WCET values,
one for each criticality level (mode), have to be considered,
standard mode change schedule-generation algorithms (such as
the ones presented in [11], [12]) cannot be directly applied.
The simple table-generation algorithm of [5] was based on
identifying a common priority ordering of the jobs for both
schedules, with the priority of each job being based on its
criticality level. This priority ordering is inflexible, and the
resulting resource utilization is less than may be achieved by
dynamic scheduling approaches such as EDF.

We believe that [5] was to a large measure successful in
the sense that (i) mixed criticality scheduling principles were
transferred to the TT domain; (ii) a TT-based framework for
implementing mixed criticality systems was designed; and
(iii) proof-of-concept algorithms for generating the schedule
tables needed by this framework were derived. However, TT
scheduling typically uses very sophisticated search-based algo-
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rithms for schedule table generation, thereby achieving good
resource utilization in practice despite the poor worst case
bounds that can be derived for pathological workload instances.
Hence, a true integration of TT and mixed criticality scheduling
requires that it must be shown that schedule tables can be
generated that are far more resource-efficient than the ones
generated by the method in [5].

In this paper, we present an algorithm for constructing the
schedule tables and for run-time execution that results in far
more efficient resource utilization and enhanced flexibility;
in contrast to the highly simplified proof-of-concept tables
obtained by the techniques of [5], these tables can be used
for actual system implementation. We have developed a tree-
based search algorithm based on a heuristic function called
the leeway (described in Section V), and a sophisticated and
innovative backtracking algorithm based on this heuristic, that
we believe shows this.
Related work. It is beyond the scope of this paper to discuss
all work on mixed criticality scheduling; instead, we refer the
interested reader to the recent survey by Burns and Davis [9].
In [4], Baruah et al. proved that mixed criticality scheduling
is NP-hard in the strong sense even for two criticality levels
— this provides some justification for seeking heuristic ap-
proaches to schedule construction. Further, [4] considered two
classes of mixed criticality scheduling algorithms. Reservation-
based scheduling policy, e.g., the straightforward approach by
assigning WCET := max (WCET (�i)) for all criticality
levels �i, is a very pessimistic approach. Depending on the
difference between the minimum and maximum WCET of the
criticality levels, huge differences between the reserved WCET
and the WCET of the actual criticality level are possible.
Hence, this leads to an under-utilization of the system. The
advantage of this approach is low complexity schedulability
test. Additionally [4] considered the class of priority-based
scheduling policies. As an example, they used the “Audsley-
approach” (see [2], [3]) of assigning priorities; this assignment
of fixed priorities to jobs compromises resource utilization and
reduces flexibility.
In [10], de Niz et al. presented a preemptive, priority based
algorithm. In this algorithm, high criticality tasks are pro-
tected from interference by low criticality tasks. This Rate-
Monotonic-based algorithm determines the point in time when
the priority has to be increased such that the deadline can be
met with the high criticality WCET.
Park and Kim presented in [15] an online algorithm based on
EDF for scheduling mixed criticality jobs. Based on the dead-
lines of the jobs, they created intervals and calculated slacks
for these intervals. An earlier completion of a high criticality
job, i.e., actual execution is less than WCET, increases the
“remaining slack”. Further, the available time when all high
criticality jobs are guaranteed with high criticality WCET is
considered as so-called “empty slack”. Low criticality jobs are
only executed if “remaining slack” or “empty slack” is greater
than zero.
Organization. The remainder of the paper is structured as
follows: in Section II, we present terms and the basic task

model. Section III shows the basic idea of handling mixed
criticality jobs based on our time-triggered approach with mode
changes. The allocation of jobs to modes, depending on their
criticality levels, is shown in Section IV. In Section V, we show
the algorithm to construct the time-triggered schedule tables.
We discuss our backtracking heuristic and the consequences
for the scheduling process in Section VI. The evaluation of
our methods is shown in Section VII. Finally, Section VIII
concludes the paper.

II. TERMINOLOGY AND NOTATION

In the following, we present the terms that we use in the
rest of the paper. We assume a system with two criticali-
ties: low (LO) and high (HI). Unless otherwise specified we
will represent relative time values (e.g. WCETs) by using
upper case variables, whereas lower case variables represent
absolute time values (e.g. release times). The dual criticality
jobs Ji with i 2 {1, .., n} are characterized by the 5-tuple
h�i, ri, di, Ci(LO), Ci(HI)i, with �i 2 {LO, HI}: criticality
level of job i, ri 2 R+: release time of job i, di 2 R+: absolute
deadline of job i with di > ri, Ci(LO): LO criticality WCET
(as estimated by system designer), and Ci(HI): HI criticality
WCET (as estimated by certification authority).

For LO criticality jobs, we assume Ci(LO) = Ci(HI),
whereas for HI criticality jobs Ci(LO)  Ci(HI). Note that
the assumption that Ci(LO) = Ci(HI) for low criticality jobs
supposes the presence of run-time mechanisms for monitoring
the amount of time that a job has executed, and preventing
a job from executing beyond an allocated “budget”. Such
mechanisms are commonly found in most real-time operating
systems. A low criticality job would then be allocated an
execution budget equal to its LO criticality WCET, its Ci(LO)
value.

The demand g(t1, t2) in an interval [t1, t2] is defined as
the amount of processing time requested by jobs that are
activated in that interval. The demand calculation considers all
jobs whose release time is after the beginning of the interval
(ri � t1) and must be completed before the end of the interval
(di  t2). It is known that it is sufficient to check the intervals
from zero to the latest deadline in the system [6].

