

Proceedings of the 2nd International
Workshop on Mixed Criticality Systems

Edited by Liliana Cucu-Grosjean and Rob Davis

12/11/13 15:28WMC: 1st International Workshop on Mixed Criticality Systems - Call For Papers

Page 1 sur 2http://www-users.cs.york.ac.uk/~robdavis/wmc/

WMC
1st International Workshop

on Mixed Criticality Systems
At the Real Time Systems
Symposium (RTSS 2013)

Vancouver, Canada
3rd December 2013

Call For Papers

Program Chairs:

Liliana Cucu-Grosjean
INRIA, Nancy Grand-Est,
France
liliana.cucu@inria.fr
Rob Davis
University of York, UK
rob.davis@york.ac.uk

Steering Committee:

Sanjoy Baruah
Liliana Cucu-Grosjean
Rob Davis
Claire Maiza

Program Committee:

Sanjoy Baruah
Arvind Easwaran
Sebastian Faucou
Laurent George
Raphael Guerra
Leandro Indrusiak
Karthik Lakshmanan
Giuseppe Lipari
Claire Maiza
Vincent Nelis
Moritz Neukirchner
Gabriel Parmer
Susan van der Ster
Wang Yi

Workshop on Mixed Criticality Systems
Download/View the Call For Papers (PDF, TEXT).

PROVISIONAL PROGRAM

A SAFETY CONCEPT FOR A WIND POWER MIXED-CRITICALITY EMBEDDED SYSTEM BASED ON MULTICORE
PARTITIONING
Jon Perez, David Gonzalez, Salvador Trujillo, Ton Trapman and Jose Miguel Garate.

EXTENDING MIXED CRITICALITY SCHEDULING
Tom Fleming and Alan Burns.

MAXIMIZING THE EXECUTION RATE OF LOW-CRITICALITY TASKS IN MIXED CRITICALITY SYSTEM
Mathieu Jan, Lilia Zaourar and Maurice Pitel.

MEMORY ARCHITECTURES FOR NOC-BASED REAL-TIME MIXED CRITICALITY SYSTEMS
Neil Audsley.

MIXED CRITICALITY SCHEDULING APPLIED TO JPEG2000 VIDEO STREAMING OVER WIRELESS MULTIMEDIA
SENSOR NETWORKS
Alemayehu Addisu, Laurent George, Vincent Sciandra and Max Agueh.

MIXED CRITICALITY SCHEDULING IN TIME-TRIGGERED LEGACY SYSTEMS
Jens Theis and Gerhard Fohler.

MULTI-CRITERIA EVALUATION OF PARTITIONED EDF-VD FOR MIXED-CRITICALITY SYSTEMS UPON IDENTICAL
PROCESSORS
Paul Rodriguez, Laurent George and Yasmina Abdeddaim.

ON THE EXPRESSIVENESS OF FIXED-PRIORITY SCHEDULING CONTEXTS FOR MIXED-CRITICALITY SCHEDULING
Marcus Volp, Adam Lackorzynski and Hermann Hartig.

SAFETY ASSURANCE DRIVEN PROBLEM FORMULATION FOR MIXED-CRITICALITY SCHEDULING
Patrick Graydon and Iain Bate.

SCHEDULE TABLE GENERATION FOR TIME-TRIGGERED MIXED CRITICALITY SYSTEMS
Jens Theis, Gerhard Fohler and Sanjoy Baruah.

STATE-BASED MODE SWITCHING WITH APPLICATIONS TO MIXED-CRITICALITY SYSTEMS
Pontus Ekberg, Martin Stigge, Nan Guan and Wang Yi.

THE QUEST-V SEPARATION KERNEL FOR MIXED CRITICALITY SYSTEMS
Ye Li, Richard West and Eric Missimer.

TIME-TRIGGERED MIXED-CRITICAL SCHEDULER
Dario Socci, Peter Poplavko, Saddek Bensalem and Marius Bozga.

TOWARDS A MORE PRACTICAL MODEL FOR MIXED CRITICALITY SYSTEMS
Alan Burns and Sanjoy Baruah.

PURPOSE

The purpose of WMC is to share new ideas, experiences and information about research and development of Mixed Criticality
real-time systems.

IMPORTANT DATES

Submission deadline extended to: 11th Oct 2013
Notification of acceptance: 30th Oct 2013
Final Versions: 6th November 2013
Workshop: 3rd December 2013
RTSS 2013 Conference: 3rd-6th December 2013

Program Chairs

Liliana Cucu-Grosjean
Rob Davis

Steering Committee

Sanjoy Baruah Rob Davis
Liliana Cucu-Grosjean Claire Maiza

Program Committee

Sebastian Altmeyer
Sanjoy Baruah
Iain Bate
Gerhard Fohler
Laurent George
Haohan Li
Nan Guan
Claire Maiza
Vincent Nelis
Sophie Quinton
Marcus Völp
Gabriel Parmer
Suzanne van der Ster
Wang Yi

Message from the Program Chairs

It is our pleasure to welcome you to the 2nd International Workshop on Mixed Criticality
Systems (WMC) at the Real-Time Systems Symposium (RTSS) in Rome, Italy on 2nd
December 2014.
The purpose of WMC is to share new ideas, experiences and information about research and
development of mixed criticality real-time systems.
The workshop aims to bring together researchers working in fields relating to real-time
systems with a focus on the challenges brought about by the integration of mixed criticality
applications onto singlecore, multicore and manycore architectures. These challenges are
cross-cutting. To advance rapidly, closer interaction is needed between the sub-communities
involved in real-time scheduling, real-time operating systems / runtime environments, and
timing analysis.
For this second edition of the workshop a total of 8 submissions were received. The review
process involved 13 Program Committee members, with each submission receiving at least 3
reviews. In total, 7 papers were selected for presentation. Our thanks go to the WMC Program
Committee for the time and effort they put into carefully reviewing the submissions, and for
meeting the tight timescales set for reviews.

In addition to the regular papers, the workshop program also includes an invited talk from
Risat Pathan (Chalmers University of Technology, Sweden). His talk entitled “Real-Time
Scheduling of Mixed-Criticality Systems: What are the “X” Factors?” will introduce another
factor relevant to high criticality tasks.

WMC 2014 would not be possible without the hard work of a number of people involved in
the organisation of RTSS. In particular, we would like to thank the RTSS 2014 Workshops
Chair, Rodolfo Pellizzoni (University of Waterloo, Canada) for his excellent organisation of
the overall workshop program. We also thank the WMC Steering Committee for their
guidance, and the MCC (UK EPSRC EP/K011626/1), Proxima (EU FP7 IP 611085) and
Departs (French BGLE O16526-405635) projects for their support.

Finally, we would like to thank all of the authors who submitted their work to WMC 2014,
whether it was accepted or not; without them, this workshop would not be possible.

We wish you an interesting and exciting workshop and an enjoyable stay in Rome. We look
forward to seeing you again at WMC 2015.

Liliana Cucu-Grosjean (INRIA, Paris-Rocquencourt, France)
Rob Davis (University of York, UK)
WMC 2014 Program Chairs

Table of Contents

Session 1

Invited Talk : Real-Time Scheduling of Mixed-Criticality Systems: What
are the “X” Factors?
Risat Pathan ……………… 1

System Mode Changes – General and Criticality-Based
Alan Burns ……………. 3

Session 2

Mixed-Criticality Support in a High-Assurance, General-Purpose
Microkernel
Anna Lyons and Gernot Heiser ……………… 9

On Spatial Isolation for Mixed Criticality, Embedded Systems
Eric Armbrust, Jiguo Song, Gedare Bloom, Gabriel Parmer …… 15

Session 3

Achieving Temporal Isolation in Multiprocessor Mixed-Criticality Systems
Sanjoy Baruah and Alan Burns ..………….. 21

Memory Arbitration Scheme for Mixed-Criticality Multicore Platforms
Bekim Cilku, Peter Puschner, Alfons Crespo, Salvador Peiro and Javier
Coronel ……….. 27

Session 4

Incorporating the Notion of Importance into Mixed Criticality Systems
Tom Fleming and Alan Burns ………… 33

Scheduling Mixed-Criticality Real-Time Tasks with Fault Tolerance
Jian (Denny) Lin, Albert Cheng, Douglas Steel and Michael Yu-Chi Wu
… ……… 39

INVITED TALK

Risat Pathan (Chalmers University of Technology)

Title: Real-Time Scheduling of Mixed-Criticality Systems: What are the
“X” Factors?

Abstract: Mixed-criticality (MC) systems consist of tasks with different degrees
of importance or criticality. Correctly executing relatively higher critical tasks
(e.g., meeting their deadlines) is more important than that of any lower critical
task. Therefore, scheduling algorithm and its analysis have to consider runtime
situations where the correct execution of higher critical tasks can be threatened
by some events that I call “X” factors of MC systems. Example of such an X
factor is “execution overrun” which is pointed out by Steve Vestal in RTSS
2007. The purpose of my talk is to highlight another X factor: the frequency of
error detection and recovery.

The design and analysis of real-time scheduling algorithms for safety-critical
systems is a challenging problem due to the temporal dependencies among
different design constraints. This work is based on scheduling sporadic tasks
with three interrelated design constraints: (i) meeting the hard deadlines of
application tasks, (ii) providing fault tolerance by executing backups, and (iii)
respecting the criticality of each task to facilitate system’s certification. First, a
new approach to model mixed-criticality systems from the perspective of fault
tolerance is proposed. Second, a uniprocessor fixed-priority scheduling
algorithm, called fault-tolerant mixed-criticality (FTMC) scheduling, is designed
for the proposed model. The FTMC algorithm executes backups to recover from
task errors caused by hardware or software faults. Third, a sufficient
schedulability test is derived, when satisfied for a (mixed-criticality) task set,
guarantees that all deadlines are met even if backups are executed to recover
from errors. Finally, evaluations illustrate the effectiveness of the proposed test.

1

2

System Mode Changes - General and
Criticality-Based

A. Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

Abstract—In this paper we summarise, and attempt to unify,
the many descriptions that have been published on general mode
changes. We then use this summary to position the criticality
mode change. We conclude that a criticality mode change (from
low to high) is closest in nature to a (graceful) degradation mode
change following (partial) system failure. However, a criticality
mode change (from high to low) has more in common with a
(exceptional) functional mode change. The paper also addresses
systems that may have both criticality and general mode changes.

I. INTRODUCTION

Many real-world applications involve systems that operate
in a number of clearly defined modes. Aircraft flights progress
through phases (e.g. taxiing, take-off, climbing, level flight,
etc) and automotive systems have modes to cover start-up,
cruise control, driver control, ‘limp home’ etc.

If a system has more than one mode then there must be
a mode change protocol to control how the system moves
between modes. Such (general) protocols have been the subject
of considerable study over a number of years [26], [10], [30],
[20], [29], [13], [23], [21], [1], [11].

The more recent literature on supporting mixed criticality
systems has identified situations in which the system must
move from one criticality level to another [31], [6], [5],
[12], [24], [15], for example, in a dual criticality system
(low and high) a move from the low criticality mode to
the high criticality mode. As a consequence of this move
some low criticality work is abandoned (either temporally or
permanently).

This type of criticality mode change has a number of
similarities with the more general mode changes, but there
are some important differences. The abandonment of work
(even of a lower criticality) is clearly unacceptable in a fully
functioning system, but it may be acceptable as part of a
response to a (partial) system failure. In this paper we argue
that a criticality mode change is equivalent to a particular form
of general mode change (providing graceful degradation).

The paper is organised as follows; next we review the
models and forms of analysis for general mode changes. In
Section III, we use this context, to position the definition
of a criticality mode change. Systems with both general
and criticality mode changes are considered in Section IV.
Conclusions are provided in Section V.

II. GENERAL MODE CHANGES

To formalise what it means for a system’s behaviour to be
described in terms of modes, a number of aspects need to be
covered:

• Type – what are the different classes of modes.
• Trigger – what causes a mode change.
• Protocol – how is the mode change managed.
• Attributes – properties of modes.
• Definition – the software, and its operational parameters,

that constitute a mode.
• Analysis – in particular the scheduling analysis used to

verify the timing properties of the system during a mode
change.

We look at each of these in turn. We assume a standard system
model in which periodic and sporadic tasks, characterised by
their minimum inter-arrival time, deadline and one or more
measures of their worst-case execution time, give rise to a
potentially unbounded sequence of jobs.

A. Type

In the literature on mode change protocols (cited above)
three distinct types of mode can be identified. These provide
a natural partitioning of the functionality of the system:

1) Normal Functional Modes – the application moves
through a number of different phases. These phases are
planned and are entered regularly. An example would be
moving from driver control to cruise control in a standard
family car.

2) Exceptional Functional Modes (sometimes called Oper-
ational mode) – rare events that will cause code to be
executed that is not otherwise required. The response is
planned, but the resulting mode change may never occur.
An example would be ‘prepare for crash’ mode contained
within a car – when the on-car monitoring system detects
that an impact may be about to happen, it winds up the
windows, tightens the seat belts, applies the brakes so
the pads are just in contact with the disks (making them
more responsive if applied by the driver) and prepares
to deploy the airbag.

3) Degraded Functional Modes (sometimes called simply
Graceful Degradation) – errors require load to be shed
and priority given to issues of safety and minimum
functionality. General responses to mode change events

3

are planned but the full set of error conditions may not be
known in advance. An example would be a ‘limp home’
mode following engine sensor failure.

A system might have ten or more normal modes that are
progressed through in a statically defined sequence. It might
also have a small number of exceptional modes, and perhaps
one or two degraded modes. With more complex systems,
modes might be organised hierarchically.

B. Trigger
The mode change event (sometimes called request or trig-

ger) is typically related to the state of the system or the
system’s environment as indicated via an input reading or an
internal state change. For example, a driver touching the brake
peddle will generate an event that will move the engine control
system from ‘cruise control’ to ‘driver control’.

An event could be timed-trigger if the mode change is
coordinated to the ‘time’ of the environment. So a power
generation system may switch modes at midnight. Also air
traffic control systems have day and night modes (which
switch over at a particular time – or at least should do,
failure to return to ‘day’ mode being a cause of system failure
in the past (see http://www.bbc.co.uk/news/uk-25278163). An
example of a relative time trigger is a data collection mode that
executes for just 10 minutes before returning to some previous
mode.

For graceful degradation the trigger may come from the
hardware platform or some health monitoring subsystem.

C. Protocol
The mode change event requires a protocol to manage the

actual mode change. Such protocols can also be characterised
in three ways:

1) Immediate – the mode change event causes an immediate
mode change with the old mode jobs being suspended or
aborted, and new mode jobs starting immediately.

2) Bounded (sometimes called synchronous [21]) – within
a bounded time from the mode change event a point in
time is reached in which there are no active jobs from
the old mode and hence a clean switch of modes is then
possible.

3) Phased (sometimes called asynchronous) – following the
mode change event old mode jobs are allowed to com-
plete, and new mode jobs are started within a bounded
time.

With Immediate and Bounded, the system is only ever in one
mode; with Phased there is a (limited) interval of time in which
the modes are overlapping. Some jobs from the new mode have
started while other old-mode jobs are yet to complete.

Overlapping can also happen in a distributed or multipro-
cessor system in which a phased change is necessary as it is
not possible to simultaneously inform the entire system of the
need to change mode. The propagation of the mode change
event will inevitable take time.

Phased changes are the most difficult to analyse as the load
on the system is typically higher during the change than it

is in either mode [30]. Analysis can however be used to start
new tasks as soon as possible commensurate with all deadlines
being met during transition [20]. Here a worst-case scenario is
assumed, with all old-mode tasks releasing a job just before
the mode change occurs. Each of these jobs is allowed to
terminate. Each new-mode task has a temporal offset (from
the time of the change event) that the scheduling analysis has
furnished. So this offset is the minimum possible that will not
undermine schedulability during the mode change.

The completion of the old mode is usually defined to
be when all current jobs, released in the old mode, have
completed. However in some situations a number of old-mode
jobs may need to be executed to complete the work of that
mode. For example, a buffer of sensor input values from the
old mode may need to be cleared before the mode change
can occur [21]. And in distributed systems a series of old-
mode messages may be in transit and need to be delivered
and processed before the mode can be considered complete.

A single processor system implemented via a cyclic exec-
utive can easily support a Bounded mode change by waiting
until the end of the current major cycle and then switching
the (pre-computed) scheduling tables. A system using fixed
priority scheduling or EDF can also support a Bounded change
by waiting for the next idle tick and then changing the set of
eligible tasks [29]. An idle tick is an instant in time when there
is no work to undertake apart from new jobs released at that
instant. Clearly there can be no causal effect from before to
after an idle tick. For multiprocessor systems the coordination
of the mode change across the entire platform is more of a
challenge [25].

The definition of the mode change protocol must be closely
tied to the form of analysis used to verify the system’s
behaviour (as indicated below).

D. Attributes
In this subsection we define a number of attributes that have

been used to define properties of modes and mode change
protocols.

A mode is re-entrant if it can be returned to at some
time after it was left. Other modes can be termed one-shot
(or single-shot) if they can only be entered once, sink if
the system never leaves this mode once it has entered it, or
initial if the system always starts in that mode. The full set
of modes is cyclic if the system systematically and repeated
moves through the modes. Alternatively the set of modes is
connected (sometime called strongly connected) if the system
can move from any mode to any other mode. Obviously a
connected set does not have any one-shot or sink modes.

A mode that has aborted jobs is not usually re-entrant. A
mode which can give rise to suspended jobs can, however, be
re-visited with the suspended jobs continuing from the state
they were in.

These definitions are useful but do not cover all interesting
cases. For example, a system with four modes, A to D, might
have the behaviour that it can start in A or B; it moves
backwards and forwards between these modes unless some

4

event occurs that moves the system to mode C, A and B are
never returned to but the system then moves between C and
D. The descriptive terms can be assigned to the pairs of modes
but not to the individual modes.

Although the above classifications are independent there is
some common coupling: Functional mode changes tend to
be Bounded and often re-entrant, Operational changes can
be Immediate or Phased and may lead to the use of one-
shot modes, and Graceful Degradation may require Phased
or Immediate changes, and the degraded mode may well be a
sink mode.

A particular case of Graceful Degradation concerns execu-
tion time overruns. If a task, due to a software error, enters
an infinite loop then the only recovery strategy is to abort the
task (its current job must be abandoned). This will require
an Immediate change. Later the task could be restarted (cold
restart) or an alternative task introduced in the new ‘mode’.
This task could start cold (no relevant internal state) or warm
(if it has access to state updated by the aborted task). A hot
standby would most probably be present in the old mode, but
be deemed more important once it had taken over from the
aborted primary task [22].

E. Definition
In terms of the code contained within a mode, a mode

change may involve:
• Tasks that run unaffected in both modes.
• Tasks that run only in the old mode.
• Tasks that run only in new mode.
• Tasks that run in both modes but have their defining

parameters changed.
In the latter case, a task could have its period and/or

deadline altered, and in a fixed priority scheme its priority.
A suspended job may actually be allowed to execute at a
background priority; hence there is some overlap in these
definitions between tasks that only execute in the old mode,
and those that run in both modes but with diminished urgency
in the second mode.

A task that has the same release characteristics, but which
undertakes altered functionality in the new mode may have a
different worst-case execution time in the new mode.

Finally, once ‘criticality’ becomes a task parameter then it
is possible for a task to remain unchanged during a mode
change, but for its designated criticality to alter. The hot
standby introduced above is an example of such a change.

F. Analysis
From a schedulability point of view, different modes have

different code requirements. So schedulability in one mode
does not imply schedulability in another mode or in any
Phased mode change. All modes must be checked, and all
Phased changes.

For Immediate mode changes there is no specific scheduling
problem, but there is an obligation on the RTOS and/or real-
time programming language to facilitate immediate task sus-
pension and/or aborting (which may be quicker). Suspension

is needed for re-entrant modes, abort for non re-entrant. If a
suspended or aborted job could be holding a resource that is
used in the new mode then action must be taken to recover the
resource or to allow a ‘suspended’ task to continue to execute
until it has released the resource. From a scheduling point of
view the mode change may therefore not be truly immediate.

For Phased changes there has been scheduling analysis
produced [20] that computes a set of minimum release offsets
for each new mode task. Whenever the mode change event
occurs these offsets will ensure that all old mode jobs complete
by their deadlines, but new mode tasks start as soon as
possible. The scheduling of Phased changes is complicated by
tasks that change their periods. A seemingly simple change of
a task that moves from requiring 6 ticks of computation every
20 to 3 every 10 (or visa versa) can cause deadline misses on
other non-changing tasks.

A final complication with Phased changes comes from the
possibility of overlapping phases; e.g. during the move from
mode A to mode B, a move to mode C is required. Systems
tend to avoid this difficult to analysis situation by not allowing
a further change until the current change has been completed.
However, it may again be necessary to wait until there is a
system idle tick before a Bounded or Phased change can be
guaranteed to be complete.

A complex system with a large number of modes and
possible mode changes can be modelled using state and state
transitions formalisms [21]. Formal analysis can be used to
verify that a system always remains within safe modes [1].

III. CRITICALITY MODE CHANGES

In this section we review the literature on mixed criticality
systems (MCS) that has utilised the notion of criticality modes
and mode changes.

Consider a system with N criticality levels, L0 . . . LN�1,
executing on a uniprocessor and using priority based schedul-
ing of constrained tasks. Perhaps up to five levels of criti-
cality may be identified in a system (see, for example, the
IEC 61508, DO-178B, DO-254 and ISO 26262 standards).
Typical names for the levels are ASIL (Automotive Safety and
Integrity Levels) and SIL (Safety Integrity Level). It should be
noted that not all papers on MCSs assign to ‘criticality’ the
same meaning, an issue explored by Graydon and Bate [14].

The standard MCS’s model [31], [6], [5], [12], [24], [15]
has the following properties:

• Each task in the system is characterised by the minimum
inter-arrival time of its jobs (period denoted by T),
deadline (relative to the release of each job, denoted
by D) and worst-case execution time (one per criticality
level), denoted by C(L0) . . . C(L

N�1). A key aspect of
the standard MCS model is that L

x

> L
y

! C(L
x

) �
C(L

y

).
• The system starts in the L0 mode, and remains in

that mode as long as all jobs execute within their low
criticality computation times (C(L0)).

• If any job executes for its C(L0) execution time without
completing then the system immediately moves to the

5

next criticality mode, L1.
• As the system moves to the L1 mode all L0 criticality

tasks are abandoned. No further L0 criticality jobs are
executed.

• The system remains in the L1 mode unless a job executes
for its C(L1) execution time without completing, the
system then immediately moves to the next criticality
mode; jobs with criticality level L1 are dropped.

• This process continues (potentially) until the top criti-
cality mode is reached (L

N�1) with only tasks of this
criticality level executing.

• Tasks are assumed to be independent of each other (they
do not share any resource other than the processor).

This abstract behavioural model has been very useful in
allowing key properties of mixed criticality systems to be
derived, but it has been necessary to extend the model to allow
for more realistic characteristics such as allowing some lower
criticality work to execute in the higher criticality modes and
for the lower criticality modes to be reinstated when conditions
are appropriate. This is covered in the following papers [5],
[28], [27], [18], [9], [4], [16], [17].

So the standard model (SM) defines a path from L0 to
L
N�1. The adaptive model (AM) allows movements in the

opposite direction.
Note that work has also been focused on criticality-aware

resource control protocols that will allow resource sharing
between tasks [7], [32], [19], [33]. This work does not however
directly impact mode changing unless resources can be used
by tasks of different criticality.

A. Characteristics of a criticality mode change
Using the terms introduced in the Section II we can define

the above SM criticality mode change protocol as follows
• L0 is the initial mode.
• L

N�1 is a sink mode.
• All modes are one-shot.
• Mode transitions are Immediate (or Phased in some

models where executing lower criticality jobs are allowed
to complete – though usually their deadlines are not
guaranteed).

• Following a mode change some tasks only execute in the
old mode.

• Some tasks execute in both modes, but their execution
times are increased1.

• There are no ‘new mode’ tasks.
As discussed above the more expressive and adaptive mode

(AM) allows systems to regain functionality and move back
towards the initial (fully functional) mode [5], [28], [27], [18],
[9]. AM is therefore characterised as follows:

• L0 is the initial mode.
• There are no sink modes.
• Mode transitions are typically Bounded.

1Some models for MCS have period as well as execution time being
criticality dependent [8], [2], [4], [3]; in these models a task’s period may
reduce (as well as computation time increase) during a criticality mode change.

• All modes are re-entrant.
• Some tasks execute in both modes, but their execution

times (and periods) are deemed to vary.
• There are new-mode tasks when moving mode in the

direction of L0.
But what type of mode change are these? First for the

standard model (SM). Early papers on MCS [31], [6] were
clear that the initial L0 mode is the only expected state for
the system to be in. Other criticalities were only introduced
so that scheduling analysis can be used to reduce the resource
needs of the system. This is done by leveraging the pessimistic
execution times assumed for high criticality tasks in the higher
criticality modes.

In a two criticality system (LO and HI), these pessimistic
values (the C(HI) values) are not expected to be experienced
at run-time. Indeed the C(LO) values are most likely to also
be pessimistic (though less so of course).

Therefore, a task executing for longer than expected (beyond
C(LO)) can be deemed to be at fault. And hence a criticality
mode change should be described as a form of Graceful Degra-
dation. If one accepts this view then of the N modes, only one
reflects normal functionality, all the other N � 1 are forms of
degraded service – as increasing levels of functionality are
being dropped.

For the adaptive model (AM) mode changes are better
defined as exceptional (operational). They are planned but may
not occur.

All protocols and forms of analysis that have been de-
veloped for general mode changes are directly applicable to
criticality mode changes (albeit often in a simpler form as a
criticality mode change does not have all the characteristics of
the more general protocol). So, for example, in the standard
model where L0 is the initial mode and L

N�1 is the sink
mode, there are no new-mode tasks. But in the more adaptive
scheme where lost work can be returned to (i.e. L

N�1 is not
a sink mode) then new-mode tasks will need to be supported.

