
The Journal of Systems and Software 154 (2019) 211–233

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Model based system assurance using the structured assurance case

metamodel

Ran Wei ∗, Tim P. Kelly

∗, Xiaotian Dai ∗, Shuai Zhao

∗, Richard Hawkins

Department of Computer Science, University of York, York, YO10 5GH, UK

a r t i c l e i n f o

Article history:

Received 14 April 2018

Revised 24 April 2019

Accepted 6 May 2019

Available online 7 May 2019

Keywords:

Model driven engineering

Structured assurance case metamodel

Model based system assurance

Goal structuring notation

Claims-Arguments-Evidence

a b s t r a c t

Assurance cases are used to demonstrate confidence in system properties of interest (e.g. safety and/or se-

curity). A number of system assurance approaches are adopted by industries in the safety-critical domain.

However, the task of constructing assurance cases remains a manual, lenghty and informal process. The

Structured Assurance Case Metamodel (SACM) is a standard specified by the Object Management Group

(OMG). SACM provides a richer set of features than existing system assurance languages/approaches.

SACM provides a foundation for model-based system assurance, which bears great application potentials

in growing technology domains such as Open Adaptive Systems. However, the intended usage of SACM

has not been sufficiently explained. In addition, there has not been support to interoperate between ex-

isting assurance case (models) and SACM models.

In this article, we explain the intended usage of SACM based on our involvement in the OMG spec-

ification process of SACM. In addition, to promote a model-based approach, we provide SACM compli-

ant metamodels for existing system assurance approaches (the Goal Structuring Notation and Claims-

Argument s-Evidence), and the transf ormations from these models to SACM. We also briefly discuss the

tool support for model-based system assurance which helps practitioners make the transition from exist-

ing system assurance approaches to model-based system assurance using SACM.

© 2019 Elsevier Inc. All rights reserved.

1

j

a

t

t

t

a

s

b

r

r

(

i

n

W

B

x

t

t

t

2

d

m

e

M

A

s

C

s

a

m

a

H

v

t

h

0

. Introduction

Systems and services used to perform critical functions require

ustifications that they exhibit necessary properties (i.e. safety

nd/or security). Assurance case s provide an explicit means for jus-

ifying and assessing confidence in these critical properties. In cer-

ain industries, typically in the safety-critical domain, it is a regula-

ory requirement that an assurance case is developed and reviewed

s part of the certification process (Hawkins et al., 2013). An as-

urance case is a document that facilitates information exchange

etween various system stakeholders (e.g. between operator and

egulator), where the knowledge related to the safety and/or secu-

ity of the system is communicated in a clear and defend-able way

 Hawkins et al., 2013).

Assurance cases are typically represented either textually - us-

ng natural languages; or graphically - using structured graphical

otations such as the Goal Structuring Notation (GSN) (Kelly and

eaver, 2004) or Claims-Arguments-Evidence (CAE) (Bishop and

loomfield, 20 0 0). Graphical notations have gained popularity due
∗ Corresponding authors.

E-mail addresses: ran.wei@york.ac.uk (R. Wei), tim.kelly@york.ac.uk (T.P. Kelly),

iaotian.dai@york.ac.uk (X. Dai), shuai.zhao@york.ac.uk (S. Zhao).

S

t

s

ttps://doi.org/10.1016/j.jss.2019.05.013

164-1212/© 2019 Elsevier Inc. All rights reserved.
o their abilities to express clear and well structured argumen-

ations. A number of tools exist which implement GSN and CAE

o produce safety cases, which are surveyed in (Maksimov et al.,

018). Some tools adopt Model-Driven Engineering (MDE) to pro-

uce models that conform to their own versions of GSN/CAE meta-

odels (Denney and Pai, 2017; Matsuno et al., 2010; Netkachova

t al., 2014; Larrucea et al., 2017; Barry, 2011).

To improve standardisation and interoperability, the Object

anagement Group (OMG) specified and issued the Structured

ssurance Case Metamodel (SACM). SACM is developed by the

pecifiers of existing system assurance approaches (e.g. GSN and

AE), based on the collective knowledge and experiences of

afety/security practitioners. Comparing to existing assurance case

pproaches, SACM provides additional features such as fine-grained

odularity, controlled vocabulary, and argument-evidence trace-

bility. Thus, SACM is more powerful in terms of expressiveness.

owever, a detailed explanation of how to use SCAM is not pro-

ided in the OMG specification. In addition, the relationships be-

ween existing assurance case approaches (i.e. GSN and CAE) and

ACM have not been sufficiently discussed. These bring challenges

o the adoption of SACM due to the complexity of SACM and the

ophistication of its intended usage.

https://doi.org/10.1016/j.jss.2019.05.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.05.013&domain=pdf
mailto:ran.wei@york.ac.uk
mailto:tim.kelly@york.ac.uk
mailto:xiaotian.dai@york.ac.uk
mailto:shuai.zhao@york.ac.uk
https://doi.org/10.1016/j.jss.2019.05.013

212 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

a

b

c

s

d

t

a

a

v

w

m

a

(

l

s

o

A

p

t

t

b

2

e

t

p

D

c

t

d

e

w

M

M

d

m

t

fi

m

a

w

b

c

c

t

E

G

a

G

a

i

o

a

s

s

1 Apart from the mappings from GSN to SACM provided on the GSN website –

http://www.goalstructuringnotation.info/ .
Model-based system assurance has attracted a significant

amount of interests in recent years due to the benefits provided by

MDE such as automation and consistency. Model-based system as-

surance is particularly important for concepts such as Open Adap-

tive Systems (OAS), where open (safety/security critical) systems

connect to each other, and adapt to changing contexts at runtime.

As the principal contributors of SACM and the originators of

GSN, in this paper, we provide a detailed explanation of SACM and

discuss its relationship with existing system assurance approaches

(i.e. GSN and CAE). The contributions of this paper are:

• A definitive exposition of SACM version 2.0;
• An explanation on how to create assurance case models using

SACM;
• A presentation of the GSN and CAE metamodels that are com-

pliant with SACM;
• Comprehensive mappings from GSN/CAE to SACM.

This paper is organised as follows. In Section 2 and Section 3 ,

we provide the background and the motivation of our work. In

Section 4 we provide detailed discussions about the facilities pro-

vided by SACM. In Section 5 we provide examples to illustrate

the semantics of the elements provided in SACM, and how to use

SACM to construct argumentation patterns and to integrate assur-

ance cases. In Section 6 , we discuss the relationship between exist-

ing notations and SACM. We provide SACM compliant metamodels

for GSN and CAE and their mappings to SACM. In Section 7 , we

briefly discuss tool support for model-based system assurance. Fi-

nally, a conclusion of this paper is given in Section 8 .

2. Background and motivation

2.1. Safety cases

The concept of assurance cases has been well established in

safety-related domains, where the term safety case is normally

used. For many industries, the development, review and accep-

tance of a safety case form a key element of regulatory pro-

cesses. This includes nuclear, defence, aviation and railway indus-

tries (Hawkins et al., 2015b). Safety cases are defined in (Kelly and

Weaver, 2004) as follows: A safety case should communicate a clear,

comprehensible and defensible argument that a system is acceptably

safe to operate in a particular context .

Historically, safety arguments were typically communicated in

safety cases through free text. However, there are problems ex-

perienced when text is the only medium available for expressing

complex arguments. One problem of using free text is that the

language used in the text can be unclear, ambiguous and poorly

structured. There is no guarantee that system engineers would

produce safety cases with a clear and well-structured language.

Also, the capability of expressing cross-references with free text

is very limited, multiple cross-references can also disrupt the flow

of the main argument. Most importantly, the problem with using

free text is in ensuring that all stakeholders involved share the

same understanding of the argument to develop, agree and main-

tain the safety arguments within the safety case (Kelly and

Weaver, 2004).

To overcome the problems of expressing safety arguments

in free text, graphical argumentation notations were devel-

oped. Graphical argumentation notations are capable of explic-

itly representing the elements that form a safety argument (i.e.

requirements, claims, evidence and context) and the relationships

between these elements (i.e. how individual requirements are

supported by specific claims, how claims are supported by ev-

idence, and the assumed context that is defined for the argu-

ment). Amongst the graphical notations, the Goal Structuring No-

tation (GSN) (Kelly and Weaver, 2004) has been widely accepted
nd adopted (Chinneck et al., 2004). The key benefit experienced

y companies/organisations adopting GSN is that it improves the

omprehension of the safety argument among all key project

takeholders (e.g. system developers, safety engineers, indepen-

ent assessors and certification authorities), therefore improving

he quality of the debate and discussion amongst the stakeholders

nd reducing the time taken to reach agreements on the argument

pproaches being adopted.

Another popular graphical argumentation notation is Claims-

Arguments-Evidence (CAE) (Bishop and Bloomfield, 20 0 0). CAE

iews assurance cases as a set of Claim s supported by Argument s,

hich in turn rely on Evidence . Compared to CAE, GSN provides

ore granular decomposition of safety arguments, and supports

dditional features such as modularity and argument patterns

 Kelly and Meng, 2005). In this paper, we focus on GSN and its re-

ationship to SACM, since we are the principal contributors to the

tandardisation of both GSN and SACM.

A number of graphical assurance case tools have been devel-

ped due to the popularity of graphical argumentation notations.

 recent study (Maksimov et al., 2018) has looked into and com-

ared assurance case tools that have been developed in the past

wenty years (where 32 of them support GSN). The majority of the

ools do not support model-based approach (i.e. creating model-

ased graphical assurance cases).

.2. Safety cases and model driven engineering

Model-Driven Engineering (MDE) is a contemporary software

ngineering approach. In MDE, model s are first class artefacts,

herefore driving the development. There are two important as-

ects in MDE: Domain Specific Modelling and Model Management.

omain Specific Modelling enables domain experts to capture the

oncepts in their systems in the form of metamodel s, which are

hen used to create models of their systems (that conform to the

efined metamodel s). Model Management enables a variety of op-

rations to be performed on models in an automated manner,

hich include, but not limited to: Model Validation, Model-to-

odel Transformation, Model-to-Text Transformation and Model

erging. MDE has been proven to improve consistency and pro-

uctivity significantly due to the automation provided by model

anagement operations (Jaaksi, 2002; Kärnä et al., 2009).