III. TT SYSTEMS WITH MODE CHANGES

In this section, we state the requirements placed on the
scheduling of mixed criticality job sets and how we can ac-
commodate these requirements within the framework of a time-
triggered system. HI criticality jobs are subject of certification
under pessimistic assumptions of the CAs. Furthermore, the
designer has to ensure that the entire job set is feasible under his
less pessimistic assumptions. Time-triggered schedule tables
allow to simplify the certification process by their complete
determinism. A feasible schedule table represents a construc-
tive proof of timing correctness. The disadvantage of schedule
tables is their inflexibility. Baruah and Fohler showed in [5]
that constructing one schedule table per criticality level can
fulfill CAs’ requirements. The challenge in the construction
of the schedule tables is to meet the requirements of mixed
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original jobs split jobs
job release time deadline WCETs criticality job release time deadline WCET criticality
Ji ri di Ci(LO) = Ci(HI) LO Ji ri di Ci(LO) LO

Ji ri di Ci(LO)  Ci(HI) HI
JLO
i rLO

i dLO
i CLO

i (LO) HI

J�
i r�i d�i C�

i (HI) HI

TABLE I
OVERVIEW OF JOB PARAMETERS

criticality jobs and guaranteeing CAs’ requirements when
switching between the two schedule tables. A possible solution
for this can be accomplished via the mechanism of mode
changes. By the use of mode change schedulers (e.g. [11]),
we can accommodate for the afore-mentioned demands. [5] de-
scribes the requirements for a mode-change-based scheduler
for certification-cognizant mixed criticality jobs as a proof of
concept. Two modes are used, one for each criticality level,
to accommodate for the requirements of LO and HI criticality
behavior. In the LO criticality mode LO-table, correct system
behavior for the entire job set is guaranteed, based on the
system designer’s assumptions. Assumptions of the CAs are
incorporated into the HI criticality mode HI-table. Note that
for the purposes of certification it is sufficient to guarantee the
correct execution of only the HI criticality jobs, but these must
be guaranteed based on the pessimistic assumptions about the
WCET of the CAs. However, the table-generation technique
presented in [5] includes all jobs, both the LO-criticality and
the HI-criticality ones, in the HI-table; this leads to an under-
utilization of system resources.

We will construct two schedule tables, one for LO and one
for HI criticality mode, such that switching from LO-table to
HI-table is possible at every point in time, so-called switch
through property [11]. At run-time, the system starts execution
of the LO criticality schedule table. Violation of the system
designer’s assumptions (exceeding Ci(LO) of a HI criticality
job) leads to directly switching to the HI criticality mode HI-
table. In case such a switch occurs, we must guarantee that no
HI criticality job misses its deadline. Furthermore, the CAs’
pessimistic assumptions must be guaranteed for HI criticality
jobs. According to the problem statement in [5], switching back
to the LO criticality mode is not specified.

IV. ALLOCATION OF JOBS TO MODES

Our method works on jobs, hence, it is also able to handle
task sets as each individual task is composed of a sequence of
recurring jobs. In this section, we describe how we split the
jobs to separate the WCET of the LO criticality level and the
additionally needed WCET in HI criticality case. After doing
so, each resulting job is specified only with a single WCET.

LO criticality jobs Ji, which only are present in LO-table,
are not split and the WCET is set to Ci(LO). The remaining
parameters of these jobs remain unchanged. Each HI criticality
job Ji is split into a job J

LO
i , which is the portion present in both

tables and a job J

�
i , which is the portion that is additionally

needed in HI criticality case. The calculation of the WCETs,
which we will use as input for our scheduler, are shown in
equations (1) - (3).

Ji : Ci(LO) Ci(LO) , i 2 {1, .., n} ^ �i = LO (1)
J

LO
i : CLO

i (LO) Ci(LO) , i 2 {1, .., n} ^ �i = HI (2)
J

�
i : C�

i (HI) Ci(HI)� Ci(LO) , i 2 {1, .., n}
^ �i = HI (3)

For the split jobs we derive now new parameters based on
the original parameters of the HI criticality job. The release
time r

LO
i of J

LO
i is equal to original release time ri. The

deadline of J LO
i must be early enough such that there remains

enough time to schedule the additionally needed WCET in the
HI criticality case. As a result, the deadline of J

LO
i is set to

d

LO
i := di � C

�
i (HI) = di � (Ci(HI)� Ci(LO)).

The earliest release time of J

�
i is possible when its corre-

sponding job J

LO
i is scheduled directly at the beginning of

the execution window. Hence, we set the release time of a job
J

�
i to r

�
i := ri + C

LO
i (LO) = ri + Ci(LO). The deadline of

J

�
i is equal to the deadline of its corresponding original job

d

�
i := di. This results in maximum slack for both J

LO
i and J

�
i .

To avoid that J�
i is scheduled before J LO

i , we add a precedence

constraint between them: J LO
i � J

�
i . As a consequence, we

can guarantee with J

�
i that in HI criticality case the additionally

needed WCET is scheduled. The two resulting jobs (J LO
i and

J

�
i ) of a split HI criticality job (Ji) keep their criticality level

HI. Table I gives an overview of the original and the split jobs’
parameters.

The LO criticality table LO-table contains all the jobs in the
set S(LO) while the HI criticality table HI-table contains all the
jobs in the set S(HI) with:

S(LO) = {Ji, J LO
k } , (i 2 {1, .., n} ^ �i = LO)

^ (k 2 {1, .., n} ^ �k = HI) (4a)
S(HI) = {J LO

i , J

�
i } , (i 2 {1, .., n} ^ �i = HI) (4b)

V. CONSTRUCTION OF THE SCHEDULING TABLE

The schedule table is divided into slots, which means that
this is the granularity of our scheduler, hence, it is preemptive
at slot borders. Construction of the scheduling tables is done
concurrently for both tables, i.e. first slot i – which refers to the
time interval [i, i + 1) – is scheduled in both tables (first LO-
table, then HI-table), before in the next step slot (i+1) is sched-
uled. The length of the schedule table is determined by the last
deadline of the job set or the hyper-period in case of a periodic
task set. Scheduling decisions are represented by a search tree
which is based on iterative deepening [14]. Each scheduling
decision for a slot in both tables (i.e. a pair of selected jobs) is
represented by an edge in the search tree. Based on the history
of decisions a node represents a possible partial schedule of
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both tables at a given point in time. In each node of a path,
several scheduling decisions can be taken, leading to different
(partial) schedules. All combinations of possible scheduling
decisions form the complete search tree. Leaf nodes represent
feasible and infeasible complete schedules. The selection of
jobs in both tables uses a heuristic which is based on EDF and
the criticality levels. If a scheduling decision leads to infeasible
schedule tables, we use backtracking to search for another
schedule table. In “classic” backtracking, an exhaustive search
checks all possible decisions in a search tree which is extremely
complex. We use a heuristic for backtracking which is based
on the demand of HI criticality jobs to reduce the complexity
of backtracking.