In the general literature on fault tolerance, recovering from
an error (or partial failure) can either be: degraded service
followed by active recovery, or degrading service followed by
‘re-boot’ (e.g. channel re-initialisation in an avionics system).
With a ‘re-boot’ the system, in effect, moves from the sink
mode to the initial mode, but this is done outside the model
of the software. With active recovery the system recovers by
moving away from the degraded modes, there are no longer
sink modes.

For mixed criticality, the standard model (SM) assumes that
the software cannot return to L0. Active recovery requires an
adaptive protocol (AM).

IV. SYSTEMS WITH BOTH GENERAL AND CRITICALITY
MODE CHANGES

Having established that the main SM criticality mode
change is usefully defined as a form of graceful degradation,
it seem perfectly reasonable for a large system or system of
systems to have both general and criticality mode changes.
Some points of interest are:

6

• Assume the system consists of a set of applications, of
potentially different criticality levels.

• A General Mode Change may impact on just one or a
subset of applications and therefore criticality levels.

• Graceful Degradation, in general, is most likely to be
influenced by criticality.

• A General Mode Change Protocol may involve some
tasks changing their criticality designation.

In the latter case a set of tasks may be more critical, say, during
take-off than during taxiing. So the same tasks are executing,
but are deemed to have different worst-case execution times.
Fortunately this is equivalent to the tasks having added func-
tionality and therefore modified worst-case execution times.

If any system uses mode changes in response to component
failure then they are bound to use ‘criticality’ to decide which
code to abandon and which to retain. One of the common
forms of error detection is to use a watch-dog timer. If some
event has not occurred by a fixed time then switch mode
and protect the key computations. A task executing for longer
than assumed during system verification can be identified via
timers; the fault that causes the error could be in hardware or
software. Here a criticality mode change and a general mode
change are essentially the same thing.

A. Example of a system with both forms of mode change

Consider as an example a simplistic cruise control system
that has just three modes: two normal modes, standby (SB) and
speed control (SC), and one exceptional, collision avoidance
(CA). The following point appertain:

• The system starts in SB with the driver in control of the
vehicle.

• Movements between the SB and SC modes are normal.
• The transition to CA is operational.
• Movements between SB and SC are Bounded or Phases.
• The trigger for transition to CA is, however, Immediate.
• In all three modes a task that undertakes proximity

analysis executes, this task has a reduced period in the
CA mode.

The system software is partitioned between two levels of
criticality: SIL4 for the safety critical functions, and SIL2
for the rest. The standby (SB) mode contains mainly SIL2
code. The collision avoidance (CA) mode has predominantly
SIL4 code and the speed control (SC) mode has both SIL4
and SIL2 code in approximately equal amounts. All SIL2
code has a WCET based on extensive measurement. All
SIL4 code has WCET based on pessimistic static analysis.
In addition all SIL4 code also has a SIL2 estimate based only
on measurement.

If one focuses on the SIL4 code, as a certification authority
might, then there is a three mode system with varying amounts
of SIL4 code. Similarly, from the fully functional point of view
there is the same three mode system but with both SIL4 and
SIL2 code.

From a mixed criticality point of view the system must
be schedulable when SIL2 values are used for all code,

and the system moves between the three functional modes.
Additionally, the system must be schedulable in the SC and
CA modes when only SIL4 code is executing and SIL4 WCET
values are used.

If only Bounded or Immediate modes changes are used
then the system is, at any time, only in one of three normal
functional modes. This leads to explicit tests to:

• Check SB in SIL2 mode and SIL4 mode.
• Check SC in SIL2 mode and SIL4 mode.
• Check SC during transition to SIL4 mode
• Check CA in SIL2 mode and SIL4 mode.
• Check CA during transition to SIL4 mode
If however Phased changes are part of the functional design

then one would have to (in addition):
• Check Phased changes in SIL2
• Check Phased changes in SIL4
• Check Phased changes with transition to SIL4

This latter case might be difficult to formulate in terms of
identifying the worst-case scenario.

What this simple example indicates is that a system has
orthogonal functional and criticality modes. And a system can
move between functional modes, criticality modes and both at
the same time. So with this example, the system could move
from SC in SIL2 to CA in SIL4. But it could not move in the
opposite direction. All realistic possibilities must therefore be
checked as part of the system’s verification.

As indicated earlier, simultaneous general mode changes
are often prohibited due to the complexity they introduce.
Unfortunately the introduction of orthogonal criticality mode
changes has re-introduced simultaneous changes.

V. CONCLUSIONS

We have surveyed existing mode change models to provide
a framework in which:

• Mode change protocols are defined to move a system
between Functional modes (normal, exceptional or de-
graded).

• Mode change events are Immediate, Bounded or Phased.
• Each mode is defined by its tasks, and attributes such

as being re-entrant, the initial mode, a sink mode or a
one-shot mode (or a combination thereof).

• Tasks can exist in more than one mode, though parame-
ters may be mode specific.

• Some tasks are mode specific.
• During a mode change, tasks may be suspended or

aborted.
In the standard model of a criticality change, the proposed
protocols are closest in behaviour to:

1) Graceful degradation; i.e. reduced functionality after the
change.

2) Immediate or Bounded triggers, with aborted or sus-
pended tasks.

3) Some tasks exist in both modes, but some only in the
earlier mode; there are no new-mode tasks.

7

4) Tasks that exist in both modes may have their (worst-
case) computation times increased and/or their periods
decreased, and/or their criticality changed.

For papers that have attempted to define a more adaptive
criticality mode change protocol, the behaviours are different:

1) The initial mode is normal, others are considered excep-
tional.

2) Bounded triggers are used, with suspended tasks.
3) Some tasks exist in both modes, new-mode tasks are

present when changing mode in a direction toward the
initial mode.

4) Tasks that exist in both modes may have their (worst-
case) computation times, periods or criticality levels
changed.

This difference underpins discussion that have occurred at
workshops and seminars on mixed criticality. Low criticality
work is still ‘critical’ and so cannot be abandoned lightly. The
standard model appears to happily abort mission critical work.
This has lead researchers to focus on adaptive schemes that
minimise the harm done to this work. But the standard model
does not advocate abandonment; rather it gives structural
support to a form of graceful degradation following a timing
error. It ensures that following a timing error the higher critical
work can still be guaranteed. The more adaptive models should
be seem as providing fault tolerance and error recovery.

In general, a system will be in both a functional mode and a
criticality mode. But there will be some functional modes that
have only one criticality; and some modes will be the target of
graceful degradation both because of functional failures and
execution time overruns.

Acknowledgements
The research described in this paper is funded, in part, by

ESPRC (UK) grant, MCC (EP/K011626/1). The contents of
this paper have benefited from fruitful discussions with Sanjoy
Baruah.

REFERENCES

[1] R. Alur, A. Trivedi, and D. Wojtczak. Optimal scheduling for constant-
rate multi-mode systems. In Proc. of the 15th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’12,
pages 75–84. ACM, 2012.

[2] S.K. Baruah. Certification-cognizant scheduling of tasks with pessimistic
frequency specification. In Proc. 7th IEEE International Symposium on
Industrial Embedded Systems (SIES’12), pages 31–38, 2012.

[3] S.K. Baruah. Response-time analysis of mixed criticality systems with
pessimistic frequency specification. Technical report, University of
North Carolina at Chapel Hill, 2013.

[4] S.K. Baruah and A. Burns. Implementing mixed criticality systems in
Ada. In A. Romanovsky, editor, Proc. of Reliable Software Technologies
- Ada-Europe 2011, pages 174–188. Springer, 2011.

[5] S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. In IEEE Real-Time Systems Symposium
(RTSS), pages 34–43, 2011.

[6] S.K. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In ECRTS, pages 147–155, 2008.

[7] A. Burns. The application of the original priority ceiling protocol to
mixed criticality systems. In L. George and G. Lipari, editors, Proc.
ReTiMiCS, RTCSA, pages 7–11, 2013.

[8] A. Burns and S. Baruah. Timing faults and mixed criticality systems. In
Jones and Lloyd, editors, Dependable and Historic Computing, volume
LNCS 6875, pages 147–166. Springer, 2011.

[9] A. Burns and S. Baruah. Towards a more practical model for mixed
criticality systems. In Proc. WMC, RTSS, pages 1–6, 2013.

[10] A. Burns and T.J. Quiggle. Effective use of abort in programming mode
changes. Ada Letters, 1990.

[11] P. Ekberg, M. Stigge, N. Guan, and W. Yi. State-based mode switching
with applications to mixed criticality systems. In Proc. WMC, RTSS,
pages 61–66, 2013.

[12] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic task systems. In ECRTS, pages 135–144, 2012.

[13] P. Emberson and I. Bate. Minimising task migrations and priority
changes in mode transitions. In Proc. of the 13th IEEE Real-Time And
Embedded Technology And Applications Symposium (RTAS 07), pages
158–167, 2007.

[14] P. Graydon and I. Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. In Proc. WMC, RTSS, pages 19–24,
2013.

[15] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems. In IEEE
RTSS, pages 13–23, 2011.

[16] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service
adaptions for mixed-criticality systems. Technical Report 350, ETH
Zurich, Laboratory TIK, 2013.

[17] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service
adaptions for mixed-criticality systems. In 19th Asia and South Pacific
Design Automation Conference (ASP-DAC), Singapore, Jan 2014.

[18] M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of low
criticality tasks in mixed criticality system. In Proc. WMC, RTSS, pages
43–48, 2013.

[19] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task
synchronization in zero-slack scheduling. In IEEE RTAS, pages 47–56,
2011.

[20] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In 10th Euromicro Workshop on Real-Time
Systems, pages 172–179. IEEE Computer Society, 1998.

[21] L.T.X. Phan, I. Lee, and O. Sokolsky. A semantic framework for
mode change protocols. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 91–100, 2011.

[22] D. Powell. Failure mode assumptions and assumption coverage. In Proc.
22nd Int. Symp. on Fault-Tolerant Computing (FTCS-22), pages 386–95.
IEEE Computer Society Press, 1992.

[23] J. Real and A. Crespo. Mode change protocols for real-time systems: A
survey and a new protocol. Journal of Real-Time Systems, 26(2):161–
197, 2004.

[24] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP. In Proc.
of the Euromicro Conference on Real-Time Systems, pages 155–165,
2012.

[25] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and
E. Tovar. Two protocols to reduce the criticality level of multiprocessor
mixed-criticality systems. In Proc. RTNS, pages 183–192. ACM, 2013.

[26] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priority-driven premptive scheduling. Journal of Real-Time
Systems, 1(3):244–264, 1989.

[27] H. Su and D. Zhu. An elastic mixed-criticality task model and its
scheduling algorithm. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE, pages 147–152, 2013.

[28] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elastic mixed-
criticality tasks in multicore systems. In Proc. RTCSA, 2013.

[29] K. Tindell and A Alonso. A very simple protocol for mode changes in
priority preemptive systems. Technical report, Universidad Politecnica
de Madrid, 1996.

[30] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority
preemptive scheduled systems. In Proc. Real Time Systems Symposium,
pages 100–109, Phoenix, Arizona, 1992.

[31] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

[32] Q. Zhao, Z. Gu, and H. Zeng. Integration of resource synchronization
and preemption-thresholds into EDF-based mixed-criticality scheduling
algorithm. In Proc. RTCSA, 2013.

[33] Q. Zhao, Z. Gu, and H. Zeng. HLC-PCP: A resource synchronization
protocol for certifiable mixed criticality scheduling. Embedded Systems
Letters, IEEE, 6(1), 2014.

8

Mixed-Criticality Support in a High-Assurance,
General-Purpose Microkernel

Anna Lyons, Gernot Heiser
NICTA and UNSW Australia

{anna.lyons,gernot}@nicta.com.au

Abstract—We explore a model for mixed-criticality support in

seL4, a high-assurance microkernel designed for real-world use.

Specifically we investigate how the seL4 model can be extended

without compromising its security properties and its general-

purpose nature, including high average-case performance. The

proposed model introduces reservations, with admission control

performed at user level, similar to how seL4 handles spatial

resources.

I. INTRODUCTION

seL4 is a high-performance microkernel of unprecedented
assurance, with a machine-checked proof of implementation
correctness, as well as proofs of spatial isolation properties (in-
tegrity and confidentiality) [1]. This makes it an excellent base
for security-critical uses, particularly systems where security-
critical components share a processor with less critical code,
such as a critical crypto service co-located with an untrusted
Linux system running in a virtual machine.

Our aim is to evolve seL4 into a platform for supporting
similar setups in the safety-critical domain, without com-
promising the kernel’s security properties nor its excellent
performance [2]. A first step was a complete and sound
analysis of seL4’s worst-case execution-time (WCET) laten-
cies [3]. The obvious next step is support for mixed-criticality
scheduling, i.e. the ability to guarantee the timely execution of
highly critical tasks in the presence of less critical tasks with
potentially tighter timeliness requirements.

The cost of formal verification (although less than that of
traditional high assurance [1]) provides a strong disincentive
to maintaining multiple variants of a verified system. Fur-
thermore, security is increasingly becoming a safety issue,
as demonstrated by the recent spate of car-hacking [4]. We
are therefore interested in widening the application domain of
seL4, without losing any of its existing benefits.

Specifically, we are looking for a design which satisfies the
following requirements:

• It preserves seL4’s strong spatial isolation properties,
its support for transparently interposing security moni-
tors between communicating components, as well as its
best/average case performance.

• Criticality (i.e. ability to meet deadlines) must be orthog-
onal to urgency (proximity of deadline), in that an over-
committed system must meet deadlines of all criticality
levels that would be met if none of the lower-critical tasks
had been admitted. Admission control (i.e. schedulability
analysis) must be possible without making any assump-
tions on less critical tasks.

• Tasks of different urgency and criticality must be able to
share resources.

• There must be no significant (algorithmic or overhead-
related) capacity loss, and any slack time must be avail-
able for best-effort tasks.

• To support certification re-use, it must be possible to ad-
mit black-box components solely based on their criticality,
processor utilisation and minimal period.

• Any policy, including admission control, must be imple-
mented at user level, the kernel is only to provide general
mechanisms.

• The model must not impose restrictions on the program-
ming model beyond what is required to satisfy all other
requirements. In particular, we do not require that all
shared resources are multi-threaded.

Clearly, this means that we need to provide asymmetric
temporal isolation (lower criticality tasks cannot interfere with
the timeliness of higher criticality tasks) enforced by runtime
monitoring, with the ability to switch to a higher criticality
mode of execution when the system is unable to meet all
deadlines. The system should degrade gracefully in such a
case, meaning that task of a certain criticality should only miss
deadlines if higher-criticality tasks leave insufficient slack (i.e.
we should maximize the number of high levels of criticality
that meet their deadlines).

We rule out user-level, hierarchical scheduling as it intro-
duces concurrency between user-level and the kernel. The ver-
ification of seL4 relies on the kernel remaining single-threaded
to avoid the state-space explosion inherent in proofs about
concurrent programs. Additionally, the current C semantics of
the proof framework do not support concurrent programs [5].
However, the black-box and interposition requirements imply
a requirement for delegation of CPU allocation, which we
provide by leveraging seL4’s capability system.

The requirements for retaining seL4’s security and perfor-
mance properties imply that we retain the basics of the seL4
model, which we summarize in Section II. We explore a model
that satisfies the above requirements in Section III and discuss
the approach to resource sharing in Section IV. We presently
restrict our thinking to uniprocessor systems.

II. SEL4 BASICS

seL4 is a capability-based microkernel system with strong
security and spatial isolation guarantees. Like other L4 mi-
crokernels, seL4 adheres to the minimality principle which
allows features in the kernel only if the required functionality
could not be achieved by a user-level implementation [6].

9

Specifically, device drivers are not part of the kernel, but run
as unprivileged processes, the only exceptions being a timer
driver and a driver for the interrupt controller.

The most significant difference between seL4 and other
microkernels is its (spatial) resource-management model: The
kernel, after booting up, never allocates any memory. Instead,
all memory not needed to boot the kernel is handed to a user-
level manager. When performing an operation that requires
allocation of kernel data structures, such as creating threads or
address spaces, the invoking user-level process must provide
the kernel with memory for storing those data structures.
Hence, all memory is completely managed by user-level code,
subject to policies implemented at user level.

The kernel only supports a small number of abstrac-
tions: threads as the execution abstraction, address spaces for
memory management and spatial protection, and endpoints
for communication. Synchronous endpoints are rendezvous
points for message-passing communication (synchronous IPC).
Asynchronous endpoints support non-blocking signalling, they
are essentially binary semaphores. Threads are tied to address
spaces and communicate via endpoints. In earlier versions of
L4, IPC messages were addressed directly to threads rather
than endpoints. This model was abandoned as it introduces
covert channels [7].

All access rights in seL4 are represented by capabilities [8],
unforgeable access tokens protected by the kernel. Capabilities
can be transmitted via IPC (subject to appropriate access
rights) and support privilege delegation. For example, the
initial resource manager can hand control over a partition
of memory to another process, which then can manage that
memory autonomously.

The delegatable user-level control over memory is the key
to the strong, provable spatial isolation properties of seL4 [9],
[10]. It is also useful for temporal isolation, as it can be used
to partition caches [11], which can reduce WCET bounds [12].

IPC is also authorised by capabilities: a thread needs an
endpoint capability in order to send or receive messages.
Besides the simple send() and wait() (i.e. receive) opera-
tions, the kernel offers two combined send-receive operations,
call() and reply wait().

call() is an RPC-like operation typically used by clients
to invoke a server; it consists of a send to a specified endpoint,
followed by waiting on a reply. It is semantically different from
send() immediately followed by wait() in two respects: (i)
the transition between sending and waiting to receive is atomic,
and thus non-preemptible,1 and (ii) instead of specifying an
endpoint from which to receive the reply message, the kernel
during the send phase creates a temporary one-shot endpoint
for the reply, and transfers the corresponding reply cap to the
server. Similarly, reply wait() combines the reply to the
caller (through the reply cap) and waiting for the next request
in one atomic system call.

Management of the resource time is less developed, and
time is in fact considered the last concept for which no satis-
factory abstraction has been found to date [2]. Consequently,

1The kernel executes with interrupts disabled and limits interrupt latencies
through strategically placed preemption points; none are in performance-
critical IPC code [13].

scheduling is deliberately left underspecified in seL4 [14];
the present implementation uses a fixed-priority round-robin
scheduler.2

III. PROPOSED SCHEDULING MODEL

In order to support temporal isolation we add reservations
to seL4. This approach had been introduced by RT-Mach [15],
and later deployed in resource kernels [16]. Traditional reser-
vations contain task scheduling parameters enforced by the
kernel, specifically a limit on CPU time consumed over some
interval. Additionally, the kernel performs an admission test to
make sure the set of reservations is schedulable.

Mixed-criticality systems leverage the slack left from con-
servative WCET estimates of higher criticality tasks to run
lower criticality tasks, thus increasing the overall utilisation
of a system. This is achieved by allocating the excess budget
of high-criticality tasks (from now on called “high tasks” for
simplicity) to tasks of lower criticality. Asymmetric protection
ensures high tasks meet their deadlines, even if this violates
the temporal constraints of low tasks, but not vice versa.
Recent models for mixed criticality systems [17] implement
this through a mode change: if the system is unable to meet
its deadlines, it increases the system criticality level, and
tasks below that level are no longer guaranteed to meet their
deadlines.

Our proposed model differs from traditional reservations in
that we only guarantee upper bounds on execution time, and
by delegating all admission control to user level.

A. Reservation capabilities

An seL4 reservation is a kernel object, and thus is rep-
resented by a reservation capability (“resCap”). Like any
capabilities, resCaps can be easily delegated to subsystems
through existing capability transfer mechanisms. A thread can
only run if it is associated with a resCap, and a resCap can
only be associated with a single thread at a time. Threads can
share resCaps by cooperatively scheduling through IPC, as will
be explained in Section IV.

Reservations act as sporadic servers [18], characterized by
a budget, period and relative deadline, which encapsulates the
processor share and replenishment frequency the reservation
entitles. The kernel enforces budgets through a timer interrupt.

B. Scheduling

For now we retain seL4’s fixed-priority scheduler, although,
in order to experiment with EDF scheduling, we treat the
median priority (126) special: threads at this priority use the
deadline parameter for EDF scheduling (but only if no threads
of a higher fixed priority are runnable), similar to Ada [19].
Reservations of EDF threads are treated as hard CBS [20].

When the current reservation’s budget is depleted, it is
placed into a waiting queue ordered by replenishment time,
unless the reservation is a full reservation (100%, i.e. budget

2For security-oriented temporal isolation the scheduler is configurable with
multiple non-preemtible scheduling domains, which are scheduled for a fixed
time slice. These domains are unsuitable for real-time use due to the large
algorithmic capacity loss and the high interrupt latencies.

10

= period), in which case the thread is appended to the end of
its priority’s scheduling queue. Full reservations preserve L4’s
traditional round-robin scheduling.

Obviously a thread with a full reservation should have a
low priority, unless it is trusted not to overrun its budget, in
which case a full reservation with a long period can be used
to avoid the overhead of run-time monitoring.

Our model of reservations enforcing upper bounds of CPU
usage encourages overcommitting, round-robin threads being
an example. Schedulability analysis is a user-level concern. In
fact, the kernel lacks the information to determine schedulabil-
ity, as this would require locating and examining all resCaps
that are associated with some thread.

C. Admission testing

Admission testing implements a particular policy, eg. on-
line vs off-line, dynamic vs static, the degree of overloading
allowed, and whom to trust not to overrun their reservations.
According to the minimality principle it should therefore be
performed at user level. Admission tests can also be very
complex and hard to formally verify.

The basic safety mechanism is control over creation of
reservations. We restrict this to the holder of the special
sched control capability, who is in complete control over
time allocation in the system. The holder is trusted to perform
an admission test upon a request for a reservation. seL4’s
startup protocol provides the sched control capability to
the initial process, which may then transfer it to a dedicated
time manager. It may also split the total available bandwidth
and delegate partitions to individual managers, which achieves
most of the benefits of hierarchical scheduling without its cost.

This approach is analogous to seL4’s mechanism for con-
trolling memory, where the initial process obtains rights to all
free memory. It is also similar to how seL4 manages access
to devices: the holder of a special IRQ control capability
grants device drivers the rights to specific interrupts. On seL4,
all resource management is performed by trusted user-level
servers, and time is no longer an exception.

Schedulability depends on priorities as well as reservations.
The system provides a safety mechanism by associating each
thread with a maximum controlled priority (MCP). While a
holder of a thread capability can control that thread’s priority,
the kernel will not allow it to raise any thread’s priority
(including its own) to a value higher than its own MCP.3

D. Task Model

We adopt the sporadic task model, where tasks are an
infinite series of jobs. A task is represented by an seL4 thread,
and a job is the release of a thread by the kernel.

A thread has an optional asynchronous trigger endpoint; by
waiting on that endpoint, the thread indicates job completion. A
thread that does not complete is rate-limited by its reservation.

Job release happens by signalling that endpoint, thus re-
suming the thread’s execution. The kernel signals the endpoint

3Note that a thread’s actual priority can exceed its MCP, provided it has
been set by another thread with a sufficiently high MCP.

when the thread’s budget is recharged, thus supporting time-
triggered tasks. Alternatively the endpoint can be signalled by
some event, e.g. an interrupt or another thread, resulting in an
event-triggered task. Such a thread does not actually become
runnable until its recharge time has passed (until that occurs,
it has no budget to run).

The kernel has no concept of threads being real-time or not:
whether a thread is able to meet its deadlines solely depends
on whether the thread’s budget is sufficient for its WCET, and
whether the system is over-committed at the thread’s priority.

E. Criticality

We add a criticality field to seL4 threads, and track a global
kernel criticality level. The criticality level is changed at user-
level by invoking the sched control capability. Threads
whose criticality is less than the global kernel criticality will
not be scheduled: instead, they are post-poned by the period
of their reservation, at which point the criticality level may
have changed. This approach maintains the preemption level
of the lower criticality workload, but allows threads to come
back online automatically once the criticality level is restored.

F. Mode changes

To enable the mode change required for mixed-criticality
support, we introduce a simple, policy-free mechanism: tem-
poral exceptions. This extends the existing seL4 exception
handling approach, which associates an exception endpoint
with each thread. When a thread triggers an exception, the
kernel sends a message to the exception endpoint. A handler
thread waiting on that endpoint can then handle the exception.
In a practical system, many threads share the same excep-
tion endpoint (and thus handler), typically the responsible
operating-system personality.

For temporal exceptions we introduce a second, optional,
temporal exception endpoint. The kernel sends a message to
this endpoint if the thread exceeds its budget or overruns its
deadline. If the thread has no temporal exception endpoint, it
is silently rate-limited. The handler, assumed to be a highly-
privileged thread, can then transition the system into high-
criticality mode.

How the handler responds to the exception depends on the
policy of the system. Some systems may have infrequent and
short mode changes, where all lower criticality threads should
be briefly suspended until the system returns to normal. In
this case, using the kernels criticality mechanism is suitable:
the overruning thread’s budget can be increased to parameters
for a higher criticality mode, and the kernel criticality level
increased. Alternatively, if the system requires that lower
criticality threads remain runnable but with weaker or no
guarantees, the exception handler can reduce the priorities of
lower criticality tasks [21], or give high tasks full reservations
and boost their priorities. Under any mode switch policy, the
exception handler needs its own (high-priority) reservation,
which must be factored into the cost of the mode switch.

The opportunity to return to a lower criticality level can
be detected by using a dedicated thread running at a priority
below that of all threads at or above the current criticality level,
but above the (down-graded) priority of all low threads (should

11

they be runnable). When the kernel schedules this thread, it is
an indication that there is slack in the system, and the thread
can move the system toward normality by restoring scheduling
parameters or increasing the kernel criticality level.

IV. RESOURCE SHARING

The frequently made assumption of no sharing across
criticality levels is unrealistic [21]. For example, the low-level
flight control of a unmanned aircraft (UAV) is highly critical,
as it ensures the vehicle remains stable and on track, its failure
would lead to loss of the UAV. The UAV’s mission control
determines, in communication with the ground station or based
on analyzing senor input, where the vehicle is to go next. It
is less critical, as ground control can re-transmit commands
or the analysis can be repeated. But, in order to be effective,
mission control must share resources with flight control, e.g.
the way points updated by mission control and used by flight
control.

