
System Mode Changes - General and
Criticality-Based

A. Burns
Department of Computer Science,

University of York, UK.

Email: alan.burns@york.ac.uk

Abstract—In this paper we summarise, and attempt to unify,
the many descriptions that have been published on general mode
changes. We then use this summary to position the criticality
mode change. We conclude that a criticality mode change (from
low to high) is closest in nature to a (graceful) degradation mode
change following (partial) system failure. However, a criticality
mode change (from high to low) has more in common with a
(exceptional) functional mode change. The paper also addresses
systems that may have both criticality and general mode changes.

I. INTRODUCTION

Many real-world applications involve systems that operate

in a number of clearly defined modes. Aircraft flights progress

through phases (e.g. taxiing, take-off, climbing, level flight,

etc) and automotive systems have modes to cover start-up,

cruise control, driver control, ‘limp home’ etc.

If a system has more than one mode then there must be

a mode change protocol to control how the system moves

between modes. Such (general) protocols have been the subject

of considerable study over a number of years [26], [10], [30],

[20], [29], [13], [23], [21], [1], [11].

The more recent literature on supporting mixed criticality

systems has identified situations in which the system must

move from one criticality level to another [31], [6], [5],

[12], [24], [15], for example, in a dual criticality system

(low and high) a move from the low criticality mode to

the high criticality mode. As a consequence of this move

some low criticality work is abandoned (either temporally or

permanently).

This type of criticality mode change has a number of

similarities with the more general mode changes, but there

are some important differences. The abandonment of work

(even of a lower criticality) is clearly unacceptable in a fully

functioning system, but it may be acceptable as part of a

response to a (partial) system failure. In this paper we argue

that a criticality mode change is equivalent to a particular form

of general mode change (providing graceful degradation).

The paper is organised as follows; next we review the

models and forms of analysis for general mode changes. In

Section III, we use this context, to position the definition

of a criticality mode change. Systems with both general

and criticality mode changes are considered in Section IV.

Conclusions are provided in Section V.

II. GENERAL MODE CHANGES

To formalise what it means for a system’s behaviour to be

described in terms of modes, a number of aspects need to be

covered:

• Type – what are the different classes of modes.

• Trigger – what causes a mode change.

• Protocol – how is the mode change managed.

• Attributes – properties of modes.

• Definition – the software, and its operational parameters,

that constitute a mode.

• Analysis – in particular the scheduling analysis used to

verify the timing properties of the system during a mode

change.

We look at each of these in turn. We assume a standard system

model in which periodic and sporadic tasks, characterised by

their minimum inter-arrival time, deadline and one or more

measures of their worst-case execution time, give rise to a

potentially unbounded sequence of jobs.

A. Type

In the literature on mode change protocols (cited above)

three distinct types of mode can be identified. These provide

a natural partitioning of the functionality of the system:

1) Normal Functional Modes – the application moves

through a number of different phases. These phases are

planned and are entered regularly. An example would be

moving from driver control to cruise control in a standard

family car.

2) Exceptional Functional Modes (sometimes called Oper-
ational mode) – rare events that will cause code to be

executed that is not otherwise required. The response is

planned, but the resulting mode change may never occur.

An example would be ‘prepare for crash’ mode contained

within a car – when the on-car monitoring system detects

that an impact may be about to happen, it winds up the

windows, tightens the seat belts, applies the brakes so

the pads are just in contact with the disks (making them

more responsive if applied by the driver ) and prepares

to deploy the airbag.

3) Degraded Functional Modes (sometimes called simply

Graceful Degradation) – errors require load to be shed

and priority given to issues of safety and minimum

functionality. General responses to mode change events

3



are planned but the full set of error conditions may not be

known in advance. An example would be a ‘limp home’

mode following engine sensor failure.

A system might have ten or more normal modes that are

progressed through in a statically defined sequence. It might

also have a small number of exceptional modes, and perhaps

one or two degraded modes. With more complex systems,

modes might be organised hierarchically.

B. Trigger

The mode change event (sometimes called request or trig-
ger) is typically related to the state of the system or the

system’s environment as indicated via an input reading or an

internal state change. For example, a driver touching the brake

peddle will generate an event that will move the engine control

system from ‘cruise control’ to ‘driver control’.