A. Low Criticality Scheduling Decisions

In the LO criticality mode LO-table, we select the job of the
set S(LO) with the earliest deadline which is ready.

We introduce the concept of the leeway �(sc) of the current
slot sc, see equation (5), as a heuristic function for our back-
tracking mechanism. The calculation of the leeway depends on
the criticality level of the selected job: for LO criticality jobs
Ji, the leeway represents the difference between the deadline
of the selected job and the current time (i.e. end of current slot).
For HI criticality jobs J LO

i , the leeway represents the difference
between the deadline of the selected job (J LO

i ) and the current
point in time reduced by the remaining demand of all J�

k with
k 2 {1, .., n} which have to be scheduled in HI-table until the
deadline of J

�
i . The demand g

�(t) at time t represents the
demand in the interval [0, t] accumulated by all jobs J

�
i . The

function g

�
sched(t) keeps track of the already scheduled demand

of HI criticality jobs J�
i . If there is no job scheduled in a slot,

we define the leeway to be infinity.

�(sc) =

8
>><

>>:

di � (sc + 1) if �i = LO
[di � (sc + 1)]
�
⇥
g

�(d�i )� g

�
sched(sc)

⇤
if �i = HI

1 else

(5)

Slot sc in the HI criticality schedule table HI-table has not
been scheduled yet, hence, g

�
sched(sc) does not include the

scheduled demand of HI criticality jobs J

�
i in the current slot

in HI-table. For each slot in the mode LO-table, we calculate
the leeway. A non-negative leeway means it can be possible to
schedule remaining jobs J

�
i in the HI criticality mode. Thus,

we continue the scheduling process by scheduling the current
slot in mode HI-table. If the leeway is negative, then indepen-
dent of succeeding scheduling decisions, all paths will lead
to leaves representing infeasible schedules. As a consequence,
we start backtracking based on our heuristic (see section VI).
Based on the heuristic function (leeway), a preceding node
is searched for backtracking, i.e., we change the scheduling
decision for that slot.

B. High Criticality Scheduling Decisions

Based on the decision in LO-table, we select a job for mode
HI-table. If the scheduled job in the current slot in mode LO-
table has criticality level HI, i.e. J LO

i , then we schedule the same

Fig. 1. Backtracking and consequences for the scheduling decisions

job J

LO
i in the current slot in mode HI-table. If the scheduled job

is a LO criticality job Ji (or no job is scheduled) then we select
a HI criticality job J

�
k with fulfilled precedence constraints and

earliest deadline. After scheduling a HI criticality job J

�
i , we

increase the amount of already-scheduled demand g

�
sched(sc)

by one slot. After scheduling the current slot, we check whether
a deadline miss of a HI criticality job J

�
i . occurred. In this

case, the scheduling process is aborted. After scheduling the
HI criticality mode HI-table, we continue with scheduling the
next slot.

VI. BACKTRACKING HEURISTIC

If the scheduler calculates a negative leeway for a slot,
we start backtracking with our heuristic based on the leeway.
In Figure 1 column (I), scheduling decision (b) for current
slot sc led to a negative leeway and hence, all succeeding
scheduling decisions will yield infeasible schedule tables. As
a consequence, we may skip the search for a feasible schedule
in this part of the search tree. By this doing this, we save the
time to check all succeeding decisions.

Based on the heuristic function (leeway), we look for a
promising predecessor node to continue the scheduling process
with a different scheduling decision for that node (see dotted
arrow in Figure 1 column (I) from sc to sswap). We start in
the current slot sc and proceed upwards in the tree structure,
checking based on the leeway for a slot sswap at which we
can swap the scheduling decision. The conditions for this
swapping slot are: The swapping slot must be later than the
release time of job i scheduled by decision (b). Furthermore,
the leeway of a candidate for the swapping slot must be greater
than or equal to the difference in number of slots between
the current slot and the candidate for the swapping slot, i.e.
�(sswap) � sc � sswap. If these conditions are fulfilled, we
can delay scheduling decision (a) for the swapping slot.

Once we have found a slot which fulfills the swapping
conditions, we swap scheduling decisions (b) and (a), hence,
decision (b) is now taken for sswap and decision (a) for sc

(see Figure 1 column (II)). The scheduling decisions after
the swapping slot – e.g. decision (c) – remain unchanged.
After swapping of the decisions of the two slots, we have to
recalculate the leeways of these slots.

By swapping scheduling decisions (a) and (b), it is possible
that fulfilled precedence constraints are not fulfilled anymore
and/or scheduled demand of HI criticality jobs J�

i is changed.
In this case, we cannot continue with scheduling decision (c)
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after sswap and we continue the scheduling process after sswap

with a possibly different decision (d) for the next slot (see
Figure 1 column (III)). As a result, the current slot is set to
the swapping slot and we continue the scheduling process from
that slot.

Depending on the scheduled jobs in the current slot and
the swapping slot, there are different cases which we have to
consider when making swapping decisions. In the following,
we present these cases and the consequences for the scheduling
process. We refer to slots in mode LO-table by s

LO and slots in
mode HI-table by s

HI.
Case 1: In both slots s

LO
c and s

LO
swap, a LO criticality job is

scheduled. In s

HI
swap, no job is scheduled (Figure 2). We swap

slots in LO criticality mode LO-table and update the leeway of
sc and sswap. The swapping slot in the HI criticality mode
remains unchanged. In a last step, we schedule the current
slot in the HI criticality mode. Swapping of this case does not
change any precedence constraints and this refers to Figure 1
column (II).