By definition, sharing implies that a high task may be
blocked while a low task is holding a resource. A shared re-
source must therefore be considered to have the same criticality
as its highest client, including a WCET certified at the level
required for that client. We furthermore require a mechanism
that allows the high task to progress if the low task runs out
of budget while holding the resource.

In seL4 we model shared resources as resource servers
accessed via synchronous IPC [22]. We distinguish between
active servers, which have their own reservation, and passive
servers, which do not. A passive server can only execute by
another thread transferring its reservation to the server. Such
a transfer happens during synchronous IPC: when a client
invokes a server (via a call() IPC operation), its reservation
is transferred to the receiver, and the server returns it when
completing (via the reply wait operation), see Figure 1.
Such a server is said to execute on a borrowed reservation.

This is similar to time-slice donation in earlier L4 ver-
sions [23], with one crucial difference: a reservation will only
transfer if the receiver does not already have a reservation
(a passive server or a thread which has transferred away its
reservation). That way, all of a passive server’s execution time
is forced to be accounted against a client-provided reservation,
while an active server will always execute on its own reserva-
tion. Both cases enforce temporal isolation between clients.

Reservation transfer avoids invoking the scheduler or up-
dating accounting parameters, key properties for maintaining
seL4’s highly-efficient IPC. But we obviously need to consider
budget expiry and mode changes.

A. Priority Inversion

Resource servers are critical sections, which means to
maintain system schedulability we must provide a mechanism
to avoid unbounded priority inversion. Priority inheritance
(besides its other drawbacks such as implementation com-
plexity and long worst-case blocking times) is infeasible to
implement in a security-oriented model of IPC being mediated
by endpoints: the kernel has no knowledge of who will be
receiving messages sent to a specific endpoint, and thus cannot
determine which thread should inherit the priority of the sender

thread blocked on the endpoint. Similar comments apply to the
original priority-ceiling protocol.

Instead we provide the means for user-level code to
implement basic priority ceilings, following highest locker’s
protocol (HLP), where resources are assigned ceiling priorities
and tasks that acquire a resource run at the ceiling priority
immediately. HLP is used in POSIX for PRIO PROTECT with
one key difference, while POSIX runs the task at the highest
priority of any resources held, our model assumes that nested
resource access will be in ascending priority order. The kernel
mechanism for this is simple: even a passive server has a
defined priority, at which it executes irrespective of the priority
of the thread whose reservation the server borrowed. A correct
system configuration then requires that resource servers are
given the correct ceiling priority. (Note that user-level can,
in principle, do this assignment automatically: only clients
who have a send capability on the server’s request endpoint
can invoke the server. The resource manager which distributes
these capabilities can adjust the server priority to the maximum
of the priorities of all clients to which it hands the server’s
request endpoint capability.)

B. Budget Expiry

If the budget of a server’s borrowed reservation expires
before the server completes the request, the server is left
in a state where it cannot serve other client’s requests until
the borrowed reservation is replenished. This constitutes a
potential criticality inversion, where a high thread must trust
that any low thread invoking the server does it with sufficient
budget, obviously not an acceptable situation.

The helping approach taken by Fiasco [23], where clients
donate budget to the blocked thread to get it out of the server,
does not work in the security-oriented IPC endpoint design:
The kernel has no way of knowing on which endpoint the
server will attempt to receive next, and thus cannot determine
the helper.

Temporal exceptions are a suitable mechanism for recover-
ing from this situation. When the reservation expires, the kernel
sends an exception message to the owner of the reservation (i.e.
the thread to which the reservation was allocated, ignoring any
borrowing). The temporal exception handler is then responsible
for the recovery action. Possible actions include giving the
faulter an emergency budget or resetting the server back to a
defined state (ready to receive further requests) and sending
an error replying to the client on the server’s behalf.

The exception handler has its own reservation, which must
be sufficient to implement the policy required by that server.
Note that the required budget can be quite large, if the number
of a server’s low clients is large, and it must be replenished at
the highest rate of all clients. Clearly, cross-criticality resource-
sharing must be done wisely. seL4’s protection mechanisms
help limit such sharing, by controlling the distribution of
capabilities to server request endpoints.

C. Mode change

Mode changes can occur while a shared resource is being
accessed, specifically while threads are enqueued on the re-
source endpoint or actively using the resource. We lazily detect

12

C2

Fig. 1. Client threads invoke a passive server via IPC on endpoint e. In (A), two clients, (C1 and C2 with reservations r1, r2) both send requests to the
server S via call(). In (B), C1’s message is processed first: the kernel generates a one-shot endpoint (rc) that C1 blocks on, and the server borrows C1’s
reservation r1 while running on C1’s behalf, while C2 remains blocked on the endpoint. (C) shows S completing the invocation using reply wait() on e,
transferring r1 back to C1 over rc. Note that the system is strictly speaking never in the state shown in (C), as the reply wait() operation is atomic, so S
switches directly from the reply to C1 (through rc) to receiving the message and reservation from C2.

if threads queued on an endpoint have sufficient criticality: if
a high-criticality server attempts to receive a message and the
client has insufficient criticality, it will be removed from the
endpoint queue and post-poned. The IPC operation will restart
when the client is scheduled after the kernel criticality level
has been raised. Threads actively using a resource during a
criticality change are detected when they are next scheduled:
the kernel detects that the server is running on a reservation
belonging to a thread with an insufficient criticality level, and
sends a temporal exception to the servers temporal exception
handler, which can reset the server.

Of course, the approach described above works only for
systems using the kernel criticality level to implement mode
changes. Other mode change policies involve client priorities
being lowered or raised, and/or reservation parameters chang-
ing. Endpoint queues are reordered on priority change, and
tasks that are suspended have pending IPC messages cancelled,
while changing reservation parameters has no effect on the
endpoint queues, but will result in an exception triggering
the budget expiry handler if a thread no longer has budget
to complete a resource request.

A server’s borrowed reservation may run out of budget
after a mode change, resulting in a temporal exception. As the
server runs at the ceiling priority, which should be unaffected
by the mode change, a change of the client priority will not
take effect until the server replies to the client. This increases
the worst-case cost of the mode change.

We observe that handling of a temporal exception depends
greatly on circumstances: An exception triggered by a low
thread may simply be ignored, resulting in rate-limiting. If the
low thread’s budget expires while borrowed by a server, a reset
action may be required. If, however, a high thread’s budget
expires, this may require a mode switch. This means that the
handler needs sufficient information to determine the course of
action. To solve this, we allow a data word to be set in each
scheduling context which is delivered with the temporal fault
message. Systems can set this data word to identify the client,
or the clients criticality, within the temporal fault handler.

D. Summary

Our kernel changes in total account for a 2045 LoC patch4

This includes the addition of a release queue of pending
and rate-limited jobs, reservations, criticalities, improved timer
driver and modifications to the IPC path.

V. RELATED WORK

Traditional resource kernels [24] support slack reuse but
do not guarantee deadlines of low-criticality tasks even if
this does not prevent high tasks from timely execution. Burns
and Davis [17] present a detailed survey of mixed-criticality
systems research. The systems closest to ours in their aims are
COMPOSITE and Fiasco.

COMPOSITE [25] completely frees the kernel from any
scheduling policy by providing mechanisms for hierarchical
user-level scheduling. It reduces overhead-related capacity loss
by configuration buffers shared between user-level and the
kernel. Some capacity loss remains as timer interrupts must
be delivered down the scheduling hierarchy. This approach
does not suit seL4, as the required reasoning about con-
current access (by kernel and user-level) to those buffers
would drastically increase verification overhead [1]. Unlike all
L4 microkernels, COMPOSITE implements a migrating thread
model [26]. This implies that access to shared resources does
not block, thus avoiding priority inversion, although at the cost
of requiring all server code to be re-entrant, a requirement we
do not want to impose.

A version of Fiasco [23] uses bandwidth inheritance [27]
over IPC, which is analogous to priority inheritance. For
security reasons, Fiasco has also moved to IPC mediated
through endpoints, so this approach does not work in later
versions of the kernel.

Brandenburg introduces an IPC protocol for clustered mul-
ticore mixed criticality systems using EDF and CBS, using
multiple IPC queues to separate critical real-time and non-
critical background tasks [22]. As it uses unmediated IPC,

4Counted by David A. Wheeler’s “SLOCCount”.

13

their approach does not directly apply to seL4. They avoid
mode changes by servers prioritizing high clients irrespective
of scheduling priority, and resetting a server on budget expiry.

Quest-V [28] is a separation kernel which can be used to
sandbox tasks of different criticalities, allowing them to safely
share hardware, however has no support for mode changes and
thus offers no utilisation increase. Lackorzynski showed that to
virtualise multiple mixed criticality RTOSes, information must
be passed between the guest and host about mode changes to
avoid violating the schedulability guarantees of either guest,
and implemented this in Fiasco.OC [29]. An implementation
of mixed criticality systems in Ada, demonstrates reordering
of priorities on mode change [30].

Recent proposals adapt the original priority-ceiling proto-
col to mixed criticality [31], [32], but are unsuitable for us as
explained in Section IV-A.

VI. CONCLUSIONS & FUTURE WORK

We have outlined a model for supporting mixed-criticality
scheduling in seL4. The model supports cross-criticality re-
source sharing and mode switches, while retaining seL4’s
security properties and high average-case performance.

We have a mostly complete implementation and are
presently working on evaluating it by building practical mixed-
criticality systems on top, including a UAV and a space satel-
lite. This will be the real test of the practicality of the proposed
approach. In particular, we need this practical experience to
determine the best approach to the (user-level) implementation
of mode switches and temporal exception handling.

ACKNOWLEDGEMENTS

NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Program.

REFERENCES

[1] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an OS
microkernel,” Trans. Comp. Syst., vol. 32, pp. 2:1–2:70, Feb 2014.

[2] K. Elphinstone and G. Heiser, “From L3 to seL4 – what have we learnt
in 20 years of L4 microkernels?,” in SOSP, (Farmington, PA, USA),
pp. 133–150, Nov 2013.

[3] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser, “Timing analysis of a protected operating system kernel,”
in 32nd RTSS, (Vienna, Austria), pp. 339–348, Nov 2011.

[4] C. Smith, Car Hacker’s Handbook. 2014.
[5] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an operating
system kernel,” CACM, vol. 53, pp. 107–115, Jun 2010.

[6] J. Liedtke, “On µ-kernel construction,” in 15th SOSP, (Copper Moun-
tain, CO, USA), pp. 237–250, Dec 1995.

[7] J. S. Shapiro, “Vulnerabilities in synchronous IPC designs,” in IEEE
Symp. Security & Privacy, (Oakland, CA, USA), May 2003.

[8] J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” CACM, vol. 9, pp. 143–155, 1966.

[9] T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and
G. Klein, “seL4 enforces integrity,” in 2nd ITP, vol. 6898 of LNCS,
(Nijmegen, The Netherlands), pp. 325–340, Aug 2011.

[10] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: from general purpose to a proof
of information flow enforcement,” in IEEE Symp. Security & Privacy,
(San Francisco, CA), pp. 415–429, May 2013.

[11] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical
study of some timing channels on seL4,” in ACM Conference on
Computer and Communications Security (CCS), (Scottsdale, Arizona,
USA), Nov 2014.

[12] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-core
architectures,” in 19th RTAS, (Philadelphia, PA, USA), pp. 45–54, Apr
2013.

[13] B. Blackham, Y. Shi, and G. Heiser, “Improving interrupt response
time in a verifiable protected microkernel,” in 7th EuroSys, (Bern,
Switzerland), pp. 323–336, Apr 2012.

[14] S. M. Petters, K. Elphinstone, and G. Heiser, Trustworthy Real-Time
Systems, pp. 191–206. Signals & Communication, Jan 2012.

[15] C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: An
abstraction for managing processor usage,” in Proceedings of the 4th
Workshop on Workstation Operating Systems, pp. 129–134, 1993.

[16] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
a resource-centric approach to real-time and multimedia systems,” in
Readings in multimedia computing and networking, pp. 476–490, 2001.

[17] A. Burns and R. Davis, “Mixed criticality systems – a review.” http:

//www-users.cs.york.ac.uk/

⇠
burns/review.pdf, Jun 2014. Online;

accessed 29-Sept-2014.
[18] B. Sprunt, L. Sha, and J. Lehoczky, “Scheduling sporadic and aperiodic

tasks in a hard real-time system,” technical report CMU/SEU-89-
TR-011, Carnegie Mellon University, Software Engineering Institute,
Apr 1989. URL resources.sei.cmu.edu/library/asset-view.cfm?

assetid=10919.
[19] A. Burns and A. Wellings, Concurrent and Real-Time Programming in

Ada. 2007.
[20] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time

systems,” J. Real–Time Syst., vol. 27, no. 2, pp. 123–167, 2004.
[21] A. Burns and S. Baruah, “Towards a more practical model for mixed

criticality systems,” in Proceedings of the 1st Workshop on Mixed
Criticality Systems, pp. 1–6, 2013.

[22] B. B. Brandenburg, “A synchronous IPC protocol for predictable access
to shared resources in mixed-criticality systems,” in 35th RTSS, (Rome,
Italy), Dec 2014. To appear.

[23] U. Steinberg, A. Böttcher, and B. Kauer, “Timeslice donation in
component-based systems,” in OSPERT, (Brussels, Belgium), Jul 2010.

[24] S. Oikawa and R. Rajkumar, “Linux/RK: A portable resource kernel in
Linux,” in 19th RTSS, 1998.

[25] G. Parmer and R. West, “Predictable interrupt management and
scheduling in the Composite component-based system,” in 29th RTSS,
(Barcelona, Spain), Nov 2008.

[26] G. Parmer, “The case for thread migration: Predictable IPC in a
customizable and reliable OS,” in OSPERT, (Brussels, Belgium), Jul
2010.

[27] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in
reservation-based real-time systems,” Trans. Computers, vol. 53,
pp. 1591–1601, Dec 2004.

[28] Y. Li, R. West, and E. S. Missimer, “The Quest-V separation kernel for
mixed criticality systems,” in 1st WMC, pp. 31–36, Dec 2013.

[29] A. Lackorzynski, A. Warg, M. Völp, and H. Härtig, “Flattening hierar-
chical scheduling,” in EMSOFT, (Tampere, Finland), pp. 93–102, Oct
2012.

[30] S. Baruah and A. Burns, “Implementing mixed criticality systems in
Ada,” in Proceedings of Reliable Software Technologies – Ada-Europe,
pp. 174–188, 2011.

[31] A. Burns, “The application of the original priority ceiling protocol to
mixed criticality systems,” pp. 7–11, 2013.

[32] Q. Zhao, Z. Gu, and H. Zeng, “HLC-PCP: A resource synchronization
protocol for certifiable mixed criticality scheduling,” Embedded Systems
Letters, IEEE, vol. 6, pp. 8 – 11, Jul 2013.

14

On Spatial Isolation for Mixed Criticality, Embedded Systems

Eric Armbrust, Jiguo Song, Gedare Bloom, Gabriel Parmer
The George Washington University

Washington, DC
{earmbrust,jiguos,gedare,gparmer}@gwu.edu

Abstract—This paper addresses some of the challenges of
creating a system that enables not only the temporal isolation
required for mixed-criticality systems, but also the necessary
spatial isolation that enables the decoupling of assurance levels
required for different pieces of software. We discuss the applica-
tion of fine-grained isolation, hierarchical resource management,
and the paravirtualization of a legacy RTOSs API, all to enable
the system designer to harness memory isolation to control the
assurance required for system components.

I. INTRODUCTION

Real-time / embedded system developers face increasing
pressure to reduce the size, weight, and power (SWaP)
requirements of devices. One solution to reduce SWaP is
to package multiple applications onto a single chip and to
partition access to the chip resources among the applica-
tions. When such applications have differing safety-critical
importance, the integration of these applications on a shared
platform creates a mixed criticality system (MCS). A problem
with MCSs is in sharing resources between applications at
different criticality levels, because blocking synchronization
primitives can lead to low-criticality tasks interfering with
high-criticality tasks. When the MCS is scheduled globally,
i.e. the same scheduler handles all tasks, solutions based on
priority-based synchronization primitives can be applied—for
example, criticality-aware versions of the priority inheritance
and priority ceiling protocols [1], [2]. However, if the MCS
lacks a global scheduler then the job of ensuring that re-
source synchronization does not cause low-criticality tasks to
interfere with high-criticality tasks becomes more difficult. In
particular, MCSs that use hierarchical scheduling [3] do not
have global scheduling knowledge.

When used with only two levels, a parent scheduler
and its children schedulers, a hierarchically-scheduled MCS
schedules applications at different criticality levels with dis-
tinct children schedulers. The parent scheduler is trusted
to schedule the children according to criticality, and each
child schedules the application tasks independently. A popular
mechanism to support two-level hierarchical scheduling is to
use virtualization, with the parent executing in the hypervisor
and each child in a guest virtual machine. Applications can be
used with minimal modifications and the hypervisor ensures
safety of the high-criticality tasks. A problem with hierarchical
scheduling with virtualization technology is that performance
degradation is prohibitive when children are given small
budgets, for example in RT-Xen budgets less than 1 ms lead

⇤This material is based upon work supported by the National Science
Foundation under Grant No. CNS 1149675 and ONR Award No. N00014-
14-1-0386. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or ONR.

to untenable scheduler overhead [4]. Another problem with
using hierarchical scheduling for MCS is that the existing
solutions for task synchronization cannot be adopted easily
for resource sharing, because there is no uniform scheduling
policy to arbitrate priority and criticality between different
schedulers in the hierarchy.

In this paper, we introduce MC-HIRES, Mixed Criticality
HIerarchical RESource management, which supports MCSs
in the COMPOSITE operating system via hierarchical schedul-
ing with the benefits of minimal modification of applica-
tions, small performance loss, and resource sharing between
applications at different criticality levels. MC-HIRES is a
logical extension of our HIRES [3] system with support for
MCSs. The primary modification to HIRES is support for a
range of mappings of event notification threads (ENTs) to
nodes (components) in the hierarchy to provide for strong
temporal isolation even in the presence of shared resource
synchronization. MC-HIRES avoids the performance prob-
lems of virtualization-based hierarchical scheduling by using
a guest-aware approach requiring minor modifications i.e.

paravirtualization. The problem of task synchronization in a
hierarchically-scheduled MCS is handled by locating synchro-
nization primitive (locks) in servers that mediate access to
shared resources among the clients, which may have different
criticalities. Subject to the server having the highest criticality
of its clients, MC-HIRES thus solves the two problems
identified above for an MCS using hierarchical scheduling.

We demonstrate MC-HIRES by paravirtualizing a legacy
RTOS, FREERTOS, to split RTOS services and application
threads into separate components. Isolating application threads
enables system designers to assign different criticalities to
threads, thus allowing an MCS design without modifying ap-
plication software. (Slight modification is made to the FREER-
TOS kernel.) We evaluate the overhead of using semaphore
and message queue services within the FREERTOS kernel
and between application threads and the kernel. Performance
loss occurs due to the introduction of spatial isolation along
RTOS service calls, but the performance is reasonable with
an overhead around 0.25 µ-seconds each time a call is made
between criticalities.

Contributions. This paper’s contributions include:

• An introduction to the component-based system structuring
model, its uses, and the implications for both temporal and
spatial isolation of mixed criticality embedded systems.

• A simple extension to our existing hierarchical re-
source management system (HIRES) to enable hierarchical
scheduling for MCS to ensure the mutual temporal/spatial
isolation of different criticalities.

15

• A system design that provides isolation of mixed-criticality
applications from each other for a legacy embedded
system that does not provide memory protection, using
component-based memory isolation facilities of COMPOS-
ITE.

II. MC-AWARE MEMORY ISOLATION IN COMPOSITE

The COMPOSITE component-based OS provides support for
memory protection between separate user-level components
based on hardware page-tables. Each component includes
local memory for data, code, heap, and stacks that is isolated
from other components. Each component exports zero or more
interfaces consisting of a number of function call entry-points,
and has a set of dependencies on the interfaces exported by
other components. Components are passive: only if a thread
is explicitly created within the component, or if a thread
executing in another component invokes an exported function,
will execution occur in a component.
Inter-component communication. Invocations of a function
exported by a component result in IPC via thread migration.
The same schedulable thread executing in the client, resumes
execution in the server. After completing its execution in
the server, it resumes execution in the client. Control flow
integrity is maintained as the server controls its entry-points,
thus ensuring that only intended functionality is conducted.
Upon entry into the server, sanity checks akin to those done
by a traditional kernel in system-call handlers are conducted
on parameters. The scheduling context migrates between
components (thus scheduling components control thread, not
component, execution), it switches between component-local
execution state, including execution stacks. These stacks are
managed [5] to trade-off the amount of memory they require,
and the timing properties of the system if multiple schedulable
threads require more stacks than are available in a component
(mediated by predictable sharing protocols). In this paper, we
assume a simple static allocation of stacks to components
commensurate to the number of threads in the system. The
sum benefit of this inter-component communication mecha-
nism is that the end-to-end timing analysis of a thread are
identical to those in traditional systems. This explicitly avoids
the dependent-task scheduling problems often encountered by
IPC mechanisms that involve coordination between multiple
threads. These existing analyses are often pessimistic, espe-
cially in a system with large numbers of components.
Resource sharing. Note that resource sharing must still be
taken into account, but the prescribed mechanism for this
is to mediate all sharing of a specific resource within a
critical section within a component. For example, COMPOSITE
has a mailbox component that enables multiple threads to
communicate via asynchronous message passing. The buffers
that hold the data being passed between threads are mediated
within the component via a critical section protected by a
lock supporting predictable resource sharing. By default we
use a lock component that provides priority inheritance. For
an MCS, the lock component is problematic because all
threads of different criticalities are exposed to each other’s
interference within the server, and within the critical section.
However, all other execution in other components can be

segregated between criticalities.
Resource sharing mediated by memory-protected compo-

nents simplifies the analysis of the system. The worst-case
hold time of any shared resource (the worst-case critical
section length) is provided by the implementation of the
mediating component. That component’s code is trusted given
a combination of the control flow integrity of the IPC mech-
anism, and its memory isolation. Assuming the component
has code appropriate for the criticality of all of its clients,
the impact of the resource sharing on each of their timing is
invariant on the clients, and only a property of the mediating
component itself. This simplifies sharing between criticality
levels by design, and enables traditional protocols such as
Priority Ceiling Protocol to provide predictability, though MC-
specific resource sharing protocols can be used (by simply
using a different lock component).

Though implementing the sharing of resources in com-
ponents implies the overhead of communication with that
component, round-trip IPC (called “component invocation”
here) in COMPOSITE is as efficient as the fastest IPC im-
plementations, and is on the order of 600 cycles on our Intel
i7-2760QM CPU running at 2.4Ghz (i.e. 0.25 µ-seconds).

A. Mixed-Criticality-Aware Memory Isolation in COMPOSITE

(a) (b) (c)
Fig. 1: Example system component structures (S component =
scheduler, mm = memory manager). Arrows are component depen-
dencies, and dashed components are harnessed by the low-criticality
application. Thus, they require assurance under more complex work-
loads and must handle more features. The blue region requires a
higher level of certification, than the red. Ideally, the blue region
would contain only non-dashed, simple components. (a) Traditional
structure where high (H) and low (L) criticality applications share
all system services. Significant portions of the system requires both
full featured support for L and high assurance of those components.
(b) Separation kernel-style isolation. Only services specialized to H
require high levels of assurance, but sharing between H and L is
difficult. (c) Selective sharing of functionalities between applications
controlling the assurance level required vs. complexity of each
component, and hierarchical resource management.

The COMPOSITE thread migration-based inter-component
communication mechanism enables the use of traditional
scheduling analyses that operate on threads (rather than com-
ponents, or component-specific threads) and that consider
critical sections using predictable resource sharing protocols.
The major implication is that thread migration enables the
fine-grained decomposition of the system into components,
thus strengthening memory isolation. In COMPOSITE, even the
lowest-level system services are implemented as components,
including: the schedulers, lock managers, time managers,
physical memory management, file systems, networking, and
drivers. Each component is independently redeployable (as-
suming its interface dependencies are satisfied), and the entire
system can be viewed as a graph of components.

16

The combination of fine-grained components, the compo-
nent definition of low-level services, and the use of traditional
end-to-end thread timing analysis together provide the ability
to explicitly design the structure of the system to mimic that
of the criticalities of the different components in the system.
The criticality of each component might be static—dependent
on off-line tests and analysis of the component’s code—or
might be dependent on what other component’s depend on
it, i.e. the workloads for which it is tested. One thing is
clear: the high-criticality applications must depend only on
high-criticality components. More specifically, the transitive
closure over the dependency relation seeded with the high-
criticality applications must contain only components that
are high-criticality. Importantly, this enables the system to
minimize the amount of software that requires high-criticality
certification. Whereas in traditional systems that include many
system services in the same memory protection domain, all
of which must be certified to the highest criticality level,
COMPOSITE enables the decoupling of memory and temporal
interference between different services.

What is the “correct” amount of sharing between the
component graphs for different applications? Figure 1 depicts
a simple embedded system with each policy implemented
as a separate component. The three different configurations
of the system represent (1) a traditional system structure
in which applications of different criticalities share many
components, requiring that they be certified to the confidence-
level of the highest application, (2) a separation kernel-like
system in which different criticalities share as few compo-
nents as possible, and (3) a system with nuanced sharing
of components between criticality levels dependent on the
sharing relationships and resource availabilities of the system.
The benefit of avoiding separation kernel-like share-nothing
system organizations is exactly the fact that it is convenient
for criticalities to share information and resources between
each other (e.g. a hard real-time subsystem sharing data to be
displayed by an interface). In resource-constrained embedded
systems, the extra memory required for separate images and
data structures for components replicated between criticalities
can be undesirable.

Summary. COMPOSITE enables the straightforward end-to-
end analysis of the timing of threads that execute across many
components, thus enabling the fine-grained decomposition of
the system software into memory-isolated protection domains.
Sharing is mediated by service components, and the interfer-
ence between threads (of different criticalities) is dependent
on the mediating component’s properties, and is not variant
on the contending threads—the critical section interference
stays the same, regardless. The criticality and structure of
the system’s components can be configured to minimize how
much software requires high certification, mirror the sharing
requirements of applications, and appropriately trade resource
usage. This configurability is where the non-traditional, flexi-
ble means of constructing a system of components, combined
with the fine-grained memory isolation, provides significant
benefit for an MCS.