Whilst graphical assurance cases are valuable in communicating

he safety and/or security properties of the system, MDE is bene-

cial to system assurance to enable higher level model manage-

ent operations to be performed. Provided that assurance cases

re constructed as models, model validation can be used to check

ell-formedness of assurance cases (e.g. in GSN, a Strategy cannot

e directly supported by a Solution), model-to-text transformation

an be used to generate assurance case reports, and model merging

an be used to bind assurance cases. A number of assurance case

ools adopt MDE, such as AdvoCATE (Denney and Pai, 2017), D-Case

ditor (Matsuno et al., 2010), ASCE (Netkachova et al., 2014), Astah

SN (Larrucea et al., 2017), and CertWare (Barry, 2011). However,

 common problem with these tools is that they define their own

SN metamodels. This is due to the fact that there has not been

 standardised GSN metamodel. 1 Thus, there may be interoperabil-

ty problems when one wishes to import GSN models created by

ther tools into his/her own tool. Although the tools mentioned

bove all claim to support SACM, the support is for SACM ver-

ion 1.0 (released in June, 2015), which was replaced by SACM ver-

ion 2.0 (released in March, 2018) with significant changes to the

http://www.goalstructuringnotation.info/

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 213

Fig. 1. Models at runtime on different abstraction levels.

s

h

t

f

2

s

O

n

(

t

i

h

c

s

O

i

s

a

t

r

o

M

O

w

g

t

w

a

t

n

O

c

t

t

r

t

m

a

t

i

q

y

i

(

a

m

S

h

t

Fig. 2. An example of runtime assurance case.

t

t

a

m

t

d

m

c

f

t

T

d

a

C

s

2

m

P

a

w

t

b

p

e

f

d

f

c

t

2

p

B
pecification. 2 Since SACM is not sufficiently explained (no work

as been done in this aspect), there may be cognitive gaps be-

ween different tool developers, so that exported SACM models

rom the tools may differ.

.3. SACM and runtime system assurance

Model based system assurance is particularly necessary in as-

uring emerging system concepts such as Open Adaptive System -

AS (e.g. Cyber-Physical Systems - CPS). Industry sees huge eco-

omic potential in such systems - particularly due to their open

OASs connect to each other at runtime) and adaptive (OASs adapt

o changing contexts) nature, which enables new types of promis-

ng applications in domains such as automotive 3 , health care, and

ome automation (Wei et al., 2017). Since the majority of appli-

ation domains of OAS are safety-critical, it is imperative to as-

ure the safety and/or security of such systems. However, assuring

ASs is typically difficult. Due to their open and adaptive nature, it

s almost impossible to sufficiently anticipate the concrete system

tructure, the system’s capabilities and the environmental context

t design time. (Trapp et al., 2013).

Therefore, existing development time system assurance activi-

ies are insufficient to enable dynamic system assurance for OAS at

untime. In (Trapp et al., 2013), the authors identify the importance

f system assurance at runtime for OAS and propose the idea of

odels@Runtime on different abstraction levels, as shown in Fig. 1 .

n the top abstraction level is the SafetyCertificate@Runtime,

hich is a contract-like model that contains information with re-

ard to services and guarantees provided/demanded. With Safe-

yCertificate@Runtime, systems can determine if they can interact

ith each other. However, guarantees are not enough to infer

ssurance of systems at runtime, the process of argumentation

hat leads to the claims about the safety/security of a system is

eeded. Hence, AssuranceCases@Runtime is necessary so that one

AS can inspect the assurance case of other OASs at runtime to

onclude if they are safe to interact with. For autonomous sys-

ems, some safety claims can only be instantiated at runtime due

o the uncertainty introduced by Artificial Intelligence. Hence, a

untime safety case is needed for autonomous systems to infer

he safety/security of themselves (with the help of assurance case

anaging facilities). When systems adapt, the evidence for system

ssurance may become invalid. Therefore, Verification and Valida-

ion (V&V) models at runtime may help to reinstate evidence that

s used by assurance case models. In very rare cases, system re-

uirements may change at runtime. Creating Hazard and Risk Anal-

sis (HRA) models at runtime helps identify new hazards and risks

ntroduced based on the change of requirements. As explained in

 Wei et al., 2018), V&V and HRA models at runtime are not re-

listic, because they are effort intensive tasks which require hu-

an intervention and cannot be automated. On the other hand,

afetyCertificate@Runtime is not sufficient to determine if a sys-
2 ASCE claims that it supports SACM 2.0 but the mappings they provide in

ttps://www.adelard.com/asce/choosing-asce/standardisation.html are still mapping

o old SACM elements.
3 Autonomous cars being a typical example.

r

b

t

em is safe/secure. The ideal balance of system assurance at run-

ime is on the AssuranceCase@Runtime, where a system can use

ssurance cases to relate to other models at runtime to deter-

ine the safety/security of itself, or for a system to determine

he safety/security of other systems. Thus, there is a need to shift

esign time assurance case documents to runtime assurance case

odels, in order to assure open adaptive systems at runtime.

Comparing to GSN and CAE, SACM provides an ideal basis that

ould underpin AssuranceCase@Runtime in this context, due to the

eatures mentioned later in this section. In (Denney and Pai, 2017),

he authors motivate the need for automation in assurance case.

hey point out that assurance case models should link their evi-

ence in order to perform automated reasoning on the validity of

ssurance cases. However, on modelling language level, GSN and

AE are not capable for this task. In a first step towards runtime

ystem assurance, SACM is used in the DEIS project (Wei et al.,

017) as a backbone for its Open Dependability Exchange meta-

odel (ODE), which is used to assure the dependability of Cyber-

hysical Systems at runtime, as illustrated in Fig. 2 . System assur-

nce at runtime is achieved by having an assurance case model

hich links to ODE models (as evidence) to form the argumenta-

ion for system assurance 4 . At runtime, ODE models are changed

ased on the sensor data. There is a certification algorithm which

eriodically evaluates the assurance case. Should any ODE mod-

ls change at runtime, re-certification of the assurance case is per-

ormed. The system at runtime executes the assurance case and

etermines if it is safe/secure to operate. SACM provides a solid

oundation for practitioners to argue about the safety and/or se-

urity of a wide range of systems, and to refer to the evidence of

heir arguments as models, both at design time and runtime.

.4. Assurance cases and the structured assurance case metamodel

Structured argumentation is also used in other domains,

articularly for demonstrating system security (Bloomfield and

ishop, 2010). Such augmentations are typically referred to as secu-

ity cases . The similarities between safety and security cases have

een highlighted in (Lautieri et al., 2005). Therefore, the term
4 This feature is supported by SACM but not GSN/CAE, which is discussed later in

he article.

https://www.adelard.com/asce/choosing-asce/standardisation.html

214 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Table 1

Features added to SACM.

Feature Motivated by

F1. Modularity Despotou and Kelly (2008)

F2. Multiple Language Support Denney and Pai (2017, 2013) , Matsuno (2014)

F3. Controlled Vocabulary Luo et al. (2015) , Attwood et al. (2014)

F4. Describing the Level of Trust in Arguments Hawkins et al. (2011) , Fenn and Jepson (2005)

F5. Counter-Arguments in Assurance Cases Armstrong and Paynter (2004)

F6. Traceability from Evidence to Artifact Taguchi et al. (2014) , Denney and Pai (2017)

F7. Automated Assurance Case Instantiation Hawkins et al. (2015b,a)

e

t

D

w

t

a

e

t

t

(

t

a

m

a

o

w

t

e

e

i

a

S

S

t

a

r

d

v

t

p

d

o

n

e

t

n

i

w

d

m

p

m

2

assurance case is a broader definition: An assurance case should

communicate a clear, comprehensible and defensible argument that a

system/service is acceptably safe and/or secure to operate in a partic-

ular context.

To promote standardisation and interoperability, the Object

Management Group (OMG) specified and issued the Structured As-

surance Case Metamodel (SACM) (OMG, 2019). SACM is developed

by the specifiers of existing system assurance approaches (e.g. GSN

and CAE), based on the collective knowledge and experiences of

safety and/or security practitioners over the period of last two

decades. Therefore, features that are not previously supported by

GSN and CAE have been evaluated and included in SACM. A selec-

tion of such features are summarised in Table 1 (with an indicative

but non-exhaustive list of works that motivate the features).

Modularity (F1) . It is important to promote modularity for as-

surance cases, so that system safety/security can be argued on a

component basis (instead of having an enormous assurance case

diagram) (Despotou and Kelly, 2008). Modularity is supported by

GSN, with the notion of Module and ContractModule . In SACM, a

finer grained modularity is provided. The users are able to se-

lectively declare the argument/artifact/terminology elements exter-

nally through package interfaces , and then integrate these packages

using package bindings . In this way, engineers are able to under-

stand more clearly how assurance cases are integrated.

Multiple Language Support (F2) . Multiple language support

seems trivial in assurance cases created using GSN and CAE. How-

ever, when creating SACM version 2.0 we realised that the im-

portance of multiple language support not only lies in the abil-

ity to describe arguments in multiple natural languages, but also

lies in the ability to describe arguments in computer (e.g. for-

mal) languages (Denney and Pai, 2017; 2013; Matsuno, 2014). Ar-

guments described using computer languages enable the possibil-

ity of (semi-)automated reasoning of system safety, which is par-

ticularly important in the context of runtime system assurance.

Controlled Vocabulary (F3) . Various studies have identified the

importance of controlled vocabulary used in system assurance ar-

guments (Luo et al., 2015; Attwood et al., 2014). In SACM, the users

are able to create controlled vocabulary (which can refer to ac-

tual model/model elements that define the vocabulary) and refer

to them in the assurance argument.

Describing the Level of Trust in Arguments (F4) . There is a

need to argue the trustworthiness of arguments made in an as-

surance case, motivated in (Hawkins et al., 2011). In GSN, an ex-

tension (Assurance Claim Points) was suggested to allow the asso-

ciation of the confidence of arguments to a primary argument. In

SACM, there is a facility specifically designed to enable the users

to argue the level of trust for argument elements.

Counter-Arguments in Assurance Cases (F5) . Sometimes, it is

also important to present counter arguments in an assurance case

(Armstrong and Paynter, 2004). In GSN and CAE there is no specific

means to express counter arguments. In SACM, an assertion can be

declared as counter , to declare a reversal argument.

Traceability from Evidence to Artifact (F6) . In GSN and CAE,

evidence in assurance cases are described using natural language,

and there is no built-in facility that enables the traceability from
vidence to the actual artefact. Existing work achieves traceability

hrough the use of an external metamodel (Taguchi et al., 2014;

enney and Pai, 2017). In SACM, traceability is naturally supported

ithout the need of an external model.

Automated Assurance Case Instantiation (F7) . Assurance case

emplates are useful in capturing good practice in system assur-

nce for re-use. GSN provides the notion of GSN patterns , which

nables the users to create abstract safety cases (templates), and

hen instantiate the patterns based on actual system information

o create concrete safety cases. In (Hawkins et al., 2015b) and

 Hawkins et al., 2015a), a model-based automated pattern instan-

iation approach is discussed and presented. This approach uses

n intermediate weaving model to link GSN patterns with system

odels, and requires extensions to the GSN metamodel. In SACM,

utomated instantiation can be achieved without the introduction

f these extensions.

As principal contributors of SACM and the originators of GSN,

e acknowledge that SACM is more powerful than GSN and CAE in

erms of expressiveness. Therefore, it is encouraged to use SACM,

specially in the context of model-based system assurance. How-

ver, in the SACM specification there is limited information on the

ntended usage of SACM. In order to exploit SACM’s full potential,

nd to promote the adoption of SACM, it is necessary to explain

ACM in detail so that safety and security engineers can fully use

ACM to achieve higher level goals (e.g. automated model valida-

ion to check either well-formedness and/or the validity of runtime

ssurance certificates).