Fig. 2. Backtracking case 1: slots before backtracking

Case 2: In both slots s

LO
c and s

LO
swap, a LO criticality job

is scheduled. In s

HI
swap, a HI criticality job J

�
m is scheduled

(Figure 3). We swap slots in LO criticality mode LO-table and
update the leeway of sc and sswap. Swapping two LO criticality
jobs does not change precedence constraints, and hence, the
scheduled job in s

HI
swap remains unchanged. In the last step, we

schedule the current slot in the HI criticality mode. This case
refers to Figure 1 column (II).

Fig. 3. Backtracking case 2: slots before backtracking

Case 3: In slot s

LO
c , a LO criticality job Ji and in slot

s

LO
swap, a HI criticality job J

LO
k are scheduled. In s

HI
swap, the

same HI criticality job J

LO
k as in s

LO
swap is scheduled (Figure

4).We swap slots in LO criticality mode LO-table and update the
leeway of sc and sswap. Now, we must check whether fulfilled
precedence constraints have been changed by swapping. If
fulfilled precedence constraints have been changed then we re-
schedule slot sHI

swap and set the swapping slot as current slot
and continue the scheduling process. This refers to Figure 1
column (III). If fulfilled precedence constraints have not been
changed then we swap s

HI
swap and s

HI
c (unscheduled yet) and

re-schedule s

HI
swap based on the fulfilled precedence constraints

at that time – as described in subsection V-B. This refers to
Figure 1 column (II).

Fig. 4. Backtracking case 3: slots before backtracking

Case 4: In slot s

LO
c , a HI criticality job J

LO
i and in slot

s

LO
swap, a LO criticality job Jk are scheduled. In s

HI
swap, no job is

scheduled (Figure 5). We swap slots in LO criticality mode LO-
table. In slot sHI

swap, we scheduled the same job J

LO
i as in s

LO
swap

(after swapping). As a consequence, we update g

�
sched(s) and

leeway �(s) for s 2 {sswap, .., sc}. In the last step, we schedule
the current slot in the HI criticality mode. This case refers to
Figure 1 column (II).

Fig. 5. Backtracking case 4: slots before backtracking

Case 5: In slot s

LO
c , a HI criticality job J

LO
i and in slot

s

LO
swap, a LO criticality job Jk are scheduled. In s

HI
swap, a HI

criticality job J

�
m is scheduled (Figure 6). First, we check

whether scheduling J

�
m in s

HI
c leads to a deadline miss. If yes,

then we have to search for another swapping slot. If no, then
we swap slots in LO criticality mode LO-table. Then, we swap
s

HI
swap and s

HI
c (unscheduled yet) and schedule in s

HI
swap the

same job J

LO
i as in slot s

LO
swap (after swapping in LO-table).

As a consequence, we update g

�
sched(s) and leeway �(s) for

s 2 {sswap, .., sc}. This case refers to Figure 1 column (II).

Fig. 6. Backtracking case 5: slots before backtracking

Case 6: In both slot sLO
c and s

LO
swap, a HI criticality job J

LO
i

and J

LO
k are scheduled. In s

HI
swap, the same HI criticality job

J

LO
k is scheduled as in slot sLO

swap (Figure 7). We swap slots in
LO criticality modes and update the leeway of sc and sswap.
Now, we must check whether fulfilled precedence constraints
are not fulfilled after swapping anymore. If fulfilled precedence
constraints have been changed, then we schedule J

LO
i in slot

s

HI
swap, set the swapping slot as current slot, and continue the

scheduling process. This refers to Figure 1 column (III). If
fulfilled precedence constraints have not been changed, then
we schedule J

LO
i in slot sHI

swap. This refers to Figure 1 column
(II).

VII. EVALUATION

In this section, we show first evaluation results. We evaluated
our algorithm by generating job sets with uniformly distributed
utilizations by means of the UUniFast algorithm [8]. We
generate a set of periodic tasks and unroll them into a set
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Fig. 7. Backtracking case 6: slots before backtracking

of jobs which are then handled by our algorithm. We use
these synthetic workloads to show the correctness for general
workloads. Rounding to full slot size values causes errors in the
obtained utilization, hence, we specified that resulting job sets
have errors less than 3%. We generated the mixed criticality
job sets with the following constraints: the demand of all jobs
with C(LO) and the demand of HI criticality jobs with C(HI)
(original job parameters before splitting) have to be feasible by
demand.
As input parameters, we used the utilization of all tasks with
C(LO) and the ratio of HI criticality jobs within each job set,
which is in line with [7]. We evaluated the set of utilizations
from 10% to 80% in steps of 10% with a ratio of HI criticality
jobs of 50%. The range of LO criticality WCETs is Ci(LO) 2
[1; 15]. For the WCETs of HI criticality jobs, we used a high-
scale factor hsf = 3, i.e. Ci(HI) 2 [Ci(LO);hsf · Ci(LO)].
The range of relative deadlines Di was chosen within the
interval [45; 120] For each combination of input parameters,
we generated N = 1, 000 random job sets and scheduled
them with our scheduler. We evaluated also other ratios of high
criticality jobs and high scale factors, but for space reason, we
only show a representative example.
Table II shows the success ratio of scheduling the generated
job sets. The results are plotted in Figure 8. Due to hsf = 3,

success
Pn

i=1 Ui(LO)
ratio 10% 20% 30% 40% 50% 60% 70% 80%

swapping 100.0 100.0 100.0 90.9 14.6 1.1 0.2 0.0
FPS 100.0 100.0 99.6 70.2 3.5 0.0 0.0 0.0

TABLE II
RESULTS: SUCCESS RATIO FOR N = 1000 AND hsf = 3

it is possible to obtain a utilization for all jobs under CAs’
assumption of nearly 100% for low criticality utilizations above
30%. This leads to a drop of the success ratio, whereas the fixed
priority approach is affected more strongly.