An event could be timed-trigger if the mode change is

coordinated to the ‘time’ of the environment. So a power

generation system may switch modes at midnight. Also air

traffic control systems have day and night modes (which

switch over at a particular time – or at least should do,

failure to return to ‘day’ mode being a cause of system failure

in the past (see http://www.bbc.co.uk/news/uk-25278163). An

example of a relative time trigger is a data collection mode that

executes for just 10 minutes before returning to some previous

mode.

For graceful degradation the trigger may come from the

hardware platform or some health monitoring subsystem.

C. Protocol

The mode change event requires a protocol to manage the

actual mode change. Such protocols can also be characterised

in three ways:

1) Immediate – the mode change event causes an immediate

mode change with the old mode jobs being suspended or

aborted, and new mode jobs starting immediately.

2) Bounded (sometimes called synchronous [21]) – within

a bounded time from the mode change event a point in

time is reached in which there are no active jobs from

the old mode and hence a clean switch of modes is then

possible.

3) Phased (sometimes called asynchronous) – following the

mode change event old mode jobs are allowed to com-

plete, and new mode jobs are started within a bounded

time.

With Immediate and Bounded, the system is only ever in one

mode; with Phased there is a (limited) interval of time in which

the modes are overlapping. Some jobs from the new mode have

started while other old-mode jobs are yet to complete.

Overlapping can also happen in a distributed or multipro-

cessor system in which a phased change is necessary as it is

not possible to simultaneously inform the entire system of the

need to change mode. The propagation of the mode change

event will inevitable take time.

Phased changes are the most difficult to analyse as the load

on the system is typically higher during the change than it

is in either mode [30]. Analysis can however be used to start

new tasks as soon as possible commensurate with all deadlines

being met during transition [20]. Here a worst-case scenario is

assumed, with all old-mode tasks releasing a job just before

the mode change occurs. Each of these jobs is allowed to

terminate. Each new-mode task has a temporal offset (from

the time of the change event) that the scheduling analysis has

furnished. So this offset is the minimum possible that will not

undermine schedulability during the mode change.

The completion of the old mode is usually defined to

be when all current jobs, released in the old mode, have

completed. However in some situations a number of old-mode

jobs may need to be executed to complete the work of that

mode. For example, a buffer of sensor input values from the

old mode may need to be cleared before the mode change

can occur [21]. And in distributed systems a series of old-

mode messages may be in transit and need to be delivered

and processed before the mode can be considered complete.

A single processor system implemented via a cyclic exec-

utive can easily support a Bounded mode change by waiting

until the end of the current major cycle and then switching

the (pre-computed) scheduling tables. A system using fixed

priority scheduling or EDF can also support a Bounded change

by waiting for the next idle tick and then changing the set of

eligible tasks [29]. An idle tick is an instant in time when there

is no work to undertake apart from new jobs released at that

instant. Clearly there can be no causal effect from before to

after an idle tick. For multiprocessor systems the coordination

of the mode change across the entire platform is more of a

challenge [25].

The definition of the mode change protocol must be closely

tied to the form of analysis used to verify the system’s

behaviour (as indicated below).

D. Attributes

In this subsection we define a number of attributes that have

been used to define properties of modes and mode change

protocols.

A mode is re-entrant if it can be returned to at some

time after it was left. Other modes can be termed one-shot
(or single-shot) if they can only be entered once, sink if

the system never leaves this mode once it has entered it, or

initial if the system always starts in that mode. The full set

of modes is cyclic if the system systematically and repeated

moves through the modes. Alternatively the set of modes is

connected (sometime called strongly connected) if the system

can move from any mode to any other mode. Obviously a

connected set does not have any one-shot or sink modes.

A mode that has aborted jobs is not usually re-entrant. A

mode which can give rise to suspended jobs can, however, be

re-visited with the suspended jobs continuing from the state

they were in.

