
Principled Construction of Software Safety Cases 
Richard Hawkins, Ibrahim Habli, Tim Kelly 

 
Department of Computer Science, University of York, UK  

Abstract. A small, manageable number of common software safety assurance 
principles can be observed from software assurance standards and industry best 
practice. We briefly describe these assurance principles and explain how they 
can be used as the basis for creating software safety arguments. 
 
Keywords. Software safety, assurance, safety cases, certification. 

1 Introduction 

We have previously presented a set of software safety assurance principles [1]. The 
principles are common across most domains, and can be regarded as the immutable 
core of any software safety justification. In order to demonstrate that a system is ac-
ceptably safe, it is increasingly common to provide a safety case for that system.  

A safety case comprises “a structured argument, supported by a body of evidence, 
that provides a compelling, comprehensible and valid case that a system is safe for a 
given application in a given environment” [2]. For systems that contain software, the 
safety case must consider the contribution of the software to the safety of the system. 
Creating a clear safety argument helps to provide explicit safety justification, making 
it easier to understand, review and criticise the reasoning and evidence presented.  

Software safety arguments are challenging to create. Bloomfield and Bishop [3] 
discussed the current practice and uptake of safety cases for software-based systems. 
They concluded that, while the application to complex systems is a significant under-
taking, the use of assurance cases for software is very appealing, supporting as it does 
innovation and flexibility. Understanding how the principles of software safety assur-
ance relate to software safety cases makes it easier to understand the required aspects 
of the safety case, and determine which of those aspects are covered by existing soft-
ware assurance processes. In this paper, we briefly describe the software safety assur-
ance principles (Section 2) and discuss how these principles can be used as the basis 
for developing software safety arguments (Section 3). 

2 Software Safety Assurance Principles 

The principles presented in this section can help maintain understanding of the ‘big 
picture’ of software safety issues whilst examining and negotiating the detail of indi-
vidual standards. Recognising these principles does not remove the obligation to 
comply with domain-specific standards. However, the principles can provide a refer-
ence model for cross-sector certification. 



 
Principle 1: Software safety requirements shall be defined to address the software 
contribution to system hazards 
The assessment and mitigation of hazards is central to the engineering of safety-
critical systems. Software, although conceptual, can contribute to these hazards 
through the system control or monitoring functions it implements (e.g. software im-
plementing anti-lock braking or aircraft warning functions). Hazardous software con-
tributions, identified through a safety process, should be addressed by the definition 
of safety requirements to mitigate these contributions. It is important for these contri-
butions to be defined in a concrete and verifiable manner, i.e. describing the specific 
software failure modes that can lead to hazards. Otherwise, we will be in danger of 
defining generic software safety requirements, or simply correctness requirements, 
that fail to address the specific hazardous failure modes that affect the safety of the 
system.  
 
Principle 2: The intent of the software safety requirements shall be maintained 
throughout requirements decomposition. 
As the software development lifecycle progresses, requirements and design are pro-
gressively elaborated and a more detailed software design is created. Having estab-
lished software safety requirements at the highest (most abstract) level of design (see 
Principle 1), the intent of those requirements must be maintained as the software safe-
ty requirements are decomposed. Simply looking at requirements satisfaction is insuf-
ficient. The notion of ‘intent’ is very important here. It is necessary to consider what 
was meant by the high level requirement, including implied semantics. It is common 
for a lot of information to remain unstated or deliberately undefined. A theoretical 
solution to this problem is to ensure that all the required information is captured in the 
initial high-level requirement. In practice however this would be impossible to 
achieve. Design decisions will always be made later in the software development 
lifecycle that require greater detail in requirements. This detail cannot be properly 
known until that design decision has been made.  
 
Principle 3: Software safety requirements shall be satisfied. 
Once a set of ‘valid’ software safety requirements is defined, either in the form of 
allocated software safety requirements (Principle 1) or refined or derived software 
safety requirements (Principle 2), it is essential to verify that these requirements have 
been satisfied. The principal challenge for demonstrating that the software safety 
requirements have been satisfied resides in the fundamental limitations of the evi-
dence obtained from the adopted verification techniques. The source of the difficulties 
lies in the nature of the problem space. For testing and analysis techniques alike, there 
are issues with completeness given the complexity of software systems. 
 
Principle 4: Hazardous behaviour of the software shall be identified and mitigated. 
Although the software safety requirements established for a software design can cap-
ture the intent of the high-level safety requirements, this cannot guarantee that the 
requirements have taken account of all the potentially hazardous ways in which the 



software might behave. There will often be unintended behaviour of the software, 
resulting as a side-effect from the way in which the software has been designed and 
developed, that could not be appreciated through simple requirements decomposition. 
These hazardous software behaviours could result from either unanticipated behav-
iours and interactions arising from software design decisions (side effects of the 
software design) or systematic errors introduced during the software development 
process.  
 
Principle 4+1: The confidence established in addressing the software safety princi-
ples shall be commensurate to the contribution of the software to system risk. 
It is necessary to provide evidence to demonstrate that each of the principles de-
scribed above has been established. The evidence may take numerous forms based 
upon the nature of the software system itself, the hazards that are present, and the 
principle that is being demonstrated, and may vary hugely in quantity and rigour. It 
must be ensured that the confidence achieved from the evidence provided is commen-
surate to the contribution that the software makes to system risk. This approach is 
widely observed in current practice, with many standards using notions of integrity or 
assurance levels to capture the confidence required in a particular software function.  