III. MC-AWARE HIERARCHICAL RESOURCE
MANAGEMENT

Defining resource management components for a single
resource, such as CPU scheduling, across different criticalities
is difficult in a system structured as in Figure 1(b). Using CPU
management as an example, each scheduler in the system
contends for the processor, and the scheduler that should
control the CPU at any point in time is not clear. The tension
between decentralizing resource management—to customize
it for different criticalities, and to increase isolation between
them—and deciding at any point which manager to give
access to the CPU, motivates our previous work on HIRES [3].
HIRES provides a set of protocols to enable resource manager
coordination for hierarchical resource management for CPU,
memory, and I/O. In this paper, we focus on extending
such protocols to support CPU management and scheduling
components for MCSs.

Hierarchical scheduling enables multiple concurrent
scheduling components in the system. Though in the simplest
case, schedulers form a tree of arbitrary depths, HIRES
supports a directed, acyclic graph (DAG) of scheduler
structures as well. Each (child) scheduler receives execution
time from parent schedulers, and the root scheduler delegates
all time to its children. HIRES enables each scheduler,
regardless of how deep it is in the hierarchy, to dispatch
between threads (and even schedule interrupts) with constant
and comparable overhead. As each scheduler is implemented
as a separate component, they benefit from memory isolation.
Thus, possibly complex scheduling policies with dynamic
workloads for low-criticality applications can be removed
from the certification burden of the high-criticality domain
by relying on a simple parent scheduler to mediate between
criticalities (e.g., the bottom scheduler in Figure 1(c)).
HIRES Scheduler Coordination Protocols. Parent sched-
ulers delegate to children using a simple mechanism. Parent
schedulers are aware of, and uncommonly may dispatch di-
rectly, child threads. Normally a parent activates or deactivates
a child thread by dispatching to a single Event Notification
Thread (ENT). That thread executes in a loop delivering
event notifications from parent to child. The parent sends a
number of notifications: (1) child thread has blocked within
an ancestor component, (2) child thread has been activated
within an ancestor, (3) a given quantity of time has passed
since the last notification—used as a timer for the child
scheduler, and (4) the amount of time since the child was
last executed (so that it can maintain proper accounting). The
child scheduler, after processing all notifications, resumes its
normal scheduling behavior and chooses a thread to dispatch.

Child schedulers use the same ENT to send notifications
and requests to the parent: (1) thread creation and deletion
requests, (2) timeout requests to block until the next noti-
fication or given timeout, (3) idle requests (block with an
infinite timeout). (For details on the implementation of the
protocol for how parent and children synchronize see the
original HIRES [3].) The overhead of the ENT and parent-
child coordination is on the order of two thread dispatch
latencies (to the ENT in the parent, and away from it in the
child), plus a single component invocation. The overhead is

17

around 1700 cycles in total.
HIRES and child thread scheduling. All parent schedulers
are responsible for protecting their own data structures, thus
they use critical sections. Though parent schedulers rarely
dispatch to child threads, in the case of contended resources,
parents do not rely on children to mediate the contention.
Doing so would put the timing properties of the parent
scheduler at the mercy of the child. Thus, in this case of
contention, the parent scheduler will switch directly to the
child thread that holds the critical section to grant the higher-
priority contending thread access. This switch is essential
to prevent low-criticality child schedulers from changing the
timing properties of the parent scheduler, thus indirectly im-
pacting the timing of high-criticality applications. The policy
that the parent scheduler must control its own timing inde-
pendent of the behavior of any child scheduler is consistent
with the resource sharing between criticalities discussion in
Section II—the parent makes timing guarantees for critical
section length.
Blocking/waking threads in parent schedulers. Given the
flexibility of component composition in COMPOSITE, a situa-
tion may arise in which a thread managed by a child scheduler
will invoke a component that will attempt to block it (e.g. due
to resource contention). Each component invokes a specific
scheduler, and if the service is low-level it might invoke the
parent scheduler to block the thread. This situation—and the
one originating from the same component waking the thread at
a later time—requires coordination between parent and child
scheduler. In HIRES, this is where the parent notifications to
the child that the thread has been blocked/woken are relevant.
Note that this coordination between parent and child scheduler
is lacking in user-level threading libraries as monolithic ker-
nels are not aware of user-level threads. Any one thread will
block all of them. Systems such as scheduler activations [6]
attempt to solve this problem in a manner similar to HIRES.
As both parent and child know of the existence of each thread,
the HIRES protocols focus on enabling them to coordinate to
schedule the threads appropriately.

A. MC-HIRES: Mixed-Criticality-Aware, Hierarchical Re-
source Management

Hierarchical scheduling and mixed-criticality workloads
can often be ill-matched [7]. For example, a child sched-
uler controlling applications of a comparable critical level
might need to execute threads at different priorities (there
is no fixed relation between criticality levels and priorities).
Thus, a single ENT that the parent dispatches to activate the
child is insufficient. That single ENT is treated as a single
thread by the parent, thus providing abstraction in hierarchical
scheduling. This abstraction prevents multiple priorities and
criticalities to be attributed to the child.

We generalize the HIRES model into MC-HIRES. MC-
HIRES can describe the traditional setup of hierarchical
scheduling with all execution in the child abstracted behind the
parameters of the ENT, no hierarchical abstraction with one
ENT for each child thread, and any configuration of ENTs
to children threads in between these extremes. Each child
thread is associated with an ENT when it is created, and all

notifications for that thread are sent via that ENT. The parent
scheduler schedules ENTs as normal threads, thus activating
the child according to the parameters of each ENT.

IV. CASE STUDY: LEGACY RTOS
MC-AWARE MEMORY ISOLATION

As an example of some of the techniques discussed in this
paper, we have modified a popular, simple RTOS to execute in
a paravirtualized environment in MC-HIRES, and have used
component-based techniques to provide temporal and spatial
isolation for MCSs.

A. FREERTOS Background
FREERTOS is a simple RTOS used in (deeply) embedded

systems for its configurability and small footprint. It is simple
and includes basic APIs for thread creation, message queues
(synchronous or asynchronous), semaphores, memory alloca-
tion, and some facilities for sleeping threads to enable periodic
behaviors. Scheduling is fixed priority, preemptive. All threads
share the same protection domain, and FREERTOS is meant
to execute on the bare metal (though ports exist that execute
on POSIX).

FREERTOS is not a RTOS that is MC-friendly. Applica-
tions are not spatially isolated from each other, nor is the ker-
nel code and data. Though the system does support temporal
isolation between threads with predictable sharing of resources
using fixed-priority, preemptive scheduling, it does not provide
the necessary memory protection (spatial isolation) to enable
the separate certification of code of different criticalities.

B. MC-FREERTOS: When Virtual is Better than Real
To enable legacy embedded tasks to execute within the

context of an MCS, we provide means for both spatial and
temporal isolation for FREERTOS. To accomplish this, we
provide a series of modifications to FREERTOS to increase
its capabilities within an MC environment, yielding MC-
FREERTOS.

First, we paravirtualize FREERTOS to execute within a
component in COMPOSITE. This extension is straightforward
and involves adding a FREERTOS port that uses COMPOSITE
scheduler library functions for switching between threads and
for disabling interrupts. The FREERTOS component is a
scheduler, thus has permission to dispatch between threads
that can migrate between components via invocation. Thread
dispatching involves making a COMPOSITE system call. MC
benefits: FREERTOS and all of its tasks are now spatially-
isolated from other components in the system, thus effectively
enabling software of different criticalities.

Second, timer interrupts within FREERTOS are imple-
mented using an MC-HIRES ENT. This enables FREERTOS
to be integrated into the scheduling hierarchy. Now existing
high-criticality tasks can be executed in MC-FREERTOS,
while component-based applications with a lower level of
assurance can be executed in other subsystems under differ-
ent schedulers. A root scheduler that implements a simple
policy (therefore capable of being high-criticality) schedules
the various criticalities. In our prototype, the root scheduler
is a simple fixed priority preemptive scheduler with MC-
FREERTOS executing at the highest priority. MC benefits:

18

Multiple criticalities can exist in different scheduler subsys-
tems. FREERTOS legacy applications are spatially-isolated
(similar to a separation kernel) from other applications, al-
though not from each other.

Third, we paravirtualize the API of FREERTOS to enable
multiple criticalities even for legacy FREERTOS applica-
tions. Some subset of FREERTOS applications execute in a
memory-isolated component, yet still harness the functionality
of the FREERTOS kernel. MC benefits: Within the MC-
FREERTOS environment, multiple criticalities can exist. More
importantly, applications can be written that utilize both the
FREERTOS API, and can access non-FREERTOS compo-
nents. The following text describes this technique.

System call API via namespace virtualization. FREERTOS
does not have a well-defined system-call layer like OSes
that use dual-mode protection. The lack of memory isolation
removes the motivation to define such a layer. However,
FREERTOS does have a well-defined API, which applications
are intended to use, that features functions of the main func-
tionalities (thread manipulation, queue usage, semaphores,
timed blocking). The second stage of converting this legacy
system into one that is MC-capable is that we paravirtualize
this API so that a FREERTOS application can be executed
in a separate component (thus separate protection domain).
Application code in the FREERTOS application component
is identical to that linked into the FREERTOS kernel, except
that it is linked with a small FREERTOS-lib that exports
the FREERTOS API. That library interfaces with the IPC
facilities of COMPOSITE, and invokes functions exported by a
FREERTOS-klib (kernel library) linked into the FREERTOS
kernel component. The FREERTOS-klib invokes the actual
methods within FREERTOS to handle the requests.

The main functions of the two libraries are to (1) marshal
arguments between components using the COMPOSITE IPC
facilities, and (2) do namespace virtualization. Namespace
virtualization does translation between two different names-
paces, one in the FREERTOS application, and the other in
the FREERTOS kernel. When an application is compiled into
the FREERTOS kernel, it shares the namespace with the rest
of the system, and most kernel objects (including threads,
semaphores) are accessed directly by pointer. However, in
MC-FREERTOS, pointers passed from the FREERTOS ap-
plication cannot be trusted to contain a correct pointer. Thus,
a set of translation tables exist in the FREERTOS-lib to map
from the pointer—expected by the FREERTOS application as
part of the FREERTOS API—to an integer descriptor that is
passed via component invocation to the FREERTOS kernel.
The FREERTOS-klib receives these descriptors, and translates
them to the pointers to the corresponding objects within the
FREERTOS kernel after validating that the objects are of the
correct type for the function being invoked (i.e. that the object
is used in a well-typed manner). Some details on the main
APIs in FREERTOS, and how they are virtualized, follow:
• Thread management. The thread creation function must

take a callback function to be executed in the new thread.
This function pointer is saved in the FREERTOS-lib, and
the FREERTOS-klib passes a function that upcalls at a

known location into the FREERTOS application, where
the thread retrieves the callback, and executes it.

• Queues. In addition to the namespace virtualization above,
queues must pass data between the FREERTOS application
and the FREERTOS kernel. We set up two uni-directional
ring buffers of shared memory between the two libraries
to pass the data from the FREERTOS application to the
kernel, and vice-versa. Queues can behave synchronously,
or asynchronously, as determined by the FREERTOS ker-
nel. As the FREERTOS kernel component schedules its
threads, including those in the FREERTOS application,
with its own consistent notion of priority, we make no
changes to the timing properties of the system aside from
the overhead for the libraries and component invocation.

• Semaphores. These functions are simple and only conduct
the virtualization already discussed.

• Timed blocking. The function that enables a thread to block
for a span of time only requires marshalling the timeout
argument to the FREERTOS kernel.

Summary. We present the design of MC-FREERTOS, which
is a paravirtualized extension of FREERTOS. FREERTOS is
incapable of mixed-criticality execution due to the inability
to provide spatial isolation. This is a familiar story for many
low-level RTOSes. We paravirtualize FREERTOS to provide
a flexible MCS execution environment by porting FREER-
TOS to a component in COMPOSITE, implementing it in a
hierarchical scheduler, and isolating in a separate component
the low-criticality threads from those that are high-criticality,
thus providing unchanged timing (minus constant overhead
factors) and memory isolation.

C. MC-FREERTOS Overhead and Performance
Operation Average Stddev

FREERTOS Kernel Threads
Semaphore w/ activation 0.368 0.014
Semaphore, no-contention 0.11 0.000
Enqueue 0.102 0.003
Dequeue 0.103 0.001
Queue round-trip 0.774 0.025

FREERTOS Application Threads
Semaphore w/ activation 0.708 0.011
Semaphore, no-contention 0.669 0.002
Enqueue 0.418 0.008
Dequeue 0.567 0.009
Queue round-trip 1.699 0.066

TABLE I: Performance of the main MC-FREERTOS functions,
both for FREERTOS kernel threads, and for FREERTOS application
(low-criticality) threads. All measurements are in µ-seconds.

We measure the overheads of the FREERTOS kernel-
resident threads (i.e. high criticality threads executing within
the FREERTOS kernel component), and the overheads of
FREERTOS application-resident threads that must make in-
vocations to the FREERTOS kernel component for service.
We execute a number of operations on a Intel(R) Core(TM)
i7-2760QM CPU clocked at 2.4GHz. Table I displays these
results. They include semaphore operations that activate a
waiting thread, thus include the cost of a context switch; the
overhead of a pair of uncontended semaphore operations (take
+ release); the separate cost of asynchronous enqueue and
dequeue operations; and the cost of a “ping pong” through

19

queues which is synchronous round-trip communication be-
tween threads. There is no native x86 port of FREERTOS, so
we could not compare against that.
Discussion: Adding memory isolation and the incumbent
communication overheads between the FREERTOS applica-
tion and FREERTOS kernel components does have an impact
on performance. However, the performance of all relevant
FREERTOS functions remains within reasonable bounds.
Most overhead is directly attributable to component invocation
costs of around 0.25 µ-seconds.

V. RELATED WORK

The most closely related work to this paper is HIRES by
Parmer and West [3]. HIRES uses a similar resource hierarchy
approach as this paper, which permits delegating memory and
I/O in addition to CPU (scheduling), but HIRES does not
provide the same strong temporal isolation guarantees in the
presence of resource sharing as our work. Thus, HIRES is
not directly usable to support an MCS, since the isolation of
different criticality levels must be guaranteed.

The prevailing approach to resource sharing for hierarchical
schedulers allocates budgets to each child, and then avoids
budget exhaustion during critical section execution. SIRAP
by Behnam et al., [8] checks for sufficient budget before
entering a critical section. HSRP by Davis and Burns [9]
permits bounded budget overruns so that critical sections
may terminate despite budget exhaustion. Although HSRP
can bound the overrun, preempting a critical section in case
an overrun occurs is still problematic [10]. A quantitative
evaluation of resource sharing approaches is given by Åsberg
et al. [11]. Inam et al. modified FreeRTOS [12] to support
two-level hierarchical scheduling for an MCS using HSRP to
share resources. The authors evaluated the overhead of mode
changes but do not examine resource sharing.

As mentioned in section I, hierarchical scheduling with
virtualization can support MCSs. Unfortunately, virtualization
suffers performance degradation due in part to a fundamental
mismatch between mechanisms: virtualization technology was
not designed with embedded systems/real-time scheduling in
mind [13]. (Bruns et al. [14] argue contrarily that virtualization
is effective for MCS on deeply-embedded devices that lack
cache and memory management unit hardware. We do not
consider such devices.) Prior work in MCSs with hierarchical
scheduling attempts to remove the performance degradation
while still isolating children [7], [15], [16]. In general, an
MCS exacerbates the difficulties of resource sharing with
hierarchical scheduling because of the need for strict isolation
between different criticalities. The prevailing solution in the
literature is to disallow resource sharing. Our work exhibits
the strong isolation of virtualization-like approaches for MCSs
with low performance loss despite allowing resource sharing.

VI. CONCLUSIONS

The flexibility and configurability of COMPOSITE makes it
an ideal platform for MCSs not only because of its temporal
guarantees, but also because of the capability to tailor system
memory isolation to application criticalities. This paper has
examined the use of the component-based model and the
associated memory isolation within MC systems to enable

configurable spatial isolation between different criticalities.
We also approach the problem of extending HIRES into MC-
HIRES as a generalization to enable a more descriptive and
configurable interface between parent and child schedulers.
Finally, we have introduced MC-FREERTOS, which utilizes
the memory isolation in COMPOSITE and the hierarchical
scheduling from MC-HIRES to enable both temporal and
spatial isolation between different criticalities in a legacy
RTOS that lacks memory isolation.

REFERENCES

[1] K. Lakshmanan, D. d. Niz, and R. R. Rajkumar, “Mixed-criticality
task synchronization in zero-slack scheduling,” in Proceedings of the
2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, ser. RTAS ’11, 2011, pp. 47–56.

[2] A. Burns, “The application of the original priority ceiling protocol
to mixed criticality systems,” in 1st workshop on Real-Time Mixed
Criticality Systems (ReTiMiCS), 2013, pp. 7–11.

[3] G. Parmer and R. West, “HiRes: A system for predictable hierarchical
resource management,” in Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

[4] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards real-time
hypervisor scheduling in xen,” in Proceedings of the Ninth ACM
International Conference on Embedded Software, ser. EMSOFT ’11,
2011, pp. 39–48.

[5] Q. Wang, J. Song, and G. Parmer, “Stack management for hard real-time
computation in a component-based OS,” in RTSS, 2011.

[6] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy,
“Scheduler activations: effective kernel support for the user-level man-
agement of parallelism,” in SOSP ’91: Proceedings of the thirteenth
ACM symposium on Operating systems principles. New York, NY,
USA: ACM Press, 1991, pp. 95–109.

[7] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening hier-
archical scheduling,” in Proceedings of the Tenth ACM International
Conference on Embedded Software, ser. EMSOFT ’12, 2012, pp. 93–
102.

[8] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Sirap: a synchronization
protocol for hierarchical resource sharing in real-time open systems,”
in EMSOFT ’07: Proceedings of the 7th ACM & IEEE international
conference on Embedded software. New York, NY, USA: ACM, 2007,
pp. 279–288.

[9] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in RTSS ’06: Proceedings of the 27th IEEE
International Real-Time Systems Symposium, Washington, DC, USA,
2006, pp. 257–270.

[10] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and
resource holding times for hierarchical scheduling of semi-independent
real-time systems,” Industrial Informatics, IEEE Transactions on, vol. 6,
no. 1, pp. 93–104, Feb 2010.

[11] M. Åsberg, M. Behnam, and T. Nolte, “An experimental evaluation
of synchronization protocol mechanisms in the domain of hierarchical
fixed-priority scheduling,” in Proceedings of the 21st International
Conference on Real-Time Networks and Systems, ser. RTNS ’13, 2013,
pp. 77–85.

[12] R. Inam, M. Sjodin, and R. Bril, “Mode-change mechanisms support
for hierarchical freertos implementation,” in Emerging Technologies
Factory Automation (ETFA), 2013 IEEE 18th Conference on, Sept 2013,
pp. 1–10.

[13] G. Heiser, “The role of virtualization in embedded systems,” in Pro-
ceedings of the 1st Workshop on Isolation and Integration in Embedded
Systems, ser. IIES ’08, 2008, pp. 11–16.

[14] F. Bruns, D. Kuschnerus, and A. Bilgic, “Virtualization for safety-
critical, deeply-embedded devices,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC ’13, 2013, pp. 1485–
1492.

[15] M. Völp, A. Lackorzynski, and H. Härtig, “On the expressiveness of
fixed-priority scheduling contexts for mixed-criticality scheduling,” in
1st International Workshop on Mixed Criticality Systems (WMC), 2013,
pp. 13–18.

[16] Y. Li, R. West, and E. Missimer, “A virtualized separation kernel
for mixed criticality systems,” in Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, ser. VEE ’14, 2014, pp. 201–212.

Achieving temporal isolation in multiprocessor
mixed-criticality systems

Sanjoy Baruah
The University of North Carolina

baruah@cs.unc.edu

Alan Burns
The University of York
alan.burns@york.ac.uk

Abstract—Upon mixed-criticality environments, the execution
of high-criticality functionalities must be protected from interfer-
ence from the execution of less critical functionalities. A means
of achieving this objective upon multiprocessor environments is
by forbidding less critical functionalities from executing any-
where upon the platform while more critical functionalities are
executing upon any processor. This approach towards ensuring
temporal isolation between the different criticalities that are
co-implemented upon a common platform is explored in this
paper, under both the global and partitioned paradigms of
multiprocessor scheduling.

I. INTRODUCTION

Thus far, mixed-criticality scheduling (MCS) theory has
primarily concerned itself with the sharing of CPU computing
capacity in order to satisfy the computational demand, as
characterized by the worst-case execution times (WCET), of
pieces of code. However, there are typically many additional
resources that are also accessed in a shared manner upon a
computing platform, and it is imperative that these resources
also be considered in order that the results of MCS research
be applicable to the development of actual systems. An in-
teresting approach towards such consideration was advocated
by Giannopoulou et al. [4] in the context of multiprocessor
platforms: during any given instant in time, all the processors
are only allowed to execute code of the same criticality level.
This approach has the advantage of ensuring that access to
all shared resources (memory buses, cache, etc.) during any
time-instant are only from code of the same criticality level;
since code of lower criticality are not allowed to execute
simultaneously with code of higher criticality, the possibility
of less critical code interfering with the execution of more
critical code in accessing shared resources is ruled out.

In this paper, we seek to better understand the multi-
processor scheduling of mixed-criticality systems under this
constraint of only executing jobs of a particular criticality
at any given instant in time. To our knowledge, not much
is known such scheduling problems; accordingly, we start
out with a very simple model in which there are just two
criticality levels (designated, as is standard, as HI and LO),
and the workload is represented as a specified collection of
independent jobs that all have a common release date and
a common deadline. We consider the scheduling of such
mixed-criticality systems both when jobs are permitted to
migrate between processors (global scheduling), and when
inter-processor migration is forbidden (partitioned scheduling).
Global scheduling necessarily assumes a preemptive model of

execution; for partitioned scheduling, preemption is not needed
when all jobs have the same release date and deadline.

Organization. The remainder of this paper is organized as
follows. In Section II, we elaborate upon the workload model
that will be assumed in the reminder of this paper. We
discuss the global scheduling of mixed-criticality task systems
represented using this model in Section III, and partitioned
scheduling in Section IV.

II. MODEL

A mixed-criticality job ji = (�i, ai, Ci(LO), Ci(HI), di) is
characterized by a criticality level �i 2 {LO, HI}, a release
time ai, a deadline di, and two WCET estimates ci(LO) and
ci(HI). We assume that ai, di, Ci(LO), and Ci(HI) are all 2
R+, the non-negative real numbers.

We seek to schedule a mixed-criticality instance I , consist-
ing of a given collection of mixed-criticality jobs that all have
the same release time (without loss of generality, assumed to
be equal to zero) and the same deadline (denoted D) upon a
platform of m unit-speed processors. Let ILO denote the LO-
criticality jobs in I , and IHI the HI-criticality jobs in I . As is
standard in mixed-criticality scheduling, we assume that the
exact amount of execution required by a job is not known
beforehand. If each job ji completes upon executing for no
more than Ci(LO) units, we say that the system exhibits LO-
criticality behavior; if some ji executes more than Ci(LO), but
no more than Ci(HI), units, we say that the system exhibits
HI-criticality behavior. The correctness requirement is that all
jobs should complete by their deadlines in all LO-criticality
behaviors, while only the HI-criticality jobs need to complete
by their deadlines in any HI-criticality behavior.

Approach. The over-all approach that we advocate here is to
first schedule the HI-criticality jobs during run-time — this can
be thought of as a generalization of the criticality monotonic
(CM) priority-assignment approach, which was previously
shown [1] to be optimal for scheduling instances in which all
jobs have equal deadlines (such as the instances considered
here) upon uniprocessor platforms. If each HI-criticality job
signals completion upon having executed for no more than
its LO-criticality WCET, we recognize that we are in a LO-
criticality behavior and begin execution of the LO-criticality
jobs.

Notice that under the advocated approach, LO-criticality
jobs only begin to execute after no HI-criticality jobs remain

21

�i ai Ci(LO) Ci(HI) di
j1 LO 0 6 6 10
j2 LO 0 6 6 10
j3 LO 0 6 6 10
j4 HI 0 2 10 10
j5 HI 0 2 10 10
j6 HI 0 4 4 10
j7 HI 0 4 4 10

TABLE I
AN EXAMPLE MIXED-CRITICALITY TASK INSTANCE.

that need to be executed. The problem of scheduling these LO-
criticality jobs therefore becomes a “regular” (i.e., not mixed-
criticality) scheduling problem. Hence we can first determine,
using techniques from conventional scheduling theory, the
minimum duration (the makespan) of a schedule for the LO-
criticality jobs. Once this makespan � is determined, the
difference between D and this makespan (i.e., (D��)) is the
duration for which the HI-criticality jobs are allowed to execute
to completion in any LO-criticality schedule. Determining
schedulabilty for the mixed-criticality instance is thus reduced
to determining whether IHI can be scheduled in such a manner
that

• If each job ji 2 IHI executes for no more than Ci(LO),
then the schedule makespan is (D ��); and

• If each job ji 2 IHI executes for no more than Ci(HI),
then the schedule makespan is D.

Note that we do not in general know, prior to actually
executing the jobs, whether each job will complete within
its LO-criticality WCET or not. Hence it is not sufficient to
construct two entirely different schedules that separately sat-
isfy these two requirements above; instead, the two schedules
must be identical until at least that point in time at which
some job executes for more than its LO-criticality WCET.
(This observation is further illustrated in the context of global
scheduling in Example 1 below.)