These definitions are useful but do not cover all interesting

cases. For example, a system with four modes, A to D, might

have the behaviour that it can start in A or B; it moves

backwards and forwards between these modes unless some

4



event occurs that moves the system to mode C, A and B are

never returned to but the system then moves between C and

D. The descriptive terms can be assigned to the pairs of modes

but not to the individual modes.

Although the above classifications are independent there is

some common coupling: Functional mode changes tend to

be Bounded and often re-entrant, Operational changes can

be Immediate or Phased and may lead to the use of one-

shot modes, and Graceful Degradation may require Phased

or Immediate changes, and the degraded mode may well be a

sink mode.

A particular case of Graceful Degradation concerns execu-

tion time overruns. If a task, due to a software error, enters

an infinite loop then the only recovery strategy is to abort the

task (its current job must be abandoned). This will require

an Immediate change. Later the task could be restarted (cold
restart) or an alternative task introduced in the new ‘mode’.

This task could start cold (no relevant internal state) or warm
(if it has access to state updated by the aborted task). A hot
standby would most probably be present in the old mode, but

be deemed more important once it had taken over from the

aborted primary task [22].

E. Definition

In terms of the code contained within a mode, a mode

change may involve:

• Tasks that run unaffected in both modes.

• Tasks that run only in the old mode.

• Tasks that run only in new mode.

• Tasks that run in both modes but have their defining

parameters changed.

In the latter case, a task could have its period and/or

deadline altered, and in a fixed priority scheme its priority.

A suspended job may actually be allowed to execute at a

background priority; hence there is some overlap in these

definitions between tasks that only execute in the old mode,

and those that run in both modes but with diminished urgency

in the second mode.

A task that has the same release characteristics, but which

undertakes altered functionality in the new mode may have a

different worst-case execution time in the new mode.

Finally, once ‘criticality’ becomes a task parameter then it

is possible for a task to remain unchanged during a mode

change, but for its designated criticality to alter. The hot

standby introduced above is an example of such a change.

F. Analysis

From a schedulability point of view, different modes have

different code requirements. So schedulability in one mode

does not imply schedulability in another mode or in any

Phased mode change. All modes must be checked, and all

Phased changes.

For Immediate mode changes there is no specific scheduling

problem, but there is an obligation on the RTOS and/or real-

time programming language to facilitate immediate task sus-

pension and/or aborting (which may be quicker). Suspension

is needed for re-entrant modes, abort for non re-entrant. If a

suspended or aborted job could be holding a resource that is

used in the new mode then action must be taken to recover the

resource or to allow a ‘suspended’ task to continue to execute

until it has released the resource. From a scheduling point of

view the mode change may therefore not be truly immediate.

For Phased changes there has been scheduling analysis

produced [20] that computes a set of minimum release offsets

for each new mode task. Whenever the mode change event

occurs these offsets will ensure that all old mode jobs complete

by their deadlines, but new mode tasks start as soon as

possible. The scheduling of Phased changes is complicated by

tasks that change their periods. A seemingly simple change of

a task that moves from requiring 6 ticks of computation every

20 to 3 every 10 (or visa versa) can cause deadline misses on

other non-changing tasks.

A final complication with Phased changes comes from the

possibility of overlapping phases; e.g. during the move from

mode A to mode B, a move to mode C is required. Systems

tend to avoid this difficult to analysis situation by not allowing

a further change until the current change has been completed.

However, it may again be necessary to wait until there is a

system idle tick before a Bounded or Phased change can be

guaranteed to be complete.

A complex system with a large number of modes and

possible mode changes can be modelled using state and state

transitions formalisms [21]. Formal analysis can be used to

verify that a system always remains within safe modes [1].

III. CRITICALITY MODE CHANGES

In this section we review the literature on mixed criticality

systems (MCS) that has utilised the notion of criticality modes

and mode changes.

Consider a system with N criticality levels, L0 . . . LN−1,

executing on a uniprocessor and using priority based schedul-

ing of constrained tasks. Perhaps up to five levels of criti-

cality may be identified in a system (see, for example, the

IEC 61508, DO-178B, DO-254 and ISO 26262 standards).

