
Scheduling Mixed-Criticality Real-
Time Tasks with Fault Tolerance

Jian (Denny) Lin1, Albert M. K. Cheng2,*, Douglas Steel1, Michael Yu-Chi Wu1

1 University of Houston – Clear Lake, USA
2 University of Houston, USA

*Supported by the National Science Foundation under Awards No. 0720856

and No. 1219082.

∗ Introduction – What is a mixed-criticality real-time
system? Plus previous work.

∗ A static algorithm to increase the number of
schedulable tasks in a mixed-criticality, fault-tolerant
real-time system.

∗ A dynamic, on-line algorithm to reduce the likelihood
of missing task deadlines.

∗ Experimental results.

Outline

∗ Integration of multiple functionalities on a single hardware
platform

∗ Tasks running on these systems share resources but they
have different importance (criticality)

∗ Tasks may require different levels of assurance, which may
result in different, estimated Worst Case Execution Time
(WCET)
∗ WCET estimated by the Certification Authorities (CA)

∗ WCET estimated by system designers

∗ Conventional scheduling methods cannot satisfactorily
address the issues of scheduling mixed-criticality, real-time
tasks

Mixed-Criticality, Real-Time Systems

∗ Each task is periodic and characterized by a 4-tuple:

Ti = (pi; Xi; ci(LO); ci(HI))

∗ pi is the period of Ti

∗ Xi denotes the criticality of Ti, either HI or LO

∗ A HI-criticality task may have two different WCETs where ci(HI)
>= ci(LO), for example, two different estimated WCETs by CA and
system designer.

∗ A LO-criticality task has only one WCET ci(LO)

A Classical Real-Time Task System

∗ After a system starts running, every (periodic) task has an infinite
sequence of jobs to execute.

∗ Initially, all HI-criticality and LO-criticality tasks in the system are
scheduled using their c(LO)s and in this stage the system is said to
be in the LO-criticality mode.

∗ A HI-criticality task may signal that its execution time exceeds its
c(LO). At this point, all HI-criticality tasks will assume their c(HI)s and
the system will go into the HI-criticality mode.

∗ In the HI-criticality mode, all LO-criticality tasks are dropped in order
to maintain the safety of running the HI-criticality tasks.

∗ Does it have to drop all the LO-criticality tasks? Probably not.

A Classical Real-Time Task System Cont.

∗ An algorithm using EDF to schedule mixed-criticality tasks

∗ Two different deadlines are used for some tasks if they exhibit two
different WCETs during run-time. A shorter deadline, called virtual
deadline, is used in the LO-criticality mode while the original deadline
is used in the HI-criticality mode.
∗ to ensure that the system is schedulable during mode switching:

∗ A notation for Utilization:
∗ The superscript denotes the mode type and the subscript denotes the

task type:

∗ For example: denotes the total utilization of the HI-criticality tasks
based on their C(LO)s.

EDF-VD (virtual deadline) Algorithm

∑
=

=

xX

y

x p

yC
U

)(

U
LO

HI

∗ How to calculate the virtual deadline?

∗ A virtual deadline used for each HI-criticality task in the LO-criticality
mode is obtained off-line with a scaling factor x, where the virtual
relative deadline of the HI-criticality is equal to x * p (x times by the
period).

∗ x is defined as:

∗ Reference: S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster and L. Stougie, “The Preemptive
Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline
Sporadic Tas Systems”, in ECRTS, pages 147-155, 2008.

EDF-VD (virtual deadline) Algorithm Cont.

∗ Computation quality is also clearly important for a real-time
system with critical tasks.

∗ Faults or errors may happen, leading to incorrect results or
causing critical tasks to miss deadlines.

∗ Transient faults can be tolerated by adding redundancy
where a task will be re-executed if it completes with errors.

∗ Primary execution and re-execution model.

Fault-Tolerance

∗ Schedule a set of real-time, fault-tolerant tasks in a mixed-
criticality system using EDF.

∗ HI-criticality tasks are scheduled for their primary executions and
re-executions, in both LO-criticality and HI-criticality mode.

∗ How about LO-criticality tasks? LO-criticality tasks are not
useless. We may not have to drop all of them in the HI-criticality
mode as in the classical task model and EDF-VD algorithm.

∗ How to exploit slack during the run-time?

Problems Studied in This Work

∗ Notation used in our work:

∗ For a non-trivial problem, all tasks are schedulable in the LO-
criticality mode with the following condition:

∗ Applying the concept of the EDF-VD, all HI-criticality tasks are
scheduled as long as x is between the following boundaries :

A Static Algorithm to Maximize Scheduled Tasks

∗ The ideas behind our algorithm
∗ Any value between the two boundaries can be used for x.

∗ There is room between these two boundaries so that it can be
used to keep some LO-criticality tasks’ executions in the
system’s HI-criticality mode.

∗ A scheduled LO-criticality task can be taken as a special type of
HI-criticality task because its deadline is guaranteed to be met.

∗ The problem is similar to the bin-packing problem. When a LO-
criticality task is scheduled with the HI-criticality tasks, the gap
between the two boundaries is narrowed. A smallest-first
strategy can be used until no more LO-criticality tasks can be
added to the execution with the HI-criticality tasks.

A Static Algorithm to Maximize Scheduled Tasks Cont.

∗ When statically scheduling LO-criticality tasks, we try to
schedule their primary executions before their re-executions,
assuming the error rate is not high.