III. GLOBAL SCHEDULING

We start out considering the global scheduling of instances
of the kind described in Section II above. Given a collection
of n jobs with execution requirements c1, c2, . . . , cn, Mc-
Naughton [8, page 6] showed as far back as 1959 that the
minimum makespan of a preemptive schedule for these jobs
on m unit-speed processors is

max

✓Pn
i=1 ci
m

,
n

max

i=1
{ci}

◆
(1)

A direct application of McNaughton’s result yields the conclu-
sion that the minimum makespan � for a global preemptive
schedule for the jobs in ILO is given by

�

def
= max

✓P
�i=LO Ci(LO)

m
, max

�i=LO

�
Ci(LO)

 ◆
(2)

Hence in any LO-criticality behavior it is necessary that the
HI-criticality jobs in I — i.e., the jobs in IHI — must be
scheduled to have a makespan no greater than (D ��):

max

✓P
�i=HI Ci(LO)

m
, max

�i=HI

�
Ci(LO)

 ◆
 D �� . (3)

(Here, the makespan bound on the LHS follows again from
a direct application of McNaughton’s result.) Additionally, in
order to ensure correctness in any HI-criticality behavior it is
necessary that the makespan of IHI when each job executes
for its HI-criticality WCET not exceed D:

max

✓P
�i=HI Ci(HI)

m
, max

�i=HI

�
Ci(HI)

 ◆
 D (4)

(where the LHS is again obtained using McNoughton’s result.)

One might be tempted to conclude that the conjunction
of Conditions 3 and 4 yields a sufficient schedulability test.
However, this conclusion is erroneous, as is illustrated in
Example 1 below.

Example 1: Consider the scheduling of the mixed-
criticality instance of Table I upon 3 unit-speed processors.
For this instance, it may be validated that

• By Equation 2, � evaluates to max(

6+6+6
3 , 6) or 6.

• The LHS of Condition 3 evaluates to max(

2+2+4+4
3 , 4),

or 4. Condition 3 therefore evaluates to true.
• The LHS of Condition 4 evaluates to

max(

10+10+4+4
3 , 10), or 10. Condition 4 therefore

also evaluates to true.
However for this example, the schedule that causes Condi-
tion 3 to evaluate to true must have jobs j6 and j7 exe-
cute throughout the interval [0, 4), while the one that causes
Condition 4 to evaluate to true must have j4 and j5 execute
throughout the interval [0, 10) — see Figure 1. Since we only
have three processors available, during any given execution of
the instance at least one of the four jobs j4–j7 could not have
been executing throughout the interval [0, 2).

• If one of {j4, j5} did not execute throughout [0, 2) and
the behavior of the system turns out to be a HI-criticality
one, then the job not executing throughout [0, 2) will miss
its deadline.

• If one of {j6, j7} did not execute throughout [0, 2) and the
behavior of the system turns out to be a LO-criticality one,
then the job 2 {j6, j7} not executing throughout [0, 2)
will not complete by time-instant 4, thereby delaying
the start of the execution of the LO-criticality jobs to
beyond time-instant 4. These jobs will then not be able
to complete by their common deadline of 10.

The example above illustrates that the conjunction of Con-
ditions 3 and 4, with the value of � defined according
to Equation 2, is a necessary but not a sufficient global
schedulability test. Below, we will derive a sufficient global
schedulability test with run-time that is polynomial in the
representation of the input instance; we will then illustrate,
in Example 2, how this test does not claim schedulability of
the instance from Example 1. This schedulability test is based
upon a network flow argument, as follows. We will describe a

22

-
0 1 2 3 4 5 6 7 8 9 10

Proc1

Proc2

Proc3

j4 j5

j7

j6

-
0 1 2 3 4 5 6 7 8 9 10

j4

j5

j7j6

Fig. 1. Schedules for IHI for the task system of Example 1. The left schedule is for a LO-criticality behavior, and has a makespan of four; it thus bears
witness to the fact that this mixed-criticality instance satisfies Condition 3. The right schedule is for a HI-criticality behavior – it has a makespan of ten,
thereby bearing witness that the instance satisfies Conditions4 as well. Observe that the schedules are different at the start: job j5 does not execute over [0, 2)
in the left schedule but it does in the right schedule, while job j7 does not execute over [0, 4) in the right schedule but it does in the left schedule.

polynomial-time reduction from any dual-criticality instance I
to a weighted digraph G with a designated source vertex and
a designated sink vertex, such that flows of a certain size or
greater from the source to the sink in G correspond exactly
(in a manner that will be made precise) to a valid global
schedule for the instance I . Thus, the problem of determining
global schedulability is reduced to determining the size of a
maximum flow in a graph, which is known to be solvable
in polynomial time using, for instance, the Floyd-Fulkerson
algorithm [3].

We now describe below the construction of a weighted
digraph G from an input instance I . First, we compute the
value of � for this input instance according to Equation 2. The
graph we build is a “layered” one: the vertex set V of G is the
union of 6 disjoint sets of vertices V0, . . . , V5, and the edge
set E of G is the union of 5 disjoint sets of edges E0, . . . , E4,
where Ei is a subset of (Vi ⇥ Vi+1 ⇥ R+

), 0 i 4. The
digraph G is thus a 6-layered graph — see Figure 2 — in
which all edges connect vertices in adjacent layers. The sets
of vertices in G are as follows:

V0 = {source},
V1 = {h1, jii | ji 2 IHI)},
V2 = {h2, ji, LOi, h2, ji, HIi | ji 2 IHI},
V3 = {h3, ji,↵i, h3, ji,�i | ji 2 IHI},
V4 = {h4,↵i, h4,�i}, and
V5 = {sink}.

Intuitively speaking, each vertex in V1 represents a HI-
criticality job; for each such job, there are two vertices in
V2 representing respectively its LO-criticality execution and
the excess execution (beyond its LO-criticaliy WCET) in case
of HI-criticality behavior. The vertex h3, ji,↵i will correspond
to the amount of execution job ji actually receives over the
interval [0, D � �) – i.e., during the interval within which
it must complete execution within any LO-criticality behavior;
the vertex h3, ji,�i will correspond to the amount of execution
job ji receives over the interval [D � �, D). The vertices
h4,↵i and h4,�i represent the total amount of execution
performed upon the platform during the intervals [0, D ��)

and [D ��, D) respectively.
Next, we list the edges in G. An edge is represented by a

3-tuple: for u, v 2 V and w 2 R+, the 3-tuple (u, v, w) 2 E
represents an edge from u to v that has a capacity w. The sets
of edges in G are as follows:

E0 = {(source, h1, jii, Ci(HI)) | ji 2 IHI},
E1 = {(h1, jii, h2, ji, LOi, Ci(LO)),

(h1, jii, h2, ji, HIi, Ci(HI)� Ci(LO)) | ji 2 IHI},
E2 = {(h2, ji, LOi, h3, ji,↵i, Ci(LO)),

(h2, ji, HIi, h3, ji,↵i, Ci(HI)� Ci(LO)),

(h2, ji, HIi, h3, ji,�i, Ci(HI)� Ci(LO)), | ji 2 IHI},
E3 = {(h3, ji,↵i, h4,↵i, D ��),

(h3, ji,�i, h4,�i,�) | ji 2 IHI, and
E4 = {(h4,↵i, sink,m(D ��)), (h4,�i, sink,m�)}.

We now try and explain the intuition behind the construction
of G. The maximum flow that we will seek to push from the
source to the sink is equal to

P
ji2IHI

Ci(HI). Achieving this
flow will require that Ci(HI) units of flow go through h1, jii,
which in turn requires that Ci(LO) units of flow go through
h2, ji, LOi, and (Ci(HI) � Ci(LO)) units of flow go through
h2, ji, HIi, for each ji 2 IHI. This will require that all Ci(LO)
units of flow from h2, ji, LOi go through h3, ji,↵i; the flows
from h2, ji, HIi through the vertices h3, ji,↵i and h3, ji,�i
must sum to (Ci(HI) � Ci(LO)) units. The global schedule
for IHI is determined as follows: the amount of execution

received by ji during [0, D ��) is equal to the amount of

flow through h3, ji,↵i; the amount of execution received by

ji during [D��, D) is equal to the amount of flow through

h3, ji,�i. Since the outgoing edge from h3, ji,↵i has capacity
(D ��), it is assured that ji is not assigned more execution
than can be accommodated upon a single processor; since the
outgoing edge from h4,↵i is of capacity m(D � �), it is
assured that the total execution allocated during [0, D � �)

does not exceed the capacity of the m-processor platform to
accommodate it. Similarly for the interval [d��, D): since the
outgoing edge from h3, ji,�i has capacity �, it is assured that
ji is not assigned more execution than can be accommodated

23

upon a single processor; since the outgoing edge from h4,�i
is of capacity m�, it is assured that the total execution
allocated during [D ��, D) does not exceed the capacity of
the m-processor platform to accommodate it. Now for both the
intervals [0, D ��) and [D ��, D), since no individual job
is assigned more execution than the interval duration and the
total execution assigned is no more than m times the interval
duration, McNaughton’s result (Condition 1) can be used to
conclude that these executions can be accommodated within
the respective intervals.

This above informal argument can be formalized to establish
the following lemma; we omit the details.

Theorem 1: If there is a flow of size
X

ji2IHI

Ci(HI)

in G then there exists a global schedule for the instance I .

Example 2: Let us revisit the task system described in Ex-
ample 1 — for this example instance, we had seen by instan-
tiation of Equation 2 that � = 6. The digraph constructed for
this task system would require each of j4–j7 to transmit at least
their corresponding Ci(LO)’s, i.e., 2, 2, 4, and 4, respectively,
units of flow through the vertex h4,↵i, which is do-able since
the platform capacity over this interval is 3 ⇥ 4 = 12. But
such a flow completely consumes the platform capacity during
[0, 4), which requires that all of j4 and j5’s (Ci(HI)�Ci(LO))
flows, of (10 � 2) = 8 units each, flow through the edges
(h3, j4,�i, h4,�i, 6) and (h3, j5,�i, h4,�i, 6). But such a flow
would exceed the capacity of the edge (which is six units),
and is therefore not feasible. The digraph constructed for the
example instance of Example 1 thus does not permit a flow
of size

P
ji2IHI

Ci(HI), and Theorem 1, does not declare the
instance to be globally schedulable.

As previously stated, determining the maximum flow
through a graph is a well-studied problem. The Floyd-
Fulkerson algorithm [3], first published in 1956, provides an
efficient polynomial-time algorithm for solving it. In fact, the
Floyd-Fulkerson algorithm is constructive in the sense that it
actually constructs the flow – it tells us how much flow goes
through each edge in the graph. We can therefore use a flow of
the required size, if it exists, to determine how much of each
job must be scheduled prior to (D ��) in the LO-criticality
schedule, and use this pre-computed schedule as a look-up
table to drive the run-time scheduler.

IV. PARTITIONED SCHEDULING

We now turn to partitioned scheduling, which was the
context within which Giannopoulou et al. [4] had initially
proposed the paradigm of only executing jobs of one criticality
at any instant in time. In partitioned scheduling, we will
partition the entire collection of jobs – both the HI-criticality
and the LO-criticality ones – amongst the processors prior
to run-time. We will also determine some time-instant S,
0 S D, such that only HI-criticality jobs are executed

upon all the processors during [0, S), and only LO-criticality
jobs are executed during [S,D). A run-time protocol needs to
be defined and supported that will manage the change from
HI-criticality to LO-criticality execution. As HI-criticality and
LO-criticality jobs cannot execute concurrently, any processor
that is still executing a HI-criticality job at some time t must
prevent all other processors from switching to LO-criticality
jobs. Such a protocol would need to be ether affirmative (“its
OK to change”) or negative (“do not change”):

• affirmative: each processor broadcasts a message (or
writes to shared memory) to say it has completed all its
HI-criticality jobs; when each processor has completed its
own HI-criticality work and has received (m � 1) such
messages it switches to LO-criticality work.

• negative: if any processor is still executing its HI-
criticality work at time S it broadcasts a message to
inform all other processors; any processor that is not in
receipt of such a message at time S+� will move to its
LO-criticality work (where � is a deadline for receipt of
the ‘no-change’ message, determined based upon system
parameters such as maximum propagation delay).

In terms of message-count efficiency, the negative message
is more effective since normal behavior would result in no
messages being sent; whereas the affirmative protocol would
generate m broadcast messages. The affirmative protocol is,
however, more resilient and less dependent on the temporal
behavior of the communication media.

If shared memory is used then a set of flags could indicate
the status of each processor. However, spinning on the value
of such flags could cause bus contention issues for those
processors attempting to complete their HI-criticality work.

We now turn to the problem of partitioning the jobs amongst
the processors prior to run-time. Let us first consider the
scheduling of just the LO-criticality jobs — i.e., the jobs in
ILO. Determining a schedule of minimum makespan for these
jobs is equivalent to the bin-packing [6] problem, and is hence
highly intractable: NP-hard in the strong sense. Hochbaum and
Shmoys [5] have designed a polynomial-time approximation
scheme (PTAS) for the partitioned scheduling of a collection
of jobs to minimize the makespan that behaves as follows.
Given any positive constant �, if an optimal algorithm can
partition a given task system ⌧ upon m processors each of
speed s, then the algorithm in [5] will, in time polynomial in
the representation of ⌧ , partition ⌧ upon m processors each
of speed (1 + �)s. This can be thought of as a resource
augmentation result [7]: the algorithm of [5] can partition,
in polynomial time, any task system that can be partitioned
upon a given platform by an optimal algorithm, provided it
(the algorithm of [5]) is given augmented resources (in terms
of faster processors) as compared to the resources available to
the optimal algorithm.

We can use the PTAS of [5] to determine in polyno-
mial time, to any desired degree of accuracy, the minimum
makespan of any partitioned schedule of the LO-criticality
jobs in the instance I . Let �P denote this makespan. Hence

24

✏� ��source

✏� ��h1, jii

✏� ��

✏� ��

h2, ji, HIi

h2, ji, LOi

✏� ��

✏� ��

h3, ji, �i

h3, ji,↵i

✏� ��

✏� ��

h4, �i

h4,↵i

✏� ��sink-Ci(HI)⇥
⇥
⇥⇥�

�
���
��✓
@@RA
AAU

�
�
�
��✓

Ci(LO)

@
@
@
@@R

Ci(HI) � Ci(LO)

-Ci(LO)

-
Ci(HI) � Ci(LO)

�
�
�
�
�
�
�
���

Ci(HI) � Ci(LO)

-D � �

-�

B
B
BB

A
AA
@@
�
��
⇥
⇥
⇥⇥

B
B
BB

A
AA
@@
�
��
⇥
⇥
⇥⇥

@
@
@
@R

m(D � �)

�
�
�
�✓m�

Fig. 2. Digraph construction illustrated. All vertices and edges pertinent to the job ji are depicted. Additional edges emanate from vertex sink to a vertex
h1, j`i, for each j` 2 IHI; additional edges enter the vertices h4,↵i and and h4,�i from vertices h3, j`,↵i and h3, j`,�i respectively, for each j` 2 IHI.

to ensure a correct schedule we need to complete schedul-
ing all the HI-criticality jobs in I within the time interval
[0, D � �P); i.e., with a makespan (D � �P). (The time-
instant S mentioned above in the context of the run-time
management of the system is therefore equal to D � �P .)
Now, determining whether I can be successfully scheduled
using partitioned scheduling reduces to determining whether
there is a partitioning of just the HI-criticality jobs — i.e., the
jobs in IHI — satisfying the properties that
P1. If each job ji 2 IHI executes for no more than Ci(LO),

then the schedule makespan is (D ��P); and
P2. If each job ji 2 IHI executes for no more than Ci(HI),

then the schedule makespan is D.
(Note that both these properties must be satisfied by a single
partitioning of the jobs in IHI – it is not sufficient to identify
one partitioning that satisfies P1 and another that satisfies P2.)

This partitioning problem turns out to be closely related to
the vector scheduling problem. Vector scheduling is the natural
multi-dimensional generalization of the partitioning problem
to minimize makespan, to situations where jobs may use multi-
ple different kinds of resources and the load of a job cannot be
described by a single aggregate measure. For example, if jobs
have both CPU and memory requirements, their processing
requirements are appropriately modeled as two dimensional
vectors, where the value along each dimension corresponds to
one of the requirements. Clearly, an assignment of vectors to
the processors is valid if and only if no processor is overloaded
along any dimension (i.e., for any resource). Chekuri and
Khanna [2] give a PTAS for solving the vector scheduling
problem when the number of dimensions is a constant.

It is not difficult to map our problem of partitioning the
HI-criticality jobs (discussed above) to the vector scheduling
problem. Each HI-criticality job ji 2 IHI is modeled as a two-
dimensional load vector hCi(LO), Ci(HI)i, and the capacity
constraint for each processor is represented by the vector
h(D � �P), Di. We can therefore use the PTAS of [2] to
determine whether IHI can be partitioned in a manner that
satisfies the properties P1 and P2 above, to any desired degree
of accuracy in time polynomial in the representation of the

instance.

V. CONTEXT AND CONCLUSIONS

Mixed-criticality scheduling (MCS) theory must extend con-
sideration beyond simply CPU computational demand, as char-
acterized by the worst-case execution times (WCET), if it is
to be applicable to the development of actual mixed-criticality
systems. One interesting approach towards achieving this goal
was advocated by Giannopoulou et al. [4] — enforce temporal
isolation amongst different criticality levels by only permitting
functionalities of a single criticality level to execute at any
instant in time. Such inter-criticality temporal isolation ensures
that access to all shared resources are only from equally critical
functionalities, and thereby rules out the possibility of less
critical functionalities compromising the execution of more
critical functionalities while accessing shared resources.

We have considered here the design of scheduling al-
gorithms that implement this approach. For a very simple
workload model — a dual-criticality system that is represented
as a collection of independent jobs that share a common
release time and deadline — we have designed asymptotically
optimal algorithms for both global and partitioned scheduling:

• For global scheduling, we have designed a polynomial-
time sufficient schedulability test that determines whether
a given mixed-criticality system is schedulable, and an
algorithm that actually constructs a schedule if it is.

• For partitioned scheduling, we have shown that the
problem is NP-hard in the strong sense, thereby ruling
out the possibility of obtaining optimal polynomial-time
algorithms (unless P = NP). We have however obtained
what is, from a theoretical perspective, the next best thing
– a polynomial-time approximation scheme (PTAS) that
determines, in polynomial time, a partitioning of the task
system that is as close to being an optimal partitioning
algorithm as desired.

The work reported here should be considered to be merely a
starting point for research into the particular approach towards
mixed-criticality scheduling advocated in [4]. While the PTAS

25

for partitioned scheduling is likely to be the best we can
hope for (in asymptotic terms), we do not have a estimate
as to how far removed from optimality our global schedu-
lability test is. We also plan to extend the workload model
to enable consideration of jobs with different release dates
and deadlines, and later to the consideration of recurrent task
systems. An orthogonal line of follow-up research concerns
the implementation of the global and partitioned approaches
presented here – experimentation is needed to determine how
they behave upon actual systems.

ACKNOWLEDGEMENTS

This research is partially supported by NSF grants CNS
1016954, CNS 1115284, CNS 1218693, and CNS 1409175;
ARO grant W911NF-09-1-0535; and ESPRC grant MCC
(EP/K011626/1).

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Proceedings of the IEEE Real-Time Tech-
nology and Applications Symposium (RTAS). IEEE, April 2010.

[2] C. Chekuri and S. Khanna, “On multi-dimensional packing problems,”
in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 1999, pp. 185–194.

[3] L. Ford and D. Fulkerson, “Maximal flow through a network,” Canadian
Journal of Mathematics, vol. 8, 1956.

[4] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of
mixed-criticality applications on resource-sharing multicore systems,” in
International Conference on Embedded Software (EMSOFT), Montreal,
Oct 2013, pp. 17:1–17:15.

[5] D. Hochbaum and D. Shmoys, “Using dual approximation algorithms for
scheduling problems: Theoretical and practical results,” Journal of the
ACM, vol. 34, no. 1, pp. 144–162, Jan. 1987.

[6] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dissertation,
Department of Mathematics, Massachusetts Institute of Technology, 1973.

[7] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoy-
ance,” Journal of the ACM, vol. 37, no. 4, pp. 617–643, 2000.

[8] R. McNaughton, “Scheduling with deadlines and loss functions,” Man-
agement Science, vol. 6, pp. 1–12, 1959.

26

A Memory Arbitration Scheme for
Mixed-Criticality Multicore Platforms

Bekim Cilku⇤, Alfons Crespo†, Peter Puschner⇤, Javier Coronel‡ and Salvador Peiro†
⇤Vienna University of Technology, Vienna, Austria

{bekim,peter}@vmars.tuwien.ac.at
†Universidad Politecnica de Valencia, Valencia, Spain

{acrespo,speiro}@ai2.upv.es
‡fentISS, Valencia, Spain

jcoronel@fentiss.com

Abstract—In mixed-criticality systems, applications of different crit-

icality levels share the same computing platform. To avoid spatial and

temporal interference of the applications, the computing platform must

implement measures for spatial and temporal isolation. In this paper

we show how the enhancement of a static memory arbiter by a second,

dynamic arbitration layer facilitates the interference-free integration of

mixed-criticality applications with different performance requirements.

This paper (a) compares the performance tradeoffs of the new dual-layer

arbiter and a COTS arbiter and (b) evaluates the performance of an

XtratuM hypervisor system running on a platform with this dual-layer

arbiter.

I. INTRODUCTION

The high processing capability that multi-core embedded systems
have reached allows us to run multiple applications on a single shared
hardware platform [1]. However, some of the integrated applications
may have firm real-time constraints that require a formal proof that the
deadlines are met, while the others may be less demanding. For such
a mixed-criticality system, only the set of critical applications needs
to be certified; the rest of the applications do not need certification
or may be certified to a lower level [2]. Obtaining a certification
only for critical applications can become a difficult task due to
the hardware sharing dependency and the diversity of functionalities
that the system performs concurrently. The key approach towards a
complexity reduction is to prevent the interference between integrated
applications both in the temporal and spatial domain [3]. Temporal
isolation preserves the timing behavior of applications such that
they do not affect one another while executing concurrently on the
shared platform [4]. Spatial isolation protects memory elements of
applications so they cannot be accessed by the other applications.

For a multi-core platform with shared main memory, spatial
isolation between applications can be achieved simply by integrating a
Memory Management Unit (MMU) [5] as part of the memory-address
translation process. The MMU table is set up to assign a different
memory space to each application. In this way, the MMU table
protects the given memory space of applications against possible vi-
olations from the other ones. Establishing temporal isolation between
time-critical applications is a more complex problem. This comes as
a consequence of the resource sharing between applications on the
same core, as well as from the sharing of resources (main memory
and I/O components) between applications running on different cores.

In this paper we present the MultiPARTES1 platform that provides
full temporal isolation for time-critical applications at all levels of a
computing system. This platform consists of multi-core hardware with

1www.multipartes.eu

a shared bus on top of which the XtratuM [6] hypervisor executes
(Figure 1).

Core 0 Core 1 Core 2

Arbiter

Memory
controller

Master Master Master

Slave

cache cache cache

XtratuM

VP VP VP VP VP VP VP

Decoder

cache

Master

VP VP

Core 3

Fig. 1: MultiPARTES Platform

The hypervisor eliminates the possibility of interference between
virtual partitions running on the same CPU by implementing a static
cyclic scheduling where each virtual partition is associated with a
fixed number of CPU cycles. At runtime, each partition is activated
based on the static schedule and gets a predefined amount of processor
time. Applications of different criticality level are mapped on different
virtual partitions. However, the hypervisor is not able to ensure
temporal isolation of the critical partitions when they access a shared
bus. To eliminate the inter-core interference we have designed a new
bus-arbiter scheme that preserves the isolation properties for critical
virtual partitions and provides better utilization of shared resources
for non-critical ones. The arbiter is based on a hierarchical, two-layer
arbitration scheme that switches between a critical and non-critical
mode.

The paper is organized as follows. The next section describes
the hardware architecture of the MultiPARTES platform, the new
bus-arbiter scheme and presents preliminary results on arbiter perfor-
mance. Section 3 describes the XtratuM hypervisor and its integration
to the multi-core platform. Temporal interference and preformance
evaluation of the whole platform are shown in Section 4. Section 5
concludes the paper.

II. HARDWARE PLATFORM FOR MIXED-CRITICALITY
MULTICORE SYSTEMS

The hardware used in MultiPARTES consists of a multi-core
LEON3 processor that is interconnected with a memory controller and

27

I/O resources through a shared AMBA bus. LEON3 is a synthesizable
VHDL model of a 32-bit processor compliant with the SPARC V8
architecture. Multi-core LEON3 systems are highly customizable with
respect to the processor core and periphery features. LEON3 has
a seven-stage pipeline with a Harvard architecture, separate caches
for instructions and data, a hardware multiplier and divider, on-
chip debug support, an MMU with a configurable TLB, and multi-
processor extensions [7].

The interconnection between cores with main memory and I/O
components is realized through the Advanced Microcontroller Bus
Architecture (AMBA). AMBA is an open standard specification
that defines an on-chip communication standard for designing high-
performance embedded systems [8]. It is widely used in network
interconnect chips, RAM controllers, Flash memory controllers and
SoCs (System on Chips) [9]. It consists of a high-performance system
backbone bus (AHB) on which the CPUs, on-chip memories and other
DMA devices reside, and a low bandwidth bus (APB) to which most
of the system peripheral devices are connected. The APB is optimized
for low power consumption and reduced interface complexity.

The AHB and the APB are connected via a bus bridge. Com-
ponents which can initiate read or write operations are called AHB
master while those which respond to a read/write operation are called
AHB slave. Since the bus is shared between all master components,
only one master is allowed to initiate a transfer at any time. AMBA
uses a centralized arbiter to determine which master gets the right to
commence a transfer and also ensures that at any given time at most
a single transfer is in progress. The decision for granting the bus
is based on an arbitration algorithm. The basic requirements for an
arbitration policy are that it should guarantee the fairness of accesses
between master components and it has to prevent the starvation of
the masters.

A. Dual-Layer Arbitration Scheme

The MultiPARTES platform uses a two-layer arbitration scheme
for accesses to the shared-memory bus. The first layer is based on time
division multiple access (TDMA) and is responsible for guaranteeing
the temporal properties of critical partitions, while the other layer
employs a round-robin (RR) arbitration policy that controls the bus
access for non-critical partitions.

TDMA is an arbitration policy that guarantees a fixed bus
bandwidth by a priory assigning time slots of fixed length to each
master. In contrast, the RR arbitration scheme grants bus access to
every master on the bus in a circular manner. A master relinquishes
control over the bus when it no longer has data to transfer. When a
master has completed its transfer, it passes control to the next master
in line [10].