Fig. 8. Comparison between FPS approach [5] and our approach

VIII. CONCLUSION

Due to its run-time simplicity, extreme determinism, and
ease of validation, the TT approach to real-time scheduling is
heavily favored in industrial practice in many safety-critical
application domains. In [5] an effort was made to extend
results from the recently emergent field of mixed criticality
scheduling to time-triggered scheduling, by proposing a TT-
based framework for implementing mixed criticality systems,
and presenting proof-of-concept algorithms for generating the
schedule tables needed by this framework.

In this paper, we have extended and generalized the work
described in [5]. We presented an algorithm for handling
mixed criticality applications in time-triggered systems re-
placing these proof-of-concept methods with an algorithm for
run-time execution and construction of schedule tables for
efficiency and flexibility, providing realistic applicability. Our
algorithm for the construction of the schedule tables is search-
based; it is implemented as a tree search with backtracking. We
devised two heuristics, one for the construction of the schedule
tables and another for backtracking, based on the demand of HI
criticality applications. These heuristics allow for a reduction
of the search space and the time-complexity for scheduling
decisions and backtracking; in addition to immediately yielding
a constructive proof of the correctness of the schedule tables.

Due to the search tree based scheduling, the algorithm will
be augmented to consider further constraints, in future. For
example, extending the search not only to find a feasible
schedule but also a schedule minimizing the preemptions.
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Abstract—Research on mixed criticality real-time scheduling
has centered on an event-triggered (ET)/ priority-driven approach
to scheduling. Regarding the time-triggered (TT) approach, which
seems to have greater acceptability with certification authorities
for safety critical domains, only first results have been presented,
showing proof-of-concept of TT mixed criticality scheduling
algorithms and comparing their resource utilization guarantees
to those of ET ones. The algorithm is based on the offline
construction of two coordinated schedule tables and an online
mechanism. As a consequence, existing schedule tables for single
criticality, possibly certified, have to be discarded.

Here, we present an algorithm for the addition of mixed
criticality scheduling to legacy TT systems. It leaves the existing
schedule table unchanged, only provides analysis and adds a
simple online mechanism to handle the changed criticality.

I. INTRODUCTION

In many domains such as avionics, industrial control, or
health care, there is increasing demand for sharing computing
platforms among applications with different importance and
certification assurance levels. In the mixed criticality real-time
scheduling model of [7], it is assumed that in order to certify
a system as being correct, the certification authorities (CAs)
mandate certain assumptions about the worst-case behavior
of the system during runtime; these assumptions, e.g., for
execution time, are typically far more conservative than the
assumptions that the system designer would use during the
process of designing, implementing, and testing the system if
subsequent certification were not required. The difference in
pessimism between designer’s assumptions (likely at runtime)
and CAs’ mandate (most likely not at runtime) could be used
to add non-critical activities and increase utilization. However,
while the CAs are only concerned with the correctness of the
safety-critical part of the system, the system designer is respon-
sible for ensuring that the entire system is working correctly,
including the non-critical parts. The current body of work
in this area has focused on the event-triggered (ET)/priority-
driven approach to scheduling.

Current practice in many domains, including (the safety-
critical components of) automotive and avionics systems,
which must meet multiple assurance requirements up to the
highest criticality levels (e.g., DAL A in RTCA DO-178B or
SIL4 in EN ISO/IEC 61508), however, favors a time-triggered
approach (TT). In such TT systems, non-interference of
safety-critical components by non-critical ones is ensured by
strict isolation between components of different criticalities;
Although such isolation facilitates the certification of the

This work has been supported in part by the European project DREAMS
under project No. 610640.

safety-critical functionalities, it can cause very low resource
utilization.
A first result [1] shows proof-of-concept of mixed criticality
real-time scheduling based on the TT approach. It is based
on the offline construction of two coordinated schedule tables
and an online mechanism to handle a change in criticality.
In legacy TT systems, i.e. with existing, certified tables,
this algorithm cannot be applied as it requires existing
schedule tables to be changed, incurring substantial effort for
recertification. At runtime, the low-criticality schedule table
is executed until a high criticality job shows high criticality
behavior and then the system switches to the high criticality
schedule table. This solution shows a low runtime overhead
but at cost of inflexibility.
The ET approach mixed critical EDF with mode switches
was presented in [6]. In this approach, also two priority
tables are created based on the deadlines of the jobs. When
a high-criticality job exceeds its low criticality worst-case
execution time (WCET), the system is switched to high
criticality state with the high criticality priority table.

In this paper, we present a method to add the handling
of criticality changes to existing schedule tables for legacy
TT systems. It analyzes the existing table and properties of
the high-criticality job set offline. A simple online mechanism
then executes the jobs according to the existing table, manages
a change of criticality, and then continues to execute the high-
criticality job set. In case the existing schedule table is not
suitable for the given mixed criticality job set, indications for
its modification can be given. While in this case recertification
may become necessary, the efforts will be lower than recon-
struction of the schedule table from scratch.

Our method is based on slot-shifting [3] which was
originally designed to add flexibility to TT systems with
acceptable runtime overheads [5]. It takes the original task
set and a constructed scheduling table1as input. As the table
is constructed offline, complex constraints, such as distributed
systems, end-to-end deadlines, precedence, etc. can be con-
sidered. It analyzes the table and the constraints to determine
unused resources and leeways, which are represented as spare

capacities offline. These can be used to provide flexibility and
handle firm aperiodic tasks at runtime. Here, we build upon
the offline analysis part and spare capacities to handle changes
in criticality.

The remainder of this paper is structured as follows:
Section II presents terms and notation used in this paper.

1It does not depend on a particular offline table construction algorithm.
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are incorporated into the online phase, i.e. the actual runtime
scheduling, which is presented in Section IV. In Section V, we
recapitulate the results and the applicability of our solution.
Finally, Section VI concludes the paper.