3 Developing a Software Safety Argument 

Figures 1 presents, using the Goal Structuring Notation (GSN) [4], the generic struc-
ture of a software safety argument that could be created for systems containing soft-
ware. The argument structure is presented in the form of a safety argument pattern 
[4]. A fully documented catalogue of patterns from which Figure 1 is extracted is 
provided in [5]. In [6] we provided a fully developed example of a software safety 
argument for an aircraft wheel braking system that uses this argument pattern. In the 
rest of this section we explain how the software safety assurance principles are explic-
itly addressed through a safety argument created using the pattern from Figure 1. 
 
Principle 1 – The instantiation of the pattern in Figure 1 starts by creating an instance 
of the ‘Goal: sw contribution’ for each identified contribution that the software could 
make to system hazards. This is to ensure that the software safety argument links to 
the system safety case by providing explicit traceability to system hazards. Note that 
there might be more than one contribution that the software could make to each sys-
tem hazard. For example, one hazard such as ‘incorrect altitude displayed’ may be 
associated with multiple software contributions, including software providing incor-
rect data values or failing to pass data values. Justifying in the safety argument that all 
the software contributions have been identified is key. Typically, a combination of 
software Functional Failure Analysis and System Fault Tree Analysis is used to iden-
tify these software contributions. 
 
Principle 2 – To address Principle 2 in the argument we need to be demonstrate that 
the defined Software Safety Requirements (SSRs) correctly reflect the software con-



tributions that were identified at the top level, but also that the SSRs are correct at 
each level of software design decomposition. The term ‘tier’ in Figure 1 is used to 
represent one level of decomposition in the software design (for example, levels of 
decomposition may be requirements to high-level design, or detailed-design to im-
plementation). This will be replaced at instantiation by the level of design abstraction 
under consideration (e.g. detailed design). Specifically, the ‘Goal: SSRidentify’ pro-
vides an argument that the SSRs at each tier are adequately allocated, decomposed, 
apportioned and interpreted. The term ‘adequately’ means that the intent of the high-
level SSRs is maintained. It should be noted that this is more than just a traceability 
argument. The argument must demonstrate that the behaviour is equivalent (cf. no-
tions of ‘rich traceability’ [7] or ‘intent specifications’ [8]). The ‘Goal: SSRnAddn’ 
makes a claim regarding each SSR at each software design tier. The ‘Goal: 
SSRnAddn+1’ then shows that the SSR is addressed at the next level of decomposi-
tion as well (tier n+1). The same type of argument is created for each tier (as indicated 
by the loop going back up to ‘Strat: sw contribution’).  
 

 
Fig. 1 A pattern for software safety arguments 

Principle 3 – There is the potential to undertake verification, and provide evidence of 
satisfaction of the SSRs at any tier (e.g. integration testing for the software architec-
ture, or unit testing for the detailed design). The ‘Goal: SSRnSat’ provides an oppor-
tunity to do this in the safety argument. Note that it is not always necessary to provide 
satisfaction evidence for every tier. However, this judgement will affect the level of 
assurance achieved (this is discussed further under Principle 4+1). 
 



Principle 4 – It is important to justify that that potential hazardous behaviour is man-
aged at each level of design. This is dealt with under the ‘Goal: hazCont’. The argu-
ment developed here must demonstrate that (1) systematic errors have not been intro-
duced whilst creating this tier of design and that (2) unanticipated behaviours and 
interactions arising from the software design decisions at this tier are eliminated or 
mitigated. The full details of how the ‘Goal: hazCont’ is developed is provided in [5]. 
 
Principle 4+1 – It is important to demonstrate in the software safety case that the 
confidence with which the principles have been addressed is commensurate to the 
contribution of the software to system risk. This requires the provision of a confi-
dence argument [9]. A confidence argument documents the reasons for having confi-
dence, and assesses and where possible quantifies the sources of uncertainty [10], in 
the main (software) safety argument and evidence. 

4 Conclusions 

This paper has explained how the software safety assurance principles, observed from 
software assurance standards and industry best practice, can be addressed in software 
safety case construction (illustrated by means of a safety argument pattern). Software 
safety cases are often seen to be about a single issue such as process rigour, standards 
compliance or V&V. In this paper we have shown how a software safety case should 
include aspects of all these issues, and must necessarily span the software develop-
ment process from requirements to verification, and integrate with the wider system 
safety assessment.  

References 

1. Hawkins, R., Habli, I., Kelly, T.: The Principles of Software Safety Assurance. 31st Inter-
national System Safety Conference, Boston, Massachusetts USA (2013) 

2. MoD, Defence Standard 00-56 Issue 4: Safety Management Requirements for Defence 
Systems. HMSO (2007) 

3. Bloomfield, R., Bishop, P.: Safety and Assurance Cases: Past, Present and Possible Future 
– An Adelard Perspective. 18th Safety–Critical Systems Symposium, Bristol, UK (2010. 

4. Goal Structuring Notation Working Group: GSN Community Standard Version 1 (2011) 
5. Hawkins, R., Kelly, T.: A Software Safety Argument Pattern Catalogue, Technical Report, 

Department of Computer Science, University of York, YCS-2013-482 (2013) 
6. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance Cases and Prescriptive Soft-

ware Safety Certification: A Comparative Study. Safety Science, Vol. 59 (2013) 
7. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer-Verlag, (2002) 
8. Leveson, N.: Intent Specifications: An Approach to Building Human-Centered Specifica-

tions. IEEE Transactions on Software Engineering, Vol. 26, No. 1 (2000) 
9. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A New Approach to Creating Clear Safety 

Arguments. 19th Safety–Critical Systems Symposium, Southampton, UK (2011) 
10. Denney, E., Pai, G., Habli, I.: Towards Measurement of Confidence in Safety Cases. Sym-

posium on Empirical Software Engineering and Measurement, Banff, Canada (2011)  