In the current state of practice, graphical notations such as GSN

emain the most popular approach for system assurance. SACM is

esigned to support GSN, but the OMG specification does not pro-

ide a mapping between GSN elements and SACM elements, as

here has not been a SACM aligned GSN metamodel. Thus, in this

aper we provide a GSN metamodel which aligns to SACM. In ad-

ition, there is also a need to translate from GSN to SACM. First

f all, the OMG has not defined a concrete syntax (i.e. graphical

otation) for SACM elements, which makes creating SACM mod-

ls a tedious and error-prone process. Thus, to make the transi-

ion from GSN to SACM, it is beneficial at this stage to use GSN

otations to construct arguments and then transform to SACM us-

ng model-to-model transformation. Secondly, since GSN has been

idely adopted in industry, practitioners can convert their legacy

iagrams into GSN models, and then transform to SACM to enable

odel-based system assurance. Due to the reasons above, in this

aper we will also provide a mapping (in the form of a model-to-

odel transformation) from GSN to SACM.

.5. Summarised motivations

The motivations of our work can be summarised as follows.

• The need for model-based assurance case . As previously dis-

cussed, MDE is beneficial to system assurance. High level oper-

ations such as model validation, mode-to-model transformation

and model merging can be performed on model based assur-

ance cases. In addition, model based assurance cases are the

key to assure safety/security related Open Adaptive Systems.

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 215

3

t

d

l

w

g

i

S

b

r

t

a

a

r

g

n

G

t

t

r

t

a

s

s

b

a

s

o

M

s

i

e

a

Fig. 3. Core GSN elements.

A

M

c

fi

f

t

u

a

a

a

o

c

a

p

i

i

u

a

e

a

s

U

S

d
• Heterogeneous GSN metamodels and misalignment to SACM .

Although a number of model-based assurance case tools exist,

they implement their own versions of GSN, and their mappings

from GSN to SACM version 1.0 are not unanimous due to the

fact that SACM version 1.0 was not sufficiently explained. In ad-

dition, due to the release of SACM version 2.0, the claimed sup-

ports for SACM of existing model based GSN/CAE tools become

out-dated.
• SACM and its application in Open Adaptive Systems . SACM

provides more features than GSN/CAE, which makes it more

powerful in terms of expressiveness. SACM is fundamental to

runtime system assurance, which is the key for safety/security

related Open Adaptive Systems.
• Insufficient explanation of SACM . SACM has been developed

over the last decade, and it is the result of significant deliber-

ation and consultation. As a consequence, there are many use

cases behind the features (known to the authors of this paper

as principal contributors of the SACM standard) that may not

be apparent to users on first inspection (e.g. to support exist-

ing concepts such as modularity, patterns and meta argumen-

tation). SACM and its relationship with GSN/CAE are not suffi-

ciently explained, which hinders its adoption.

. The goal structuring notation

As SACM is developed based on concepts in the Goal Struc-

uring Notation (GSN), it is necessary to discuss the features and

rawbacks of GSN before discussing SACM. GSN is a well estab-

ished graphical argumentation notation that is widely adopted

ithin safety-critical industries for the presentation of safety ar-

uments within safety cases. The core elements of GSN are shown

n Fig. 3 .

A Goal represents a safety claim within the argumentation. A

trategy is used to describe the nature of the inference that exists

etween a goal and its supporting goal(s). A Solution represents a

eference to an evidence item or multiple evidence items. A Con-

ext represents a contextual artefact, which can be a statement, or

 reference to contextual information. An Assumption represents an

ssumed statement made within the argumentation. A Justification

epresents a statement of rationale.

An element can be Undeveloped , which means that a line of ar-

ument has not been developed yet (meaning it being abstract and

eeds to be instantiated). The Undeveloped notation can apply to

oal s and Strategies . The Undeveloped Goal in Fig. 3 is an example.

Core elements of GSN are connected with two types of connec-

ors, as shown in Fig. 5 . The SupportedBy connector allows inferen-

ial or evidential relationships to be documented. The InContextOf

elates contextual elements (i.e. Context, Assumption and Justifica-

ion) to Goal s and Strategies .

When elements of GSN are linked together in a network, they

re often referred to as a goal structure . The purpose of a goal

tructure is to show how Goal s are successively broken down into

ub- Goal s until a point is reached where Goal s can be supported

y direct reference to available evidence (Solution s). An example of

 goal structure is shown in Fig. 4 . 5

Goal structures can be organised in Module s. For example, for a

ystem that consists of two components A and B, it is possible to

rganise the safety cases of component A and B in two Modules

A and MB . Modularity promotes re-use, so that safety cases for

ystem components can be re-used when different com ponents are

ntegrated to form a system. Fig. 6 shows the GSN elements that

nable modularity support. When integrating system safety cases,

 Contract Module can be used to bind different Module s together.
5 From the GSN standard: https://www.goalstructuringnotation.info/ .

u

t

o
Binding is done via the use of Away Goal s, Away Context s and

way Solution , where Goal s, Context s and Solution s from an external

odule can be referenced. Like other GSN elements, away elements

an be connected using SupportedBy and InContextOf connectors.

For a successful GSN safety case, safety engineers tend to de-

ne a template of the safety case to re-use its structure in the

uture. GSN provides the extension for users to define templates

hat are called GSN patterns . In (Kelly and McDermid, 1997), the

se of patterns is discussed, pattern are a means of documenting

nd reusing successful assurance argument structures. Safety case

rgument patterns provide a way of capturing the required form of

 safety argument in a manner that is abstracted from the details

f a particular argument. It is then possible to use the patterns to

reate specific arguments by instantiating the patterns in a manner

ppropriate to the application. Pattern instantiation refers to the

rocess of constructing concrete system safety cases by populat-

ng the templates provided in the GSN pattern with actual system

nformation. Fig. 7 shows the elements in GSN which enable the

sers to create patterns.

The Uninstantiated indicator marks that an element is abstract

nd needs to be instantiated. At some later stage, the abstract el-

ment needs to be replaced with a concrete instance. Uninstanti-

ted indicator can be associated to any GSN element. Fig. 7 demon-

trates how it can be associated to a Goal . The Undeveloped and

ninstantiated indicator marks an element (in particular, Goal s and

trategies) to be both abstract (to be instantiated) and needs more

evelopment (needs supporting argument), Fig. 7 demonstrates its

sage on a Goal. In GSN patterns, the SupportedBy and InCon-

extOf connector can bear more information, the Many decorator

n a connector indicates that when the pattern is instantiated, the

https://www.goalstructuringnotation.info/

216 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 4. An example of a goal structure.

Fig. 5. GSN connectors.

Fig. 6. Modular GSN elements.

Fig. 7. GSN pattern elements.

c

o

i

c

n

r

K

a

p

t

a

l

w

s
onnector can be multiplied n times (expressed in the label) based

n the actual system information provided. The Optional decorator

ndicates that when the pattern is instantiated, the connector can

onnect to one or zero element. The Choice decorator on a con-

ector can be used to denote possible alternatives in satisfying a

elationship, which can represent a 1-of-n or m-of-n selection.

Fig. 8 shows an example of a GSN pattern (adopted from

elly and McDermid (1997)). The contents in the curly brackets

re role s in GSN terms, they are place holders which will be re-

laced by actual system information when the pattern is instan-

iated. For example, {System X} in G1 will be replaced with the

ctual name of the system when the pattern is instantiated. Simi-

arly, the SupportedBy connector between S1 and G2 specifies that

hen the pattern is instantiated, there should be n (the number of

afety-related functions implemented by the system) Goal s and n

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 217

Fig. 8. An example of a GSN Pattern (Kelly and McDermid, 1997).

S

u

r

w

w

G

w

m

g

u

t

4

i

t

c

t

m

t

p

i

a

p

t

w

p

t

t

o

Fig. 9. Components of SACM.

4

A

c

s

a

n

o

c

i

e

t

t

(

s

4

A

T

T

C

c

b

a

P

s

t

r

m

t

t

i

a

s

a

t

i

c

c

o

g

o

s
upportedBy connected to S1 . Pattern instantiation is often a man-

al process that involves comprehension of the GSN patterns and

eplacing the role s with actual system information. There has been

ork on automating the pattern instantiation process using MDE

ith the use of a weaving model (Hawkins et al., 2015a).

In this section, we briefly discussed the elements provided by

SN. GSN is powerful in representing arguments in a structured

ay, which enables better comprehension of system safety argu-

ents. GSN promotes modularity and abstraction in the sense that

ood practice in safety case construction can be captured and re-

sed. In the following sections, we will discuss SACM and its rela-

ionship with GSN.

. Structured assurance case metamodel

The Structured Assurance Case Metamodel (SACM) is standard-

sed by the Object Management Group (OMG). The intention of

he metamodel is to promote a model-based approach in the pro-

ess of system assurance, which is currently a manual approach

hat produces artefacts (i.e. Assurance Cases) that are (mostly) not

odel-based, where higher level operations (such as model valida-

ion) on these artefacts are not applicable. SACM is created to sup-

ort model-based paradigm with existing well established graph-

cal argumentation notations, the Goal Structuring Notation (GSN)

nd Claims-Arguments-Evidence (CAE).

In this section, we discuss the packages in SACM and ex-

lain their intended usage. Two types of examples are provided

o demonstrate the usage of SACM: for simple concepts to explain

ithout further context, we use in-place examples; and for com-

lex concepts which requires the context of understanding the en-

irety of SACM, we use concrete examples provided at the end of

his section. Since OMG has not standardised the concrete syntax

f SACM

6 , we use object diagrams in the examples.
6 We are aware that concrete syntax for SACM is in development.

t

.1. SACM Overview

There are five components in SACM, as shown in Fig. 9 . The

ssuranceCase component (discussed in Section 4.2) captures the

oncepts of Assurance Case in system assurance. In SACM, an As-

uranceCase package contains a number of Argumentation pack-

ges, Terminology packages and Artifact packages. The Base compo-

ent (discussed in Section 4.3) defines the fundamental elements

f SACM, such as element names and descriptions. The Artifact

omponent (discussed in Section 4.4) captures the concepts used

n providing evidence for the arguments made for system prop-

rties. The Terminology component (discussed in Section 4.5) cap-

ures the concepts used in expressing the arguments regarding sys-

em properties, such as Expression s. The Argumentation component

discussed in Section 4.6) captures the concepts used in arguing

ystem properties (such as safety and/or security). 7

.2. SACM AssuranCecase component

The AssuranceCase component provides an insight on how an

ssurance Case in SACM is organised, hence it is discussed first.

he structure of the AssuranceCase component is shown in Fig. 10 .

he core element in the AssuranceCase component is the Assurance-

asePackage element, which extends the ArtifactElement in the Base

omponent. The implication is that an AssuranceCasePackage can

e considered to be an artifact. An AssuranceCasePackage can hold

 number of ArgumentPackage s, TerminologyPackage s and Artifact-

ackage s, which holds the argumentation with regards to system

afety/security, the controlled vocabularies used in the argumenta-

ion, and the artifact that backed the argumentation as evidence,

espectively. In this way, SACM provides more detailed support for

odularity than GSN. 8

Sometimes the developer of an AssuranceCasePackage may want

o make part of the AssuranceCasePackage available externally so

hat they can be re-used. Consider the scenario where a system

s composed of components A and B . AsssuranceCasePackage s ACPa

nd ACPb are created respectively for A and B (which contain

tructured argumentations with regard to system properties for A

nd B). The developer may want to make a part of the argumen-

ation public so that during system integration, where A and B are

ntegrated to form a system, their assurance cases ACPa and ACPb

an also be integrated to form a new AssuranceCasePackage . To dis-

lose only necessary contents externally, one needs to make use

f the AssuranceCasePackageInterface . The premise of system inte-

ration in safety related domains is to integrate assurance cases

f systems to form an overall assurance case. SACM handles this

cenario with the AssuranceCasePackageBinding , which binds two
7 System properties hereby refer to the safety and/or security in the context of

his paper.
8 Feature F1 in Section 2.4 .