Typical names for the levels are ASIL (Automotive Safety and

Integrity Levels) and SIL (Safety Integrity Level). It should be

noted that not all papers on MCSs assign to ‘criticality’ the

same meaning, an issue explored by Graydon and Bate [14].

The standard MCS’s model [31], [6], [5], [12], [24], [15]

has the following properties:

• Each task in the system is characterised by the minimum

inter-arrival time of its jobs (period denoted by T ),

deadline (relative to the release of each job, denoted

by D) and worst-case execution time (one per criticality

level), denoted by C(L0) . . . C(LN−1). A key aspect of

the standard MCS model is that Lx > Ly → C(Lx) ≥
C(Ly).

• The system starts in the L0 mode, and remains in

that mode as long as all jobs execute within their low

criticality computation times (C(L0)).
• If any job executes for its C(L0) execution time without

completing then the system immediately moves to the

5



next criticality mode, L1.

• As the system moves to the L1 mode all L0 criticality

tasks are abandoned. No further L0 criticality jobs are

executed.

• The system remains in the L1 mode unless a job executes

for its C(L1) execution time without completing, the

system then immediately moves to the next criticality

mode; jobs with criticality level L1 are dropped.

• This process continues (potentially) until the top criti-

cality mode is reached (LN−1) with only tasks of this

criticality level executing.

• Tasks are assumed to be independent of each other (they

do not share any resource other than the processor).

This abstract behavioural model has been very useful in

allowing key properties of mixed criticality systems to be

derived, but it has been necessary to extend the model to allow

for more realistic characteristics such as allowing some lower

criticality work to execute in the higher criticality modes and

for the lower criticality modes to be reinstated when conditions

are appropriate. This is covered in the following papers [5],

[28], [27], [18], [9], [4], [16], [17].

So the standard model (SM) defines a path from L0 to

LN−1. The adaptive model (AM) allows movements in the

opposite direction.

Note that work has also been focused on criticality-aware

resource control protocols that will allow resource sharing

between tasks [7], [32], [19], [33]. This work does not however

directly impact mode changing unless resources can be used

by tasks of different criticality.

A. Characteristics of a criticality mode change

Using the terms introduced in the Section II we can define

the above SM criticality mode change protocol as follows

• L0 is the initial mode.

• LN−1 is a sink mode.

• All modes are one-shot.

• Mode transitions are Immediate (or Phased in some

models where executing lower criticality jobs are allowed

to complete – though usually their deadlines are not

guaranteed).

• Following a mode change some tasks only execute in the

old mode.

• Some tasks execute in both modes, but their execution

times are increased1.

• There are no ‘new mode’ tasks.

As discussed above the more expressive and adaptive mode

(AM) allows systems to regain functionality and move back

towards the initial (fully functional) mode [5], [28], [27], [18],

[9]. AM is therefore characterised as follows:

• L0 is the initial mode.

• There are no sink modes.

• Mode transitions are typically Bounded.

1Some models for MCS have period as well as execution time being
criticality dependent [8], [2], [4], [3]; in these models a task’s period may
reduce (as well as computation time increase) during a criticality mode change.

• All modes are re-entrant.

• Some tasks execute in both modes, but their execution

times (and periods) are deemed to vary.

• There are new-mode tasks when moving mode in the

direction of L0.

But what type of mode change are these? First for the

standard model (SM). Early papers on MCS [31], [6] were

clear that the initial L0 mode is the only expected state for

the system to be in. Other criticalities were only introduced

so that scheduling analysis can be used to reduce the resource

needs of the system. This is done by leveraging the pessimistic

execution times assumed for high criticality tasks in the higher

criticality modes.

In a two criticality system (LO and HI), these pessimistic

values (the C(HI) values) are not expected to be experienced

at run-time. Indeed the C(LO) values are most likely to also

be pessimistic (though less so of course).

Therefore, a task executing for longer than expected (beyond

C(LO)) can be deemed to be at fault. And hence a criticality

mode change should be described as a form of Graceful Degra-

dation. If one accepts this view then of the N modes, only one

reflects normal functionality, all the other N − 1 are forms of

degraded service – as increasing levels of functionality are

being dropped.

