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∗ Introduction – What is a mixed-criticality real-time
system? Plus previous work.

∗ A static algorithm to increase the number of
schedulable tasks in a mixed-criticality, fault-tolerant
real-time system.

∗ A dynamic, on-line algorithm to reduce the likelihood
of missing task deadlines.

∗ Experimental results.

Outline



∗ Integration of multiple functionalities on a single hardware
platform

∗ Tasks running on these systems share resources but they
have different importance (criticality)

∗ Tasks may require different levels of assurance, which may
result in different, estimated Worst Case Execution Time
(WCET)
∗ WCET estimated by the Certification Authorities (CA)

∗ WCET estimated by system designers

∗ Conventional scheduling methods cannot satisfactorily
address the issues of scheduling mixed-criticality, real-time
tasks

Mixed-Criticality, Real-Time Systems



∗ Each task is periodic and characterized by a 4-tuple:

Ti = (pi; Xi; ci(LO); ci(HI))

∗ pi is the period of Ti

∗ Xi denotes the criticality of Ti, either HI or LO

∗ A HI-criticality task may have two different WCETs where ci(HI)
>= ci(LO), for example, two different estimated WCETs by CA and
system designer.

∗ A LO-criticality task has only one WCET ci(LO)

A Classical Real-Time Task System



∗ After a system starts running, every (periodic) task has an infinite
sequence of jobs to execute.

∗ Initially, all HI-criticality and LO-criticality tasks in the system are
scheduled using their c(LO)s and in this stage the system is said to
be in the LO-criticality mode.

∗ A HI-criticality task may signal that its execution time exceeds its 
c(LO). At this point, all HI-criticality tasks will assume their c(HI)s and 
the system will go into the HI-criticality mode.

∗ In the HI-criticality mode, all LO-criticality tasks are dropped in order 
to maintain the safety of running the HI-criticality tasks. 

∗ Does it have to drop all the LO-criticality tasks? Probably not. 

A Classical Real-Time Task System Cont.



∗ An algorithm using EDF to schedule mixed-criticality tasks

∗ Two different deadlines are used for some tasks if they exhibit two
different WCETs during run-time. A shorter deadline, called virtual
deadline, is used in the LO-criticality mode while the original deadline
is used in the HI-criticality mode.
∗ to ensure that the system is schedulable during mode switching:

∗ A notation for Utilization:
∗ The superscript denotes the mode type and the subscript denotes the

task type:

∗ For example: denotes the total utilization of the HI-criticality tasks
based on their C(LO)s.

EDF-VD (virtual deadline) Algorithm
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∗ How to calculate the virtual deadline? 

∗ A virtual deadline used for each HI-criticality task in the LO-criticality 
mode is obtained off-line with a scaling factor x, where the virtual 
relative deadline of the HI-criticality is equal to x * p (x times by the 
period).

∗ x is defined as:

∗ Reference: S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster and L. Stougie, “The Preemptive 
Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline 
Sporadic Tas Systems”, in ECRTS, pages 147-155, 2008.

EDF-VD (virtual deadline) Algorithm Cont. 



∗ Computation quality is also clearly important for a real-time 
system with critical tasks.

∗ Faults or errors may happen, leading to incorrect results or 
causing critical tasks to miss deadlines.

∗ Transient faults can be tolerated by adding redundancy 
where a task will be re-executed if it completes with errors.

∗ Primary execution and re-execution model. 

Fault-Tolerance 



∗ Schedule a set of real-time, fault-tolerant tasks in a mixed-
criticality system using EDF.

∗ HI-criticality tasks are scheduled for their primary executions and 
re-executions, in both LO-criticality and HI-criticality mode.

∗ How about LO-criticality tasks? LO-criticality tasks are not 
useless. We may not have to drop all of them in the HI-criticality 
mode as in the classical task model and EDF-VD algorithm. 

∗ How to exploit slack during the run-time? 

Problems Studied in This Work



∗ Notation used in our work:

∗ For a non-trivial problem, all tasks are schedulable in the LO-
criticality mode with the following condition: 

∗ Applying the concept of the EDF-VD, all HI-criticality tasks are 
scheduled as long as x is between the following boundaries : 

A Static Algorithm to Maximize Scheduled Tasks



∗ The ideas behind our algorithm
∗ Any value between the two boundaries can be used for x. 

∗ There is room between these two boundaries so that it can be 
used to keep some LO-criticality tasks’ executions in the 
system’s HI-criticality mode. 