The TDMA scheme is the main bus access driver. Each core
that runs time-critical applications has an a-priori assigned time slot
to guarantee access on the bus. Individual cores that need higher
bandwidth can be assigned multiple slots within the scheduling frame.
A few sequential time slots from TDMA arbitration are reserved for
cores with non-critical applications. On top of these slots the RR is
built. During this RR time interval, dynamic arbitration is activated
and all transactions of non-critical cores are competing for the access
to the memory bus. To ensure that non-critical cores cannot interfere
with the critical ones, an additional rule has to be enforced. The
dynamic arbiter (RR) must not serve any request that is issued after
the start of the last timeslot in the sequence of the dynamic time slots.

Otherwise, such a request could overlap with the next static time slot
for the critical cores, thus invalidating the time predictability of the
TDMA scheme.

Timeslot
core0

Timeslot
core0

Timeslot
core1 Timeslot Timeslot Timeslot Timeslot

Dynamic Arbitration: core2, core3 Timeslot

TimeslotTimeslot
core0

scheduling frame
time

core 0

core 1

core 2

core 3

Fig. 2: Dual-policy arbitration scheme

An example of dual-layer arbitration for four-core hardware is
presented in Figure 2. The first two cores (core 0 and core 1) are
running time-critical applications while the other two cores (core 2
and 3) are executing non-critical ones. The scheduling frame has nine
slots where four are assigned to critical cores (core 0 is assigned
three slots under the assumption that it needs more bandwidth), the
next four slots are reserved for non-critical cores and the last slot is
reserved for the completion of ongoing non-critical transactions. Core
0 and 1 are granted to start bus transactions only at the beginning
of their assigned slots in order to guarantee the non-interference of
transactions. In contrast, cores 2 and 3 are accessing the bus when
dynamic arbitration (RR) is active. The last slot, does not allow
for any bus access but only serves the completion of the ongoing
transaction of core 2.

B. Hardware Architecture of the Dual-Layer Arbiter

The arbiter architecture consists of a TDMA and an RR com-
ponent (Figure 3). The TDMA components has a wrap incremental
counter, a shift register and a controller. The wrap counter is incre-
mented at each clock cycle with a maximal value equal to the number
of cycles for one slot. The function of this unit is to shift the token
in a shift register at the end of the time slot. The shift register keeps
record of the slots. Depending on the active slot, the controller either
grants access to an critical request (HBUSREQ0 or HBUSREQ1) or
activates/deactivates the RR arbiter.

All request signals from non-critical partitions are connected to
the RR-arbiter queue. When the RR arbiter is activated, it grants
partitions bus access in the same order as the requests have arrived
(HBUSREQ2 or HBUSREQ3).

C. Evaluation of the Arbiter

We implemented and deployed the dual-layer bus arbiter on
an FPGA development kit (terasic DE2-115) to demonstrate the
feasibility of the Dual-Layer arbiter and to evaluate its performance.
The arbiter is written in VHDL language and deployed as part of the

28

HBUSREQ1

HBUSREQ2

HBUSREQ3

HBUSREQ0

Activation/Deactivation

HGRANT0

HGRANT1

HGRANT2

HGRANT3

ARBITER TDMA Arbitration

RR Arbitration

counterclk

0 0 0 0 0 01

Controller

Queue

Fig. 3: Arbiter architecture for mixed-criticality systems

Grlib IP library [11]. The interconnection with the memory controller
and the I/O resources is done through the AMBA bus. The bus is
configured not to support split transactions.

For this evaluation a bubble sort algorithm was chosen. The
algorithm sorts vectors of sizes from 100 to 1000 elements. In
this evaluation, the algorithm is executed on a bare-metal processor,
without any operating system in order to avoid the overhead generated
from the hypervisor. All four cores were executing the same code. The
goal was to test the temporal isolation for time-critical cores and also
to compare the execution performance of the noncritical partitions.
For comparison we used three different bus arbitration policies: pure
TDMA, RR and our Dual-Layer (DL) policy.

The TDMA scheduling frame consisted of four slots and each
slot was assigned to a core. The DL arbiter used five slots where
the critical CPUs (CPU0 and CPU1) were assigned to the first two
slots (slot 0 and 1) while the non-critical CPUs were allowed on the
following two slots. No arbitration was allowed on the fifth slot (see
above). The slot size was 20 clock cycles (the longest transfer was
taking 18 cycles).

Figure 4 shows the observed execution time of the bubble sort
algorithm for different vector sizes. The execution time of non-critical
partitions is illustrated for TDMA, RR and DL. From the results we
see that the execution time of the algorithm in non-critical cores with
DL arbitration is 3.1 time shorter than in a system with pure TDMA.
Compared to pure RR, the execution of bubble sort with DL lasts 1.2
times longer. For critical partitions the execution time with TDMA
and DL is the same.

In summary, the results of this experiment suggest that DL
arbitration improves the performance of non-critical partitions without
affecting the time properties of the critical ones.

III. THE XTRATUM HYPERVISOR

A. Introduction of XtratuM

XtratuM [12], [13] is a bare-metal hypervisor specifically de-
signed for embedded real-time systems that uses para-virtualization

100 200 300 400 500 600 700 800 900 1000

Number of Elements

Cl
oc

k C
yc

les

0
20

00
00

40
00

00
60

00
00

80
00

00 TDMA
Dual−Layer
Round−Robin

Fig. 4: Execution time of bubble sort algorithm

techniques to emulate hardware behaviour. The para-virtualized model
offers potential performance benefits when a guest operating system
or application is aware that it is running within a virtualized environ-
ment, and it has been modified to exploit this. One potential downside
of this approach is that such modified guests cannot ever be migrated
back to run on physical hardware.

XtratuM has been designed to achieve real-time constraints with
a set of properties that strongly follow certification issues. These
properties can be summarised as:

• Spatial isolation: A partition is completely allocated to
isolated memory regions. The hypervisor guarantees the
spatial isolation of the partitions.

• Temporal isolation: A partition is executed at specified
and fixed temporal intervals. A cyclic scheduling policy
is implemented by the hypervisor. The temporal allocation
of time to a partition is not impacted by the execution of
other partitions, although shared resources could produce
interference in the execution time duration of its activities.

• Predictability: A partition with real-time constraints has to
execute its code in a predictable way. It can be influenced by
the underlying layers of software (guest-OS and hypervisor)
and by the hardware. From the hypervisor point of view, the
predictability applies to the provided services, the operations
involved in the partition execution and internal operations
(partition context switch, interrupt management, etc.).

• Fault isolation and management: Fault management is a
fundamental aspect in critical systems, and it is strongly
related with certification issues. Faults, when they occur, are
detected and handled via Health Monitor which is statically
configured.

• Static resource allocation: The system architect is responsi-
ble for the system definition and resource allocation. This

29

system definition is detailed in the system’s configuration
file, which specifies all system resources, namely number of
CPUs, memory layout, peripherals, partitions, the execution
plan of each CPU, etc.

B. Integration on the Multicore Platform

XtratuM has been adapted to multi-core systems [14] based on
LEON4 processors and x86 and LEON3-bicore in the MultiPARTES
project [15], [16]. In the multi-core approach, the hypervisor can
provide several virtual CPUs to the partitions. A partition can be
mono or multi-core. Different partitions (from the point of view of
the number of cores) can coexist in the system. This approach allows
profiting from a multi-core platform, even if the partitions are not
multi-core by building multi-core or monocore partitions.

In order to handle the underlying multi-core hardware it can
be configured following an Asymmetric Multiprocessing (AMP) or
Symmetric Multi-Processor (SMP). In AMP, there is an instance of
the hypervisor running on each core, which executes the allocated
partitions. In the SMP approach, one single hypervisor instance
manages all hardware resources. While the AMP software architecture
simplifies the hypervisor, the SMP approach permits the use of mono
or multi-core execution environments, and offers higher flexibility to
assign partitions to different cores. Moreover, mono-core partitions
in SMP architectures can be permanently allocated to one core, or
several on different partition activations with no temporal overlap.

In the adaptation of XtratuM to multi-core platforms, the hyper-
visor model has been re-designed to support the concept of virtual
CPU (vCPU). Virtual CPUs are abstractions that model hardware
CPU behaviour and are managed in an analogous way, but can be
allocated to any of the existing cores. There are as many virtual CPUs
on the system as physical cores and they behave on a similar manner:
when a partition starts its execution, only one vCPU is active, being
responsibility of the partition to initialize the remaining vCPUs. To
this end, it has been necessary to extend XtratuM with new hypercalls
that allow the partitions to manage virtual CPUs operation.

In a multi-core partitioned system partitions can use one core
(mono-core partitions) or several cores (multi-core partitions). Several
mapping schemes can be considered:

• Each monocore partition is mapped to one core

• Several monocore partitions are mapped to one core

• A mono-core partition is mapped to different cores at
different time intervals

• A multi-core partition is mapped to several cores at the same
temporal intervals

Figure 5 shows a configuration with a 3 mono-core and 1 multi-
core partitions. Partitions P1, P2 and P3 allocates their virtual core
(vCPU0) to one of the real cores (CPU0 or CPU1). P3 uses both
cores at different intervals. P4 is a multi-core partition (two virtual
cores) and requires the use of both real cores.

C. Hypervisor scheduling

XtratuM can associate a scheduling policy to each core or
group of cores. Two scheduling policies are implemented: cyclic
scheduling and priority based. The policy is statically specified in
the configuration file. In the cyclic scheduling, the configuration file

Fig. 5: Partitioned architecture in multi-core platforms.

specifies the temporal windows or slots in a major frame (MAF)
where partitions will be scheduled. Each slot details the partition, the
execution interval (as offset from the start of the major time frame
and the duration) and the virtual CPU. Partitions definition includes
the number of virtual CPUs to be used.

In case of priority based scheduling, partitions, allocated to the
core that uses this policy, have to specify the priority, period and
budget.

Next listing shows the specification of a cyclic schedule of four
partitions in two cores according to the partition mapping shown in
Fig 5.

XML configuration file: schedule specification
<ProcessorTable>
<Processor id=”0”>
<CyclicPlanTable>
<Plan id=”0” majorFrame=”20ms”>
<Slot id=”0” start =”0ms” duration=”3ms” partitionId =”1” vCpuId=”0”/>
<Slot id=”1” start =”3ms” duration=”3ms” partitionId =”3” vCpuId=”0”/>
<Slot id=”2” start =”7ms” duration=”3ms” partitionId =”1” vCpuId=”0”/>
<Slot id=”3” start =”12ms” duration=”3ms” partitionId =”1” vCpuId=”0”/>
<Slot id=”4” start =”15ms” duration=”5ms” partitionId =”4” vCpuId=”0”/>
</Plan>
</CyclicPlanTable>
</Processor>
<Processor id=”1”>
<CyclicPlanTable>
<Plan id=”0” majorFrame=”20ms”>
<Slot id=”0” start =”0ms” duration=”6ms” partitionId =”2” vCpuId=”0”/>
<Slot id=”1” start =”7ms” duration=”3ms” partitionId =”3” vCpuId=”0”/>
<Slot id=”2” start =”10ms” duration=”3ms” partitionId =”2” vCpuId=”0”/>
<Slot id=”3” start =”13ms” duration=”2ms” partitionId =”3” vCpuId=”0”/>
<Slot id=”4” start =”15ms” duration=”5ms” partitionId =”4” vCpuId=”1”/>
</Plan>
</CyclicPlanTable>
</Processor>
</ProcessorTable>

Figure 6 draws the execution chronogram of this example. P1
and P2 allocate their vCPU0 to CPU0 and CPU1, respectively. P3
allocates its vCPU0 to CPU0 and CPU1 at different time intervals
(no overlap). P4 maps its virtual cores to the real cores at the same
time intervals.

The configuration file is statically defined off-line. A set of tech-
niques and tools are required to generate the schedule, according to
the partition temporal requirements, criticality level, platform needs,
etc., and to verify the coherence and correctness of the final schedule.

30

Fig. 6: Scheduling scheme.

In [17], a configuration and scheduling tool is presented. The
hypervisor requires a binary representation of a verified configuration
file to execute the system.

The main challenge in multi-core hypervisor is to deal with the
temporal inteference when several cores are executing code at the
same time. From the scheduling point of view, the temporal isolation
in multi-core can consider two aspects:

• temporal allocation of systems resources: partition execution
is statically defined (temporal windows).

• temporal interference: impact of the shared resources use by
other cores.

While the hypervisor can guarantee the temporal allocation of
resources, it requires the hardware support to deal with the temporal
interference.

IV. TEMPORAL INTERFERENCE AND PERFORMANCE ANALYSIS

In this section, the performance of the hypervisor layer comparing
both architectures proposed in the MultiPARTES project for the
AMBA bus: RR and TDMA is evaluated. The target is a LEON3
dual-core at 50MHz with DDR memory.

A. Temporal Interference Analysis

Temporal interference is produced when partitions in different
cores use shared resources. We focus on this evaluation on the
temporal impact that a target partition suffers when another partition
is executed in other core and perform intensive access to memory.

To analyse this impact, a scenario with different levels of over-
lapping in partitions running in diffeent cores is defined. The scenario
is defined with two partitions. P1 is the target of evaluation and
perform a fixed payload that is measured in an isolated environment.
P1 performs the following steps: read the clock (t1), perform the
payload, read the clock (t2) and computes the differences t2 � t1
(execution time). P2 is a dummy partition that performs a loop that
read and modify the contents of a table. P1 is executed in core 0 and
P2 is executed in core 1.

In order to analyse the effects in the worst conditions, cache
management (instructions and data) is disabled for both partitions
forcing both partitions to access physically to memory.

This scenario is executed under the following scheduling plan:

• MAF: 300 msec

• Payload cost 20 msec (approx).

• P1 slot duration: 150 msec.

• P2 slot duration: 150 msec.

• Experiments:
� S0: No interference.
� S25: 25% of interference.
� S50: 50 % of interference.
� S75: 75 % of interference.
� S100: 100 % of interference.

Fig. 7 shows the schedule of S25.

Fig. 7: Schedule of the S25

Table I shows the results of the impact of P2 on the execution of
P1 in the LEON3 bi-core platform with RR bus arbitration. Under an
approximated overlapping of the 25%, the increment of the execution
time is in average 2899 µsecs (23544 - 20645). Next table presents
the statistics of 100 executions of each scenario.

TABLE I: Impact of the memory accesses in the P1 execution time
RR bus arbitration

Exec. Time (µsecs) S0 S25 S50 S75 S100
Avg 20645 23544 27181 30577 33418
Max 20700 23557 27326 30614 33691
Min 20698 23305 27253 30535 33596

Stdev 0.63 12.46 16.77 17.19 22.81
Inteference 0% 14% 32% 48% 62%

Results show the impact of the interference when partitions
allocated to different cores are executed with a level of overlapping.
If both partitions are executed at the same time, the interference can
produce an increment of 62% in the execution of P1.

Same experiment has been executed in the LEON3 bi-core
platform with TDMA bus arbitration. Table II shows the results.

TABLE II: Impact of the memory accesses in the P1 execution time
TDMA bus arbitration

Exec. Time (µsecs) S0 S25 S50 S75 S100
Avg 120099 120099 120099 120099 120099
Max 120100 120100 120099 120100 120100
Max 120097 120096 120098 120098 120098

Stdev 0.99 1.03 0.97 0.96 0.96
hline Inteference 0% 0% 0% 0% 0%

These results show that the impact, as expected, depends on
the overlapping interval and the bus arbitration policy. While the

31

temporal interference has a very high impact in the first hardware
platform, the new design based on the TDMA arbitration policy fully
achieves the temporal isolation of partitions. This is a relevant result
for temporal and spatial partitioning platforms that permits to execute
independently applications in multi-core systems.

B. Performance Analysis

In this section, a comparison of the performance of two hardware
solutions is performed. Performance analysis includes two param-
eters: temporal cost of the same activity and hypervisor partition
context switch in both platforms.

Table III summarises the temporal costs of the same payload
executed in previous experiments.

TABLE III: Temporal cost comparison

Avg Time (µsecs)
TDMA bus arbitration 120099
RR bus arbitration 20689
Increment cost factor 5.80

The use of a TDMA based arbitration policy introduces delays
in the partition execution. For the configuration experimented in this
paper, the computation time of a payload is incremented 5.8 times
which can be relevant depending on the timing requirements of real-
time tasks.

On the other hand, the partition context switch of the hypervisor
measures the time required by the hypervisor to switch from one
partition to another in a core. This cost has been experimentally
measured by instrumenting the hypervisor code to annotate the entry
and exit to the partition context switch service. Table IV shows the
results in µsecss for both platforms.

TABLE IV: PCS comparison

Avg Time (µsecs)
TDMA bus arbitration 1042
RR bus arbitration 224
Increment cost factor 4.65

The observed increment of the PCS is 4.65 times. While 224
µsecss for the partition context switch in space applications with
period ranges in the order to dozens of milliseconds can be acceptable,
the cost of 1 millisecond for the PCS introduces high overheads and
reduces the period ranges to hundreds of milliseconds.

V. CONCLUSION

In mixed-criticality systems, critical applications are subject of
certification. Without proper isolation of time-critical applications the
process for certifying can become complex and time consuming.

In this paper we describe a memory architecture that provides
temporal isolation between virtual partitions. Implementing the dual-
layer memory-bus arbiter helps the hypervisor to guarantee time
bounds for critical applications and to improve the performance of
non-critical applications when they access the shared memory bus.
We also demonstrate the feasibility of the proposed memory hierarchy

by implementing it in an FPGA and running XtratuM on top of that
hardware. The evaluation proves that even when critical partitions
execute with full temporal overlap, the temporal properties of each
of these partitions are preserved.

In future work we will run parallel applications on the multi-
core hardware in order to evaluate the utilization of the hardware at
the entire multi-core system level and experiment with the dual-layer
arbiter.

ACKNOWLEDGMENT

This research was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 287702: Mul-
ticores Partitioning for Trusted Embedded Systems (MultiPARTES).

REFERENCES

[1] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE, 2010, pp. 13–22.

[2] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, 2011, pp. 34–43.

[3] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic, “Idamc:
A many-core platform with run-time monitoring for mixed-criticality,”
in High-Assurance Systems Engineering (HASE), 2012 IEEE 14th
International Symposium on. IEEE, 2012, pp. 24–31.

[4] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “Flexpret: A
processor platform for mixed-criticality systems,” in Proceedings of
the 20th IEEE Real-Time and Embedded Technology and Application
Symposium (RTAS). IEEE, 2014.

[5] D. A. Patterson and J. L. Hennessy, “Computer organization and
design,” Morgan Kaufmann, 2007.

[6] M. Masmano, I. Ripoll, A. Crespo, and J.-J. Metge, “Xtratum: a
hypervisor for safety critical embedded systems,” in 11th Real-Time
Linux Workshop, 2009.

[7] A. Gaisler and S. Göteborg, “Leon3 multiprocessing cpu core,” Aeroflex
Gaisler, February, 2010.

[8] A. A. Specification, “Multi layer ahb specification,(rev2. 0),” 2001.
[9] Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of amba

ahb from formal specification: a case study,” International Journal on
Software Tools for Technology Transfer, vol. 15, no. 5-6, pp. 585–601,
2013.

[10] S. Pasricha and N. Dutt, On-chip communication architectures: system
on chip interconnect. Morgan Kaufmann, 2010.

[11] Leon3. [Online]. Available: http://www.gaisler.com/
[12] M. Masmano, I. Ripoll, S. Peiró, and A. Crespo, “Xtratum for leon3:

an open source hypervisor for high integrity systems,” in European
Conference on Embedded Real Time Software and Systems. ERTS2
2010., Toulouse (France), 19-21 May 2010.

[13] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “Xtratum: a hypervisor
for safety critical embedded systems,” in Eleventh Real-Time Linux
Workshop, Dresden (Germany), 28-30 September 2009.

[14] E. Carrascosa, J. Coronel, M. Masmano, P. Balbastre, and A. Crespo,
“Xtratum hypervisor redesign for LEON4 multicore processor,”
SIGBED Review, vol. 11, no. 2, pp. 27–31, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2668138.2668142

[15] “Multipartes: Multi-cores partitioning for trusted embedded systems,”
2011. FP7 ICT 287702 European Project. (http://www.multipartes.eu).

[16] S. Trujillo, A. Crespo, and A. Alonso, “Multipartes: Multicore virtual-
ization for mixed-criticality systems,” in 2013 Euromicro Conference on
Digital System Design, DSD 2013, Los Alamitos, CA, USA, September
4-6, 2013, 2013, pp. 260–265.

[17] V. Brocal, M. Masmano, I. Ripoll, A. Crespo, and P. Balbastre, “Xon-
crete: a scheduling tool for partitioned real-time systems,” in Embedded
Real-Time Software and Systems, 2010.

32

Incorporating The Notion of Importance into
Mixed Criticality Systems

Tom Fleming
Department of Computer Science,

University of York, UK.
Email: tdf506@york.ac.uk

Alan Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

Abstract—Mixed criticality systems offer the opportunity to
integrate system components with different levels of assurance
that previously may have been placed on different nodes. While
the vast majority of mixed criticality work features a HI and a
LO criticality level, LO criticality tasks should not be mistaken
for tasks with little value. Such tasks might contain mission
critical functionality and are still vital for the correct and
efficient operation of the system. A large portion of earlier
work immediately suspends all LO criticality functionality upon
a criticality change. It is clear that suspending tasks at all is
highly undesirable, let alone all tasks of a single criticality level
at the same time. In this work we consider this issue, we propose
a scheme to maintain the operation of lower criticality tasks
for as long as possible, even when the system is executing in a
higher mode. We introduce the notion of importance as a means
of deciding which tasks are suspended first. This is done with
the aim of allowing the system designer to make these decisions
and have greater control over the way their system degrades.
We conclude that by using essentially the same analysis and
functionality that facilitates multiple criticality levels we are able
to provide improved lower criticality performance.

I. INTRODUCTION

The area of Mixed Criticality Systems builds upon an
increasing desire to consolidate functionality of different
criticality levels onto one platform. This is driven further
by the development of more powerful hardware and pressure
from industrial sectors, such as aerospace and automotive.
A system that consolidates its functionality onto one platform
looks to save space, power, weight and reduce hardware costs.
Such systems must seek to satisfy two properties, efficient
utilisation and isolation of high integrity tasks. Systems may
be subject to certification against safety standards such as
IEC 61508 or DO-178B, therefore the challenge is providing
a means of producing a certifiable system with high overall
utilisation.

The initial mixed criticality model proposed by Vestal [11]
and used by others such as [3] has a strict notion of a
criticality change. A dual criticality system begins executing
in the LO criticality mode, if any HI criticality tasks overruns
its LO criticality Worst Case Execution Time (WCET) then a
criticality change occurs. LO criticality tasks are suspended
(although active jobs are allowed to complete), HI criticality
tasks are allowed to run to their maximum HI WCET. It is
becoming increasingly apparent that the original notion of
completely dropping all LO criticality tasks when a criticality
change occurs is unacceptable. Although a task might be
considered LO criticality, it might still contain mission critical
functionality, as such these tasks should not be suspended un-
less absolutely necessary. It is also clear that simply dropping

LO criticality tasks provides the system designer with little
control over how their system degrades in the event of an
overrun.

The work presented here seeks to address both the issue
of immediately dropping all LO tasks and the lack of control
over system degradation during overload. This is done by
introducing the notion of importance, I . Importance levels
are assigned to all tasks except those at the highest criticality
level. Importance provides a greater degree of control and
granularity over how a system degrades. This controlled
degradation is facilitated by a more realistic view on the
behaviour of a task during an overrun. When a task overruns
its LO criticality WCET, it is unlikely that it will execute to
its HI WCET. It is more likely that such a task might only
overrun by a small margin. Rather than immediately dropping
all LO criticality tasks our approach seeks to only drop tasks
when absolutely required. Control over this degradation is
given back to the system designer as the order in which tasks
are dropped is determined by the assignment of importance
(least important tasks are dropped first). We extend this
further by considering groups of tasks as a single application.
In this case applications are assigned an importance value,
applications are dropped according to importance rather than
individual tasks. We show the effectiveness of this technique
via experimental results on randomly generated sets of tasks.

The remainder of this document is structured as follows:
Section II covers related work, Section III introduces and
describes Importance, Section IV evaluates the technique via
experimental results and Section V provides some concluding
remarks.

II. RELATED WORK

In this section we consider related work where the primary
focus is investigating the possible use of existing system slack
to improve the level of service provided to LO criticality
tasks.

Santy et al. [8] consider situations where LO criticality
tasks do not need to be dropped during a criticality change.
They showed that some slack often exists before any LO
criticality task must be suspended. This period of slack is
known as the ‘allowance’. Allowance is shared across all HI
criticality tasks, if it is used up LO criticality tasks must be
suspended. Their work is based on the observations made
about a previously developed technique OCBP [2], they claim
that: it is never necessary to drop jobs that have a lower
criticality but a higher priority than the current level. Although
this assumption seems counter-intuitive, it must be noted

33

that OCBP is an older technique which considers a finite
set of jobs where ‘no job is allowed to execute for more
than its WCET at is own specified criticality’[4]. In short the
schedulability test considers all jobs executing in each level,
jobs may execute up to their own C

j

(L
j

) or their C
j

(L
i

)
where C

j

is the WCET and L
j

is the criticality level of task
j. They use sensitivity analysis to calculate the allowance
(slack) available for HI criticality tasks. On top of this, the
possibility of returning the system to the LO criticality mode
is considered. The system looks for a level-` (where ` is the
criticality level) idle time, a time where no jobs of at least
criticality level ` are waiting to execute. They use this point as
the time where the criticality of the system may be reduced.

Su and Zhu [9] consider an Earliest Deadline First based
technique ER-EDF (Early Release - EDF). This technique
seeks to allow LO criticality tasks to release earlier than
their maximum period if there is slack available from the HI
criticality tasks. This work is based upon an Elastic Mixed
Criticality task model which allows for variable periods from
a desired T

i

to a maximum Tmax

i

. The minimum service
requirement for LO tasks can be determined by its largest
period, LO tasks may execute more frequently if there is no
impact on HI criticality tasks. They evaluate their work by
assuming reductions of 2 or 5 times to LO criticality periods.
The performance of ER-EDF is compared against EDV-VD
and is shown to have improved performance. Su et al. [10]
extended this work to a multi-core platform.