∗ (pri)’ means the primary executions of LO-criticality tasks that
are reserved to schedule.

∗ (pri)’’ means the primary execution that are not reserved (e.g.,
the LO-criticality tasks that may be discarded during the HI-
criticality mode.

A Static Algorithm to Maximize Scheduled Tasks Cont.

∗ If the resource sufficiently allows all LO-criticality tasks to have
their primary executions reserved, we can try to reserve more re-
executions for LO-criticality tasks.

∗ Our static algorithm tries to schedule additional LO-criticality tasks
one-by-one. Each time, the two boundaries are calculated again.
The number of schedulable tasks is maximized while the difference
between these two boundaries is nearest to zero.

∗ While the executions of LO-criticality tasks (pri and/or re-execution)
are scheduled, they work as HI-criticality tasks which have two
different deadlines used at run-time.

A Static Algorithm to Maximize Scheduled Tasks Cont.

∗ Instead of discarding all LO-criticality tasks, all LO-criticality
primary tasks and T3’s re-execution task are schedulable. The
last two columns show the calculated virtual deadlines.

An Example Using Our Static Algorithm

∗ The strategy of using re-executions to preserve the reliability is
relatively conservative. If there are no errors, the resource for the
reserved re-executions is wasted. Also, in most cases, a real-time task
does not use up its WCET.

∗ The slack generated can be used to execute more LO-criticality task jobs.

∗ When a fault is detected by a LO-criticality job without a re-execution
reserved, it may also use the slack from future jobs.

An On-Line Slack Reclaiming Algorithm

∗ Three tasks in the HI-criticality mode: T1 is a HI-criticality task with c1(HI) =
2.01, and T2 and T3 are two LO-criticality tasks with the same c(LO) = 1. Both
1 and 2 have a re-execution reserved. The periods of these three tasks are 7,
8, and 7.

∗ Suppose an error occurs in T3 as shown in the figure. A re-execution of T3 is
executed by assuming that no error occurs in T2’s job.

A Motivational Example for Using Future Slack

∗ Even if the job of T2 ends with an incorrect result due to a lack
of re-execution, the consequence is not catastrophic because
both jobs are not HI-criticality.

∗ Considering the small likelihood of a fault actually occurring,
the idea behind this solution has the potential to increase the
overall reliability and system’s performance.

A Motivational Example for Using Future Slack Cont.

∗ Use slack generated from early completion (including no
operation of re-execution because of completing without
errors) first. This type of slack is the safest to use.

∗ Only use LO-criticality tasks’ future slack. HI-criticality
should not be risked.

∗ A server-based scheduler is used to manage the slack
generated from early completions.

Safely Use Future Slack

∗ 100 task sets per experiment

∗ Each task set has 10 randomly generated tasks, 4 HI-criticality tasks and 6 LO-
criticality tasks

∗ For each task set, we use our static algorithm to calculate how many LO-criticality
primary tasks can be scheduled

∗ The x-axis is the index of the task set and the y-axis is the number of LO-criticality
primary tasks scheduled

Experimental Results

Experimental Results Cont.

∗

∗ We also calculated how many LO-criticality re-executions
can be scheduled if all LO-criticality primary tasks are
scheduled

∗ Fault Rate: how likely an error occurs in execution

∗ CBS-FT (Constant Bandwidth Server – Fault Tolerance): our
online algorithm using future slack for fault tolerance

∗ The numbers of faults recovered by using early completion
slack only and using future slack also are compared

Experimental Results Cont.

∗ Execution Times’ Range: how varied the real execution time
compared with its WCET

∗ The numbers of faults recovered by using early completion
slack only and using future slack also are compared

Experimental Results Cont.

Real-Time Systems Group

• Director Prof. Albert M. K. Cheng
• PhD students

Yong Woon Ahn, Yu Li, Xingliang Zou,
Behnaz Sanati, Sergio Chacon, Zeinab
Kazemi, Carlos Rincon, Qiong Lu,
Seyed Mohsen Alavi (arriving in spring 2015)

• MS students
Daxiao Liu, Chonghua Li

• Undergraduate students (NSF-REU)
Mozahid Haque, Rachel Madrigal

• Visiting scholars
Yu Jiang (Heilongjiang U.), Qiang Zhou
(Beihang U.), Yufeng Zhao (Xi'an Tech. U.)

• Recent graduates and their positions
Yuanfeng Wen (MS, Microsoft), Chaitanya
Belwal (PhD, Visiting Assistant Professor,
UHCL), Jim Ras (PhD), Jian Lin (PhD,
Assistant Professor, UHCL)

23

Yu Li (Best Junior PhD Student

Awardee and Friends of NSM

Graduate Fellow) and Prof.

Albert Cheng visit the NSF-

sponsored Arecibo Observatory

after their presentation at the

flagship RTSS 2012 in Puerto

Rico.

Real-time systems research

group at Yuanfeng Wen’s

graduation party in May 2013.

Yuanfeng is now at Microsoft.

Fall 2014 (9/3) group meeting -

from left to right: Dr. Qiang

Zhou, Qiong Lu, Carlos Rincon,

Chonghua Li, Prof. Yu Jiang,

Xin Liu, Prof. Yufeng Zhao, Prof.

Albert Cheng, Xingliang

(Jeffrey) Zou, Daxiao Liu, Yu Li,

Yong Woon Ahn, and Behnaz

Sanati. Zeinab Kazemi in class.