For the adaptive model (AM) mode changes are better

defined as exceptional (operational). They are planned but may

not occur.

All protocols and forms of analysis that have been de-

veloped for general mode changes are directly applicable to

criticality mode changes (albeit often in a simpler form as a

criticality mode change does not have all the characteristics of

the more general protocol). So, for example, in the standard

model where L0 is the initial mode and LN−1 is the sink

mode, there are no new-mode tasks. But in the more adaptive

scheme where lost work can be returned to (i.e. LN−1 is not

a sink mode) then new-mode tasks will need to be supported.

In the general literature on fault tolerance, recovering from

an error (or partial failure) can either be: degraded service

followed by active recovery, or degrading service followed by

‘re-boot’ (e.g. channel re-initialisation in an avionics system).

With a ‘re-boot’ the system, in effect, moves from the sink

mode to the initial mode, but this is done outside the model

of the software. With active recovery the system recovers by

moving away from the degraded modes, there are no longer

sink modes.

For mixed criticality, the standard model (SM) assumes that

the software cannot return to L0. Active recovery requires an

adaptive protocol (AM).

IV. SYSTEMS WITH BOTH GENERAL AND CRITICALITY

MODE CHANGES

Having established that the main SM criticality mode

change is usefully defined as a form of graceful degradation,

it seem perfectly reasonable for a large system or system of

systems to have both general and criticality mode changes.

Some points of interest are:

6



• Assume the system consists of a set of applications, of

potentially different criticality levels.

• A General Mode Change may impact on just one or a

subset of applications and therefore criticality levels.

• Graceful Degradation, in general, is most likely to be

influenced by criticality.

• A General Mode Change Protocol may involve some

tasks changing their criticality designation.

In the latter case a set of tasks may be more critical, say, during

take-off than during taxiing. So the same tasks are executing,

but are deemed to have different worst-case execution times.

Fortunately this is equivalent to the tasks having added func-

tionality and therefore modified worst-case execution times.

If any system uses mode changes in response to component

failure then they are bound to use ‘criticality’ to decide which

code to abandon and which to retain. One of the common

forms of error detection is to use a watch-dog timer. If some

event has not occurred by a fixed time then switch mode

and protect the key computations. A task executing for longer

than assumed during system verification can be identified via

timers; the fault that causes the error could be in hardware or

software. Here a criticality mode change and a general mode

change are essentially the same thing.

A. Example of a system with both forms of mode change

Consider as an example a simplistic cruise control system

that has just three modes: two normal modes, standby (SB) and

speed control (SC), and one exceptional, collision avoidance

(CA). The following point appertain:

• The system starts in SB with the driver in control of the

vehicle.

• Movements between the SB and SC modes are normal.

• The transition to CA is operational.

• Movements between SB and SC are Bounded or Phases.

• The trigger for transition to CA is, however, Immediate.

• In all three modes a task that undertakes proximity

analysis executes, this task has a reduced period in the

CA mode.

The system software is partitioned between two levels of

criticality: SIL4 for the safety critical functions, and SIL2

for the rest. The standby (SB) mode contains mainly SIL2

code. The collision avoidance (CA) mode has predominantly

SIL4 code and the speed control (SC) mode has both SIL4

and SIL2 code in approximately equal amounts. All SIL2

code has a WCET based on extensive measurement. All

SIL4 code has WCET based on pessimistic static analysis.

In addition all SIL4 code also has a SIL2 estimate based only

on measurement.

If one focuses on the SIL4 code, as a certification authority

might, then there is a three mode system with varying amounts

of SIL4 code. Similarly, from the fully functional point of view

there is the same three mode system but with both SIL4 and

SIL2 code.

From a mixed criticality point of view the system must

be schedulable when SIL2 values are used for all code,

and the system moves between the three functional modes.

Additionally, the system must be schedulable in the SC and

CA modes when only SIL4 code is executing and SIL4 WCET

values are used.

If only Bounded or Immediate modes changes are used

then the system is, at any time, only in one of three normal

functional modes. This leads to explicit tests to:

• Check SB in SIL2 mode and SIL4 mode.

• Check SC in SIL2 mode and SIL4 mode.