II. TERMINOLOGY AND NOTATIONS

In this paper, we assume a dual-criticality system with
the criticality levels LO and HI. Unless otherwise defined,
we represent absolute times (e.g. release times) by lower
case variables and relative times (e.g. WCET) by upper case
variables.

The dual criticality jobs Ji with i 2 {1, .., n} are charac-
terized by the 5-tuple h�i, ri, di, Ci(LO), Ci(HI)i, with

• �i 2 {LO, HI}: criticality level of job i

• ri 2 R+: release time of job i

• di 2 R+: absolute deadline of job i with di > ri

• Ci(LO): LO criticality WCET

• Ci(HI): HI criticality WCET

which is in line with the denomination in the work of
Baruah and Fohler [1]. For LO criticality jobs, we as-
sume Ci(LO) = Ci(HI), whereas for HI criticality jobs
Ci(LO)  Ci(HI).

Slot-shifting [3] uses slots as granularity for scheduling
decisions. A slot s = i is the time interval [i; i+ 1). This
interval contains the worst case time to schedule jobs �tS

and the minimum guaranteed time to execute jobs �tE .
The length of �tS and �tE is determined by the designer
depending on the system under development. The WCET is
given as multiples of �tE . The length of a slot is defined as
|s| = �tS +�tE .

Another important concept of slot-shifting are capacity in-

tervals which are used to manage the execution of jobs. Section
III-A explains this concept in detail. The general notation of
capacity intervals is: start and end of a capacity interval Ii is
denominated by: start(Ii) and end(Ii), respectively. A capac-
ity interval Ii represents the time window [start(Ii); end(Ii)).
As a result, the length of a capacity interval Ii is calculated by
|Ii| = end(Ii) � start(Ii). Ic represents the current capacity
interval, i.e. in which capacity interval the current point in time
is located.

III. OFFLINE PHASE

In the offline phase of slot-shifting, we can resolve complex
constraints – e.g. precedence constraints – which is not the
scope of this paper. The interested reader is referred to [3].
Slot-shifting works on job-level, i.e. the instances of a periodic
task are scheduled as single jobs. Scheduling on job-level
allows for scheduling of time-triggered and event-triggered
tasks and jobs. In this section, we show how to determine
capacity intervals and how to calculate spare capacities which
form the basis for the slot-shifting runtime scheduler.

A. Capacity Intervals

We divide the schedule into disjoint capacity intervals

Ii with i 2 {0, ..,m} based on the release times and deadlines
of the jobs. It is important to highlight that capacity intervals
are not identical to the execution windows, i.e. the time
between release and deadline of a job. In the following,
capacity intervals are briefly referred to as intervals. Each
deadline of a job marks the end end (Ii) of an interval Ii.
Each job Jk, k 2 {1, .., n} is assigned to an interval with
end (Ii) = dk. Jobs with the same deadline belong to the
same interval. The earliest start time est (Ii) of an interval
Ii is determined by the minimum of all release times of jobs
assigned to this interval:

est(Ii) = min

8Jk2Ii
(rk) (1)

The start of an interval is determined by the maximum of
its earliest start time and the end of the previous interval:

start(Ii) = max (end(Ii�1), est(Ii)) (2)

The gaps between the determined intervals above are
defined as empty intervals, i.e. there is no job assigned to them.
An interval Ii is called independent if there is no interval Ie
with e < i and end(Ie) > est(Ii) and there is no interval Il
with i < l and end(Ii) > est(Il). The length |Ii| of an interval
is calculated by equation 3.

|Ii| = end(Ii)� start(Ii) (3)

Based on the observation that demand-based schedulability
tests need only to check intervals until deadlines of jobs
[2], capacity intervals, which partition considered demand
based on job deadlines, simplify the maintenance of demand
requirements and scheduling of the demand, respectively, at
runtime.

B. Spare Capacities

In the following, we explain the general concept of spare

capacities based on non-mixed-criticality jobs (as shown in
the original slot-shifting [3]). After that, we present how this
is applied to mixed criticality job sets. The spare capacity
sc(Ii) of an interval Ii represents the amount of available
resources within this interval after guaranteeing TT jobs. The
difference between the length of the interval and the amount
of demand of jobs assigned to this interval determines the
amount of available resources. Further, it is possible that the
demand within an interval is greater than the length of the
interval such that the spare capacity will be negative. In the
following, we show how spare capacities are calculated in
detail and in combination with section IV-A, we show the
consequences of negative spare capacities. We calculate spare
capacities beginning with the last interval Im until the first
interval I0.

Figure 1 shows an example to illustrate the calculation of
spare capacities. As shown in section III-A, we determine the
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intervals I0� I4. In this example, we schedule the jobs as late
as possible to exemplify the calculation of spare capacities.
Jobs cannot be scheduled before their release time; otherwise,
the schedule is not feasible and the job set is not schedulable.
In the figure, time span ↵ represents an independent interval.
The spare capacity of an independent interval is calculated by
the difference between the length of the interval and the sum of
WCETs of jobs assigned to this interval. Time span � shows an
empty interval, i.e. there are no jobs assigned to it, and hence,
the spare capacity of this interval is the length of the interval.
The consequences of negative spare capacities are illustrated
by time span �. The amount of demand assigned to I2 is more
than the length of the interval. As a result, interval I1 has to
lend capacity to the succeeding interval I2. The consequence
of the negative spare capacity is called borrowing. Time span �

shows the consequences of borrowing propagation, i.e. interval
I1 lent capacity to I2 such that I1 itself has to borrow capacity
from the earlier interval I0. Eventually, interval I0 is long
enough to lend capacity to I1 and schedule the jobs assigned
to I1. Thus, the spare capacity of I0 is non-negative.