218 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 10. SACM AssuranceCase component.

Fig. 11. SACM Base component.

t

a

E

b

m

S

p

t

a

t
or more AssuranceCasePackageInterface s together to form an over-

all AssuranceCasePackage . This particular scenario is discussed in

Section 5.4 .

4.3. SACM base component

The Base component captures the fundamental concepts of

SACM, the structure of the Base package is shown in Fig. 11 . The

base element of all SACM elements is Element . Its direct children

are LangString, MultiLangString and SACMElement. LangString is used

as an equivalence to String (the value of which is held in the +con-
ent feature), except it captures an additional feature +lang which

llows the users to define what language is used in the LangString.

xpressionLangString is used to not only record a String in SACM,

ut also refer to its corresponding Expression organised in a Ter-

inologyPackage . The usage of ExpressionLangString is discussed in

ection 4.5 . MultiLangString , as its name suggests, is used to ex-

ress the same semantics using different languages. For example,

o express ‘hazard’ in both English and German, the user can cre-

te a MultiLangString with two LangString , as shown in Fig. 12 .

MultiLangString can be associated to SACM elements to denote

he same meaning. What is more important than multiple natu-

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 219

Fig. 12. Example MultiLangString .

r

p

n

a

a

f

b

b

c

g

a

e

S

w

T

p

s

d

n

m

p

g

c

i

s

o

n

a

a

f

t

s

t

S

c

p

U

m

4

s

c

n

a

c

l

a

A

m

t

f

e

u

h

(

a

v

t

r

fi

s

t

c

l

r

s

a

m

i

m

P

L

o

m

e

a

i

l

m

4

u

m

o

n

f

T

B

e

g

p

o

t

i

H

g

m

a
al language support is the support for computer languages. 9 As

reviously discussed, for open adaptive systems, system assurance

eeds to be performed at runtime. Hence, automation is needed

t runtime to reason about the safety of open adaptive systems on

ssurance models. A first step towards this direction is the use of

ormal languages in assurance cases, so that system assurance can

e (semi-) automated, in the sense that automated reasoning can

e performed on the argumentation. In this case, MultiLangString

an be used to hold both natural languages and computer lan-

uages (e.g. formal languages) to support automated reasoning of

rgumentations.

SACMElement contains the foundational features of all SACM

lements. SACMElement can record a +gid (global identification).

ACMElement is also able to refer to (or ‘cite’) other SACMElement s,

hich is useful for implicit references, discussed in Section 5.1 .

he +citedElement and +isCitation properties are used for this pur-

ose. A SACMElement can also be abstract, denoted by the +isAb-

tract property, and can be an +abstractForm of another, which is

iscussed in Section 5.3 .

ModelElement further refines SACMElement which contains a

ame (of type LangString) and a set of UtilityElement s. A ModelEle-

ent can contain a Description which describes its contents. As

reviously mentioned, a Description can be expressed in any lan-

uage via the usage of MultiLangString . A ModelElement can also

ontain an ImplementationConstraint , which is used to specify the

nstantiation rules for assurance case templates (that of similar to

afety case patterns). A ModelElement can also contain a number

f Note s, to hold additional information other than descriptions. Fi-

ally, a ModelElement can contain a number of TaggedValue s, which

re essentially {key, value} pairs. TaggedValue can be considered as

n extension mechanism to allow the users to associate additional

eatures to a ModelElement (other than the features modelled in

he current version of SACM).

The Base component also defines the ArtifactElement , in the

ense that all elements that extend ArtifactElement are considered

o be Artifact s. The reason for this is discussed in Section 5.2 .

In summary, the Base component defines the foundation of

ACM. It provides facilities to express assurance cases (to be pre-

ise, assurance case models) in natural language, as well as in com-

uter languages. The Base component also provides a number of

tilityElement s so that the user can use them to describe ModelEle-

ent s as precisely as possible.

.4. SACM Artifact component

Before delving into the Argumentation component, it is neces-

ary to discuss the Artifact component. The structure of the Artifact

omponent is shown in Fig. 13 . All elements in the Artifact compo-

ent extend ArtifactElement in the Base component. ArtifactElement s
9 Feature F2 in Section 2.4 .

i

re organised in ArtifactPackage s to promote modularity. Assurance

ase integration needs also be performed at the ArtifactPackage

evel, which is fulfilled by ArtifactPackageInterface and ArtifactPack-

geBinding. ArtifactGroup is a new concept introduced in SACM 2.0.

s ArtifactPackage can contain rather a large number of ArtifactEle-

ent s, the ArtifactGroup provides the user with a means to selec-

ively group ArtifactElement s, so that the user can group/view Arti-

actElement s with their defined criteria.

ArtifactAsset allows the users to create corresponding artefact

lements in SACM, it can contain a number of Property -ies to hold

ser-defined properties. Artifact records a piece of information (e.g.

azard log, failure logic models, etc). Activity records an activity

e.g. specification of requirements). Event records an event (e.g. cre-

tion/modification of Artifact s). Participant records participants in-

olved in ArtifactAsset s (e.g. safety engineers). Technique records the

echniques used in Activities (e.g. requirement elicitation). Resource

ecords a piece of resource, usually in the form of some electronic

les. And finally, ArtifactAssetRelationship is used to link ArtifactAs-

et s (e.g. connecting Activity to Participant s). Note that the Artifac-

AssetRelationship is a generic relationship, however, the user can

hoose to use Property to specify the purpose of an ArtifactAssetRe-

ationship .

One open question regarding the Artifact component is how to

efer to external materials (such as system requirements model,

ystem design model, system failure logic model, etc.). To achieve

utomation, it is necessary to have a means to refer to external

aterials (especially models) so that the assurance case can be val-

dated automatically with its supporting evidence. The user may

ake use of the Property element, as shown in Fig. 14 , where a

roperty is associated to an Artifact 10 , which has a name (of type

angString): ‘URI’ and a Description , which in turn specifies a file

n local disk (systemdesign.model). In this way, the Property ele-

ent is used as a reference to a local file.

SACM does not restrict how external materials should be refer-

nced, the description provided above is one way of achieving it. It

lso depends on tool implementations on how external references

s handled. It is possible to have finer grained reference to (a col-

ection) of model elements for a model (e.g. a Fault Tree Analysis

odel). However, OMG has not standardised how this can be done.

.5. SACM Terminology component

The Terminology component captures concepts that enable the

sers to define controlled vocabularies 11 to describe their argu-

entation with greater precision. The structure of the Terminol-

gy package is shown in Fig. 15 . The root element of the Termi-

ology component is TerminologyElement which also extends Arti-

actElement in the Base package. TerminologyAsset s are organised in

erminologyPackage s. TerminologyInterface and TerminologyPackage-

inding are used for assurance case integration. TerminologyGroup

nables to users to group TerminologyAsset s selectively.

ExpressionElement captures two expression concepts used in ar-

umentations: Expression and Term . An Expression is used to model

hrases and sentences, and a Term is used to define a terminol-

gy used in the argumentation. In addition to ExpressionElement ,

here is also Category which is used to group Term s and Expression s

nto categories. An example is provided in Fig. 16 . In the sentence

azard H1 is sufficiently mitigated , Hazard is defined as a Cate-

ory (for it defines the concept of ’Hazard’ in the hazard_log.ecore

etamodel through external reference), the word H1 is defined as

 Term as it refers to a specific hazard in the hazard log model
10 The Artifact should have its own features such as name and description, which

s omitted here.
11 Feature F3 in Section 2.4 .

220 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 13. SACM artifact component.

Fig. 14. External reference using Property .

e

e

v

r

f

4

t

s

r

t

c

p

t

c

c

s

t

s

t

12 Via the usage of MultiLangString .
13 Feature F4 in Section 2.4 .
(hazardLog.model), the phrase sufficiently mitigated is an Expression

as it is commonly used phrase in system assurance.

Whilst Term element is used to capture a terminology used in

the process of system assurance, it can also relate to model ele-

ments in other models. For example, in Fig. 17 , in the statement:

Hazard H1 is sufficiently mitigated. , H1 may cross-reference to an

identified hazard in a hazard log. The location of the hazard log is

recorded in the externalReference of the Term . In addition, the Term

has an ImplementationConstraint , which allows the users to define

model queries to obtain model element(s). In this example, the Ob-

ject Constraint Language (OCL) is used to obtain the single model
lement H1 in the hazard log. Again, SACM does not restrict how

xternal references should be handled, and the description pro-

ided above is one way of achieving it. Sometimes, a term may

efer to a ModelElement within the assurance case (via the +origin

eature). This will be discussed in Section 4.6 .

.6. SACM Argumentation component

The Argumentation component captures the concepts required

o model structured arguments regarding system properties. The

tructure of the Argumentation component is shown in Fig. 18 . The

oot element of the Argumentation component is the Argumenta-

ionElement , which is a direct child of ArtifactElement in the Base

omponent. This implies that all elements in the Argumentation

ackage are also considered to be artefacts.

ArgumentationPackage can contain a number of Argumenta-

ionElements , which can either be ArgumentPackage s (and their

hildren) or ArgumentAsset s. ArgumentAsset can store a content , dis-

ussed in Section 4.3 . The content can be in any language. 12

ArgumentAsset and its children are the elements that form the

tructured argumentation in the Argumentation package. An Asser-

ion has an AssertionDeclaration to distinguish different types of As-

ertion s. The AssertionDeclaration s are as follows:

• asserted - the default declaration, means that the Assertion is

made and is supported by evidence;
• needsSupport - a flag indicating that the Assertion is not sup-

ported yet (needs further development);
• assumed - a flag indicating that the truth of the Assertion is

assumed although no supporting evidence is provided;
• axiomatic - a flag indicating that the truth of the Assertion is

axiomatically true without further supporting evidence;
• defeated - a flag indicating that the truth of the Assertion is

invalidated by a counter-evidence and/or an argumentation;
• asCited - when an Assertion ‘cites’ another Assertion (via the

+citedElement property in SACMElement), the truth of the As-

sertion is derived from the value of the cited Assertion .

The use of AssertionDeclaration is illustrated in Section 5.1 .