• Check SC during transition to SIL4 mode

• Check CA in SIL2 mode and SIL4 mode.

• Check CA during transition to SIL4 mode

If however Phased changes are part of the functional design

then one would have to (in addition):

• Check Phased changes in SIL2

• Check Phased changes in SIL4

• Check Phased changes with transition to SIL4

This latter case might be difficult to formulate in terms of

identifying the worst-case scenario.

What this simple example indicates is that a system has

orthogonal functional and criticality modes. And a system can

move between functional modes, criticality modes and both at

the same time. So with this example, the system could move

from SC in SIL2 to CA in SIL4. But it could not move in the

opposite direction. All realistic possibilities must therefore be

checked as part of the system’s verification.

As indicated earlier, simultaneous general mode changes

are often prohibited due to the complexity they introduce.

Unfortunately the introduction of orthogonal criticality mode

changes has re-introduced simultaneous changes.

V. CONCLUSIONS

We have surveyed existing mode change models to provide

a framework in which:

• Mode change protocols are defined to move a system

between Functional modes (normal, exceptional or de-

graded).

• Mode change events are Immediate, Bounded or Phased.

• Each mode is defined by its tasks, and attributes such

as being re-entrant, the initial mode, a sink mode or a

one-shot mode (or a combination thereof).

• Tasks can exist in more than one mode, though parame-

ters may be mode specific.

• Some tasks are mode specific.

• During a mode change, tasks may be suspended or

aborted.

In the standard model of a criticality change, the proposed

protocols are closest in behaviour to:

1) Graceful degradation; i.e. reduced functionality after the

change.

2) Immediate or Bounded triggers, with aborted or sus-

pended tasks.

3) Some tasks exist in both modes, but some only in the

earlier mode; there are no new-mode tasks.

7



4) Tasks that exist in both modes may have their (worst-

case) computation times increased and/or their periods

decreased, and/or their criticality changed.

For papers that have attempted to define a more adaptive

criticality mode change protocol, the behaviours are different:

1) The initial mode is normal, others are considered excep-

tional.

2) Bounded triggers are used, with suspended tasks.

3) Some tasks exist in both modes, new-mode tasks are

present when changing mode in a direction toward the

initial mode.

4) Tasks that exist in both modes may have their (worst-

case) computation times, periods or criticality levels

changed.

This difference underpins discussion that have occurred at

workshops and seminars on mixed criticality. Low criticality

work is still ‘critical’ and so cannot be abandoned lightly. The

standard model appears to happily abort mission critical work.

This has lead researchers to focus on adaptive schemes that

minimise the harm done to this work. But the standard model

does not advocate abandonment; rather it gives structural

support to a form of graceful degradation following a timing

error. It ensures that following a timing error the higher critical

work can still be guaranteed. The more adaptive models should

be seem as providing fault tolerance and error recovery.

In general, a system will be in both a functional mode and a

criticality mode. But there will be some functional modes that

have only one criticality; and some modes will be the target of

graceful degradation both because of functional failures and

execution time overruns.

Acknowledgements

The research described in this paper is funded, in part, by

ESPRC (UK) grant, MCC (EP/K011626/1). The contents of

this paper have benefited from fruitful discussions with Sanjoy

Baruah.

REFERENCES

[1] R. Alur, A. Trivedi, and D. Wojtczak. Optimal scheduling for constant-
rate multi-mode systems. In Proc. of the 15th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’12,
pages 75–84. ACM, 2012.

[2] S.K. Baruah. Certification-cognizant scheduling of tasks with pessimistic
frequency specification. In Proc. 7th IEEE International Symposium on
Industrial Embedded Systems (SIES’12), pages 31–38, 2012.

[3] S.K. Baruah. Response-time analysis of mixed criticality systems with
pessimistic frequency specification. Technical report, University of
North Carolina at Chapel Hill, 2013.

[4] S.K. Baruah and A. Burns. Implementing mixed criticality systems in
Ada. In A. Romanovsky, editor, Proc. of Reliable Software Technologies
- Ada-Europe 2011, pages 174–188. Springer, 2011.