Both of these techniques represent an attempt to provide
some level of service for LO criticality tasks when a system
enters the HI mode. Our work goes one step further, as well
as considering the potential of using slack to schedule all LO
tasks if the overrun is small we also consider the way and
order tasks are dropped during a more severe overload.

III. IMPORTANCE

In this section we will introduce and expand on the notion
of importance. We use an adaptation of the standard system
model initially defined in [11]. A system constitutes a finite
set of applications K. Each of these applications is assigned
a criticality level, L (designated by the system designer) and
consists of a finite set of sporadic tasks1. Each task, ⌧

i

, is
defined as ⌧

i

= {�!C
i

, T
i

, D
i

, L
i

} where
�!
C

i

is a vector of
WCETs (one for each criticality), T

i

is the period, D
i

is the
deadline and L

i

is the criticality level. Each task gives rise
to an unbounded series of jobs. Additionally we consider I

i

as the importance of a LO criticality ⌧
i

. Importance might
also be assigned to LO criticality applications, which in turn
applies this importance level to a group of tasks. In this work
we constrain ourselves to consider only criticality dependent
WCETs and dual criticality systems with C

i

(LO) C
i

(HI).
In this work we group sets of tasks at the same criticality

level into applications. Applications are designed to better
represent a more realistic system model where a group of
tasks contribute to a single application. In this case if one
task of an application must be suspended, then all other
tasks associated with the application must also be suspended.
Applications are assigned an importance value, rather than
each task individually. It is worth noting that although tasks

1All tasks within one application are of the same criticality level.

within an application are of the same criticality, priorities may
be interleaved between applications and criticality levels. In
the description and examples presented below we consider the
case of systems composing of tasks rather than applications.
This is to allow for simpler examples that show more clearly
the effect of importance.

A. Overview

This work introduces the notion of importance, each task
within the LO criticality level2 is assigned an importance
value, this provides an order in which tasks might be
suspended during an overload. The purpose of this is to
provide the designer of the system with more control over
the graceful degradation of their system during an overrun.
Whereas criticality levels typically involve the assignment of
a SIL (Safety Integrity Level) or equivalent, importance is
assigned according to how the designer wishes the system to
degrade. The difference between criticality and importance is
discussed3 in [6] which considers the properties of a criticality
change compared to other mode changes. As mentioned
above, the typical response to a criticality change is to drop
all tasks of a lower criticality. By assigning importance we
suspend tasks in order, lowest importance first. This is done
only when the HI criticality overrun is severe enough to
warrant the suspension of a task. If the overrun is not severe
and there is sufficient slack in the system, it is possible that
the system might move into the HI criticality mode, while
maintaining all of its LO criticality tasks. As soon as an
overrun reaches the point in which a LO criticality task must
be dropped, the task with the lowest importance is suspended.
Importance provides an extra level of granularity within a
level of criticality. The key difference between these two
assignments is that criticality is typically assigned due to
certification requirements, whereas levels of importance are
decided by the system designer. We are using ‘importance’
as an ordinal scale [7] which allows questions such as ‘is
application A more important than application B?’ to be
answered. We do not extend the notion to an interval or
stronger scale that would allow an answer to the following
question to be used at run-time: ‘Is application A and B more
important than application C?’

Sensitivity analysis is used to determine the severity of
the overrun required to drop a particular level of importance.
Such analysis begins by checking if the system has any
initial slack. It seeks to find a point during the HI criticality
overrun at which the system is unschedulable and such a LO
criticality task must be dropped. Once a point is found at
which a task must be dropped, that point is recorded and the
analysis begins to search for the next point by increasing the
severity of the overrun. This process is repeated until a point
is recorded at each time a LO criticality task must be dropped.
It is possible that not all LO criticality tasks will be dropped,
this depends on the properties of a task set, in particular its HI
criticality utilisation. During runtime if a HI criticality task
overruns its LO WCET up to the first recorded point, the

2For a dual criticality system, LO/HI, a system with greater than two
criticality levels would see importance assigned within all but the highest
level.

3Although importance is not named explicitly.

34

least important LO criticality task is suspended. This process
continues if the overrun continues to increase.

We note here that in the case of high priority, high
importance LO criticality tasks, we mostly consider their
effect on the schedulability of the system even after they
have been suspended. In order to do this we must consider
their bounded interference on the task set up to the point
that they are suspended. This is similar to the way AMC [3]
(Adaptive Mixed Criticality) bounds the interference created
by high priority LO criticality tasks during a criticality
change. Consider the set of tasks in Table I:

L P I
⌧
k

LO 1 1
⌧
j

LO 2 2
⌧
i

HI 3 -

TABLE I
BASIC EXAMPLE.

Initially we consider the schedulability of the LO and HI
mode as well as the criticality change 4. The calculations for
the LO mode and the change are shown in Equations (1) and
(2) respectively, we exclude the HI mode as there is only one
HI criticality task:

R
i

(LO) = C
i

(LO)+

⇠
R

i

(LO)

T
k

⇡
C

k

(LO)+

⇠
R

i

(LO)

T
j

⇡
C

j

(LO)

(1)

R
i

(HI) = C
i

(HI)+

⇠
R

i

(LO)

T
k

⇡
C

k

(LO)+

⇠
R

i

(LO)

T
j

⇡
C

j

(LO)

(2)
Such that:

R
i

(HI) <= D
i

Where R
i

(HI) and R
i

(LO) are the response times of ⌧
i

in
the HI and LO criticality modes respectively.

We increase the overrun of ⌧
i

from C
i

(LO) until we
determine a point at which ⌧

j

, the least important task, ⌧
j

at I = 2, must be dropped.

RI2
i

(LO) = CI2
i

(LO) +

⇠
RI2

i

(LO)

T
k

⇡
C

k

(LO)+

⇠
RI2

i

(LO)

T
j

⇡
C

j

(LO)

R
i

(HI) = C
i

(HI) +

⇠
RI2

i

(LO)

T
k

⇡
C

k

(LO)+

⇠
RI2

i

(LO)

T
j

⇡
C

j

(LO)

(3)

Next we attempt to increase the overrun until ⌧
k

must be
dropped. We use the response time just calculated, RI2

i

(LO)
to bound the possible interference of ⌧

j

.

4According to AMCrtb [3].

RI1
i

(LO) = CI1
i

(LO) +

⇠
RI1

i

(LO)

T
k

⇡
C

k

(LO)+

⇠
RI2

i

(LO)

T
j

⇡
C

j

(LO)

R
i

(HI) = C
i

(HI) +

⇠
RI1

i

(LO)

T
k

⇡
C

k

(LO)+

⇠
RI2

i

(LO)

T
j

⇡
C

j

(LO)

(4)

In this way we account for the possible LO criticality,
high priority interference up to the point at which a task is
suspended.

B. Priority assignment

During sensitivity analysis, as the HI criticality tasks over-
run is increased, it is likely that a particular LO criticality
task will miss its deadline and cause the system to be seen as
unschedulable. As we must drop our LO criticality tasks in
order of Importance we may not be able to drop the task that
might make the set immediately schedulable again. In extreme
cases several other LO tasks might need to be dropped before
the offending LO task can be dropped and the system can be
seen as schedulable at a particular overload level. In a fixed
priority system it is highly likely that the task which misses
its deadline will be at the lowest priority. By slightly adapting
Audsley’s priority assignment technique [1] we can attempt
to place tasks of lower importance at a lower priority. This is
much the same as aiming to give lower criticality tasks lower
priorities. This approach would work as follows:

For each priority level, beginning at the lowest. Check the
schedulability of each task at this level. If more than one
task is schedulable first differentiate by assigning the lower
priority to the lower criticality. If many tasks that might be
assigned a particular priority are of LO criticality, assign the
priority to the task with the lowest importance value.

for Each priority level do
for Each task do

if criticalityLevel < currentTask then
if importanceLevel < currentTAsk then

currentTask=task;
end

end
end
Assign priority level to currentTask;

end
Algorithm 1: Audsley’s Approach [1] with importance.

By assigning lower importance tasks lower priorities this
reduces the chance of having to drop multiple tasks in order
to make the system schedulable again.

C. Examples

A simple example can be used to illustrate the basic
functionality of Importance. Consider the task set in Table
II:

35

C(LO) C(HI) T=D L P I
⌧1 2 6 8 HI 1 -
⌧2 1 - 6 LO 2 1
⌧3 2 - 6 LO 3 2

TABLE II
A SIMPLE EXAMPLE.

If ⌧1 were to exceed its C1(LO) by 2, ⌧3 would have to be
dropped as it would miss its deadline and cause the system
to be unschedulable. Finally at an overrun of 4, ⌧2 must be
suspended. It is worth noting that such tasks would need to
be suspended at time 3 for ⌧3 and 5 for ⌧2 if ⌧1 does not
signal completion at each of these times.

If the HI criticality tasks are also HI priority, they do not
need to worry about interference from LO criticality tasks
during their execution. Importance provides us with a set of
points at which LO criticality tasks will be prevented from ex-
ecuting. These points give the system designer greater control
over HI criticality degradation and allow the system resources
to remain highly utilised. Crucially, regardless of the priority
levels involved, this approach provides an improved level
of service for LO criticality tasks, potentially reducing their
likelihood of being suspended.

A second example can be used to highlight some interesting
behaviour. Table III shows an example task set with impor-
tance assigned to the LO criticality tasks. Sensitivity analysis
has been carried out on this set to determine the points at
which each task must be dropped during an HI criticality
overrun.

C(LO) C(HI) T=D L P I
⌧1 5 15 25 HI 3 -
⌧2 5 - 20 LO 4 3
⌧3 2 - 8 LO 1 2
⌧4 1 - 5 LO 2 1

TABLE III
A MORE COMPLEX EXAMPLE.

The least important task, ⌧2 must be dropped when an
overrun of HI criticality task ⌧1 reaches 5 units of execution
without signalling completion. In other words, ⌧2 must be
dropped as soon as an overrun is detected. Tasks ⌧3 and ⌧4
may continue to execute, if ⌧1 does not complete after 10
units of execution, ⌧3 and ⌧4 must be suspended.

At each stage of the sensitivity analysis we re-check the
schedulability of the system. For example if we assume an
overrun of 1 to ⌧1 then essentially we do the following
calculation.

R2(LO) = 5 +

⇠
22

25

⇡
6 +

⇠
22

8

⇡
2 +

⇠
22

5

⇡
1 = 22 (5)

The result of this shows that ⌧2 will overrun its deadline if ⌧1
exceeds its LO criticality execution by 1. As such it is clear
that ⌧2 must be suspended as soon as ⌧1 reaches 5 units of
execution without signalling completion.

The lowest priority task is now ⌧1. At an overrun of 10 (9
without signalling completion) the task set is unschedulable.

R1(LO) = 10 +

⇠
21

8

⇡
2 +

⇠
21

5

⇡
1 = 21

R1(HI) = 15 +

⇠
21

8

⇡
2 +

⇠
21

5

⇡
1 = 26

(6)

Thus giving the result of 26, and making an overrun of
10 with both tasks being unschedulable. In this case ⌧3 is
suspended leaving just ⌧1 and ⌧4 executing. If we just include
these two tasks it would seem that ⌧4 does not need to be
suspended, the calculation would be as follows:

R1(LO) = 15 +

⇠
19

5

⇡
1 = 19

R1(HI) = 15 +

⇠
19

5

⇡
1 = 19

(7)

However when calculating the schedulability of this situation
we must include the prior interference from ⌧3, we use the
previously calculated LO response time at overrun 95 to cap
the possible interference caused by ⌧3.

R1(LO) = 9 +

⇠
19

8

⇡
2 +

⇠
19

5

⇡
1 = 19 (8)

R1(LO) = 10 +

⇠
19

8

⇡
2 +

⇠
21

5

⇡
1 = 21

R1(HI) = 15 +

⇠
19

8

⇡
2 +

⇠
21

5

⇡
1 = 26

(9)

Here it is clear that if ⌧1 reaches an overrun of 9 without
signalling completion both ⌧3 and ⌧4 must be suspended in
order to allow ⌧1 to meet its deadline. This can be shown
further by considering the execution trace shown in Figure 1.
This trace shows the situation where the interference from ⌧3
is not considered. However, it is clear that ⌧4 may not remain
scheduled as the example then shows ⌧1 executing until time
26 and exceeding its deadline. If both ⌧3 and ⌧4 were dropped
after an overrun of 96, ⌧1 would meet its deadline. As such,
it is clear that when considering higher priority LO criticality
tasks that are suspended, we must account for their impact
throughout the execution. This is similar to including the
bounded impact of LO criticality tasks on HI criticality tasks
during a criticality change.

This example raises a very interesting point. As in the first
instance, when trying to find a time in which ⌧3 must be
dropped we maximised the possible overrun of ⌧1, it is clear
that at this point ⌧4 must also be suspended. This is because
we must include the interference suffered from ⌧3 until it
is suspended. We know that all 3 tasks are not schedulable
beyond point 9, as such both must be suspended at the same
instant. This is due to the fact we must include the same
amount of interference from ⌧3 as the previous calculation. It
seems likely that as we include interference from previously
suspended higher priority LO criticality tasks, most higher
priority LO criticality tasks will be dropped at the same
instant. It is worth noting that even if such high priority LO
tasks are only able to remain schedulable up to a HI criticality
overrun of 10%, the likelihood of the system overrunning by
10% may be relatively low.

D. Further points

One of the fundamental assumptions of this work is that
HI criticality overruns are not likely to be as severe as their
HI WCET suggests. To support this assumption we can look

5The last schedulable point before suspension.
6Time 19.

36

Fig. 1. An execution trace of Table III.

at work carried out on probabilistic real-time systems. Rather
than the traditional view of a LO and HI criticality value,
this work considers the space between the two values as
a large number of points. Each point has its own degree
of confidence. This set of points is known as the pWCET
distribution. If such a pWCET distribution for a system
showed that the likelihood of a task overrunning by more
than 60% was extremely small (for example: 10�9 failure
rate per hour), then simply dropping all LO criticality tasks
when a criticality change occurs is poor use of the system
resources. Importance is able to improve on this by allowing
LO criticality tasks to continue execution, providing they
do not effect the execution of HI criticality tasks. Although
some LO criticality tasks may have to be dropped, it is
likely that a good percentage of these tasks will be able to
continue to execute throughout the HI criticality mode. If such
a pWCET is known for a system, it would be possible to
make predictions on the likelihood of a particular task being
dropped. In this way the use of importance and probabilistic
reasoning could help provide more detailed guarantees of
system performance.

Importance is a useful means of providing a more detailed
picture of system performance under HI criticality/overload
conditions while passing more control over system degrada-
tion to the designer.

IV. EVALUATION

The notion of importance is relatively easy to explain,
however, its effectiveness is not so easy to quantify. As
schedulability is not improved via the use of this technique
another means of showing its effectiveness is required. In our
evaluation we firstly illustrate simply how our approach is
able to stagger the process of dropping LO criticality tasks
and secondly we consider a probabilistic view that considers
the severity of an overrun. Both illustrations show how our
approach is able to reduce the chance of LO criticality tasks
being suspended.

Our experimental data was produced from 10,000 randomly
generated tasks with a total LO utilisation of 85%, these
were created as follows. Utilisation values were generated via
the UuniFast Algorithm [5], periods between X and Y were
generated in a log uniform distribution. Our task sets are dual
criticality, C(LO) values were created from the periods and
utilisations generated C = U⇤T , C(HI) values were 2 times
C(LO). 25 LO criticality tasks and 5 HI criticality tasks were
generated per task set. The LO criticality tasks we randomly
grouped into 5 applications (5 tasks per application), each
application was randomly assigned a level of importance.
HI criticality tasks were left as individual tasks rather than
applications and no assignment of importance is required
for this level. Priorities were assigned via our version of
Audsley’s algorithm [1] as seen in Section III, part B.

It is worth noting that in experiments such as this, there
are a huge number of parameters which will affect what
the results look like. The total number of tasks will effect
the results, as will the distribution of these tasks between
HI and LO criticality. The relative utilisation of the HI
and LO modes has a big impact as to when LO criticality
applications must be dropped, as does the difference between
a HI criticality task, ⌧

i

’s, C
i

(LO) and C
i

(HI). We have
described the values we used in our experimentation, different
parameters will produce different looking graphs. However,
the key result remains the same regardless of the parameters
used, introducing levels of importance will provide a better
level of service for LO criticality tasks.

In our work we also introduced the notion of groups
of tasks as applications. Tasks of one application share a
level of importance and will therefore be suspended as a
group. It is worth noting that although applications share a
level of importance, the priorities of individual tasks may be
interleaved. The purpose of this is to better capture the nature
of applications as groups of tasks, although these tasks might
be interconnected we only consider independent tasks in this
work.

Our experiments firstly ran each generated task set through
the schedulability test AMCrtb [3] to ascertain schedulability
and if schedulable, provide a priority ordering. Each task set
that passed this test was then run through sensitivity analysis
to determine the points at which LO criticality applications
must be dropped, these points were recorded and used later to
present the results. In some cases a task set might only need
to drop one application and in others it might need to drop all
5. During sensitivity analysis all HI criticality WCET values
are increased by the same percentage, this seemed like a
reasonable assumption as it is difficult to model the likelihood
of each HI criticality task individually overrunning. On top
of this, a single HI criticality task overrunning its LO WCET
is not likely to have that much of an impact on the system,
especially as our HI criticality tasks do not have particularly
high utilisations individually.

Figure 2 shows the number of applications dropped on the
Y axis against the severity of the overrun as a percentage
increase from C(LO) on the X axis. The graph clearly
shows that our approach is able to maintain LO criticality
functionality for a significantly increased amount of time.
This is even more apparent if you consider that the probability
of an overrun occurring even beyond the 5% initial slack
becomes exponentially more unlikely. Figure 3 shows the
potential likelihood of an overrun reaching each point and
causing a task to be suspended. The probabilities used here
are merely designed to illustrate the point and are not meant
as realistic values.

37

Fig. 2. Results from 10,000 random task sets.

Fig. 3. Example probability of overrun in log scale.

If we consider Figure 3 with a linear scale it is easy to see
that, even if the system can maintain all LO tasks during an
overrun of 5%, this is still a significant improvement when
taking into account the probability of the overrun actually
reaching that level. This is shown in Figure 4:

Fig. 4. Example probability of overrun in linear scale.

V. CONCLUSION

It is clear that as we move to consider more realistic mixed
criticality implementations, simply dropping LO criticality
tasks when a criticality change occurs is unacceptable. In
this work we have introduced the notion of importance, we
discussed the reasoning and illustrated the benefits through
discussion and experimental results. Importance provides the
designer of a system with a greater level of control and
knowledge over the likely behaviour of their system during a
criticality change. We show the effectiveness of importance
by considering the reduced number of tasks dropped and

the increased HI criticality system utilisation. This is done
via experimental evaluation on randomly generated task sets.
During the experimentation we introduced the notion of
several tasks grouped as applications, applications aim to
provide a more realistic system model. Further work might
consider importance at greater than two criticality levels or it
might consider a means of re-introducing LO criticality tasks
when recovering from an overrun. To summarise, we have
introduced importance as a means to provide a greater level
of control and guarantees for LO criticality tasks during a
criticality change.
Acknowledgements

The authors acknowledges the support and funding pro-
vided for this work by BAE Systems, and the ESPRC (UK)
via MCC grant (EP/K011626/1).

REFERENCES

[1] N. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times, 1991.

[2] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Schedul-
ing real-time mixed-criticality jobs. In P. Hlinn and
A. Kuera, editors, Mathematical Foundations of Com-
puter Science 2010, volume 6281 of Lecture Notes
in Computer Science, pages 90–101. Springer Berlin
Heidelberg, 2010.

[3] S. Baruah, A. Burns, and R. Davis. Response-time
analysis for mixed criticality systems. In Real-Time
Systems Symposium (RTSS), 2011 IEEE 32nd, pages 34
–43, 29 2011-dec. 2 2011.

[4] S. Baruah, H. Li, and L. Stougie. Towards the design
of certifiable mixed-criticality systems. In Real-Time
and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE, pages 13 –22, april 2010.

[5] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–
154, 2005.

[6] A. Burns. System mode changes - general and
criticality-based. volume WMC RTSS 2014, 2014.

[7] D. Prasad, A. Burns, and M. Atkin. The measurement
and usage of utility in adaptive real-time systems. Jour-
nal of Real-Time Systems, 25(2/3):277–296, 2003.

[8] F. Santy, L. George, P. Thierry, and J. Goossens. Relax-
ing mixed-criticality scheduling strictness for task sets
scheduled with fp. In Real-Time Systems (ECRTS), 2012
24th Euromicro Conference on, pages 155 –165, july
2012.

[9] H. Su and D. Zhu. An elastic mixed-criticality task
model and its scheduling algorithm. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE),
2013, pages 147–152, 2013.

[10] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms
for elastic mixed-criticality tasks in multicore systems.
In Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2013 IEEE 19th International
Conference on, pages 352–357, Aug 2013.

[11] S. Vestal. Preemptive scheduling of multi-criticality sys-
tems with varying degrees of execution time assurance.
In Real-Time Systems Symposium, 2007. RTSS 2007.
28th IEEE International, pages 239 –243, dec. 2007.

38

Scheduling Mixed-Criticality Real-Time Tasks with Fault Tolerance

Jian (Denny) Lin1, Albert M. K. Cheng2, Douglas Steel1, Michael Yu-Chi Wu1

1Department of Management Information Systems, University of Houston - Clear Lake, Houston, TX 77058 USA
2Department of Computer Science, University of Houston, Houston, TX 77024 USA

Abstract - Enabling computer tasks with different levels of
criticality running on a common hardware platform has been
an increasingly important trend in the design of real-time and
embedded systems. On such systems, a real-time task may exhibit
different WCETs (Worst Case Execution Times) in different
criticality modes. It has been well-known that traditional real-
time scheduling methods are not applicable to ensure the timely
requirement of the mixed-criticality tasks. In this paper, we study
a problem of scheduling real-time, mixed-criticality tasks with
fault tolerance. An off-line algorithm is proposed to enhance
the performance of the system when it runs into a high-
criticality mode from a low-criticality mode. A novel on-line
slack-reclaiming algorithm is also proposed to recover from as
many faults as possible before the jobs’ deadline. Our simulations
show that an improvement of about 30% in performance can
be seen between our algorithm and a regular slack-reclaiming
method.

I. INTRODUCTION

THE integration of multiple functionalities on a single
hardware platform is an increasing trend in the design

of embedded systems with the consideration of reducing cost.
While the tasks running on these systems share resources they
do not share the same importance (criticality). Therefore, the
concept of mixed-criticality has risen. Some widely-discussed
cases about mixed-criticality are the application domains that
need to be certified correct by Certification Authorities (CA’s)
[1]. In these cases, different computer tasks performed on
the same system require different levels of assurance. This
difference probably produces different WCETs of the the
critical tasks estimated by the CA’s and the system designers.
The CA’s may be more concerned about some tasks’ assurance
than the system designers do. As a result, it brings issues to the
scheduling of real-time tasks with different levels of criticality
in a timely manner. It has been well-known that conventional
scheduling methods cannot satisfactorily address these issues.

Mixed-criticality systems recently become one of the re-
search focuses in the community of real-time and embedded
systems. For examples, Sanjoy Baruah et al. demonstrate the
intractability of determining whether a mixed-criticality sys-
tem can be scheduled to meet all its certification requirements,
and then two scheduling techniques are proposed to scheduling
such mixed-criticality systems [1]. De Niz et al. study the
criticality inversion problem and propose a new scheduling
scheme called zero-slack scheduling which can be used with
priority-based preemptive schedulers (e.g., RMS) [2]. Later,

2Supported by the National Science Foundation under Awards No. 0720856
and No. 1219082.

the work is extended to work with solutions for a distributed
system [3]. For solving the problems under a dynamic pri-
ority scheduler EDF (Earliest Deadline First), Baruah et al.

[4] propose an effective and efficient scheduling algorithm,
namely EDF-VD (virtual deadline), in which two different
deadlines are used for some tasks if they may exhibit two
different WCETs during the run-time. In order to guarantee the
timeliness of high-criticality tasks most of existing algorithms
completely sacrifice the executions of low-criticality tasks [1-
6]. This strategy is too conservative and not necessary in most
cases. Also, too many jobs abandoned can seriously degrade
the system’s performance or even cause service abrupt.

Real-time systems not only have temporal constraints to
meet, computation quality constraints are also clearly impor-
tant for a system with critical tasks. In a mixed-criticality
system, faults or errors may happen during tasks’ execution
which can either produce incorrect results or cause critical
tasks to miss deadlines, both of which may be catastrophic. It
has been shown that in a computer system transient faults
occur much more frequently than permanent faults do [7,
8]. Transient faults can be tolerated by adding redundancy
where a task will be re-executed if it completes with errors.
There is little work to study both fault-tolerance and mixed
criticality systems. In [14], the author studies the fixed-priority
schedulablity test condition for a mixed-criticality system. In
[15], Huang et al describes a method to convert the fault-
tolerant problem into a standard scheduling problem in a
mixed-criticality system.

In this work, we consider a problem that schedules a set
of real-time, fault-tolerant tasks in a mixed-criticality system
using EDF. Each task in the system is periodic and character-
ized by a 4-tuple of parameters: ⌧i = (pi,Xi, ci(LO), ci(HI)).
Without loss of generality, all tasks are assumed to be active
at time 0. The pi is a period which is the length of the
interval between any two ⌧i’s consecutive job releases and
also the relative deadline of the task. The Xi 2 {LO,HI}
denotes the criticality of ⌧i. A HI-criticality task ⌧i may exhibit
two WCETs ci(LO) and ci(HI) during the run-time where
ci(HI) � ci(LO). A LO-criticality task ⌧i has only the
ci(LO) defined and its ci(HI) is defined as none. After a
system starts to run, all tasks have an infinite sequence of
jobs to execute. The j

th job of ⌧i is released at (j � 1)pi.
Initially, all HI-criticality and LO-criticality tasks in the system
are scheduled using their ci(LO)s and in this stage the system
is said to be in the LO-criticality mode. During the execution,
a HI-criticality task may signal that its execution time exceeds
its ci(LO). At this point, all HI-criticality tasks will assume

39

their ci(HI)s and the system will go into the HI-criticality
mode. In order to enhance the system’s reliability, the primary
and re-execution approach [9, 10] is used and a re-execution
may be performed after errors are detected at the completion
of the primary execution.