Sometimes it is necessary to argue the confidence (level of

rust) in the arguments provided in the assurance case. 13 This can

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 221

Fig. 15. SACM terminology component.

Fig. 16. Example use of elements in the Terminology component.

b

+

a

m

v

C

o

C

t

m

c

t

Fig. 17. Example use of Expression and Term .

e achieved using the +metaClaim feature of the Assertion element.

metaClaim as its name suggests, is a Claim about an Assertion to

rgue the soundness/trustworthiness of the Assertion . Within the

eta Claim , one may write ‘full confidence in Claim C1 is achieved

ia... ’ in its description, within which the Term C1 refers to another

laim in the same SACM model. This is where the +origin feature

f the Term is used, in the sense that the Term C1 refers to a Claim

1 within the same SACM model.

Claim and AssertedRelationship are the elements that form struc-

ured argumentation. AssertedRelationship is used to connect Argu-

entAsset s to form structured argumentation (AssertedRelationship s

an also be counter relationships, indicated by the +isCounter fea-

ure to present counter-arguments 14):
14 Feature F5 in Section 2.4 .

• AssertedContext - this relationship is used to connect contex-

tual Assertion s to an Assertion ;
• AssertedEvidence - this relationship is used to connect evi-

dence (referenced via ArtifactReference) to an Assertion ;
• AssertedInference - this relationship records the inference be-

tween one or more Assertion s and another Assertion ;
• AssertedArtifactContext - this relationship is used to connect

contextual artifacts (via ArtifactReference) to an artifact (via Ar-

tifactReference);

222 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 18. SACM argumentation component.

Fig. 19. An asserted Claim in SACM.

5

C

a

b

s

e

G

s

p

i

n

F
• AssertedArtifactSupport - this relationship is used to connect

supporting artefacts (via ArtifactReference) to an artifact (via Ar-

tifactReference).

ArtifactReference is a type of ArgumentAsset , which is able to re-

fer to an ArtifactElement. ArtifactReference is typically used to refer

to evidence stored in an Artifact package. In addition, it can re-

fer to any element that extends ArtifactElement (all elements in the

AssuranceCase, Argumentation, Artifact and Terminology packages are

ArtifactElement s). 15

ArgumentReasoning is also a type of ArgumentAsset . It is used

to provide an explanatory description for an AssertedRelationship . A

detailed discussion of ArgumentReasoning is in Section 5.2 .

4.7. Summary

In this section, we discussed the components provided by

SACM. We explained the intended semantics of the elements in the

packages and we used some in-place examples to illustrate how

SACM can be used to construct a system assurance case with argu-

mentations regarding system properties (i.e. safety and/or security)

and its supporting evidence/artifact (using the Artifact and Termi-

nology packages of SACM). In the next section, we will illustrate

how SACM can be used with more concrete examples.

5. SACM: Examples

In this section, we provide concrete examples on using SACM

to construct structured argumentation, and to form argumentation

patterns (similar to GSN argument patterns). Since GSN notations

are widely accepted and understood, we compare GSN depictions

with their equivalent model elements in SACM to illustrate how

SACM elements can be used to denote the same semantics carried

by their GSN counterparts.
15 Feature F6 in Section 2.4 .
.1. Example: Making claims and citations

Fig. 19 provides an example on how to construct a Claim . A

laim can have a name and a description, captured by LangString

nd Description respectively. A Claim is asserted if it is supported

y other Claim s. In this example, a Claim is connected by an As-

ertedInference with another Claim (details ommitted). The GSN

quivalent of Claim C1 in Fig. 19 is provided in Fig. 20 , where the

oal G1 bears the same semantics with C1 (and how Goal G1 is

upported by another Goal 16).

As previously mentioned, a Claim can be marked as needsSup-

ort . Fig. 21 illustrates the use of this declaration. A Claim that

s not supported by any argument/evidence should be marked as

eedsSupport . The equivalence of this Claim in GSN is shown in

ig. 22 , where Goal G1 bears the same semantics of Claim C1 .
16 Details of subsequent Goal s are omitted.

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 223

Fig. 20. A Goal structure in GSN.

Fig. 21. A needsSupport Claim in SACM.

Fig. 22. A undeveloped Goal in GSN.

Fig. 23. An assumed Claim in SACM.

Fig. 24. An Assumption in GSN.

W

a

t

(

u

m

C

Fig. 25. An axiomatic Claim in SACM.

Fig. 26. A Justification in GSN.

Fig. 27. A defeated Claim .

f

f

i

s

2

t

t

v

w

i

f

c

t

f

t

A

f

A

i

i

e

i

s
hen a Goal is not supported by argument/evidence, it is marked

s undeveloped .

A Claim marked as assumed is used to state an assumption in

he argumentation. Fig. 23 illustrates an assumed Claim in SACM

where the user assumes that all hazards have been identified). The

sers are responsible to declare that a Claim is assumed when they

ake assumptions about the system. The equivalence for assumed

laim is an Assumption in GSN, as shown in Fig. 24 .
A Claim marked as axiomatic is used to state a well agreed

act (presumably among stakeholders), which does not need any

urther support by arguments/evidence. The equivalent of an ax-

omatic Claim in GSN is a Justification , which does not need further

upporting argument/evidence to support its content. Figs. 25 and

6 illustrates the use of axiomatic Claim and Justification respec-

ively.

A Claim is marked as defeated if the truth of the Claim is proven

o be false by counter argument or direct evidence. Fig. 27 pro-

ides an example of a defeated Claim , the Claim C1 is connected

ith another Claim (we do not consider the detail of this Claim

n this example) by an AssertedInference , but with its +isCounter

eature set to be true . This means that the AssertedInference is a

ounter-argument, which negates the truth of the +target Claim , if

he +source of the AssertedInference is true . There is no equivalence

or defeated Claims in GSN.

As previously discussed, the users of SACM are able to selec-

ively disclose the content of an ArgumentPackage via the use of

rgumentInterface . Fig. 28 illustrates how an ArgumentPackageInter-

ace can be used. In this example, a Claim C1 is held within an

rgumentPackage , which contains an ArgumentPackageInterface that

n turn contains another Claim , which is a citation (its +isCitation

s true). The Claim ‘cites’ C1 in the ArgumentPackage via the +cit-

dElement feature (which is defined in the SACMElement element

n the Base package). Hence, the asCited declaration on the Claim

hould be used, which means that the truth of the Claim depends

224 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 28. An asCited Claim .

Fig. 29. An example of AssertedInference .

Fig. 30. An example of AssertedContext .

Fig. 31. An example of AssertedEvidence .

t

v

a

(

e

t

s

i

m

c

A

w

m

w

w

f

A

u
on the Claim that it cites (in this case, Claim C1). There is no equiv-

alence of cited Claim in GSN. The +isCitation and +citedElement fea-

tures can be used in the same way for elements in the Artifact and

Terminology components, should the developers of assurance cases

wish to disclose information in their corresponding packages.

5.2. Example: AssertedRelationships and argumentreasoning

The intent of Claim s is distinguished using AssertionDeclaration s.

Different types of Claim s are connected using different Asserte-

dRelationship s to form a structured argumentation.

The AssertedInference denotes the inference between one or

more Assertion s and another Assertion . Fig. 29 provides an exam-

ple, where the truth of Claim C1 17 is inferred from the truth of

Claim C2 .

The AssertedContext connects contextual Assertion s to an Asser-

tion . Fig. 30 provides an example, where the Claim A1 provides

contextual information for Claim C1 .

The AssertedEvidence connects evidence to an Assertion , Fig. 31

provides an example, where the ArtifactReference S1 (which refers
17 Description details are omitted to make the model clearer.

i

u

o
o an Artifact organised in an ArtifactPackage , details omitted) pro-

ides evidence for the Claim C1 .

The AssertedArtifactSupport connects supporting artifacts to an

rtifact. Fig. 32 provides an example, where ArtifactReference S2

which cites an Artifact System test plan) supports the ArtifactRef-

rence S1 (which cites the Artifact System test report), in the sense

hat the system test plan supports the system text report . The As-

ertedArtifactContext is also used on ArtifactReferences , except that

t connects contextual artifacts to another artifact.

As previously mentioned, all elements that extend ArtifactEle-

ent can be considered as an artifact. There are supporting and

ontextual relationships between elements rather than those in the

rtefict package. For example, an assurance case developer may

ant to express that one ArgumentPackage bears supporting argu-

ents to another ArgumentPackage , in which case the user may

ant to use AssertedArtifactSupport to connect two ArtifactReference

hich reference these two ArgumentPackage s.

Sometimes, a reason of AssertedRelationship s can be attached to

urther clarify the reasons of the AssertedRelationship . In this case,

rgumentReasoning is used for this purpose. Fig. 33 illustrates the

se of ArgumentReasoning , where top level Claim C1 is backed by

ts sub- Claim C2 , which are connected by an AssertedInference . The

ser may choose to give the AssertedInference a reason with the use

f ArgumentReasoning . In this case, an ArgumentReasoning S1 is at-

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 225

Fig. 32. An example of AssertedArtifactSupport .

t

m

t

v

m

t

5

m

p

t

i

t

c

t

t

i

E

a

t

Fig. 33. An example of ArgumentReasoning .

r

p

G

t

s

E

T

a

e

t

t

s

s

S

t

+

m

F

s

y

t

c

p

I

w
ached to the AssertedInference , which states that the argument is

ade by Argument over all identified hazards . Supportive and con-

extual information can also be associated to ArgumentReasoning

ia the use of AssertedSupport and AssertedContext . Since an Argu-

entReasoning is not an Assertion , there is little value in arguing

he soundness of the ArgumentReasoning .

.3. Example: Argumentation patterns

In GSN, there is a concept of GSN Pattern s (Kelly and McDer-

id, 1997), which are essentially successful GSN safety case tem-

lates that can be re-used. SACM provides similar concepts so that

he user can construct patterns in SACM, and at a later stage, to

nstantiate the patterns by populating actual system information in

he patterns. Fig. 34 shows an argumentation pattern in SACM. For

omparison, the content of the pattern is identical to the GSN pat-

ern shown in Fig. 8 . Note that some details are omitted due to

he complexity of the SACM model. There is a TerminologyPackage

n the upper part of Fig. 34 named TP1 , within which contains an

xpression and a Term . 18 In the lower part of the figure, there is

n ArgumentPackage AP1 , which contains the structured argumen-

ation pattern (N.B. the packages are placed in this way to improve
18 The containment is described in this way to improve comprehensibility.

G

f

f
eadability of the figure and does not imply the priority of the

ackages).

The top level Claim of this pattern is G1 , which maps to the

oal G1 in Fig. 8 . Note that G1 ’s +isAbstract is set to true since

his is an abstract Claim (a template). Now we focus on the de-

cription of G1 , within which an ExpressionLangString is used. The

xpressionLangString refers to the Expression in TerminologyPackage

P1 (which contains value: {System X} is safe). The curly brackets

re a convention in GSN, which are called role s in GSN. Role s are

ssentially place holders in the pattern, the contents enclosed in

he curly brackets will be replaced by actual system information if

he pattern gets instantiated. In this case, when the pattern is in-

tantiated, {System X} will be replaced with the name(s) of actual

ystem(s).