[5] S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. In IEEE Real-Time Systems Symposium
(RTSS), pages 34–43, 2011.

[6] S.K. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In ECRTS, pages 147–155, 2008.

[7] A. Burns. The application of the original priority ceiling protocol to
mixed criticality systems. In L. George and G. Lipari, editors, Proc.
ReTiMiCS, RTCSA, pages 7–11, 2013.

[8] A. Burns and S. Baruah. Timing faults and mixed criticality systems. In
Jones and Lloyd, editors, Dependable and Historic Computing, volume
LNCS 6875, pages 147–166. Springer, 2011.

[9] A. Burns and S. Baruah. Towards a more practical model for mixed
criticality systems. In Proc. WMC, RTSS, pages 1–6, 2013.

[10] A. Burns and T.J. Quiggle. Effective use of abort in programming mode
changes. Ada Letters, 1990.

[11] P. Ekberg, M. Stigge, N. Guan, and W. Yi. State-based mode switching
with applications to mixed criticality systems. In Proc. WMC, RTSS,
pages 61–66, 2013.

[12] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic task systems. In ECRTS, pages 135–144, 2012.

[13] P. Emberson and I. Bate. Minimising task migrations and priority
changes in mode transitions. In Proc. of the 13th IEEE Real-Time And
Embedded Technology And Applications Symposium (RTAS 07), pages
158–167, 2007.

[14] P. Graydon and I. Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. In Proc. WMC, RTSS, pages 19–24,
2013.

[15] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems. In IEEE
RTSS, pages 13–23, 2011.

[16] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service
adaptions for mixed-criticality systems. Technical Report 350, ETH
Zurich, Laboratory TIK, 2013.

[17] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service
adaptions for mixed-criticality systems. In 19th Asia and South Pacific
Design Automation Conference (ASP-DAC), Singapore, Jan 2014.

[18] M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of low
criticality tasks in mixed criticality system. In Proc. WMC, RTSS, pages
43–48, 2013.

[19] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task
synchronization in zero-slack scheduling. In IEEE RTAS, pages 47–56,
2011.

[20] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In 10th Euromicro Workshop on Real-Time
Systems, pages 172–179. IEEE Computer Society, 1998.

[21] L.T.X. Phan, I. Lee, and O. Sokolsky. A semantic framework for
mode change protocols. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 91–100, 2011.

[22] D. Powell. Failure mode assumptions and assumption coverage. In Proc.
22nd Int. Symp. on Fault-Tolerant Computing (FTCS-22), pages 386–95.
IEEE Computer Society Press, 1992.

[23] J. Real and A. Crespo. Mode change protocols for real-time systems: A
survey and a new protocol. Journal of Real-Time Systems, 26(2):161–
197, 2004.

[24] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP. In Proc.
of the Euromicro Conference on Real-Time Systems, pages 155–165,
2012.

[25] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and
E. Tovar. Two protocols to reduce the criticality level of multiprocessor
mixed-criticality systems. In Proc. RTNS, pages 183–192. ACM, 2013.

[26] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priority-driven premptive scheduling. Journal of Real-Time
Systems, 1(3):244–264, 1989.

[27] H. Su and D. Zhu. An elastic mixed-criticality task model and its
scheduling algorithm. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE, pages 147–152, 2013.

[28] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elastic mixed-
criticality tasks in multicore systems. In Proc. RTCSA, 2013.

[29] K. Tindell and A Alonso. A very simple protocol for mode changes in
priority preemptive systems. Technical report, Universidad Politecnica
de Madrid, 1996.

[30] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority
preemptive scheduled systems. In Proc. Real Time Systems Symposium,
pages 100–109, Phoenix, Arizona, 1992.

[31] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

[32] Q. Zhao, Z. Gu, and H. Zeng. Integration of resource synchronization
and preemption-thresholds into EDF-based mixed-criticality scheduling
algorithm. In Proc. RTCSA, 2013.

[33] Q. Zhao, Z. Gu, and H. Zeng. HLC-PCP: A resource synchronization
protocol for certifiable mixed criticality scheduling. Embedded Systems
Letters, IEEE, 6(1), 2014.

8