∗ A scheduled LO-criticality task can be taken as a special type of 
HI-criticality task because its deadline is guaranteed to be met.

∗ The problem is similar to the bin-packing problem. When a LO-
criticality task is scheduled with the HI-criticality tasks, the gap 
between the two boundaries is narrowed. A smallest-first 
strategy can be used until no more LO-criticality tasks can be 
added to the execution with the HI-criticality tasks. 

A Static Algorithm to Maximize Scheduled Tasks Cont.



∗ When statically scheduling LO-criticality tasks, we try to 
schedule their primary executions before their re-executions, 
assuming the error rate is not high. 

∗ (pri)’ means the primary executions of LO-criticality tasks that 
are reserved to schedule.

∗ (pri)’’ means the primary execution that are not reserved (e.g., 
the LO-criticality tasks that may be discarded during the HI-
criticality mode.

A Static Algorithm to Maximize Scheduled Tasks Cont.



∗ If the resource sufficiently allows all LO-criticality tasks to have 
their primary executions reserved, we can try to reserve more re-
executions for LO-criticality tasks.

∗ Our static algorithm tries to schedule additional LO-criticality tasks 
one-by-one. Each time, the two boundaries are calculated again. 
The number of schedulable tasks is maximized while the difference 
between these two boundaries is nearest to zero. 

∗ While the executions of LO-criticality tasks (pri and/or re-execution) 
are scheduled, they work as HI-criticality tasks which have two 
different deadlines used at run-time. 

A Static Algorithm to Maximize Scheduled Tasks Cont.



∗ Instead of discarding all LO-criticality tasks, all LO-criticality 
primary tasks and T3’s re-execution task are schedulable. The 
last two columns show the calculated virtual deadlines. 

An Example Using Our Static Algorithm



∗ The strategy of using re-executions to preserve the reliability is
relatively conservative. If there are no errors, the resource for the
reserved re-executions is wasted. Also, in most cases, a real-time task
does not use up its WCET.

∗ The slack generated can be used to execute more LO-criticality task jobs.

∗ When a fault is detected by a LO-criticality job without a re-execution 
reserved, it may also use the slack from future jobs. 

An On-Line Slack Reclaiming Algorithm



∗ Three tasks in the HI-criticality mode: T1 is a HI-criticality task with c1(HI) = 
2.01, and T2 and T3 are two LO-criticality tasks with the same c(LO) = 1. Both 
1 and 2 have a re-execution reserved. The periods of these three tasks are 7, 
8, and 7. 

∗ Suppose an error occurs in T3 as shown in the figure. A re-execution of T3 is 
executed by assuming that no error occurs in T2’s job. 

A Motivational Example for Using Future Slack



∗ Even if the job of T2 ends with an incorrect result due to a lack
of re-execution, the consequence is not catastrophic because
both jobs are not HI-criticality.

∗ Considering the small likelihood of a fault actually occurring,
the idea behind this solution has the potential to increase the
overall reliability and system’s performance.

A Motivational Example for Using Future Slack Cont.



∗ Use slack generated from early completion (including no 
operation of re-execution because of completing without 
errors) first. This type of slack is the safest to use. 

∗ Only use LO-criticality tasks’ future slack. HI-criticality 
should not be risked. 

∗ A server-based scheduler is used to manage the slack 
generated from early completions. 

Safely Use Future Slack



∗ 100 task sets per experiment

∗ Each task set has 10 randomly generated tasks, 4 HI-criticality tasks and 6 LO-
criticality tasks

∗ For each task set, we use our static algorithm to calculate how many LO-criticality 
primary tasks can be scheduled

∗ The x-axis is the index of the task set and the y-axis is the number of LO-criticality 
primary tasks scheduled

Experimental Results



Experimental Results Cont.

∗

∗ We also calculated how many LO-criticality re-executions 
can be scheduled if all LO-criticality primary tasks are 
scheduled



∗ Fault Rate: how likely an error occurs in execution

∗ CBS-FT (Constant Bandwidth Server – Fault Tolerance): our 
online algorithm using future slack for fault tolerance

∗ The numbers of faults recovered by using early completion 
slack only and using future slack also are compared 

Experimental Results Cont.



∗ Execution Times’ Range: how varied the real execution time 
compared with its WCET

∗ The numbers of faults recovered by using early completion 
slack only and using future slack also are compared 

Experimental Results Cont.
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