In the TerminologyPackage TP1 , the Expression refers to Term

ystem X . This is a typical use of Term in structured argumenta-

ion. When the pattern is instantiated , the Term should have its

externalReference feature populated to import actual system infor-

ation.

The structure of the argumentation in Fig. 34 follows that in

ig. 8 , where the Claim G2 maps to Goal G2 , and the ArgumentRea-

oning S1 maps to Strategy S1 . Note that the Claim s rendered in

ellow are the templates, which have their +isAbstract feature set

o true.

GSN pattern instantiation is of ten a manual procedure as safety

ase developers need to comprehend the GSN pattern and re-

lace the role s in the pattern with actual system information.

n (Hawkins et al., 2015a), a model-based approach is proposed,

hich makes use of a weaving model to link the elements in the

SN with elements in system models. This is typically due to the

act that in GSN there are no means to specify instantiation rules

or GSN patterns. In SACM, as previously mentioned in Section 4.3 ,

226 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 34. An example of SACM argumentation pattern.

a

G

5

(

t

c

s
the element ImplementationConstraint can be used to specify the

instantiation rules for patterns. 19 The users of SACM can associate

ImplementationConstraint to any element and the use of language

is not restricted. Evidently, pattern instantiation needs tool sup-

port and a model management engine to execute the Implementa-

tionConstraint s. The language used in ImplementationConstraint are

not limited to computer languages. ImplementationConstraint s de-

scribed in natural languages can also be used as instantiation rules,

except that the instantiation procedure is limited to manual only.

When a SACM model instantiates a SACM pattern, it can relate

to the SACM pattern via the +abstractForm feature. For example, if
19 Feature F7 in Section 2.4 .

s

g

g

d

t

 Claim C1 created by instantiating the template G1 , it can refer to

1 via the +abstractForm for future reference.

.4. Example: A case study on the european train control systems

ETCS)

As previously discussed, in SACM, assurance cases can be in-

egrated to form an overall assurance case. Integrating assurance

ases is a typical task performed when system components (or

ub-systems) are integrated to form an overall system. Sometimes,

ystem components/sub-systems are developed independently, to-

ether with their assurance cases. In safety-related domains, inte-

ration of assurance cases of components/sub-systems to argue the

ependability of the to-be-integrated system is the premise of sys-

em integration.

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 227

S

s

t

t

c

c

F

a

O

t

o

E

g

a

r

S

l

w

n

l

i

t

s

a

a

b

a

v

g

i

A

c

C

a

f

s

v

a

e

c

a

a

i

f

u

s

t

t

e

o

6

G

a

a

t

t

f

6

c

t

d

w

m

t

e

e

p

t

G

a

t

A

s

m

S

c

B

a

S

r

a

t

s

t

s

A

c

a

i

i

m

f

f

t

e

S

s

s

d

t

t

e

t

a

A

t
To illustrate how assurance case integration is performed in

ACM, we provide an example 20 taken from an engineering case

tudy in European Train Control System (ETCS) we encountered in

he DEIS project (Wei et al., 2017). In this example, we consider

he scenario where the assurance cases of on-board and side-track

omponents of ETCS are integrated to form an overall assurance

ase.

The example SACM model for the ETCS case study is shown in

ig. 35 . For simplicity, we only show the top level Claim s of the

ssurance cases. In Fig. 35 , there are three AssuranceCasePackage s:

n-Board ACP (at the top of the figure) is the assurance case for

he on-board component of ETCS; Track-Side ACP (at the bottom

f the figure) is the assurance case for the side-track component of

TCS; and Integration ACP (in the middle of the figure) is the inte-

rated assurance cases which integrates the two component assur-

nce cases together.

For On-Board ACP , ArgumentPackage AP1 contains the argument

egarding the safety of the on-board component. As discussed in

ection 4.2 , system engineers may wish only to disclose the top

evel Claim externally, hence ArgumentPackageInterface AP1 is used

hich contains a citation of G2 which will be referenced exter-

ally. Same principle is applied to Track-Side ACP , where the top

evel Claim G3 is cited in the ArgumentPackageInterface API2 . It

s to be noted that both On-Board ACP and Track-Side ACP con-

ains their ArtifactPackage s and TerminologyPackage s, which are not

hown due to the complexity of the model structure.

To integrate On-Board ACP and Track-Side ACP , AssuranceCaseP-

ckage named Integration ACP is created. Integration ACP contains

n AssuranceCasePackageBinding (Integration ACPB) specifically to

ind On-Board ACP with Track-Side ACP . Within Integration ACPB ,

n ArgumentPackageBinding (APB1) is used to bind API1 and API2

ia the +participantPackage feature. In APB1 , top level Claim G1 ar-

ues the safety of ETCS and two supporting Claim s G2 and G3 are

n place. Note that G2 and G3 are citation Claim s which cites G2 in

PI1 (which in turn cites G2 in AP1) and G3 in API2 (which in turn

ites G3 in AP2). It is also to be noted that within the Assurance-

asePackageBinding (Integration ACPB), there are also ArtifactPack-

geBinding s and TerminologyPackageBinding s which binds the arti-

acts and expressions used in the on-board component and track

ide component.

The integration of assurance cases in SACM is achieved using

arious package bindings. It is also possible to include additional

rguments in the binding AssuranceCasePackage when deemed nec-

ssary. Users of SACM may also argue the trustworthiness of the

ited Claim s in other packages to ensure the confidence in citing

rgument elements.

This simplified example illustrates that the users of SACM are

ble to integrate assurance cases using the facilities provided. It

s to be noted that assurance case composition is a complex task,

or there may be subtle dependencies among the systems. Mod-

lar assurance case construction makes no assumption that the

afety/security of the whole system is guaranteed by a composi-

ion of arguments about the safety/security of the parts. It remains

he responsibility of the assurance case developers to ensure that

ach assurance case module correctly identifies its dependencies

n other assurance cases in order to assure the composed system.

. Existing notations and the transformations to SACM

SACM is designed to support existing safety notations such as

SN and CAE. In previous sections, we briefly demonstrated the us-

ge of SACM elements by comparing them with GSN notations. In
20 We reduced the complexity of the model structure by incorporating the name

nd description of the elements directly in the elements themselves.
his section, we provide a GSN metamodel and a CAE metamodel

hat are compliant to SACM. We also discuss the transformation

rom GSN and CAE to SACM.

.1. The GSN metamodel and the inteoperability from GSN to SACM

As previously discussed, SACM provides a richer set of features

ompared to GSN, which includes the ability to standardise eviden-

ial and informational artifacts in the models, the ability to stan-

ardise controlled vocabularies (expressions and terminologies), as

ell as modular organisation and integration of artifacts and ter-

inologies. In general, creating a metamodel for GSN is a simple

ask, for there are only a few concepts that GSN captures. How-

ver, it is ideal to create the GSN metamodel by extending SACM

lements, so that not only can the GSN metamodel inherit features

rovided by SACM, but it also makes the interoperability from GSN

o SACM easier.

Our version of the GSN metamodel is shown in Fig. 36 . 21 In

SN, argumentations are organised in Module s, which is made as

 sub-type of ArgumentPackage in SACM; ContractModule is essen-

ially contract that binds Module s together, thus it is a sub-type of

rgumentPackageBinding .

Elements Goal, Assumption, Justification and AwayGoal are made

ub-types of Claim in SACM. A Goal can be uninstantiated , which

eans it is abstract, this is captured by the +isAbstract feature in

ACMElement class of SACM. A Goal can be public , which is depre-

ated in SACM, a Goal can also be undeveloped and toBeSupported-

yContract , which are captured individually.

Elements Solution, AwaySolution, AwayContext, ModuleReference

nd ContractModuleReference are sub-types of ArtifactReference in

ACM as they refer to artifacts that contain information they rep-

esent. Context is a slightly complicated concept, as it can either be

 statement stating the context of a Claim , or it can refer to con-

extual information stored in an artifact. Thus, Context is made a

ub-type of ArgumentAsset .

SupportedBy is made a sub-type of AssertedInference and InCon-

extOf is made a sub-type of AssertedContext. Strategy is made a

ub-type of ArgumentReasoning for it explains the intention of an

ssertedRelationship .

The way that the GSN metamodel is created makes it inherently

ompatible with SACM, so that it can be used as an ArgumentPack-

ge , and be organised in an AssuranceCasePackage , with its support-

ng artifacts organised in ArtifactPackage s and controlled vocabular-

es organised in TerminologyPackage s.

To enable interoperability from GSN to SACM, we provide a

odel-to-model transformation

22 defined using the Epsilon Trans-

ormation Language (ETL) (Kolovos et al., 2008). Most of the trans-

ormation is straight forward - instances of the GSN elements are

ransformed into instances of the SACM elements that the GSN el-

ments extend. There is one exception: the transformation from

trategy to ArgumentReasoning. Strategy in GSN is a node in the

tructured argumentation, where ArgumentReasoning is a node as-

ociated to an AssertedRelationship (which is an edge). Hence, ad-

itional analysis is needed to perform the GSN2SACM transforma-

ion. This requires analysis to be performed during the transforma-

ion, which is shown in Algorithm 1 .

Algorithm 1 defines the transformation rule Strat-

gy2ArgumentReasoning . Line 1 retrieves the Strategy to be

ransformed; Line 2 creates a new ArgumentReasoning ; Line 3

nd 4 transform the name and description of the Strategy to the

rgumentReasoning (the equivalent() operation in ETL divert con-

rol to corresponding transformation rules that transform Name to
21 All GSN elements are rendered in blu.
22 Available at: https://github.com/wrwei/MDERE/blob/master/technical .

https://github.com/wrwei/MDERE/blob/master/technical

228 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 35. A case study on the assurance case integration of the European Train Control Systems (ETCS).

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 229

Fig. 36. SACM compliant GSN metamodel.

Algorithm 1: Transforming Rule Strategy2ArgumentReasoning.

1 let strategy = Strategy to be transformed;
2 let argumentReasoning = new ArgumentReasoning;
3 argumentReasoning.name =

strategy.name.equivalent();
4 argumentReasoning.description =

strategy.description.equivalent();
5 if strategy.uninstantiated == true then

6 argumentReasoning.isAbstract = true;
7 end

8 let incomingSupportedBy = the incoming SupportedBy
to strategy ;

9 let outgoingSupportedBys = all outgoing SupportedBy s
from strategy ;

10 let supportedByFromGoal = Goal from

incomingSupportedBy
11 let supportedByToGoals = all Goal s from

outgoingSupportedBys that connects to strategy ;
12 if supportedByToGoal is not empty then

13 let assertedInference = new AssertedInference ;
14 assertedInference.target =

supportedByFromGoal.equivalent();
15 for goal in supportedByToGoals do

16 assertedInference.source.add(goal.equivalent());
17 end

18 end

N

i

m

f

S

T

o

t

o

c

b

a

a

1

s

S

t

w

v

s

6

fi

s

G

T

s

f

M

P

s

c

e

d

S

23 All CAE elements are rendered in blue.
ame , and returns the transformed model element). Line 5 checks

f the Strategy is uninstantiated, and then in line 6, make the Argu-

entReasoning abstract . Line 8 retrieves the incoming SupportedBy

or the Strategy . Line 9 retrieves all outgoing SupportedBy for the

trategy (In GSN, the flow of an argument goes from top to bottom.

hus, for a Strategy , there is one incoming SupportedBy and one
r many outgoing SupportedBy s). Line 10 retrieves the Goal from

he incoming SupportedBy . Line 11 retrieves the Goal s from the

utgoing SupportedBy s. Then, in line 13 an AssertedInference is

reated. It is worth noting that in SACM, the inference flows from

ottom to top. Thus the source and target of the AssertedInference

re the transformed counterparts of supportedByToGoals in line 11

nd the transformed counterparts of supportedByFromGoal in line

0, respectively.