II. AN OFF-LINE ALGORITHM

In our work, we adopt similar notations as used in [4] for
utilization parameters for tasks. A general format is defined
as follows:

Uy
x (a) =

X

a2{pri,re}^Xi=x

ci(y)

pi
(1)

The superscript and the subscript next to the U denote the
system mode and type of task, respectively. If with a, it
indicates that it is for primary execution or re-execution.

In [4], without a consideration of primary or re-execution,
a virtual deadline used for each HI-criticality task in the LO-
criticality mode is obtained off-line with a scaling factor x,
where the virtual relative deadline of the HI-criticality ⌧i is
equal to x⇥ pi. The x is a value defined as:

x 2 [
ULO
HI

1� ULO
LO

,
1� UHI

HI

ULO
LO

] (2)

Any value in the range can be used for x. When a system
is signaled with the HI-criticality mode, all HI-criticality
tasks ⌧i use their ci(HI) and all LO-criticality tasks are
abandoned immediately. If such a range is not found, for
example, ULO

HI

1�ULO
LO

> 1�UHI
HI

ULO
LO

, the HI-criticality tasks cannot be
guaranteed to meet their deadline during the mode conversion.

The aspect of our work is different. We assume that the low-
criticality tasks are not trivial but the reliability of them can be
traded for schedulability. In our method, we not only assure the
primary execution and re-execution for all HI-criticality tasks,
but also maximize the executions of LO-criticality tasks. If
the resource is sufficient, the re-executions for LO-criticality
tasks are scheduled as well in order to enhance the overall
reliability.

In this section, we introduce an off-line algorithm to calcu-
late (maximize) the number of tasks, including HI- and LO-
criticality tasks, with the primary and re-executions reserved.
The system starts with every task having both primary and re-
executions reserved in the LO-criticality mode. HI-criticality
tasks are required to reserve their primary execution and re-
execution in HI-criticality modes to maintain high reliability.
Next, we try to reserve the primary executions then the re-
executions of LO-criticality tasks. During the HI-criticality
mode, the primary and re-executions of the HI-criticality tasks
have the equal importance and they must be reserved, but for
LO-criticality tasks the primary executions are reserved before
the re-executions. The re-executions of LO-criticality tasks are
reserved only after all other primary executions are reserved.
The order to reserve the executions is as follows: primary
and re-executions of HI-criticality tasks, primary execution
of LO-criticality tasks and then re-execution of LO criticality
tasks. For the problem to be non-trivial, we assume that the

re-executions cannot be guaranteed for all LO-criticality tasks
in the HI-criticality mode.

According to the schedulability test of EDF, for the system
schedulable in the LO-criticality mode with every task’s pri-
mary and re-execution reserved, the total utilization is at most
1:

ULO
HI (pri) + ULO

HI (re) + ULO
LO (pri) + ULO

LO (re) 1 (3)

During the execution, the system goes into the HI-criticality
mode if there is any HI-criticality task exceeding its c(LO).
We call the event as mode conversion. In a mode conversion,
all HI-criticality tasks must maintain their fault-tolerance and
both of their primary and re-execution will use their c(HI)
for the WCET. In order to walk through the mode conversion,
the x is calculated as in (2), where x ⇥ di is used for the
HI-criticality task’s relative deadline in LO-criticality mode. It
switches back to the original relative deadline while the system
goes into the HI-criticality mode. The following conditions
calculate the two boundaries in (2) for the scaling factor to
ensure that all HI-criticality tasks’ primary and re-execution
are reserved in the HI-criticality mode without missing their
deadlines:

x � ULO
HI (pri) + ULO

HI (re)

1� ULO
LO (pri)� ULO

LO (re)
(4)

x 1� (UHI
HI (pri) + UHI

HI (re))

ULO
LO (pri) + ULO

LO (re)
(5)

An important observations in above inequalities is that there
is a room between these two boundaries so that it can be used
to keep some LO-criticality tasks’ executions in the system’s
HI-criticality mode. The significance of utilizing this room is
two-fold. First, having more executions of LO-criticality tasks
performed increases a system’s overall value and improves
the system’s performance. Second, when more tasks have a
re-execution reserved it makes the system more reliable and
predictable. With doing a small modification, the inequalities 4
and 5 can be re-written for including the reserved re-executions
for some LO-criticality tasks in the HI-criticality mode:

x � ULO
HI (pri) + ULO

HI (re) + ULO
LO (pri)

0

1� ULO
LO (pri)00 � ULO

LO (re)
(6)

x 1� (UHI
HI (pri) + UHI

HI (re) + ULO
LO (pri)

0
)

ULO
LO (pri)00 + ULO

LO (re)
(7)

The ULO
LO (pri)

0
in inequality 6 and the ULO

LO (pri)
00

in inequal-
ity 7 denote, of the LO-criticality tasks, the utilization for the
reserved primary execution and the utilization of the primary
execution not reserved, respectively. If the resource sufficiently
allows all LO-criticality tasks to have their primary executions
reserved, we can try to reserve more re-executions for LO-
criticality tasks.

x � ULO
HI (pri) + ULO

HI (re) + ULO
LO (pri) + ULO

LO (re)
0

1� ULO
LO (re)00

(8)

x 1� (UHI
HI (pri) + UHI

HI (re) + ULO
LO (pri) + ULO

LO (re)
0
)

ULO
LO (re)00

(9)

40

The ULO
LO (re)

0
in inequality 8 and the ULO

LO (re)
00

in inequality
9 denote, of the LO-criticality tasks, the utilization for the
reserved re-execution and the utilization of the re-execution
not reserved, respectively.

We notice that when an execution of a LO-criticality task is
moved from a denominator to a numerator, The gap between
the two boundaries is narrowed. A similarity can be found
between the problem and the bin-packing problem. Intuitively,
the smallest first approach is a good way to optimize the
solution. We demonstrate our solution in Algorithm 1 (Max.
Re-executions). In the input, U1 represents the numerator
of inequality 6 or 8, U2 represents the sub-tractor in the
numerator of inequality 7 or 9, and U3 is equal to the
remaining, total utilization for un-reserved executions. The
x1 and x2 are the left and right boundaries of x and when
the final boundaries are found we set x = x2. Utilizations
of LO-criticality tasks that are not reserved are sorted from
small to large as part of the input. The primary executions are
allocated for reservations before the re-executions. Line 8 and
Line 9 tell that before the loop starts if x2 < x1, the system is
not able to reserve all HI-criticality tasks’ primary executions
and re-executions. From Line 11 to Line 24, the loop adds
one primary execution of a LO-criticality execution a time,
from small to large, to the reserved ones. If all LO-criticality
primary executions can be reserved, it will try to reserve more
LO-criticality re-executions. It calculates x1 and x2 in each
iteration by using the updated utilizations. The x is returned
while the gap between x1 and x2 is minimized. If a system
is schedulable with the virtual deadlines, during LO-criticality
mode the value of x⇥ di is assigned as the relative deadlines
to all HI-criticality tasks for both primary and re-executions,
and to all LO-criticality tasks for their reserved executions.
The executions from LO-criticality tasks that are not reserved,
use their original deadlines in the LO-criticality mode and are
abandoned or run in background in the HI-criticality mode.

Compared with using the approaches discarding all LO-
criticality tasks, Algorithm 1 not only guarantees the HI-
criticality tasks’ deadlines and fault-tolerance in both HI and
LO-criticality modes, some LO-criticality tasks’ executions are
also reserved if the resource is sufficient. The guarantee of
meeting the reserved executions’ deadlines during both criti-
cality modes and the mode conversion is proved in Theorem
1.
Theorem1: There is no deadline miss if it uses the x

returned by Algorithm 1 to calculate the virtual deadlines used
in LO-criticality mode for all reserved executions and discard
the un-reserved re-executions during the HI-criticality mode.

The proof is supported by two facts. The first one is the
mapping of our task set to the task set used in the proof in
[4] to support the validity using virtual deadlines. Algorithm
1 in fact makes the following executions’ behavior as HI-
criticality: primary and re-executions of HI-criticality tasks,
and reserved LO-criticality executions. By using the calculated
virtual deadlines, every task’s reserved execution does not miss
its deadline. The correctness directly follows the Theorem 1
and Theorem 2 in [4]. The second fact is that by using EDF,
any reduction of execution does not cause a deadline violation.
In our problem, if a primary execution completes correctly,

Input : ⌧ , �, ⇠, U1, U2, x1, x2;
Output: the scaling factor x;

1 initialization:
2 � = ⌧HI(pri) [⌧HI(re), ⇠ = ⌧LO(pri) [⌧LO(re)
3 U1 = ULO

HI (pri) + ULO
HI (re)

4 U2 = UHI
HI (pri) + UHI

HI (re)
5 U3 = ULO

LO (pri) + ULO
LO (re)

6 ⇠ is sorted from small to large using utilization for the
primary and re-executions, respectively. The primary
executions are ordered before the re-executions.

7 x1 = U1
1�U3

, x2 = 1�U2
U3

, x=x2;
8 if (x2 < x1) then
9 not schedulable;

10 else
11 while |⇠| > 1 do
12 Ui = the first execution’s utilization in ⇠ ;
13 U1 = U1 + Ui;
14 U2 = U2 + Ui;
15 U3 = U3 � Ui

16 x1 = U1
1�U3

, x2 = 1�U2
U3

;
17 if x1 x2 then
18 � = � [⌧LO(Ui);
19 x = x2;
20 ⇠ = ⇠ � ⌧LO(Ui);
21 else
22 return x;
23 end
24 end
25 return x;
26 end

Algorithm 1: Maximize Re-executions

its reserved re-execution is not performed. This is the same
as reducing the re-execution’s running time to be zero which
will not cause any deadline violation.

p X c(LO) c(HI) x dpri dre
⌧1 30 HI 3 4.5 0.8 24 24
⌧2 100 HI 5 12 0.8 80 80
⌧3 200 LO 10 none 0.8 160 160
⌧4 50 LO 3 none 0.8 40 50
⌧5 50 LO 7 none 0.8 40 50

Table 1. Calculated relative deadlines of primary and
re-executions of a 5-tasks set

Table 1 gives an example of using Algorithm 1 to calculate
the virtual deadlines for a task set of 5 tasks. In the task set,
there are two HI-criticality tasks and three LO-criticality tasks.
It is not possible to schedule all tasks for guaranteeing both
of their primary and re-executions during the HI-criticality
mode because the total utilization is larger than 1. Instead of
discarding all LO-criticality tasks in the HI-criticality mode,
we can ensure all of the primary executions for all tasks
and the re-executions of ⌧1, ⌧2 and ⌧3. The calculated virtual
deadlines are shown in the table.

41

III. AN ON-LINE SLACK RECLAIMING ALGORITHM

The strategy of using re-executions to preserve the reliability
is relatively conservative. It is expected that most job instances
in a system do not produce errors and therefore the resource for
the reserved re-executions is wasted. Also, it is well adopted
that in most of the time a real-time task does not use up
its WCET. Clearly, slack is generated in these two cases.
When a fault is detected by a LO-criticality job without a
re-execution reserved, the slack may not be large enough to
re-execution. However, if we accept a small probability of a
sacrifice of the predictability, we may be able to borrow some
slack from a future execution to increase the amount of the
available slack at that time. Figure 1 shows an example of

Fig. 1. Borrowing another job’s future re-execution to the current re-execution

three tasks in the HI-criticality mode: ⌧1 is a HI-criticality task
with c1(HI) = 2.01, and ⌧2 and ⌧3 are two LO-criticality
tasks with the same c(LO) = 1. Both ⌧1 and ⌧2 have a
re-execution reserved. Assume that time t is a LCM (Least
Common Multiple) of the three tasks and their periods are 7,
8 and 7. So, for each task there is a job arriving at t. The HI-
criticality mode is assumed to be the mode at and after time t.
Now suppose that both the first jobs of ⌧1 and ⌧2 in the figure
have a fault detected at their completion. The left schedule
shows that the first job of ⌧3 will miss its deadline at time
t+7 if a re-execution is performed using the slack generated
from the no-operation of ⌧2’s re-execution. The right schedule
shows a possible solution that a future re-execution of ⌧2 can
be borrowed to re-execute the job of ⌧3 early. If the job of ⌧2
completes without errors, no impact is posed to it. Even if the
job of ⌧2 ends with an incorrect result due to a lack of the
re-execution, the consequence is not catastrophic because both
jobs are not HI-criticality. Considering the small likelihood of
a fault actually occurring, the idea behind this solution has
the potential to increase the overall reliability and system’s
performance.

Now, we are ready to present our on-line slack reclaiming
algorithm. When an additional re-execution not reserved is
needed to perform, the slack generated from the early comple-
tion of jobs (including no-operations of reserved re-executions)
and system idle time are firstly used because they are most
safe. A borrowing from the future is performed only if the
slack in the previous cases is not sufficient. The borrowing
only happens at a future re-execution of a LO-criticality task
because HI-criticality tasks require the highest level of fault-
tolerance. Algorithm 2 is based on the approach in [5, 6]

(CASH) and a modification to allow the borrowing of future
re-executions is applied.

1) Each task ⌧i is associated with a server Si characterized
by a current budget bi and an ordered pair (qi, pi), where
qi is the maximum budget and pi is the period of the
server and the task. If a task has a re-execution statically
reserved, qi = 2⇥ ci; otherwise, qi = ci.

2) When the system in the LO-criticality mode, the ci for a
HI-criticality task is the LO one, and the pi is equal to its
virtual relative deadline. If a mode conversion occurs, all
HI-criticality tasks will use their HI-criticality execution
time for ci and their original relative deadline as pi.

3) At each time (k � 1) ⇥ pi, k 2 N+, the server budget
bi is recharged at the maximum value qi and the new
deadline of the server is di,k = k ⇥ pi. The ⌧i,k with a
total execution time equal to bi is inserted into a waiting
queue, and scheduled using the server’s deadline.

4) A server Si is said to be active at time t if there are
jobs associated with it pending; otherwise, it is said to
be idle.

5) There is a slack queue such as the one used in [11].
Whenever ⌧i,k is scheduled for execution, it always uses
the slack with the earliest deadline such that dq di,k.
Otherwise, its own budget bi is used. When ⌧i,k is
executed, the slack in the slack queue or the server
budget is decreased by the same amount. When a slack
capacity in the queue becomes zero, it is removed from
the queue.

6) When a fault of a completion of ⌧i,k’s primary execution
is detected at t, the total execution time of ⌧i,k is
increased by ci.

7) When the server Si is active and bi becomes zero at
t, it finds the first LO-criticality job with an execution
reserved in the queue which has not finished its primary
execution (if any). Then, do the following:

a) The job’s server donates a budget of its re-
execution to Si,

b) Si’s deadline is set to dd � c
0

d, where dd is the
deadline of the donating server of the job and c

0

d is
the remaining primary execution time of the server
from the donating task.

If no such LO-criticality jobs in the waiting queue exist,
the re-execution of ⌧i,k only runs while the system
becomes idle.

8) When a job’s deadline is reached, even though it has
not been finished yet, the job is terminated and its new
instance in the next interval starts as in step 3.

9) When a job finishes or is terminated, the residual budget
of its server, if any, is inserted into the slack queue using
its server’s deadline.

10) Whenever the system becomes idle for an interval of
time, the slack with the earliest deadline, if any, in the
slack queue is decreased by the same amount of time
until the queue becomes empty.

Algorithm 2: CBS-FT (CBS-Fault Tolerance)

The step 7 states how the server Si borrows and uses a

42

capacity of time from a donating server by setting a new
deadline, dd� c

0

d, which is the latest time to use that capacity.
We restrict to use our on-line algorithms in the cases where
all LO-criticality tasks have their primary executions reserved.
Otherwise, we just execute the un-reserved executions using
the regular slack.

We use the same example in Figure 1 to explain the process.
At time t+5.02, a fault is detected for ⌧3 and another WCET
(1.0) is added to the execution time requirement. At this point
S3’s server budget is equal to zero and it finds S2 from the
waiting queue. S2 donates a capacity of time of 1.0 to S3 so
that now b3 = 1 and b2 = 1. S3’s new deadline is set to be t+8-
1=t+7 so ⌧3 is scheduled before ⌧2 and the re-execution of ⌧3
completes in time. Later, ⌧2 completes its primary execution
correctly and the budget for its reserved re-execution is not
wasted. In this case, all tasks finally complete with the correct
results.

IV. PERFOMANCE AND DISCUSSIONS

In this section, we perform simulations to evaluate the
performance of our off-line Max. Re-executions and on-line
CBS-FT algorithm. For the algorithm Max. Re-execution, each
time a task set of ten periodic tasks is randomly generated. The
total utilization of the task set is larger than 1.0 so that not all
tasks have their primary and re-executions reserved. In these
ten tasks, four are HI-criticality and the other six are LO-
criticality. We apply the off-line Max. Re-execution algorithm
to the task set so that the reserved executions for the LO-
criticality tasks can be maximized. We perform this experiment
100 times and each time the number of reserved primary
and re-execution for the LO-criticality tasks are recorded. The
results are shown as in Figure 2 and Figure 3. It can be seen
that instead of discarding the executions of all LO-criticality
tasks, we can nicely reserve a great number of their primary
executions. The average is 4.26 of 6 LO-criticality tasks. Since
we reserve a re-execution only if all primary executions of
the LO-criticality tasks are reserved, the average number of
the reserved re-execution is relatively small as 1.32 task per 6
tasks. Despite, there are about 40% of the cases in which at
least one LO-criticality task becomes fault-tolerant during the
HI-criticality mode.

While all primary executions are reserved, we can use the
borrow from future technique as implemented in Algorithm
2. A task set of five periodic tasks is generated randomly
and the task set is selected if all tasks have their primary
execution reserved. Among the five tasks, two are randomly
selected as HI-criticality tasks and the rest are LO-criticality
tasks. Algorithm 1 is used to determine which re-executions
are reserved. A valid test case used to evaluate the Algorithm
2 should contain at least one LO-criticality task with a re-
execution reserved. The tasks’ periods range from 30 to 200
and they are scheduled within an interval of one million time
units. Within that interval each time the total number of job
instances generated is expected between 60,000 to 100,000. A
fault occurrence rate between 0.05 and 0.5 is used to control
whether or not a job completes with a fault in its primary
execution. A fault is recorded if the job’s re-execution does

Fig. 2. The Number of Reserved Primary Executions using Algorithm 1

Fig. 3. The Number of Reserved Re-Executions using Algorithm 1

not successfully complete. For each experiment, we perform
it 10 times using the same parameters and the average is used
for our results.

In the experiments, the fault rate has a big impact to our
results and another factor is the lower bound of each job’s
actual execution time. The smaller the fault occurrence rate/the
lower bound of the actual execution times, the larger amount
of regular slack that can be used to recover faults and the lower
risk of missing deadline for the jobs lending their re-execution
slack. We investigate the effects of these two factors in our
experiments and the results are shown in Table 2 and Table 3.
In Table 2, each row is a set of data for a specific fault rate.
The data compares of a slack reclaiming method using the
regular slack only (no borrow from future) and our CBS-FT
algorithm. The number of final faults are recorded when these
two approaches are used. The percentages of faults recovery
are also calculated. It can be seen that the CBS-FT with the
borrowing of future slack always outperforms the approach
using regular slack only. If we compare the number of faults
recorded, an improvement of about 30% in performance can

43

Fault Rate Faults in Primary
Execution

Faults Recorded
(Regular Slack)

Faults Recovered
(Regular Slack)

Faults Recorded
(CBS-FT)

Faults Recovered
(CBS-FT)

Faults on Jobs w/ Re-execution
Originally Reserved

0.05 4,379 1,178 73% 843 81% 0.00%
0.2 17,647 4,989 72% 3,611 80% 0.14%
0.3 26,554 7,944 70% 5,484 79% 0.5%
0.4 35,324 10,905 69% 7,685 78% 1.42%
0.5 43,832 14,074 68% 9,868 77% 2.95%

Table 2. Experimental results based on the fault occurrence rate (lower bound of actual execution times is 1.0)

Execution
Times’ Range

Faults in Pri-
mary Execution

Faults Recorded
(Regular Slack)

Faults Recovered
(Regular Slack)

Faults Recorded
(CBS-FT)

Faults Recovered
(CBS-FT)

Faults on Jobs w/ Re-execution
Originally Reserved

0.9 - 1.0 43,298 13,935 68% 9,715 78% 2.20%
0.8 - 1.0 44,021 13,401 70% 9,366 79% 0.4%
0.7 - 1.0 43,589 11,887 73% 8,319 81% 0.06%
0.6 - 1.0 43,420 10,816 75% 7,607 82% 0.00%
0.5 - 1.0 43,489 9,922 77% 7,022 84% 0.00%
0.2 - 1.0 44,019 5,291 88% 3,828 91% 0.00%

Table 3. Experimental results based on the lower bound of actual execution times of jobs (fault-rate = 0.5)

be seen by using our CBS-FT.
With using our algorithm, it is possible that a LO-criticality

task originally having its re-execution reserved violates its
deadline because it lends its budget to another task to recover
from fault. The last column in the table shows the percentages
of the faults caused by this scenario. As we explained it earlier,
since later jobs have a bigger chance of not executing the re-
execution or using the regular slack generated later, a borrow-
ing of slack from future re-execution does not significantly
degrade the overall performance a lot. While the fault rate is
small, nearly no lending jobs miss their deadline for recovering
from their faults. Even if the fault rate is as high as 0.5, the
number of faults on the jobs with the re-execution originally
reserved is relatively small so that the system’s performance
is well maintained. Table 3’s results are similar, based on
the lower bounds of the actual execution times. The results
are obtained by using a fixed fault occurrence rate of 0.5. A
specific range that represents the lower bound of the actual
execution time is used in each set. For example, 0.5 - 1.0
means that the actual execution time is between 50% and
100% of the WCET, using an even distribution. While tasks
are more likely to use less time for execution, more faults
can be recovered by using both approaches but our CBS-FT
always does the job better. Also, while the lower bound of the
actual execution time becomes lower and lower, the difference
of the fault recovery rate between the two approaches becomes
smaller and smaller. This is because when the jobs complete
earlier, their slack can be used by other jobs earlier. While
more jobs use the regular slack to recover faults, fewer jobs
need to borrow slack from the future re-executions.

V. DISCUSSION AND SUMMARY

This paper studies a novel problem of scheduling a set
of mixed-criticality, real-time tasks and considering the fault-
tolerance issue. Two algorithms are proposed. The static
algorithm works for maximizing the reserved executions of
the LO-criticality tasks including their primary and back-
up executions. The on-line algorithm improves the regular
approach by exploiting a technique to borrow slack from
future executions. The evaluation results show that both of
our algorithms significantly improve the performance. For the

sake of simplicity, we assume that the system has two levels
of criticality but the results can be generally expanded to have
multiple levels. Also, we assume that using one re-execution
sufficiently satisfies the requirement of fault-tolerance. How to
handle with multiple number of faults will become the target
to extend this paper. Finally, another common technique used
in fault-tolerance is checkpointing. It will be an interesting
problem how to use checkpointing in mixed-criticality systems
for fault-tolerance.

REFERENCES

[1] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow and L. Stougie, Scheduling Real-Time Mixed-Criticality Jobs,
IEEE Transactions on Computers, Vol. 61, No. 8, August 2012.

[2] D. de Niz, K. Lakshmanan, and R. Rajkumar, On the Scheduling of Mixed-
Criticality Real-Time Task Sets, in RTSS, pages 291-300, 2009.

[3] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno, Resource
Allocation in Distributed Mixed-Criticality Cyber-Physical Systems, in
ICDCS pages 169178, 2010.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster and L. Stougie, The Preemptive Uniprocessor Scheduling
of Mixed-Criticality Implicit-Deadline Sporadic Tas Systems, in ECRTS,
pages 147-155, 2008.

[5] S. Baruah, H. Li, and L. Stougie, Towards the design of certifiable mixed-
criticality systems, In RTAS, pages 13-22, 2010.

[6] F. Santy. L. George, P. Thierry, and J. Goossens, Relaxing mixedcriticality
scheduling strictness for task sets scheduled with fp. In ECRTS, pages
155-165, 2012.

[7] X. Castillo, S.R. McConnel, and D.P. Siewiorek, Derivation and Cal-
iberation of a Transient Error Reliability Model, IEEE Transactions on
Computers, Vol. 31, No. 7, 1982.

[8] R.K. Iyer and D.J. Rossetti, A Measurement-Based Model for Workload
Dependence of CPU Errors, IEEE Transactions on Computers, Vol. 35,
No. 6, 1986.

[9] S. Ghosh, R. Melhem and D. Mosse, Fault-tolerant scheduling on a hard
real-time multiprocessor system, in IEEE Parallel Processing Symposium,
Page 775-782, 1994.

[10] R. Al-Omari, A. K. Somani, and G. Manimaran, Efficient Overloading
Techniques for Primary-backup Scheduling in Real-Time Systems, in
Journal of Parallel Distributed Computing, Vol. 64, Issue 5, 2004.

[11] M. Caccamo, G. Buttazzo, and L. Sha, Capacity Sharing for Overrun
Control, in RTSS, pages 295-304, 2000.

[12] C. Lin, and S. Brandt, Improving Soft Real-Time Performance Through
Better Slack Reclaiming, in RTSS, pages 410-421, 2005.

[13] C. L. Liu and J. Layland, Scheduling algorithms for multiprogramming
in a hard real-time environment, in Journal of the ACM, Vol 20, Issue 1,
Pages 4661.

[14] R. M. Pathan, Fault-tolerant and real-time scheduling for mixed-
criticality systems, in Real-Time Systems, Vol 50, Issue 4, pages 509-547.

[15] P. Huang, H. Yang and L. Thiele, On the Scheduling of Fault-Tolerant
Mixed-Criticality Systems, in DAC, Pages 1-6, 2014.

44