Figure 1. Spare capacity calculation example: for simplicity of the example
without different criticality levels

We can test the schedulability based on the spare capacities,
under the condition of obeying release times and deadlines.
Spare capacities of independent intervals have to be non-
negative. Further, after borrowing and borrowing propagation
there must be an earlier interval with non-negative spare
capacity.
Equation (4) shows the calculation of spare capacities for
non-mixed-criticality jobs, which is in the following applied
to mixed criticality job sets. The calculation includes the
requirements described by Figure 1.

sc (Ii) = |Ii|�
X

Jk2Ii

Ck +min (sc (Ii+1) , 0) (4)

For the mixed criticality case, we use the calculations of
the spare capacities presented above. We calculate two spare

capacity values for each interval: sc

LO(Ii) and sc

HI(Ii). The
calculation of spare capacities is done by equations (5) and
(6). Spare capacities sc

LO(Ii) represent available capacities
based on designer’s assumptions, i.e. considering C(LO), with
all jobs. Additionally, scHI(Ii) represents available resources
based on CAs’ assumptions, i.e. considering C(HI), with only
HI criticality jobs.

sc

LO (Ii) = |Ii|�
X

Jk2Ii

Ck(LO) +min (scLO (Ii+1) , 0) (5)

sc

HI (Ii) = |Ii|�
X

Jk2Ii
^�k=HI

Ck(HI) +min (scHI (Ii+1) , 0) (6)

As Figure 1 (intervals I0 and I4) shows, slot-shifting allows
for non-work-conserving scheduling based on spare capacities.
Further, slot-shifting allows for scheduling of strictly periodic
jobs, i.e. jobs that have to be executed directly at their periodic
release.

IV. ONLINE PHASE

At runtime, we execute mixed criticality jobs based on the
spare capacity in the current interval Ic and the deadlines of
the jobs. In this section, we present how to select the next
job for execution. Further, we show the update procedures for
spare capacities depending on the job execution.

A. Decision Mode and Selection Function

The decision mode of the slot-shifting runtime scheduler
is preemptive at slot borders. We use three ready queues:
R

LO(t) = {Ji|ri  t ^ �i = LO} contains TT LO criticality
jobs. Further, R

HI(t) = {Ji|ri  t ^ �i = HI} is used
for TT HI criticality jobs. An implementation with only one
queue is also possible, but for simplicity of explanation, we
will present the algorithm based on two queues. We define
R(t) := R

LO(t)[R

HI(t) which represents all guaranteed jobs.
The scheduler selects the next executing jobs based on the
ready queues, the intervals and the spare capacities. In contrast
to standard slot-shifting, LO criticality spare capacities can be
negative in the current interval Ic. This can occur when a
HI criticality job executes for more than C(LO) and we have
to continue its execution. As long as the LO criticality spare
capacity in the current interval is negative, i.e. scLO(Ic) < 0,
we can only execute HI criticality jobs.
Based on these observations, we can distinguish the following
list of all possible decision cases at time t.

a) R(t) = {}: slot is idle because there are no ready jobs.

b) R(t) 6= {} ^ sc

HI(Ic) > 0:
1) sc

LO(Ic) > 0:
We select the ready job with the earliest deadline
in R(t). Figure 2(a) illustrates this situation with an
example.

2) sc

LO(Ic) = 0:
We select the job with the earliest deadline in R(t)
because there are available resources for HI criticality
jobs and thus, no need to prioritize them. On the
contrary, there is no leeway for LO criticality demand
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(a) RLO(t) = {J2}, RHI(t) = {J1},
scLO(Ic) > 0, and scHI(Ic) > 0

(b) RLO(t) = {J2}, RHI(t) = {J1},
scLO(Ic) = 0, and scHI(Ic) > 0

(c) RLO(t) = {J2}, RHI(t) = {J3},
scLO(Ic) < 0, and scHI(Ic) > 0

(d) RLO(t) = {}, RHI(t) = {J1},
scLO(Ic) > 0, and scHI(Ic) = 0

(e) RLO(t) = {J2}, RHI(t) = {J1},
scLO(Ic)  0, and scHI(Ic) = 0

Figure 2. Examples situation when selecting the next job for decision cases with R(t) 6= {} for an exemplary point in time t — J1, J3: HI criticality jobs,
J2: LO criticality job

and thus, we have to select a guaranteed job. Figure 2(b)
illustrates this situation with an example.

3) sc

LO(Ic) < 0:
We select the job with the earliest deadline in R

HI(t).
There is not enough available LO criticality spare ca-
pacity in the current interval to complete remaining LO
criticality jobs and hence, they are skipped. Figure 2(c)
illustrates this situation with an example.

c) R(t) 6= {} ^ sc

HI(Ic) = 0:
1) sc

LO(Ic) > 0:
The job with the earliest deadline in R

HI(t) is selected
because we have to execute a HI criticality job to
guarantee completion with CAs’ assumptions. Figure
2(d) illustrates this situation with an example.

2) sc

LO(Ic)  0:
We select job with the earliest deadline in R

HI(t)
because of the reasons mentioned in case c1. Figure
2(e) illustrates this situation with an example.

d) R(t) 6= {}^ sc

HI(Ic) < 0: The HI criticality spare capacity
cannot be less than zero. This could only happen if we
execute a HI criticality job Ji for more than Ci(HI) which
we assume is prevented by the system.

B. Spare Capacity Maintenance

As a consequence of the process to select the next executing
job, we have to update the spare capacities depending on the
criticality level and type of the job.

No execution: If an idle slot has been scheduled, we decrease
both sc

LO(Ic) and sc

HI(Ic) by one slot.

Guaranteed job execution: If a guaranteed job Ji, either TT
or firm ET, has been scheduled, then we have to differentiate
whether Ji is assigned to the current interval Ic or to a
later interval Ik. Further, the fact whether a HI criticality
job exceeded C(LO), i.e. showed HI behavior, influences the
maintenance of spare capacities.

A) Ji 2 Ic

1) Ji did not exceed Ci(LO):
In both spare capacity calculations, sc

LO(Ic) and
sc

HI(Ic), the scheduled demand has already been con-
sidered and hence, both spare capacities in the current
interval remain unchanged.