It is to be noted that some developers use Solutions to directly

upport Strategy . This is forbidden in the GSN standard (permitted

upportedBy connections are: Goal -to- Goal, Goal -to- Strategy, Goal -

o- Solution and Strategy -to- Goal). This is one of the motivations

hy model-based assurance case is desired - automated model

alidation can be performed to check the well-formedness of as-

urance cases.

.2. The CAE metamodel and the interoperability from CAE to SACM

Claims-Arguments-Evidence (CAE) (Bishop and Bloom-

eld, 20 0 0) is another widely used graphical notation for as-

urance case construction. Concepts in CAE are similar to those in

SN. There has not been an official metamodel defined for CAE.

hus, we provide our own version of CAE that extends SACM,

hown in Fig. 37 . 23

Unlike GSN and SACM, CAE does not support modularity. There-

ore, we introduced three new concepts in CAE, CAEModule, CAE-

oduleInterface and CAEModuleBinding , which extend Argument-

ackage, ArgumentPackageInterface and ArgumentPackageBiding re-

pectively. In CAE, there is a notion of Claim , which is semanti-

ally identical to Claim in SACM. We therefore create a CAEClaim

lement that extends Claim in SACM. The reason for this redun-

ancy is that we want the CAE metamodel to be non-invasive to

ACM. The Argument elements in CAE provide a description of the

230 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 37. SACM compliant CAE metamodel.

Fig. 38. The assurance case package view of ACME.

Fig. 39. The module view of ACME.

7

7

o

c

g

c

b

p

E

d

w

m

M

d
argument approach, which is functionally equivalent to Argumen-

tReasoning , thus it is made as a sub-type of ArgumentReasoning.

Evidence is made as a sub-type of ArtifactReference because it is a

reference to evidential materials. In CAE, there is a notion of As-

sumption , which is made as a sub-type of Claim .

In CAE, there are three types of relationships, the IsEvidence-

For connects Evidence with Claim s, thus is made a sub-type of As-

sertedEvidence ; the IsSubClaimOf relationship connects sub- Claim s

to Claim and is made a sub-type of AssertedInference ; the Supports

relationship connects Argument s to Claim and is also made a sub-

type of AssertedInference . Since there is no notion of modules in

CAE, the argumentation is contained in ArgumentPackage s inherited

from SACM.

The transformation from CAE to SACM is similar to the trans-

formation from GSN to SACM (which is also implemented in Ep-

silon Transformation Language), with the same issue that Argu-

ment (which is a node in the structured argumentation) needs to

be mapped to ArgumentReasoning (a node associated to an edge).

The detailed transformation is made publicly available. 24
24 Available at: https://github.com/wrwei/MDERE/blob/master/technical .
. Tool support and future work

.1. Assurance case modelling environment - ACME

With all its power in model-based system assurance, there is

ne drawback for SACM at the moment, which is the lack of

oncrete syntax, i.e. graphical representations of SACM. 25 Without

raphical representations, it is typically difficult for engineers to

onstruct SACM. Hence, in order to exploit the benefits provided

y SACM whilst providing supports for existing assurance case ap-

roaches, we started developing a tool (Assurance Case Modelling

nvironment, ACME 26) based on SACM and the GSN metamodel we

iscussed in Section 6 .

ACME is implemented using the Graphical Modelling Frame-

ork (GMF), which supports the creation of editors based on meta-

odels defined using the Ecore metamodel provided by the Eclipse

odelling Framework (EMF) (Steinberg et al., 2008). As previously

iscussed, we created metamodels for GSN and CAE. The approach
25 Graphical syntax for SACM is being developed by the authors.
26 Available upon request.

https://github.com/wrwei/MDERE/blob/master/technical

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 231

Fig. 40. Creation of artifact.

w

t

m

a

a

n

I

t

b

w

o

n

u

p

R

s

t

p

A

t

e

i

t

p

s

fi

e

G

m

e

t

m

b

s

o

a

s

w

H

A

c

7

g

G

a

s

t

t

a

T

m

s

m

f

e take for ACME is to support GSN for the argumentation part of

he assurance case (since there is no graphical syntax for the Argu-

entation component of SACM). In this sense, the users of ACME

re able to create an assurance case using SACM, use GSN for the

rguments, and then use SACM’s Artifact and Terminology compo-

ents for evidence-artifact traceability and controlled vocabulary.

n this way, system assurance case practitioners are able to make

he transition from GSN/CAE to SACM, from (mostly) non-model-

ased approach to uniformed model-based approach.

Fig. 38 shows the Assurance Case Package View in ACME, within

hich the users are able to create Modules and Contract Modules

f GSN, as well as elements defined in the AssuranceCase compo-

ent of SACM. Fig. 39 shows the Module view of ACME, where the

sers are able to create GSN elements.

The users are also able to create elements in the Artifact com-

onent of SACM (i.e. Artifact, Activity, Event, Participant, Technique,

esource, Property , and ArtifactAssetRelationship), Fig. 40 demon-

trates how an Artifact element can be created/edited. Creation

ools are also provided for the elements in the Terminology com-

onent, where a TerminologyPackage is represented as a table in

CME. Fig. 41 demonstrates how a TerminologyPackage and its con-

ents can be created/edited.

The idea behind ACME is to provide a transition for practition-

rs from GSN (and/or CAE 27) to SACM, before the OMG standard-

ses the graphical syntax of SACM. In this way, assurance case prac-

itioners can continue to use GSN, whilst exploiting the features

rovided by SACM (explained in Section 2.4). When the graphical

yntax of SACM is standardised

28 , ACME is ready and will be the

rst tool to adopt the graphical syntax.

The users of ACME are also able to transform their GSN mod-

ls to SACM, based on the model-to-model transformation from

SN to ACME. ACME integrates with the Epsilon platform, so that

odel management operations are supported on GSN/SACM mod-
27 CAE editor for ACME is under development.
28 As we are aware, this standardisation is in process.

ls. A first step towards this direction is the support for GSN2SACM

ransformation, which is provided by ACME.

ACME is the first step towards an integrated modelling environ-

ent for SACM. ACME provides a transitional solution to model-

ased system assurance, in the sense that it enables existing as-

urance case approaches to be used in conjunction with SACM, in

rder to exploit the features provided by SACM such as evidence-

rtifact traceability, controlled vocabularies and multiple language

upport. ACME as it is at the moment, illustrates what can be done

ith SACM and model-based assurance cases created with SACM.

owever, it does not guarantee that assurance cases provided by

CME are compelling ones. It is still the responsibility of assurance

ase developers to develop accurate and correct assurance cases.

.2. Future work

The next work in line for SACM is the standardisation of its

raphical notations. As explained, SACM is not a metamodel for

SN and CAE, it is an independent metamodel for creating assur-

nce cases using its own Argumentation component (which can be

een as the superset of GSN and CAE). Apart from modelling struc-

ured argumentations, SACM can be used to model evidence and

he processes that manage the evidence (the Artifact component),

nd to model controlled vocabulary used in assurance cases (the

erminology component). Therefore, for engineers to create SACM

odels efficiently, it is necessary to introduce graphical notations

o that tools like ACME can be built to enable the creation of SACM

odels.

With regard to future work for ACME, we aim at achieving the

ollowing objectives:

• Support for CAE. We aim to create the editor for CAE and inte-

grate it to ACME.
• Support for legacy assurance cases. We aim to develop a set of

model extraction mechanisms to extract information from as-

surance cases provided by existing tools and convert them to

models that conform to our GSN/CAE metamodels.

232 R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233

Fig. 41. Editing a TerminologyPackage .

i

p

p

a

a

i

c

S

m

v

s

c

t

m

p

t

s

a

e

a

a

p

c

A

r

(

R

A

A
• Model management tools. We aim to develop a set of

model validation rules to check the well-formedness of

GSN/CAE/SACM models. We also aim to develop a set of model-

to-text transformation rules for assurance case report genera-

tion.
• Support for automated pattern instantiation. We integrate the

Epsilon platform runtime 29 in ACME for various model man-

agement operations. We aim to explore how Implementation-

Constraint s can be utilised to hold Epsilon programs for pattern

instantiation.
• And finally, support concrete syntax for SACM. We are con-

tributing to the development of graphical notations for SACM

at the moment, and will add the support for the notations in

ACME once they are developed and evaluated.

8. Conclusion

In this paper, we identified the importance of model-based sys-

tem assurance cases, for that they enable high level model man-

agement operations to be performed, and its potential applications

in Open Adaptive Systems assurance at runtime. In the prespective

of modelling languages, SACM is more powerful than existing sys-

tem assurance approaches (such as GSN and CAE), for its additional

features listed (non-exhaustively) below;

• Fine grained modularity, for component based system assur-

ance, as well as assurance case integration;
• Multiple language support, to support multiple natural lan-

guages, as well as computer languages;
• Controlled vocabulary, to standardise terminologies used in as-

surance cases;
• Ability to argue the trustworthiness of arguments, so that as-

surance case reviewers are able to determine the level of trust

of argument elements;
• Ability to express counter-arguments, so that the argumenta-

tion process becomes more comprehensible;
• Traceability from evidence to artifact, so that changes of system

information/argumentation can be propagated throughout the

assurance case, to enable incremental certification;
• Automated assurance case instantiation, to link system informa-
tion with failure modes to create concrete assurance cases.

29 https://www.eclipse.org/epsilon/ .

B

B
We also provided a definitive exposition of SACM to explain

ts intended usage via examples. SACM has been sufficiently ex-

lained in this paper although extensive examples cannot be fully

rovided.

We provided our version of GSN and CAE metamodels, which

re compliant to SACM in the sense that users of these metamodels

re able to exploit the facilities provided by SACM whilst still us-

ng GSN/CAE notations that they are familiar with. We also provide

omprehensible model-to-model transformations from GSN/CAE to

ACM to enable the interoperability from GSN/CAE to SACM.

We briefly discussed the Assurance Case Modelling Environ-

ent - ACME, a graphical modelling tool created based on our

ersion of the GSN metamodel. With ACME, we explained what is

upported when assurance cases become model-based, and what

an be done in the future work of ACME. ACME acts as a transi-

ional solution from conventional GSN diagram creation to SACM

odel-based system assurance. ACME provides easy-to-use sup-

ort for SACM facilities, as well as automated model-to-model

ransformation from GSN to SACM.

SACM provides a solid foundation for model-based system as-

urance, due to the variety of features that have been evaluated

nd added to it, which are based on experiences from two well-

stablished assurance case notations: GSN and CAE. Model-based

ssurance case is the key to assure Open Adaptive Systems (such

s Cyber-Physical Systems), for it enables system assurance to be

erformed at runtime, which entails automated system assurance

ase integration, and automated reasoning of assurance cases.

cknowledgement

This work is supported by the European Union’s Horizon 2020

esearch and innovation programme through the DEIS project

grant agreement No 732242).

eferences

rmstrong, J.M. , Paynter, S.E. , 2004. The deconstruction of safety arguments through

adversarial counter-argument. In: International Conference on Computer Safety,
Reliability, and Security. Springer, pp. 3–16 .

ttwood, K.C. , Kelly, T. , Conmy, P. , 2014. The use of controlled vocabularies and

structured expressions in the assurance of cps. Ada User J. 251–258 .
arry, M.R. , 2011. CertWare: a workbench for safety case production and analysis.

In: Aerospace Conference, 2011 IEEE. IEEE, pp. 1–10 .
ishop, P. , Bloomfield, R. , 20 0 0. A methodology for safety case development. In:

Safety and Reliability, Vol. 20. Taylor & Francis, pp. 34–42 .

https://www.eclipse.org/epsilon/
https://doi.org/10.13039/501100007601
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0004

R. Wei, T.P. Kelly and X. Dai et al. / The Journal of Systems and Software 154 (2019) 211–233 233

B

C

D

D

D

F

H

H

H

H

J

K

K

K

K

K

L

L

L

M

M

M

N

O

S

T

T

W

W

D

v

B

H

r

P

C

E

a

t

h

a

D

C

b

s

i

D

C

c

c

a

D

t

t

y

loomfield, R. , Bishop, P. , 2010. Safety and assurance cases: past, present and
possible future–an adelard perspective. In: Making Systems Safer. Springer,

pp. 51–67 .
hinneck, P. , Pumfrey, D. , Kelly, T. , 2004. Turning up the heat on safety case con-

struction. In: Practical Elements of Safety. Springer, pp. 223–240 .
enney, E. , Pai, G. , 2013. A formal basis for safety case patterns. In: International

Conference on Computer Safety, Reliability, and Security. Springer, pp. 21–32 .
enney, E. , Pai, G. , 2017. Tool support for assurance case development. Autom.

Softw. Eng. 1–65 .

espotou, G. , Kelly, T. , 2008. Investigating the use of argument modularity to opti-
mise through-life system safety assurance. In: 3rd IET International Conference

on System Safety. IET .
enn, J. , Jepson, B. , 2005. Putting trust into safety arguments. In: Constituents of

Modern System-safety Thinking. Springer, pp. 21–35 .
awkins, R. , Habli, I. , Kelly, T. , McDermid, J. , 2013. Assurance cases and prescriptive

software safety certification: a comparative study. Saf. Sci. 59, 55–71 .

awkins, R. , Habli, I. , Kolovos, D. , Paige, R. , Kelly, T. , 2015a. Weaving an assurance
case from design: a model-based approach. In: High Assurance Systems En-

gineering (HASE), 2015 IEEE 16th International Symposium on. IEEE, pp. 110–
117 .

awkins, R. , Kelly, T. , Knight, J. , Graydon, P. , 2011. A new approach to creating clear
safety arguments. In: Advances in systems safety. Springer, pp. 3–23 .

awkins, R.D. , Habli, I. , Kelly, T. , 2015b. The need for a weaving model in assurance

case automation. Ada User J. 187–191 .
aaksi, A. , 2002. Developing mobile browsers in a product line. IEEE Softw. 19 (4),

73–80 .
ärnä, J. , Tolvanen, J.-P. , Kelly, S. , 2009. Evaluating the use of domain-specific mod-

eling in practice. In: Proceedings of the 9th OOPSLA workshop on Domain-Spe-
cific Modeling .

elly, T. , Meng, S.B. , 2005. The costs, benefits, and risks associated with pattern-

based and modular safety case development,” to appear. In: in Proceedings of
the UK MoD Equipment Safety Assurance Symposium. Citeseer .

elly, T. , Weaver, R. , 2004. The goal structuring notation–a safety argument notation.
In: Proceedings of the dependable systems and networks 2004 workshop on

assurance cases. Citeseer, p. 6 .
elly, T.P. , McDermid, J.A. , 1997. Safety case construction and reuse using patterns.

In: Safe Comp 97. Springer, pp. 55–69 .

olovos, D.S. , Paige, R.F. , Polack, F.A. , 2008. The epsilon transformation language.
In: International Conference on Theory and Practice of Model Transformations.

Springer, pp. 46–60 .
arrucea, X. , Walker, A. , Colomo-Palacios, R. , 2017. Supporting the management of

reusable automotive software. IEEE Softw. (3) 40–47 .
autieri, S. , Cooper, D. , Jackson, D. , 2005. SAFSEC: commonalities between safety and

security assurance. In: Constituents of Modern System-safety Thinking. Springer,

pp. 65–75 .
uo, Y. , van den Brand, M. , Kiburse, A. , 2015. Safety case development with SB-

VR-based controlled language. In: International Conference on Model-Driven
Engineering and Software Development. Springer, pp. 3–17 .

aksimov, M. , Fung, N. , Kokaly, S. , Chechik, M. , 2018. Two decades of assurance
case tools: a survey. In: Proc. 6th International Workshop on Assurance Cases

for Software-Intensive Systems (ASSURE 2018) .
atsuno, Y. , 2014. A design and implementation of an assurance case language. In:

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks. IEEE, pp. 630–641 .
atsuno, Y. , Takamura, H. , Ishikawa, Y. , 2010. A dependability case editor with pat-

tern library. In: High-Assurance Systems Engineering (HASE), 2010 IEEE 12th In-
ternational Symposium on. IEEE, pp. 170–171 .
etkachova, K. , Netkachov, O. , Bloomfield, R. , 2014. Tool support for assurance case
building blocks. In: International Conference on Computer Safety, Reliability,

and Security. Springer, pp. 62–71 .
MG, 2019. Structured Assurance Case Metamodel. https://www.omg.org/spec/

SACM/About-SACM/ .
teinberg, D. , Budinsky, F. , Merks, E. , Paternostro, M. , 2008. EMF: Eclipse Modeling

Framework. Pearson Education .
aguchi, K. , Daisuke, S. , Nishihara, H. , Takai, T. , 2014. Linking traceability with GSN.

In: Software Reliability Engineering Workshops (ISSREW), 2014 IEEE Interna-

tional Symposium on. IEEE, pp. 192–197 .
rapp, M. , Schneider, D. , Liggesmeyer, P. , 2013. A safety roadmap to cyber-physi-

cal systems. In: Perspectives on the Future of Software Engineering. Springer,
pp. 81–94 .

ei, R. , Kelly, T.P. , Hawkins, R. , Armengaud, E. , 2017. DEIS: dependability engi-
neering innovation for cyber-physical systems. In: Federation of International

Conferences on Software Technologies: Applications and Foundations. Springer,

pp. 409–416 .
ei, R. , Reich, J. , Kelly, T. , Gerasimou, S. , 2018. On the transition from design time

to runtime model-based assurance cases. In: 13th International Workshop on
Models@Runtime, ACM/IEEE 21th International Conference on Model Driven En-

gineering Languages and Systems (MoDELS 2018) .

r. Ran Wei is a Research Associate in the Department of Computer Science, Uni-
ersity of York. His research interests are on Model-Driven Engineering, Search-

ased Software Engineering, System Assurance and Model-Based System Assurance.
e can be reached at ran.wei@york.ac.uk. See also https://www.linkedin.com/in/

wei/ .

rofessor Tim Kelly is Chair of High Integrity Systems within the Department of

omputer Science, University of York, and joint leader of the High-Integrity Systems

ngineering (HISE) research group. His research is concerned with the modelling,
nalysis, justification and certification of complex (computer-based) systems. In par-

icular, he has established a body of work on Safety Case development that has
ad, and continues to have, national and international impact. He can be reached

t tim.kelly@york.ac.uk. See also https://www-users.cs.york.ac.uk/tpk/ .

r. Xiaotian Dai is a Research Associate in Real-Time System Group, Department of

omputer Science, University of York, UK. His research interests focus on model-

ased engineering and real-time systems. His current work is on model-based
afety assurance for autonomous and cyber-physical systems.

He can be reached at xiaotian.dai@york.ac.uk. See also https://www.linkedin.com/
n/xdai3/ .

r. Shuai Zhao is a Research Associate in Real-Time System Group, Department of

omputer Science, University of York, UK. His research interests include multipro-
essor resource sharing, schedulability analysis, task priority ordering, and safety-

ritical programming languages. He can be reached at shuai.zhao@york.ac.uk. See
lso https://www.linkedin.com/in/shuai- zhao- 5b1076a6/ .

r. Richard Hawkins is a senior research fellow on the Assuring Autonomy Interna-
ional Programme within the Department of Computer Science, University of York.

His research interests are Model-Based Assurance, Software Assurance and Sys-

em Assurance Cases.
He can be reached at richard.hawkins@york.ac.uk. See also https://www-users.cs.

ork.ac.uk/ ∼rhawkins/ .

http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0027
https://www.omg.org/spec/SACM/About-SACM/
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30106-2/sbref0032
https://www.linkedin.com/in/rwei/
https://www-users.cs.york.ac.uk/tpk/
https://www.linkedin.com/in/xdai3/
https://www.linkedin.com/in/shuai-zhao-5b1076a6/
https://www-users.cs.york.ac.uk/~rhawkins/

	Model based system assurance using the structured assurance case metamodel
	1 Introduction
	2 Background and motivation
	2.1 Safety cases
	2.2 Safety cases and model driven engineering
	2.3 SACM and runtime system assurance
	2.4 Assurance cases and the structured assurance case metamodel
	2.5 Summarised motivations

	3 The goal structuring notation
	4 Structured assurance case metamodel
	4.1 SACM Overview
	4.2 SACM AssuranCecase component
	4.3 SACM base component
	4.4 SACM Artifact component
	4.5 SACM Terminology component
	4.6 SACM Argumentation component
	4.7 Summary

	5 SACM: Examples
	5.1 Example: Making claims and citations
	5.2 Example: AssertedRelationships and argumentreasoning
	5.3 Example: Argumentation patterns
	5.4 Example: A case study on the european train control systems (ETCS)

	6 Existing notations and the transformations to SACM
	6.1 The GSN metamodel and the inteoperability from GSN to SACM
	6.2 The CAE metamodel and the interoperability from CAE to SACM

	7 Tool support and future work
	7.1 Assurance case modelling environment - ACME
	7.2 Future work

	8 Conclusion
	Acknowledgement
	References