2) Ji exceeded Ci(LO):
As the job executes for more than the considered
amount of LO criticality execution time, we have to
decrease the LO criticality spare capacity in the cur-
rent interval by one slot. On the contrary, for the HI
criticality spare capacity sc

HI(Ic), this scheduled exe-
cution has already been considered and thus, scHI(Ic)
is unchanged.

B) Ji 2 Ik with Ik 6= Ic

1. Ji did not exceed Ci(LO):
The scheduled demand has not been considered in
sc

LO(Ic). As a consequence, we decrease sc

LO(Ic) by
one slot. Additionally, we increase sc

LO(Ik) where the
demand has been originally considered in the spare
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capacity calculations. In other words, one slot of ex-
ecution is swapped between the current interval Ic and
the assigned job interval Ik.
Furthermore, there is the aspect of borrowing which
has to be considered: If sc

LO(Ik) was less than zero
before increasing by one in the current step, then Ik was
borrowing capacity from at least one earlier interval.
Thus, we have to increase the spare capacities by one
if there was borrowing or borrowing propagation in one
or several of the intervals from Ic to Ik�1.
For the HI criticality spare capacities, we have to apply
the same procedure as for the LO criticality ones.

2. Ji exceeded Ci(LO):
The demand has not been considered in the LO critical-
ity spare capacities, neither in sc

LO(Ic) nor in sc

LO(Ik).
Thus, only the spare capacity in the current interval
sc

LO(Ic) is decreased by one.
For the HI criticality spare capacities, we have to apply
the same procedures as in step B1; which are:
The scheduled demand has not been considered in
sc

HI(Ic) and thus, we have to decrease sc

HI(Ic) by
one slot. Further, scHI(Ik), where the demand has been
originally considered, is increased by one.
Still, there may be the aspect of borrowing which has
to be considered: If scHI(Ik) was less than zero before
increasing by one in the current step, then Ik was
borrowing capacity from at least one earlier interval.
Thus, we have to increase the spare capacities by one
if there was borrowing or borrowing propagation in one
or several of the intervals from Ic to Ik�1.

After execution of a job in the current slot and before
the scheduling process continues in the next slot, we have to
compare the actual execution time of the job with the WCET
for the LO and the HI criticality case if the job finished in the
current slot. If TT jobs complete earlier than their specified
WCET (C(LO) for LO and C(HI) for HI criticality spare
capacities), the difference between actual execution time and
specified WCET can be added to the spare capacities of the
corresponding intervals, as shown in [4].

As a conclusion, we can make efficient use of the available
resources by the update mechanism presented above. Further,
the LO criticality and HI criticality spare capacities allow for
flexibility to react to the actual job behavior.

V. DISCUSSION

In contrast to [1], there is no need to construct two schedule
tables for the different requirements of the designer and the
CAs. We only need to calculate two sets of spare capacities
for the existing intervals whereas the intervals are identical
for designer’s and CAs’ assumptions. At runtime, the certified
schedule table is unchanged. Based on the spare capacities the
runtime mechanism handles the requirements of LO and HI
criticality jobs within the constraints of the offline computed,
certified schedule table. This simplifies offline preparation and
certification.

The runtime overhead of slot-shifting has been compared
to Linux’ Completely Fair Scheduler and Litmus RT, with the
conclusion that the overhead of slot-shifting is in the same
order as the reference schedulers [5]. The necessary changes

to extend the implemented slot-shifting version to our mixed
criticality slot-shifting affect only the selection of the next
job to execute and the update of the spare capacities. In both
job selection and spare capacity update, only a second spare
capacity has to be checked and updated, respectively.

The presented algorithm can be easily applied to resume
the LO criticality state after a switch to HI. The available
spare capacities are used to execute HI criticality jobs that
exceed the WCET based on the designer assumptions such
that we do not need to drop LO criticality jobs as long as
there are enough spare capacities available to not harm the
execution of HI criticality jobs. If there are no spare capacities
left, we continue the execution with the restricted job set of
only HI criticality jobs to guarantee them. The maintenance
of spare capacities within the capacity intervals allows for
switching back to the LO criticality system state as soon as
we can guarantee the execution of all jobs based on designer
assumptions. This is achieved by updating the LO criticality
spare capacities although only HI criticality jobs are executed.
The LO criticality spare capacities indicate the point in time
when the WCET of LO criticality jobs can be guaranteed for
them, again. The maximum number of spare capacity updates
per slot occurs when there is borrowing propagation and hence,
is bounded by the number of jobs. This is based on the fact
that job deadlines refer to end of intervals. More intervals
than jobs are only possible if there are empty intervals but
empty intervals are not affected by borrowing and borrowing
propagation. As a consequence, the complexity of the selection
function and the spare capacity maintenance can be bounded
by a linear function.

As a result, we can make use of TT legacy systems and add
flexibility without harming certified schedule tables at runtime.
Additionally, the implementation of slot-shifting shows an
applicable runtime overhead such that slot-shifting represents
a valid choice for safety-critical TT legacy systems with mixed
criticality job sets.

VI. CONCLUSION

In this paper, we have presented a method for including
mixed criticality real-time scheduling following the model of
[7] to legacy TT systems. Earlier results for TT systems [1]
require the offline construction of two coordinated schedule
tables from scratch for mixed criticality task sets. In case
a schedule table already exists and has been certified, this
approach, necessitates complete recertification.

In contrast, the method presented in this paper takes an
existing schedule table and the properties of the HI criticality
job set as input. It performs analyses and provides a simple
online mechanisms to include additional criticality job sets.
The jobs of the original schedule table are executed as before.
When a change of criticality arises, the online mechanism
manages it, and then continues to execute the HI criticality
jobs. In case the existing schedule table is not suitable for the
given mixed criticality job set, indications for its modification
can be given. While in this case recertification may become
necessary, the efforts will be lower than reconstruction of the
schedule table from scratch.

Future work will include analysis of the existing work
regarding limitations of the presented method and comparison
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to pure TT and ET approaches. Additionally, the inclusion
of aperiodic jobs will be in the focus of our work. Further,
the extension to arbitrary criticality levels will be included in
future research.
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